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A dynamical characterization for
monogenity at every level of some
infinite 2-towers
Marianela Castillo

Abstract. We consider a concrete family of 2-towers (Q(xn))n of totally real algebraic numbers for
which we prove that, for each n,Z[xn] is the ring of integers ofQ(xn) if and only if the constant term of
the minimal polynomial of xn is square-free. We apply our characterization to produce new examples
of monogenic number fields, which can be of arbitrary large degree under the ABC-Conjecture.

1 Introduction

Let

Z(ν ,x0) = ⋃
n≥0

Rn ,

where R0 = Z and Rn = Rn−1[xn], for some fixed rational integers ν ≥ 2 and x0 ≥ 0
such that ν + x0 is not a square and xn is the positive square root of ν + xn−1. Note
that Rn = Z[xn]. Let Q(ν ,x0) be the fraction field of Z(ν ,x0).

In this paper, we give a characterization for the ringZ(ν ,x0) to be the ring of integers
ofQ(ν ,x0), answering partially a question raised by Vidaux and Videla in [10, Question
1.1, and the paragraph above Question 1.5]. The original motivation comes from a
question in mathematical logic raised by Julia Robinson (see [10]).

For each n, let Pn denote the minimal polynomial of xn over Q. In Section 3 we
prove the following result.

Theorem 1.1 Assume that ν + x0 is congruent to 2 or 3 modulo 4 and is square-free.
The ring Z(ν ,x0) is the ring of integers of Q(ν ,x0) if and only if Pn(0) is square-free for
all n ≥ 1.
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Table 1: Values of n such that Pk(0) is square-free for
k up to n.

ν n = 1 n = 2 n = 6 ν n = 1 n = 2 n = 6
3 X 47 X
6 X 51 X
7 X 55 X
10 X 58 X
11 X 59 X
14 X 62 X
15 X 66 X
19 X 67 X
21 X 70 X
22 X 71 X
23 X 74 X
26 X 78 X
30 X 79 X
31 X 82 X
34 X 83 X
35 X 86 X
38 X 87 X
39 X 91 X
42 X 94 X
43 X 95 X
46 X

The only pairs for which we know that our theorem applies are (2, 0) and (2, 1),
which corresponds to known cases (see Liang [4]). To determine any other pair
for which the above result applies appears to be a very difficult problem. However,
numerically we have established that for many pairs (ν, x0) and values of n, Pn(0) is
square-free, and therefore we are able to produce new examples of monogenic number
fields. It should be noted that the problem of determining whether or not a number
field is monogenic goes back to Dedekind, who showed that cyclotomic number fields
are monogenic (see [2] for a modern presentation of the subject).

For our proof to work, we need that the tower increases at each step, meaning that
for every n, Q(xn) has degree 2 over Q(xn−1) (in particular, this implies that Pn has
degree 2n). In [10, Proposition 2.15], it is shown that this happens whenever ν + x0 is
congruent to 2 or 3 modulo 4. We observe that if x0 = 0 and ν is not a square, the tower
also increases at each step (apply [8, Corollary 1.3] to the iterated of f (t) = t2 − ν.

Assuming x0 = 0, we computed Pn(0) for n from 1 to 6 and for ν up to 100.
Considering only the relevant values of ν, in the Table 1 an X in the cell (ν, n)means
that Pk(0) is square-free for k up to n. It is remarkable that there is no X for n = 3, 4, 5.
From this, we obtain new monogenic number fields up to degree 26. One can go
further for some given value of ν. Could it be true that for ν = 3, Pn(0) is always
square-free?
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In Section 4, we give some more evidence for the existence of pairs (ν, 0) ≠
(2, 0) for which Theorem 1.1 applies. In particular, under the ABC-Conjecture, and
assuming that x0 = 0, we prove that for each n, there exist infinitely many values of
ν for which Pn(0) is square-free. We will also prove that, for ν ≥ 3, the largest prime
divisor of Pn(0) tends to infinity as n tends to infinity.

We finish this introduction by a remark. Indeed, in order to prove Theorem 1.1, we
will prove that for each n ≥ 1, Pn(0) is square-free if and only if Z[xn] is the ring of
integers of Q(xn). Because of the latter, the condition that ν + x0 is congruent to 2 or
3 modulo 4 cannot be dropped, because
(1) if Z[xn] = OQ(xn) for some n ≥ 2, then also Z[xn−1] = OQ(xn−1); and
(2) for square-free ν + x0, the ring Z[x1] is equal to the ring of integers OQ(x1) of

Q(x1) if and only if ν + x0 is congruent to 2 or 3 modulo 4.
To see why item 1 is true, let α ∈ OQ(xn−1). If Z[xn] = OQ(xn), then we have

α = a0 + a1xn + a2x2
n +⋯+ a2n−1x2n−1

n ,

for some a i ∈ Z. Separating even and odd powers of xn , since x2
n = ν + xn−1, we have

α = a + bxn ,

for some a, b ∈ Z[xn−1]. Since the tower increases at each step, we have xn ∉ Q(xn−1),
and we deduce that b is 0. Hence, α ∈ Z[xn−1].

2 Discriminant of xn

In this section we assume that the integer ν + x0 is square-free and congruent to 2 or
3 modulo 4. We will prove the following result.

Proposition 2.1 Assume that Q(xn) has degree 2n over Q. We have

disc(x0) = 1 and disc(x1) = 22(ν + x0),

and for n ≥ 2 we have

disc(xn) = (disc(xn−1))2 ⋅ 22n
Pn(0).

In our situation, the assumption that Q(xn) has degree 2n over Q is fulfilled
because ν + x0 is congruent to 2 or 3 modulo 4 (see [10, Proposition 2.15]). Under
this assumption, Q(xn) has basis

Bn ∶= {1, xn , x2
n , . . . , x2n−1

n }

over Q. Note that the field extension Q(xn)/Q(xm) has degree 2n−m . We will denote
by discn/n−1(xn) the discriminant of xn from Q(xn) to Q(xn−1). Hence, for n ≥ 1, we
have

discn/n−1(xn) = ∣
1 xn
1 −xn

∣ 2 = 4(xn)2 = 4(ν + xn−1).
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Notation 2.2 For n ≥ 1, we denote by Nn the norm from Q(xn) to Q of
discn+1/n(xn+1), and by N0 the discriminant of x1 from Q(x1) to Q.

Proposition 2.3 We have
(1) N0 = 22(ν + x0), and
(2) Nn = 22n+1

Pn+1(0) for any n ≥ 1.

Proof Item 1 is immediate from our above computation, so we prove item 2. Let
n ≥ 1. We have

Nn = NormQ(xn)/Q (discn+1/n(xn+1))
= NormQ(xn)/Q(4(ν + xn))
= 22n+1

NormQ(xn)/Q(ν + xn)
= 22n+1

NormQ(xn)/Q(−NormQ(xn+1)/Q(xn)(xn+1))
= 22n+1

NormQ(xn+1)/Q(xn+1)
= 22n+1

Pn+1(0) ∎

We need the following proposition (see [5, Chapter 2, Exercise 23, p. 43]).

Proposition 2.4 Let K ⊂ L ⊂ M be number fields, [L∶K] = n, [M∶ L] = m, and let
{α1 , . . . , αn} and {β1 , . . . , βm} be bases for L over K and M over L, respectively. We
have

discM/K (α1β1 , . . . , αn βm) = (discL/K(α1 , . . . , αn))
m

⋅NormL/K (discM/L(β1 , . . . , βm)) .

Proposition 2.1 follows from Propositions 2.3 and 2.4 in the following way. Take

K = Q, L = Q(xn−1), and M = Q(xn).

The degree of L over K is 2n−1 and L has basis

{1, xn−1 , x2
n−1 , . . . , x2n−1−1

n−1 }

over K, while the degree of M over L is 2 and M has basis {1, xn} over L. The set
{α1β1 , . . . , αn βm} in Proposition 2.4 corresponds to the set

B′ = {1, xn−1 , x2
n−1 , . . . , x2n−1−1

n−1 , xn , xn−1xn , x2
n−1xn , . . . , x2n−1−1

n−1 xn} .

This set B′ is a basis for M over K. Indeed, we have

∣B′∣ = 2 (2n−1 − 1) + 2 = 2n = ∣Bn ∣,

and since x2
n = ν + xn−1, each element of Bn can be written as a Z-linear combination

of elements of B′. Similarly, each element of B′ is a Z-linear combination of elements
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of Bn . Since the base change matrices from Bn to B′ and from B′ to Bn have an integral
determinant and because the discriminants are also integers, we deduce

discM/K(B′) = discM/K(Bn) = discM/K(xn).

One obtains the formula in Proposition 2.1 by using in Proposition 2.4 the formulas
from Proposition 2.3.

3 Proof of Theorem 1.1

In this section we assume that the integer ν + x0 is square-free and congruent to 2 or
3 modulo 4.

We start by a lemma that we will need at the end of the section in order to finish
the proof of Theorem 1.1.

Lemma 3.1 If Z(ν ,x0) is the ring of integers of its fraction field, then Z[xn] = OQ(xn)

for every n ≥ 1.

Proof For n fixed, let α ∈ OQ(xn), hence α can be written as a + bxn , for some a, b ∈
Q(xn−1). Since α ∈ Z(ν ,x0), there exists m ≥ 0 such that α ∈ Z[xm]. If m = 0, then α ∈
Z, so we assume m > 0. Choose m > 0 minimal such that α ∈ Z[xm]. Note that there
exist c, d ∈ Z[xm−1] such that α = c + dxm and d ≠ 0 (by minimality of m). Therefore,
we have

a + bxn = c + dxm ,

hence xm ∈ Q(xn), so m ≤ n and α ∈ Z[xn]. ∎

We will also use the following result from [9].

Theorem 3.2 [9] Let R be a Dedeking ring. Let θ be an element of some integral
domain which contains R and let θ be integral over R. Then R[θ] is a Dedekind ring
if and only if the defining polynomial f (t) of θ is not contained in m2 for any maximal
ideal m of the polynomial ring R[t].

Before we go to the proof of the theorem, we need to recall a few facts.

Proposition 3.3 [6, Proposition 2.13] Let θ be an algebraic integer. We have

disc(θ) = m2disc(Q(θ)),

where m is the index in OQ(θ) of the Z-module Z[θ].

Definition 3.1 We say that a monic polynomial

xn + an−1xn−1 +⋯+ a1x + a0

with coefficients in Z is p-Eisenstein with respect to the prime number p, if
a0 , a1 , . . . , an−1 are divisible by p, and p2 does not divide a0.

https://doi.org/10.4153/S0008439521000874 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000874


A dynamical characterization for monogenity 811

Lemma 3.4 [6, Lemma 2.17] Let θ be an algebraic integer and p be a prime number.
If the minimal polynomial of θ over Q is p-Eisenstein, then the index of θ in Q(θ) is
not divisible by p.

In the proof of Proposition 2.15 in [10], Vidaux and Videla proved the following
result.

Proposition 3.5 [10] For each n ≥ 1, let Pn be the minimal polynomial of xn . Suppose
that ν + x0 is congruent to 2 or 3 modulo 4. We have
(1) if n is odd, then Pn(t + a) is 2-Eisenstein, where

a = {
0 if ν + x0 ≡ 2 mod 4,
1 if ν + x0 ≡ 3 mod 4,

and
(2) if n is even, then Pn(t + x0) is 2-Eisenstein.
Moreover, writing f (t) = t2 − ν, we have Pn(t) = f ○n(t) − x0, hence in particular Pn
has no monomial of odd degree (here, f ○n stands for the composition of f with itself n
times).

Proposition 3.6 For all n ≥ 1, if ν + x0 is congruent to 2 or 3 modulo 4, then the index
in OQ(xn) of the Z module Z[xn] is not divisible by 2.

Proof It is an immediate consequence of Proposition 3.5 and Lemma 3.4, since
for any rational integer c, Pn(t + c) is the minimal polynomial of xn − c, Z[xn − c] =
Z[xn], and Q(xn − c) = Q(xn). ∎

3.1 Proof of Theorem 1.1

Assume first that there exists n ≥ 1 such that Pn(0) is not square-free. Let p be a prime
such that p2 divides Pn(0) and write Pn(0) = p2s, where s ∈ Z − {0}. Since Pn has only
monomials of even degree, we have

Pn(t) = p2s + pt ⋅ 0 + t2 g(t),

for some g(t) ∈ Z[t]. Hence Pn(t) ∈ (p, t)2 ⊆ Z[t]. Since the ideal (p, t) is a maximal
ideal of Z[xn] (the quotient ring is the field Fp), Z[xn] is not the ring of integers
of Q(xn) by Theorem 3.2. We deduce from Lemma 3.1 that Zν ,x0 is not the ring of
integers of its fraction field.

We will show by induction on n that if Pn(0) is square-free, then Z[xn] = OQ(xn).
This is enough to prove the other direction in Theorem 1.1. Indeed, if α ∈ OQ(ν ,x0) , then
there exists n ≥ 0 such that α ∈ OQ(xn) = Z[xn].

Let mn be the index in OQ(xn) of the Z-module Z[xn], so that

disc(xn) = m2
ndisc Q(xn)

by Proposition 3.3. We prove that mn = 1.
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For n = 1, we have disc(x1) = 4(ν + x0) = disc Q(x1), because ν + x0 ≡ 2, 3
(mod 4).

For n ≥ 2, suppose that mn−1 = 1, that is disc(xn−1) = disc Q(xn−1). By Proposition
2.1 and by induction hypothesis we have

22n
Pn(0) =

disc(xn)
(disc(xn−1))2 =

m2
ndisc Q(xn)

(disc Q(xn−1))2 .

On the one hand, by Proposition 3.6 we have that 2 does not divide mn , and on
the other hand, by [6, Corollary 1 of Proposition 4.15], the discriminant of Q(xn) is
divisible by

(disc Q(xn−1))[Q(xn)∶Q(xn−1)] = (disc Q(xn−1))2 .

Hence, Pn(0) = m2
n� for some � ∈ Z. We deduce that mn = 1 because Pn(0) is assumed

to be square-free.

4 Monogenity up to any level assuming ABC

In all this section, we assume x0 = 0.
Given an integer r ≥ 2 and a polynomial h ∈ Z[X] of degree r, we consider

Nh(x) = #{n ≤ x∶ h(n) is square-free} ,

and

Gh = gcd{h(n)∶ n ≥ 1}.

Theorem 4.1 [3, Theorem 1] Assume the ABC-Conjecture. Let h ∈ Z[t] be a poly-
nomial with integer coefficients, of degree at least 2, without repeated factors. If Gh is
square-free, then

Nh(x) ∼ ch x ,

for some ch > 0.

Recall that since x0 = 0, we have Pn(t) = f ○n(t), where f (t) = t2 − ν. We define
the polynomials gn(t) ∈ Z[t] by induction on n:
• g1(t) = −t, and
• gn+1(t) = (gn(t))2 − t, for each n ≥ 2.
So in particular we have P1(0) = −ν = g1(ν), and if Pn(0) = gn(ν), then

Pn+1(0) = ( f ○ f ○n)(0) = ( f ○n(0))2 − ν = Pn(0)2 − ν = gn(ν)2 − ν = gn+1(ν).

Therefore, for each n ≥ 1, we have

Pn(0) = gn(ν).

Given � ≥ 1, we consider

h�(t) = lcm {gn(t)∶ 1 ≤ n ≤ �}.
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Lemma 4.2 For every � ≥ 1, Gh�
is square-free.

Proof Since 22 − 2 = 2, for all n ≥ 1 we have gn(2) = ±2. Also, it is immediate from
the definition of g that there exists a polynomial qn(t) in Z[t] such that gn(t) =
tqn(t). Hence for each n ≥ 1 we have qn(2) = ±1, and for each polynomial p(t) inZ[t]
which divides qn(t), we have p(2) = ±1. Hence for each � ≥ 1, we have h�(2) = ±2.
Since g2(t) = t(t − 1), the product t(t − 1) divides h�(t) for each � ≥ 2, so 2 divides
h�(t) for any t ≥ 2 and for each � ≥ 2, hence for each � ≥ 1. We have h�(1) = −1 for odd
�, in which case Gh�

= 1, and h�(1) = 0 for even �, in which case Gh�
= ±2. ∎

Lemma 4.3 For every � ≥ 1, the polynomial h� ∈ Z[t] has degree ≥ 2 and no repeated
factors.

Proof The fact that h� has degree ≥ 2 is immediate from its definition. It is enough
to show that each gn has no repeated factor. The derivative of gn(t) is

g′n(t) = 2(gn−1(t)) ⋅ ((gn−1)′(t)) − 1.

Hence the reduction modulo 2 of g′n(t) is equal to 1. If there were a root α in common
between gn(t) and g′n(t), then g′n(t) would have the form A(t)B(t), with A(t) the
minimal polynomial of α. Since gn(t) is monic with integer coefficients, α would
be an algebraic integer, hence A(t) also would be a monic polynomial with integer
coefficients. By Gauss’ Lemma, B(t) also has integer coefficients. Reducing modulo
2, we get A(t)B(t) ≡ 1, hence in particular A(t) ≡ 1, which contradicts the fact that it
is monic and non-constant. ∎

Corollary 4.4 Assume x0 = 0 and fix an integer � ≥ 2. Under the ABC Conjecture,
there exist infinitely many values of ν such that, for all 1 ≤ n ≤ �, Pn(0) is square-free.
Moreover, all these ν are congruent to 2 or 3 modulo 4.

Proof By Theorem 4.1 and Lemmas 4.2 and 4.3, we know that h�(ν) infinitely many
ν. For each of those ν, given 1 ≤ n ≤ �, since gn divides h� in Z[t], also gn(ν) = Pn(0)
is square-free. Let ν be such that Pn(0) each 1 ≤ n ≤ �. In particular, P1(0) = −ν and
P2(0) = ν2 − ν are square-free, so ν cannot be congruent to 0 or 1 modulo 4. ∎

We finish with a simple remark.
Assume ν ≥ 3. Note that under this condition, the sequence (Pn(0))n is strictly

increasing. We prove that the largest prime of Pn(0) tends to infinity as n tends to
infinity. If this were not true, then there would be no hope for Pn(0) to be square-free
for every n.

We adapt an argument that we saw in [7, Section 7.6, p. 105]. For the sake of contra-
diction, assume that there exists a sequence (n i)i tending to infinity and there exists
M such that Pn i (0) = ph1

1 , . . . , ph j
j , with the hk ≥ 1 and the pk primes less than M.

Let θk be the remainder of the division of hk by 3, so that Pn i (0) = pθ 1
1 , . . . , pθ j

j y3, so
f (Pn i−1(0)) = pθ 1

1 , . . . , pθ j
j x3. The curve f (Y) = Y 2 − ν = pθ 1

1 , . . . , pθ j
j X3 is an elliptic

curve, so by Siegel’s Theorem it has finitely many integral points. Since there are
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finitely many choices for the θk and for the primes, there are finitely many such curves,
hence finitely many possible values for Pn i (0).
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