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The problem of the transmission of wave energy through small gaps arises in a variety
of physical contexts. Here we consider the problem of Rossby waves encountering
a barrier with two small gaps. In contrast to waves encountering a barrier with
one small gap, in which very little wave energy is predicted to transmit across
the barrier, when there are two or more gaps linear theory predicts that the barrier
may be surprisingly inefficient at blocking the transmission of Rossby wave energy,
owing to the requirement that circulation be conserved around individual segments
of the barrier. However, the theory neglects viscosity in the main basin interiors
and nonlinear effects in the basins and the gaps. To examine these effects, here we
present the results of a series of laboratory experiments in which Rossby basin modes
interact with a barrier with zero, one or two gaps. We find that the large-scale waves
are able to transmit across the barrier with two gaps as predicted by the theory.
However, while the linear theory captures the large-scale flow structures, viscosity
and nonlinearity significantly affect the flow along the boundaries and near the gaps
in the barrier.

Key words: rotating flows, waves in rotating fluids, ocean processes

1. Introduction
Wave diffraction problems, in which waves interact with obstacles or slits in barriers,

are frequently encountered in many areas of physics, including electromagnetism,
acoustics, optics and fluid mechanics. In the case of sound or electric waves
encountering narrow slits in barriers, such that the length scale of the slit is much
smaller than that of the incoming wave, it is often found that very little wave energy
is able to transmit through the slit (Lord Rayleigh 1897). This behaviour is also
observed for waves in fluids. For example, when surface waves encounter vertical
barriers with small gaps at depth, little wave energy is transmitted across the barrier
for long waves encountering narrow gaps (Porter 1972). Similarly, experimental
observations of internal wave beams encountering a narrow slit in a vertical barrier
show that only a small fraction of the wave energy is transmitted across the barrier,

† Email address for correspondence: kaminska@uw.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

22
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-4838-2453
mailto:kaminska@uw.edu
https://doi.org/10.1017/jfm.2020.224


893 A4-2 A. K. Kaminski, K. R. Helfrich and J. Pedlosky

with an accompanying shift to smaller transmitted scales for narrower slits (Mercier,
Garnier & Dauxois 2008).

Here we focus specifically on the case of Rossby waves in closed basins interacting
with topographic barriers with small gaps, such as ocean ridges or island chains with
small gaps between neighbouring islands. Rossby waves arise in the oceans as a
response to forcing, either by buoyancy or by the actions of winds at the sea surface
(Pedlosky 1965). The case of Rossby waves in closed basins (i.e. Rossby basin
modes) is a classical problem in geophysical fluid dynamics (Longuet-Higgins 1964;
Pedlosky 1965, 1967). There is observational evidence from moorings for these
modes; for example, Warren, Whitworth III & LaCasce (2002) observed a large
signal in moorings in the Mascarene Basin (off the coast of Madagascar) which they
attributed to a barotropic Rossby mode.

McKee (1972) considered the problem of long Rossby waves impinging on a thin
slit in an infinite barrier by solving an analogous boundary-value problem to those
previously considered for electromagnetic and acoustic waves. The amount of energy
able to penetrate through the slit was shown to depend on both the wavelength of
the oncoming wave and the width of the slit. In cases where the length scale of the
oncoming Rossby wave was much larger than that of the gap, very little energy was
predicted to pass through the gap.

However, in the case of barriers with more than one gap, a very different picture
emerges. When examining ocean circulation in basins with incomplete barriers,
Pedlosky et al. (1997) and Pedlosky & Spall (1999) found that barriers extending
through most of an ocean basin, with gaps at either end, were surprisingly inefficient
at blocking the transmission of Rossby wave energy from one sub-basin to the
next. Pedlosky (2000b) developed the linear theory further for Rossby basin modes
encountering a long thin island extending nearly the entire meridional length of the
basin, with only small gaps between the north and south ends of the island and the
basin boundary. By considering the circulation around the island, it was found that
for certain forcing symmetries, wave modes forced in the eastern sub-basin were able
to easily slip around the island into the western sub-basin. Pedlosky (2001) extended
the theory to the case of Rossby wave packets and plane waves (rather than basin
modes) incident on barriers with two or three small gaps, and again found that the
presence of small gaps and the application of Kelvin’s circulation theorem to the
island segments of the barrier suggested that large-scale wave motions would be
excited on the opposite side of the barrier.

The theoretical prediction of O(1) transmission through thin gaps and the essential
role of Kelvin’s circulation theorem in the physics is both unique, and yet to be
experimentally tested in a real fluid. The theory derived in Pedlosky (2000b) and
Pedlosky (2001) neglects nonlinear effects and friction in the main basin interiors as
well as assuming quasi-geostrophy. It is unclear what effect these neglected processes
will have on the predicted transmission of large-scale Rossby waves across barriers
with small gaps: nonlinear flows and vorticity generated by friction may both play
an important role in the details of the circulation around a given barrier. Motivated
by these issues, here we investigate this problem in a laboratory setting, in which we
expect nonlinear and viscous effects to play a role on the flow evolution. In § 2, the
linear theory for the problem of Rossby modes interacting with a barrier with two
gaps is summarized, and the laboratory set-up and parameters are presented in § 3. In
§ 4 the experimental measurements are discussed and compared with the linear theory.
The experiments highlight effects of viscosity and nonlinearity through the formation
of strong boundary currents along the barrier and vortex formation by strong flows
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FIGURE 1. (a,b) Geometry of basin, barrier and forcing for linear theory and laboratory
experiments. (a) xy-plane. (b) yz-plane. (c) Velocity response along the eastern side of the
barrier when n is even and odd.

through the gaps. Despite these effects, the inviscid linear theory prediction of O(1)
Rossby wave transmission through a two-gap barrier is confirmed. The results are
summarized in § 5, and several future directions of inquiry are outlined.

2. Linear theory
The system under consideration is shown schematically in figure 1(a,b) and consists

of a rectangular β-plane basin with mean depth D and zonal and meridional extent
Lx and Ly, respectively. In the laboratory context, β = f0s/D is provided by variable
depth with constant bottom slope s (Pedlosky & Greenspan 1967), where f0 = 2Ω
is the Coriolis frequency and Ω the frequency of tank rotation, anticlockwise when
viewed from above. The basin is divided into western, xw 6 x 6 x1, and eastern, x2 6
x6 xe, sub-basins by a meridional barrier extending from x1 to x2. The sub-basins are
connected by two meridional gaps of length d and the island barrier between the gaps
extends from y1 to y2. We focus here on an island placed with north–south symmetry
such that y1= Ly− y2, noting that our results may be straightforwardly generalized to
asymmetric barrier geometries. We follow the approach outlined by Pedlosky (2000b)
to derive the linear theory for Rossby basin modes interacting with an island barrier,
modifying the solution for the barrier geometry shown in figure 1(a). We summarize
the essential aspects of the derivation here; interested readers are directed to Pedlosky
(2000b), as well as closely related work in Pedlosky (2001) and Pedlosky & Spall
(1999), for more detail.

In keeping with the theoretical studies mentioned above, we model the flow using
the linear barotropic quasi-geostrophic potential vorticity equation for the stream
function Ψ (x, y, t), given in non-dimensional form by

∇
2Ψt +Ψx =−r∇2Ψ + A∇4Ψ +W(x, y, t). (2.1)

Here x and y are scaled by Ly and time t by (βLy)
−1. The last term is a forcing

function with dimensional amplitude W0 and the stream function is scaled by W0Ly/β.
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The coefficients r and A arise from bottom Ekman drag (and surface drag in the case
of a no-slip rigid lid) and lateral friction, respectively.

It should be noted that while here we model the linearized barotropic problem using
quasi-geostrophic dynamics, in the case of strong topographic slopes the rotating
shallow water equations may be a more appropriate choice of model (Zavala Sansón
& van Heijst 2002). However, for the problem described here, the simpler framework
of the quasi-geostrophic model allows us to better illuminate the mechanism by
which waves may be transmitted across the barrier, as described below. The theory
outlined here could also be straightforwardly extended to include baroclinic modes
(as in e.g. Pedlosky (2000a)) or nonlinear effects.

The forcing is located in the eastern sub-basin along x= xf with structure

W(x, y, t)= δ(x− xf )eiω0t
∞∑

n=1

Wn sin nπy, (2.2)

in which δ(x) is the Dirac delta function and the coefficients Wn for integer n > 1
specify the meridional structure of the forcing. Accordingly, we seek forced harmonic
solutions to (2.1) of the form Ψ = Re[ψ(x, y)eiω0t

]. Solutions for ψ(x, y) are found
separately in each sub-basin and the two gaps and then matched along the island
meridians. Generally A � 1 and the lateral friction is ignored in each sub-basin.
However, as the relevant length scale within the gaps d � Ly, we retain lateral
friction within the gaps. Bottom drag is allowed throughout the domain using the
shifted frequency ω=ω0 − ir.

This full solution includes the unknown stream function on the island, ΨI =

Re[ψIeiω0t
], with ψI constant. As in similar problems of large-scale circulation in

multiply connected domains (Godfrey 1989; Pedlosky et al. 1997), ΨI is found
though integration of the tangential component of the horizontal momentum equation
along a closed contour CI that girdles the island (see figure 1c) giving a version of
Kelvin’s circulation theorem

iω
∮

CI

∇ψ · n dl− A
∮

CI

∇∇
2ψ · n dl= 0, (2.3)

where n is the unit normal of CI . Note that since lateral friction is neglected in the
sub-basins, the second term in (2.3) only applies to the solution in the gaps, and
viscous effects along the eastern and western edges of the barrier are neglected. When
the solutions for ψ in the basins and along the barrier are substituted into (2.3), an
algebraic expression for this integral constraint,

ψI

[∑
n=1

µngnan cos nπy1

nπ

sin an[Lx − lx]

sin an(x2 − xe) sin an(x1 − xw)
−

2(1+ q)lx/d
(1+ i)(1+ q)− 2ρ(1− q)

]

=−i
∑
n=1

µnWn cos nπy1

ωnπ
exp ik(x2 − xf )

sin an(xf − xe)

sin an(x2 − xe)
, (2.4)

is found. Here, a2
n = k2

− n2π2 with k = 1/(2ω), lx = x2 − x1 and µn = 1 − (−1)n.
The coefficients gn correspond to the structure of ψ along the barrier, with
ψ = ψIg(y) = ψI

∑
n gn sin nπy, and ρ and q are related to the structure of

the oscillatory boundary layer in the gaps (Batchelor 2000; Pedlosky 2000b).
Equation (2.4) is similar in structure to equation (2.18) of Pedlosky (2000b); the
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Parameter Value Parameter Value

Lx 60 cm y1 15 cm
Ly 60 cm y2 45 cm
d 4 cm D 20 cm
xw 0 cm s 2/15
xe 60 cm Af 0.7–3.0 cm
x1 22 cm ω0 0.05–0.15 rad s−1

x2 − x1 0.32 cm f0 3.1 rad s−1

xf 57 cm — —

TABLE 1. Laboratory parameters corresponding to figure 1(a,b).

different barrier geometry considered here is reflected in the cos nπy1 terms in (2.4)
as well as in the details of the coefficients gn. Importantly, if the barrier geometry
and structure of the forcing are known, equation (2.4) can be solved for the island
constant ψI , allowing for predictions of the transmission of wave energy across the
barrier into the western sub-basin.

When n is even, ψI = 0 for the y-symmetric island geometry described here.
The meridional velocity along the eastern side integrates to zero as illustrated in
figure 1(c). The integral (2.3) indicates that no response in the western basin is
required. However, when n is odd the velocity along the eastern side is generally
single signed so that integral along the eastern side is finite, requiring a similar
magnitude response on the western side of the island in order to satisfy the integral
constraint. This is the origin of a finite ψI , hence large transmission even for small
gaps. Kelvin’s theorem effectively turns the island into an antenna. It should be noted
that this result is not restricted to the linearized governing equation (2.1); integration
around the island would still imply some response on the western side of the island
to satisfy the integral constraint even if considering the full nonlinear equations
of motion. However, in the case of highly nonlinear flows, this response may not
necessarily correspond to transmission of the large-scale Rossby basin modes (as in
the linear system).

For an isolated island, the linear theory predicts a resonant response at approximately
the normal-mode frequencies associated with the full basin in the absence of the
barrier as well as those for each individual sub-basin (Pedlosky & Spall 1999;
Pedlosky 2000b). In non-dimensional form these frequencies are

ω=
1

2π
√

n2 + (m/lb)2
, (2.5)

in which the integers m and n refer, respectively, to the mode number in the x and y
directions and lb is the zonal extent of either the sub-basin or the full domain (scaled
by Ly). For the largest-scale basin modes (m= n= 1) and the experimental geometry
considered here (see table 1), these frequencies are ωF = 0.1125, ωE = 0.0846 and
ωW = 0.0548 for the full, eastern and western basins, respectively.

Figure 2 shows the resulting magnitude of the island constant calculated from (2.4)
as a function of the forcing frequency, ω0, for A = 10−6 and several values of the
linear friction r. Also shown are the locations of ωF, ωE and ωW . Resonant peaks
are apparent in the inviscid and low-friction cases, albeit shifted to lower frequencies
for the geometry considered here. As r is increased and Ekman friction plays a
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FIGURE 2. (a) Magnitude of theoretical island constant |ψI| as a function of the forcing
frequency ω0 and bottom friction r for a barrier at (y2− y1)/L= 1/2. The top axis shows
the equivalent dimensional forcing frequencies for the laboratory experiments described in
later sections. (b–e) Spatial structure of ψ(x, y), predicted by the linear theory, ω0 = 0.01
(non-dimensional, different r, and different barrier lengths: (b) r = 0.0001, (y2 − y1)/L=
1/2; (c) r = 0.005, (y2 − y1)/L = 1/2; (d) r = 0.0001, (y2 − y1)/L = 5/6; (e) r = 0.0001,
(y2 − y1)/L= 1/6. Note that the colour bars have different limits in each panel.

larger role, the peak amplitudes decrease until eventually there is no clear signal of
resonance. However, it should be emphasized that the predicted |ΨI| is still non-zero
between the resonant peaks and for large r. That is, while the linear theory predicts
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an enhanced response near particular resonant forcing frequencies, the transmission
of energy across the barrier is not itself a resonance phenomenon: some amount of
wave energy is predicted to transmit from the eastern to the western sub-basin even
for forcing frequencies away from the resonant peaks.

Also shown in figure 2 is the spatial structure of ψ(x, y) predicted by the linear
theory for different barrier lengths and values of the linear friction r. The overall
spatial structure of ψ is clearly dependent on both r and the geometry of the
barrier, particularly in the vicinity of the barrier itself. For example, stronger flows
(corresponding to stronger gradients in ψ) are observed closer to the gaps. It is
clear that while increasing the linear friction r leads to a weaker response overall,
it does not prevent the transmission of wave energy from the eastern to the western
sub-basin (figure 2b,c) – there is a strong signal in the predicted stream function
on both sides of the barrier. On the other hand, the barrier geometry is expected to
impact the amount of wave energy transmitted between sub-basins, consistent with
the dependence on y1 in (2.4). Barriers with longer islands and shorter peninsulas
lead to a strong response in both sub-basins. Conversely, when the gaps are very
close together and the barrier is short (figure 2e), the linear theory predicts very
little transmission of wave energy across the barrier. This is not surprising, given that
we expect that in the limit of a vanishingly short island we expect that the incident
wave will only ‘see’ a single gap, and thus will behave like waves in the classical
diffraction problems discussed in § 1 with very little wave energy transmitted across
the barrier.

3. Laboratory set-up

The experimental set-up is shown in figure 1(a,b), with the corresponding
parameters listed in table 1. From this point forward, all results will be in dimensional
form. The laboratory apparatus consists of a square tank with a sloping bottom on a
rotating table to create a laboratory analogue to the β-effect (Pedlosky & Greenspan
1967). It should be noted that, for the parameters considered here, the change in depth
between the north and south boundaries is not small compared to the overall water
depth, and so strictly speaking our topographic β is not constant (van Heijst 1994).
However, the bottom slope of s= 0.133, while not tiny, is also not O(1), suggesting
that the quasi-geostrophic approach outlined in the previous section may still be
viable. Additionally, our experimental results show that the variable topographic β

does not have a leading-order impact on the resulting flow dynamics – the essential
features of the flow are still captured. The short peninsulas and island are constructed
from 0.32 cm thick acrylic sheeting that extend over the full depth of the fluid.
The tank is fitted with a rigid lid to eliminate surface gravity–capillary modes in
the system. A 45 cm long, 0.32 cm wide acrylic paddle is periodically forced by a
stepper-motor driven scotch yoke mechanism at radian frequencies O(0.10) s−1 and
amplitudes up to 3 cm.

To examine the behaviour of the Rossby waves as they interact with the barrier,
we perform a series of particle image velocimetry (PIV) experiments. Saltwater with
density ρ ≈ 1.020 g cm−3 is used as the working fluid and seeded with 50µ plastic
particles with density ρ ≈ 1.016 g cm−3. A pulsed (1–10 Hz) 532 nm green laser is
used to illuminate the flow and horizontal velocities are obtained using LaVision’s
DaVis software (v7.2). Velocities are measured in a horizontal plane approximately
3 cm below the rigid lid, with a spatial resolution of approximately 4 mm in both
the x and y directions.
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Using the laboratory parameters in table 1, we can estimate several important
quantities describing our experimental set-up. The Ekman layer depth, relative to
the mean depth D, is δEk/D =

√
2ν/f0/D ∼ 4 × 10−3, where ν is the kinematic

viscosity. We can then estimate the non-dimensional linear friction drag in (2.1)
as r = δEk f0/βDLy; for our set-up, r ∼ 0.01 (where we have taken into account the
presence of the rigid lid). The linear friction drag can also be expressed as r= 2δS/Ly,
where δS =

√
2νf0/2Dβ is the Stommel boundary layer thickness scale, here equal to

approximately 3 mm. Finally, the Munk scale δM = (ν/β)
1/3 is approximately 8 mm

for the experimental parameters here. This allows us to estimate the non-dimensional
lateral friction from (2.1) as A= ν/βL3

y = (δM/Ly)∼ 2× 10−6. Additionally, the Munk
scale relative to the gap width is δM/d < 0.25, preventing the boundary layers from
overlapping and significantly impeding flow through the gap.

In each experiment, the tank is initially spun up for 20 min. The forcing is then
turned on and allowed to run for at least an additional 20 min (or longer for the
slowest forcing frequencies) in order to allow initial transients to die out before
taking measurements. In the majority of our experiments, both of the barrier gaps
shown schematically in figure 1(a) are left open; however, we also perform additional
experiments with one or both of the gaps closed.

4. Results
4.1. Effects of barrier gaps on flow

The linear inviscid theory presented in § 2 requires the presence of at least two gaps
in the barrier to allow transmission of Rossby waves through to the western sub-basin.
This can be understood by considering a case in which there is only one gap. In that
case, the entire barrier is connected to the outer basin boundary and therefore ψ = 0
along the entire barrier. As transport through the gap is proportional to the difference
in ψ on either side of the gap, this suggests that there should be no flow through the
gap for the case of large-scale Rossby basin modes interacting with a barrier with a
single gap.

In order to test this aspect of the theory, a series of experiments were run in which
both gaps were blocked, only the southern gap was blocked and the northern gap was
open, and both gaps were open. The results of one such set of experiments, in which
ω0 = 0.1355 rad s−1 and Aforcing = 2.0 cm, are shown in figure 3. Note that here and
later, velocities have been multiplied by the local depth in order to better compare
flows in the north and south gaps, as we expect faster flows in the northern gap (where
the depth is smaller) than in the southern gap due to conservation of mass. That is, we
are considering the transport stream function and associated depth-weighted velocities
throughout the remainder of this paper.

Unsurprisingly, in the case in which both gaps were blocked (i.e. the barrier
stretched across the entire basin) the measured velocity signal was confined to the
eastern sub-basin (apart from some small-amplitude noise on the western side). When
only one gap was open, there was evidence of some small-scale flow structures
passing through the northern gap with length scales comparable to the gap width.
However, the majority of the flow, including the large-scale Rossby basin modes, was
confined to the eastern sub-basin and unable to pass through to the other side of
the barrier, consistent with theoretical predictions. Finally, when both gaps are open,
the large-scale Rossby waves are able to pass through the barrier into the western
sub-basin, again in agreement with the theory presented in § 2.

We can further quantify this transmission of Rossby wave energy across the barrier
by considering the kinetic energy associated with the flow in the western sub-basin.
Direct calculation of the total kinetic energy in either sub-basin is difficult, given that
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FIGURE 3. Measured flow for cases with ω0 = 0.1355 rad s−1 and Aforcing = 2.0 cm with
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our measurement field of view does not include the entire basin. Instead, we can
obtain an order of magnitude estimate of the fraction of transmitted energy as follows.
To estimate the kinetic energy in the western sub-basin, we define the average kinetic
energy at a particular zonal location as

K(x)=
u2 + v2

2
, (4.1)

where the overline denotes an average both along the meridional (y) direction
and in time. However, in the eastern sub-basin, the missing data at the north
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and south edges of the domain lead to large inaccuracies in the estimated energy.
Instead, we can consider a characteristic kinetic energy associated with the forcing,
Kforcing ∼ (Aforcingω0D)2/2 (in which Aforcingω0 is a velocity scale and the factor of D
has been added to compare with the depth-weighted velocities). The ratio K(x)/Kforcing

should give an order of magnitude estimate of the energy transmission across the
barrier. For the cases shown in figure 3, computing K(x) at x= 19 cm and averaging
over two forcing periods, the corresponding ratio K(x)/Kforcing is approximately 0.01
for the case with only one gap open (i.e. there is very little kinetic energy transmitted
into the western sub-basin). In contrast, K(x)/Kforcing ∼ 0.4 for the case with both
gaps open. While this should not be taken as a quantitative estimate of the ratio of
transmitted to incident energy, it nevertheless suggests that a sizable fraction of the
incident energy is transmitted across the barrier when both gaps are open.

4.2. Two-gap experiments with varying forcing frequency and amplitude
Having confirmed that the primary prediction of the linear inviscid theory – namely,
that large-scale Rossby waves can be transmitted through barriers with small gaps –
we next consider the effects of forcing frequency and amplitude on the transmitted
waves. To examine this, PIV experiments were carried out at nine forcing frequencies
ranging from ω0 = 0.05 rad s−1 to ω0 = 0.15 rad s−1 and three forcing amplitudes
(Aforcing = 0.7, 2.0, 2.7 cm) with a table rotation rate of 15 rpm ( f0 = 3.1 rad s−1).

Figure 4 shows the stream functions and velocities from the laboratory measurements
and the corresponding linear theory for forcing with ω0 = ωF = 0.1355 rad s−1 and
Aforcing = 2.0 cm. As the figure shows, despite the noise apparent in the experimental
data, the linear theory does capture many of the large-scale features of the observed
flow from the experiments. In particular, the computed experimental stream function
shown in the leftmost column of figure 4 shows the Rossby wave propagating through
the barrier with the correct frequency, as predicted by the linear theory.

The corresponding island constant can then be found from the experimental data.
We consider the average value of the stream function around the island at each point
in time, which oscillates with frequency ω, and compute the amplitude of oscillation
from the time series data. The data are measured approximately 3 mm away from
the island (i.e. in the grid cells adjacent to the island). An example of the data and
corresponding fit for ω0 = 0.1355 rad s−1 and Aforcing = 2 cm is shown in figure 5(a).
Although there is some noise apparent in the signal, a clear oscillatory signal is
observed at the forcing frequency which is well captured by the computed amplitude
of the island constant ψI .

A summary of the computed values of the island constant for all forcing frequencies
and forcing amplitudes is shown in figure 5(b). The error bars correspond to one
standard deviation of the high-frequency noise in the island constant signal. The
computed island constants generally increase with both the forcing amplitude and the
forcing frequency, although there is some additional dependence on ω0.

The dependence on Aforcing and ω0 is unsurprising, as the amplitude of the stream
function is expected to scale with ω0AforcingLy, i.e. with the overall strength of the
wave forcing. In order to correct for this dependence, a rescaled island constant
ψI/(Aforcingω0) is plotted in figure 5(c). For this rescaled quantity, the data collapse
fairly well (particularly for higher forcing frequencies). There appear to be peaks in
the island constant for forcing frequencies around approximately ω0 = 0.05 rad s−1

and ω0 = 0.125 rad s−1, and possibly around ω0 = 0.075 rad s−1 (lowest amplitude,
though error bars are large in this case), although the peaks are not sharp. These
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FIGURE 4. Comparison of stream functions and depth-weighted velocities from laboratory
results (a,b,e, f,i,j,m,n) and theoretical model with r = 0.01 (c,d,g,h,k,l,o,p) for ω0 =

ωF = 0.1355 rad s−1 at f0 = 3.1 rad s−1 and Aforcing = 2.0 cm. In the velocity plots, the
arrows denote velocity direction and the colours denote speed. Each row corresponds to a
different phase of the forcing. Note that the x and y extents of the laboratory plots differ
from those for the theory.

frequencies are similar to the predicted theoretical peaks in figure 2. The broadness
of the measured peaks is consistent with the theoretical transmission curves with
higher r, which is unsurprising given that we estimate r ∼ 0.01 for our experiments
(i.e. frictional effects are important in the laboratory scales considered here).

We further compare the experimental results with the linear theory outlined above
by examining the integral constraint defined in (2.3). We redefine this expression as∮

CI

u · ds=
∫
v dywest +

∫
u dxnorth −

∫
v dyeast −

∫
u dxsouth = residual, (4.2)

in which the contour of integration is defined as a rectangle around the island and the
residual term should describe the effects of any physical processes not accounted for
by simply integrating the velocity along the contour. In particular, equation (4.2) does
not include the viscous terms in (2.3) corresponding to the boundary layers within
the gaps; those terms would be contained within the residual term in the equation
above. However, as the barrier considered here is very narrow in the zonal direction,
we expect the contribution of such terms to be relatively small in the overall integral
equation.
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FIGURE 5. (a) Time series of computed island constant ψI (solid line) and fitted
sinusoid (dotted line) for ω0 = 0.1355 rad s−1 and Aforcing = 2.0 cm. (b) Amplitudes of
computed island constant ψI for different forcing frequencies and amplitudes. (c) Rescaled
amplitudes of computed island constant, ψI/(Aforcingω0).

Example time series of each of the components of the integral around the island, as
well as the residual, are shown in figure 6(a). The largest contributions are observed
to come from the velocity along the eastern and western sides of the barrier, with
very little contribution from either the northern or southern edges (unsurprising, given
that the barrier used in our experiments is quite thin relative to its length). The
residual, therefore, arises largely due to the difference in the integrated velocities in
the meridional direction along either side of the barrier.

The oscillation amplitudes and associated errors are computed for each component
of (4.2), again by fitting sinusoids of frequency ω0 to the measured data. The
oscillation amplitudes are plotted in figure 6(b,c,d) for Aforcing = 0.7 cm, 2.0 cm and
2.7 cm, respectively. Consistent with the example time series plotted in panel (a),
the contribution from the northern and southern edges of the gap contribute very
little to

∮
CI

u · ds. The contribution from the western side of the barrier is typically
larger than that from the eastern side of the barrier. This does not necessarily suggest
that the velocities on the western side are larger than those on the eastern side,
however. The strong boundary layers and other nonlinear structures apparent in the
eastern sub-basin (figures 3 and 4) may be contributing to cancellation of some of
the meridional velocity along the eastern side of the barrier.

It is worth emphasizing that the residual term in (4.2) oscillates at a comparable
magnitude to some of the individual terms in the contour integral, pointing to some
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missing physics in the expression given in (2.3). As the contour integral is valid for
nonlinear flows, the missing terms are likely related to viscous effects not accounted
for in the linear theory (e.g. the assumption that lateral friction is negligible in the
basin). This is, perhaps, unsurprising given the smaller length scales in the laboratory,
for which viscous effects are of greater importance than at the geophysical scales
motivating this work. We examine this in more detail below.

4.3. Viscous and nonlinear effects
The theory presented in § 2 considers linearized (small-amplitude) motions, without
viscous effects in the main sub-basins. However, it is clear when comparing the
observed flow and the linear theory (figure 4) that, while to leading order the theory
agrees well with the experiments, there are additional differences between the two,
likely due to ignored viscous effects, nonlinear effects, or some combination of
the two.

In order to predict under what circumstances nonlinear effects may become
important, we define the quantity

N ≡
J(ψ,∇2ψ)

βψx
, (4.3)
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FIGURE 7. Velocities (arrows) and speeds (colours) in laboratory results, zoomed in
around the southern gap, for ω= 0.1134 rad s−1 at f0 = 3.1 rad s−1 and Aforcing = 2.7 cm.
Four different phases of the flow are shown.

which compares the nonlinear J(ψ, ∇2ψ) term from the full quasi-geostrophic
potential vorticity equation to the linear βψx term.

In the sub-basins, in which x and y flow variations are expected to scale with the
basin size Ly, Nbasin ∼ Ue/(βL2

y), in which Ue = ω0Aforcing is a characteristic forcing
velocity. In contrast, in the gaps we expect y variations to scale with the gap size d,
and hence Ngap∼UeLy/(βd3). For gaps which are small compared with the length of
the barrier, d� Ly, this implies that Ngap�Nbasin, i.e. nonlinear effects are expected
to be more significant in the gaps than in the basin interior. It should be noted that in
principle the ratio N can also be directly calculated from the measured fields u(x, y)
and v(x, y). However, this involves taking derivatives and ratios of noisy data, leading
to significant noise in the computed values of N (x, y). As such, we do not present
these spatially varying estimates here but simply note that the time-averaged values of
|N (x, y)| in the gaps and sub-basin interiors are consistent with the estimated values
Ngap and Nbasin.

As an example, we consider the experiment with ω0= 0.1134 rad s−1 and Aforcing=

2.7 cm. For these parameters, Nbasin = 0.004 and Ngap = 13.7. We therefore expect
significant nonlinear effects to be observed in the gap regions for these parameters.
Figure 7 shows the structure of the velocity field in the region around the southern
gap for this case at four different phases of the flow evolution. The zonal component
of the flow through the gap and the meridional flow in the western sub-basin show a
clear oscillation with the forcing frequency, consistent with the linear theory.

However, as expected based on the large value of Ngap, there is also clear evidence
of nonlinear structures in the vicinity of the gap. In particular, we see the formation
of a vortex on the western side of the barrier (figure 7b), and a strong boundary
current on the eastern side of the barrier. Similar features are seen across a range
of experimental parameters, particularly for larger values of Aforcing and ω0 (i.e. for
cases with larger characteristic forcing velocities Ue). The strong boundary flow may
be caused by several processes, including either classical western boundary currents
or the nonlinear reflection of Rossby waves impinging on a non-zonal barrier (Mysak
& Magaard 1983; Graef & Magaard 1994). It should be noted that, despite occurring
near the gaps, these strong meridional flows are not themselves responsible for the
transmission of wave energy across the barrier – indeed, they appear in the cases
with only one gap or no gaps open (figure 3), for which there is little response in
the western sub-basin. The vortex structures, however, appear to be a response to the
flow through the gaps and are not observed in the cases with only a single gap open.
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The quantitative impact of these features can be seen in figure 6. When considering
individual components of the integral expression (2.4), we find that the contribution
from the western side of the barrier is typically larger than that from the eastern side
of the barrier, despite comparable or lower velocities on the western side of the barrier
in practice (e.g. figure 4). However, the presence of the boundary currents and vortices
may contribute to cancellation of some of the meridional velocity along the eastern
side of the barrier. Furthermore, as mentioned in § 4.2, the large amplitude of the
residual terms in figure 6 points to some missing physics in deriving (2.3). As we
expect the application of Kelvin’s circulation theorem to hold for nonlinear flows, it
is likely that the missing physics is related to viscous effects along the meridional
extents of the barrier island, which were previously neglected.

Consider the term corresponding to lateral friction in (2.3), A
∮
∇∇2ψ · n dl.

Previously, we assumed that this term would be negligible everywhere apart from in
the gaps. Suppose, however, that we have a boundary flow along the eastern side
of the barrier with a characteristic width W � Lx. We can estimate the order of
magnitude of this term in this case as

A
ω

∮
∇∇

2ψ · n dl
∣∣∣∣

x=x1

∼
A
ω

∫ y2

y1

∂3ψ

∂x3
dy
∣∣∣∣

x=x1

∼
A(y2 − y1)ψscale

ωW3
. (4.4)

Taking ψscale ∼ Aforcingω0LyD as a typical scaling for the depth-weighted stream
function, we can rearrange this expression to give an estimate of the width of the
boundary region, W based on the residual term in (2.4), above, i.e.

W ∼
[

A(y2 − y1)AforcingLyD
residual

]1/3

. (4.5)

Taking the residual to be approximately 30 cm3 s−1 for the medium amplitude
forcing Aforcing = 2.0 cm, equation (4.5) gives a value of W ∼ 3 cm, consistent with
figure 7. Furthermore, the phase lag of the residual is consistent with viscous effects
in oscillatory boundary layers (Batchelor 2000). It therefore seems likely that due to
the observed boundary flows, lateral friction effects in the sub-basin (neglected in the
original application of Kelvin’s circulation theorem in § 2) are playing an important
role in the laboratory-scale flows considered here.

5. Discussion and conclusions
Here we have presented laboratory experiments corresponding to the theory of

Pedlosky (2000b) and Pedlosky (2001), which predicts that barriers with more than
one small gap may be quite inefficient in preventing the transmission of Rossby
waves through the barriers. This result, arising from the requirement that circulation
be conserved around individual segments of the barrier, is in contrast to classical
diffraction problems in which only a small fraction of wave energy may be transmitted
through a single gap when the incident wave is of much larger scale than the gap. Our
experiments confirm the primary prediction of the linear inviscid quasi-geostrophic
theory in a real fluid: while barriers with zero or only one small gap successfully
prevent the transmission of large-scale wave modes from one sub-basin to the other,
when two small gaps are open O(1) transmission of basin-scale Rossby waves across
the barrier is possible.

Comparisons between the linear inviscid theory and the experimental results indicate
that the theory captures the large-scale structure of the flow; however, preliminary
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analysis of the results points to the importance of additional physics not captured by
the linear theory in its current form. Both nonlinearity and viscous effects appear to
play a role in the flow structure as the waves pass from the eastern to the western
sub-basin, resulting in the formation of vortices and strong boundary currents in the
vicinity of the barrier. When considering the integral constraint (2.4) derived from
Kelvin’s circulation theorem, an imbalance in the circulation around the island is
found, suggesting that these physical features (neglected in the theory) may play
an important role in setting the response in the western sub-basin. However, even
in these highly nonlinear cases, significant transmission of wave energy across the
barrier is still observed. That is, the nonlinear features alone are insufficient to satisfy
Kelvin’s circulation theorem around the barrier, necessitating the wave response in
the western sub-basin.

Interestingly, although the relatively strong topographic slope considered here
might suggest that a shallow water model would be more suitable in describing
the dynamics, the experimental results agree well with the main predictions of the
quasi-geostrophic theory. Indeed, quasi-geostrophic theory has been found to work
well outside of parameter regimes where it is formally applicable in other laboratory
and numerical studies (e.g. Williams, Read & Haine 2010), although the reasons for
this good agreement are not necessarily well understood.

Here we have considered a range of forcing frequencies, and three forcing
amplitudes. Further extending the range of Aforcing to both higher and lower values
would help to further elucidate the roles of viscosity and nonlinearity. For example,
smaller forcing amplitudes would decrease the relative importance of nonlinear effects
and therefore help to clarify the role played by viscosity alone. At the other extreme,
increasing the forcing amplitude, and thereby the influence of nonlinear effects on the
flow, would also be of interest in future studies. For example, in simulations of the
flow around isolated islands due to localized surface wind stress forcing, Pedlosky
et al. (1997) found that vortices were able to form, detach and propagate away from
the barrier. They also observed meanders forming due to detaching western boundary
currents. Examining whether these effects might occur for the barrier geometry and
forcing considered here at higher values of Aforcing would be of great interest as they
would allow for an additional means by which wave energy may be transmitted into
the western sub-basin.

A further extension of the problem considered here would be to consider alternate
geometries of both the forcing and the barrier. For example, by considering a forcing
structure in which n is even would allow for confirmation of the prediction in (2.4)
that the symmetric two-gap barrier is opaque to wave modes with n even. While
the lack of transmission of symmetric modes has been observed in forced linearized
numerical model results (Pedlosky & Spall 1999), the addition of nonlinear and
viscous effects would be of interest to explore experimentally. Moreover, as Pedlosky
& Spall (1999) describe (see their figure 7), additional gaps in the barrier allow for
different ways in which the waves may be transmitted through the barrier; comparing
these scenarios with laboratory results could reveal further interesting features of the
flow. Shifting the location of the gaps along the barrier would also help to more
clearly separate the effects of the wave transmission from the formation of the strong
meridional flows described in § 4.3, allowing for both phenomena to be studied.

Previous nonlinear numerical studies of forced Rossby waves interacting with
topography with two or more small gaps have shown the ability of the waves
to transmit across the barrier into the neighbouring sub-basin, consistent with the
predictions from applying an integral constraint around the topography. However,
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these studies were either adiabatic (Pedlosky & Spall 1999) or considered large
scales (Spall & Pedlosky 2005) where viscous effects were not expected to be
of leading-order importance. As such, numerical simulations corresponding to the
laboratory length scales would also be of great interest. For example, while it is
difficult to compute contributions due to viscosity from the measured velocities,
owing to the noisy nature of the data and the higher derivatives that appear in
viscous terms, these terms could be more easily computed from numerical data
and thus further clarify the details of the integral constraint. Additionally, numerical
simulations may allow for a broader range of forcing amplitudes to be considered (not
being limited by either the ability to measure very small velocities nor the physical
set-up of the forcing paddle) and a wider range of forcing geometries, including ones
in which n is strictly even or further isolated in space (i.e. localized in the meridional,
as well as the zonal direction).

Finally, while we have focused here on the case of Rossby waves, the concept of
applying a circulation integral to the flow around a barrier island is much broader.
We would expect that the requirement that such an integral constraint be satisfied,
leading to barriers which are surprisingly inefficient at blocking the transmission of
wave energy, to hold for any vorticity-containing wave for which Kelvin’s theorem is
not automatically satisfied. Additionally, the requirement that the circulation constraint
be satisfied is not limited to wave motions alone. For example, island chains may
be only weak barriers to eddy propagation, even when eddy patch radii are much
larger than the gaps in the barrier (Johnson & McDonald 2005). As such, the fact
that Kelvin’s theorem may require a flow response on both sides of an island may
lead to surprisingly transparent barriers in a wide variety of flow scenarios.
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