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Abstract

This study was designed to elucidate the biological variation in expression of many metabo-
lites due to environment, genotype, or both, and to investigate the potential utility of meta-
bolomics to supplement compositional analysis for the design of a new resilient cultivar of
Brassica napus that can be steady in phytochemicals in different regions in France. Eight rape-
seed varieties, grown in eight regions of France, were compared using a non-targeted metabo-
lomics approach. The statistical analysis highlighted the distance and closeness between the
samples in terms of both genotypes and geographical regions. A major environmental impact
was observed on the polar metabolome, with different trends, depending on the varieties.
Some varieties were very sensitive to the environment, while others were quite resilient.
The identified secondary metabolites were mapped into the KEGG pathway database to reveal
the most sensitive target proteins susceptible to environmental influences. A glucosyl-transfer-
ase encoded by the UGT84A1 gene involved in the biosynthesis of phenylpropanoid was iden-
tified. This protein could be rate limiting/promoting in this pathway depending on
environmental conditions. The metabolomics approach used in this study demonstrated its
efficiency to characterize the environmental influence on various cultivars of Brassica
napus seeds and may help identify targets for crop improvement.

Introduction

Rapeseed or canola (Brassica napus) is an annual plant that belongs to the Brassicaceae family
formerly known as the cruciferae (Miller-Cebert et al., 2009; Yang et al., 2015). This important
family consists of 3200 species which correspond essentially to herbaceous plants cultivated
mainly for the production of oil, for human and animal food, or as ornamental plants (Scott
et al., 1999). Among the Brassicaceae species are cabbage, mustard, turnip and also thale cress
(Arabidopsis thaliana). Brassica napus is an allopolyploid cross between its parents Brassica
rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18) and is considered one of the world’s
most important oleoproteaginous crops, sought after primarily for vegetable oil, animal feed
and biofuel (Misra, 2016). Oil extracted from B. napus seeds is regarded as a rich source of poly-
unsaturated fatty acids, with about 7–10% α-linolenic and 17–21% linoleic acids (Baux et al.,
2008). The end-product of the oil seed extraction process corresponds to the rapeseed meal
and represents a good source of a high-quality protein that displays a well-balanced amino
acid composition with high levels of essential sulphur-containing amino acids. Thus, rapeseed
meal is regarded as a valuable by-product for the food industry, both as animal feed and for
human nutrition (Farag et al., 2013). Moreover, several studies have intensively investigated
the beneficial effects of certain phytochemicals found in rapeseed meal such as phenolic com-
pounds, which play an essential role in the prevention of cardiovascular diseases and cancer
(Shao et al., 2014). However, this rapeseed meal is also rich in anti-nutritive metabolites,
which decreases its market value (Vermorel et al., 1988). Currently, the cultivation of high-
quality rapeseed is one of the main objectives of most oilseed breeders and industries. Gains
by both have been made, such as the improvement of rapeseed quality by selective breeding of
yellow-seeded B. napus for thinner coat and higher protein content (He et al., 2008), or the opti-
mization of industrial processes to reduce anti-nutritional metabolites such as glucosinolates
(Fenwick et al., 1986). Nevertheless, using an upstream approach by combining crop cultivars
with environmental conditions and cultural management could be a catalyst to further improve
the nutritional quality of the plants and to reach a constant quality. From this perspective, the use

https://doi.org/10.1017/S0960258519000138 Published online by Cambridge University Press

https://www.cambridge.org/ssr
https://doi.org/10.1017/S0960258519000138
https://doi.org/10.1017/S0960258519000138
mailto:jean-charles.martin@univ-amu.fr
mailto:jean-charles.martin@univ-amu.fr
https://orcid.org/0000-0002-4194-4046
https://doi.org/10.1017/S0960258519000138


of a metabolomics approach seems to be the appropriate option to
explore the production of metabolites of interest among varieties
and across different locations. Metabolomics can be described as
a global analysis of small molecules in a living systemwhich are pro-
duced or modified as a result of an adaptation to the environment
(Nicholson et al., 1999; Fiehn, 2001). This approach is a powerful
tool in the exploration of various aspects of plant physiology and
biology, and broadens our knowledge of themetabolic andmolecu-
lar regulatory mechanisms that condition stress responses such as
environment or culturing management (Hong et al., 2016). In
this study, we investigated the influence of both genetics and envir-
onment on the expression of the polar fractionmetabolome of com-
mercial B. napus seeds by using liquid chromatography–mass
spectrometry (LC-MS), and how this could be useful to identify
new targets of crop improvement, such as nutritional quality.

Materials and methods

Plant material

Eight different varieties of Brassica napus were harvested in eight
different regions of France by Terres Inovia, the technical centre
for the research and development of oilseed crops, grain legumes
and industrial hemp in France. The oilseed varieties chosen for
this study were Pamela, Bonanza, Dalton, Stefano-KWS,
DK-Exceptions, DK-Extenciel, DK-Extorm and DK-Expertise.
These genotypes were grown in eight locations contrasted for
their climate and soil characteristics: Lot-et-Garonne,
Meurthe-et-Moselle, Allier, Loiret, Vendée, Ille-et-Vilaine, Marne
and Somme (see Tables S1 and S2 and Fig. S1 in the
Supplementary Material). All samples were planted during 2014
and harvested in 2015. Seeds were collected when fully ripe. Due
to insufficient harvests, some of the varieties no longer conformed
to the parameters of the study and had to be excluded, leaving 59
samples instead of the desired 64.

Sample preparation

Ten grams of seeds were processed to obtain the metabolic profile
for every sample. This quantity corresponds to approximately
3000 seeds, which should be representative of every field trial of
rapeseed that has to be studied. Seeds were stored at –80°C and
then were flash-frozen in liquid nitrogen and finely ground into
flour using an automatic mortar (Pulverisette 2, Fritsch
Idar-Oberstein, Germany). All samples were freeze-dried over
24 hours by a high vacuum line (Christ bioblock scientific,
Rungis, France) before the extraction.

Chemical reagents

Methanol (MeOH), acetonitrile (ACN) (LC-MS grade) and ethyl
acetate (high performance liquid chromatography isocratic grade)
were purchased from Carlo Erba Reagents (France). Formic acid
was obtained from Sigma Aldrich (St Louis, MO, USA). Acetic
acid was purchased from Merck KGaA (Darmstadt, Germany).
MilliQ water was used for ultra performance liquid chromatog-
raphy (UPLC) analysis.

Extraction protocol

Triplicate samples were extracted in two steps using the protocol
of Jervis et al. (2015) with minor modifications. Two hundred

milligrams of the lyophilized flour was used for every replicate,
then homogenized with 3.5 ml of ethyl acetate. The latter was
used as an alternative to hexane to remove the non-polar fraction
(Lohani et al., 2015). All the samples were vortexed then extracted
in an ultrasonicated bath at room temperature for 20 min. The
supernatant was collected after centrifugation (1700 g for
15 min at 10°C). This extraction procedure was repeated twice.
The supernatants were combined, dried under the gentle nitrogen
stream and then stored at –80°C until further analysis. The
remaining ethyl acetate was removed from the defatted rapeseed
powder under the nitrogen stream, then stored at –80°C. The
polar extraction was performed by homogenizing 30 mg of the
dried defatted flour with MeOH: 0.1% aqueous acetic acid (HOAc)
(0.5ml, 9:1, v/v). The extraction procedure was repeated twice
with a sequence of vortexing, sonication for 20 min, and centrifu-
gation (1700 g for 15 min at 4°C). The supernatants were pooled,
dried under the gentle nitrogen stream and stored at –80°C.

UPLC-HRMS (high resolution mass spectrometry) analysis

Before the analysis, all the dried polar extracts were reconstituted
with 0.1% aqueous formic acid:MeOH (9:1, v/v, 240 µl). All sam-
ples were vortexed for 5 min, followed by centrifugation (13000 g
for 10 min at 4°C). An aliquot (20 µl) was transferred to an
LC-MS-grade vial and diluted with 80 µl of 0.1% aqueous formic
acid:ACN (9:1, v/v). Sample separation was performed by UPLC
ultimate 3000 (Thermo Scientific), coupled with a HRMS, a
hybrid quadrupole-orbitrap mass spectrometer, Q-Exactive Plus
(Thermo Scientific) equipped with a heated-electrospray ioniza-
tion source (H-ESI II). The chromatographic separation was per-
formed on a binary solvent system at a flow rate of 0.4 ml min–1

using a reverse phase C18 column (Hypersil Gold, Thermo
Scientific, 100 mm × 2.1mm, 1.9 µm) at 40°C. The mobile phase
consisted of a combination of solvent A (0.1% FA in water, v/v)
and solvent B (0.1% FA in acetonitrile, v/v). The injection volume
was 5 µl. The following gradient conditions were used: 0 to 1 min,
isocratic 100% A; 1 to 11 min, linear from 0 to 100% B; 11 to
13 min, isocratic 100% B; 13 to 14 min, linear from 100 to 0% B;
14 to 16 min, isocratic 100% A. The separated molecules were
analysed in both positive and negative ionization modes in the
same run. The mass spectra were collected using resolving
power 35,000 Full width at half maximum (FWHM) for the the-
oretical mass to charge ratio (m/z) 200. Full scan mass spectra
were acquired in the 80−1000 m/z range. The ionization source
parameters for positive and negative ion mode were as follows:
capillary temperature 320°C, spray voltage 3.5 kV, sheath gas 30
(arbitrary units), auxiliary gas 8 (arbitrary units), probe heater
temperature 310°C and S-Lens RF level was set at 55 v. except
MS/MS experiments were performed using higher energy colli-
sion induced dissociation (HCD) and the normalized collision
energy (NCE) applied was ramped from 10 to 40%. To ensure a
good repeatability of the analysis, a quality control sample (QC)
was formed by pooling a small aliquot of each biological sample.
The QC sample was analysed intermittently (1 out of every 5 sam-
ples) for the duration of the analytical study to assess the variance
observed in the data throughout the sample preparation, data
acquisition and data pre-processing steps. In order to preliminar-
ily evaluate the analytical variability of UPLC-HRMS analyses, the
variation of the chromatographic pressure during the run, along
with variability of the retention time and intensity of a randomly
selected ion were calculated between the first and last analysis.
The evaluation of these three parameters was carried out using
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all the QC analyses. In order to verify the compliance of these
three parameters, they were compared with compliant values set
by the laboratory. The biological variability was measured during
the data processing for each variable and evaluated during the
statistical analysis.

Data processing and analysis

All the raw data generated by the LC-MS were converted to
mzXML by ProteoWizard (version 2.0), then processed by
XCMS, an open source package written in R for high throughput
omics data analysis (Smith et al., 2006). The data processing was
performed in different steps. The first step was peak picking and
required the application of the ‘centWave’ algorithm, the method
of choice for processing centroided data acquired by HRMS.
During this first step, the algorithm identifies regions of interest
(ROIs) by combining consecutive centroids within a tolerated
m/z deviation, defined by the parameter ‘ppm’, then the chroma-
tographic peaks are built within the ROIs by applying other para-
meters such as peak width. The centwave method is fully
described in Tautenhahn et al. (2008). The peak picking step is
followed by retention time correction performed by the obiwarp
algorithm and grouping. After XCMS, the data were further pro-
cessed to eliminate artifacts (manual inspection of peak shape)
and false peaks (peaks that do not appear with Gaussian
shape). Indeed, the metabolites present in the blanks with an
intensity ratio greater than 2 compared with those present in
the samples were eliminated from the list. Additional filtrations
were then carried out such as the elimination of the features with-
out a Gaussian shape or the elimination of the features that
represent 30% of the deviation from the median by applying
the relative standard deviation filtration (a coefficient of variation
less than 30% on QC samples peaks was applied to all samples).
Analytical drift was corrected according to the linear correction
algorithm developed by Van der Kloet et al. (2009). Simca-P soft-
ware (version 14, Sartorius Stedim Biotech, Aubagne, France) was
used to perform principal component analysis (PCA), hierarchical
ascendant classification (HAC), and partial least squares-
discriminant analysis (PLS-DA). The statistical significance of
the PLS-DA classification model was assessed using a permuta-
tion test and cross-validation ANOVA (CV-ANOVA).
Permutation testing consists of changing randomly the order of
the rows in the data set so the class labels are assigned randomly
to the measurements. The classification model is then recalculated
using this permuted data set. A permutation test verifies the null
hypothesis, namely that a given classification model is not signifi-
cant and describes noise. If the null hypothesis is true, there
should be no difference in the value of the quality-of-fit criteria
between the original data set and the permuted one (Westerhuis
et al., 2008). The predictive capacity of the model is evaluated
by the factor Q2. PermutMatrix (Caraux and Pinloche, 2005)
was used to generate heatmaps, a graphical representation of
data where the samples are clustered according to the proximity
of their metabolome (intensity metabolites). MetaboAnalyst
(Xia et al., 2009) was used for the determination of P-values,
and Cytoscape (Shannon et al., 2003) was used to generate the
metabolic network. The identification of the discriminating vari-
ables is performed in three steps. During the first step, the accur-
ate mass of the compound is searched in metabolite databases
such as Riken, knapsack, or literature. The metabolites suggested
by the databases must be filtered by considering the physico-
chemical characteristics of the molecules as well as those

belonging to the same studied species. The level of identification
at this stage corresponds to level 3 according to the metabolomics
identification task group (Sumner et al., 2014). The second iden-
tification step consists of fragmenting the candidate ion and com-
paring its fragmentation profile with that of the molecules
suggested by the databases. If the profiles are the same then the
identification level corresponds to level 2 (Sumner et al., 2014).
Level 1 identification is achieved once the searched metabolites
occur at the same retention time as a model molecule correspond-
ing to a purified metabolite which was suggested by the databases
(Dunn et al., 2013).

We have validated the above LC-MS analytical workflow and
spectral data processing elsewhere (Martin et al., 2015)

Results and Discussion

Multivariate analysis of the data

Untargeted metabolomics
The chromatographic conditions used in this study allowed the
observation of chromatographic peaks with a good resolution
(Fig. S2 in Supplementary Material). The PCA performed before
and after filtrations based on the false peaks are presented in
Fig. S3. The PCA performed after all filtrations steps are presented
in Fig. S4.

We thus first used PCA to determine and visualize the impact
of the environment and the genotype on the expression of the
metabolome. From the 59 samples, a total of 963 analyses in
both positive and negative mode were retained after the XCMS
deconvolution processing and post-processing steps. PCA analysis
allowed explanation of 74.2% of the total variance in 12 principal
components. The first three components explained 36.5% of the
total variance. The visualization of the data was performed only
in two-dimensional component space using a score plot.
Different clusters can be observed according to the component
selected. When selecting the first and second component several
clusters can be observed (Fig. S5a in Supplementary Material)
and correspond to a group of locations such as Ille-et-Vilaine,
Meurthe-et-Moselle, Loiret and Somme, that gathers different
varieties. This shows a significant environmental effect. Another
cluster was observed when selecting the second and the third
component (Fig.e S5b). This cluster gathers the Pamela cultivar
across five locations out of six and was distinctly separated from
all the other samples, which shows a strong influence of the geno-
type for this particular cultivar and a resilience to the environ-
ment. Other clusters were also observed when selecting the
sixth and seventh component (Fig. S5c). In this case, the clusters
include the Bonanza and DK-Extorm cultivars and showed the
same genotype influence as observed for the Pamela cultivar.
Nevertheless, the visualization of the data in two-dimensional
component space makes the information scattered and it is
quite challenging to have an exhaustive view of the distribution
of the samples without considering the twelve components. To
overcome this, a hierarchical clustering analysis (HCA) was
applied from the PCA scores. This classification method thus
takes into account the contribution of all the components (12
principal components) of the PCA and returns it into a single
graph. The results obtained are shown in Fig. 1, in which eight
main clusters can be observed. Among them, three consist of
grouped cultivars across different locations: the first cluster
observed gathers the Pamela cultivar across four locations:
Vendée, Ille-et-Vilaine, Somme and Marne (cluster E). A second
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cluster gathered the Bonanza cultivar across five locations:
Lot-et-Garonne, Marne, Vendée, Ille-et-Vilaine, Somme (cluster
G). Another cluster was also observed and corresponds to the
DK-Expertise cultivar which is gathered across five out of the
eight locations (cluster H). Together with the Bonanza cultivar,
the DK-Expertise cultivar seemed to be the least affected by the
environment. On the other hand, other cultivars seem to be
very sensitive to the cultivation location. For instance, the
Dalton cultivar was present in all clusters formed mainly from
geographical locations, indicating a great sensitivity of that
cultivar to the environment and a slight genotype influence.
Interestingly, some cultivation locations exerted a dramatic
environmental influence on the metabolome of most of the culti-
vars. In fact, two major clusters are distinctly observed in which
all the varieties are gathered across the same locations. These
two major locations correspond to Meurthe-et-Moselle and
Loiret (clusters A and F). Other clusters can also be observed
where the environment has a major impact such as
Lot-et-Garonne and Somme (clusters C and B). These observa-
tions pinpoint the major role of some environments over the gen-
etic background on the expression of the seed metabolome, and
thereby seed quality.

Correlation network analysis was performed as an additional
exploratory tool to assess the heterogeneity between different var-
ieties and their interaction with the environment. This analysis is
in agreement with the HCA results and it also shows different
clusters corresponding to all the varieties gathered according to
the same locations they were cultivated in, and therefore they
also revealed a slight genetic influence and a very strong environ-
mental effect (Fig. S6 in Supplementary Material). Such represen-
tation allowed us to better emphasize and visualize the impact of
these two factors on the seed metabolome.

Although the rapeseed cultivars may display a different resili-
ent effect with regard to the cultivation location, our main results
indicated that the environmental impact is the determining factor
in the expression of the metabolome of the studied varieties. In
addition, two distinct locations have largely contributed to
offset the genetic difference between the varieties. We therefore
focused on metabolites that drove the environmental differences
among the two main metabolome impacting regions
(Meurthe-et-Moselle and Loiret). This comparison was carried
out using a PLS-DA. Indeed, PLS-DA is a discriminating statis-
tical analysis that optimizes the intergroup differences, by rotating
PCA components in order to maximize the separation among

Fig. 1. Hierarchical Ascendant Classification (HAC) cal-
culated from the 12 principal components of the PCA
model.
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classes, and sheds light on variables carrying the class-separating
information. The statistical model obtained from the PLS-DA
allowed a very significant class separation between the two loca-
tions (Meurthe-et-Moselle and Loiret) (prediction factor Q2 of
0.96, a P-value of 1.94×10–7 after CV-ANOVA, and Q2 values
of –0.11 after permutation) (Fig. 2). The identification of the
metabolites was performed initially depending on the importance
of the PLS partial correlation coefficient. In order to represent the
significance of all the impacted molecules between the Loiret
region and Meurthe-et-Moselle as described below, an ANOVA
followed by Wilcoxon post-hoc test, a non-parametric statistical
test, was also performed. All the P-values of the most significantly
different metabolites along with their fold change between the
two regions are listed in Table 1. Of note is that most of metabo-
lites affected by the locations are secondary metabolites, which are
produced in response to environmental adaptation.

Identification of the discriminating metabolites
All the metabolites identified in this study are of level 2 according
to Sumner et al. (2014). The first discriminant metabolite
identified corresponds to glucobrassicanapin. This glucosinolate
is an aliphatic glucosinolate and was characterized by a [M-H]–

at m/z 386.0582 with a fragment ion at m/z 96.95 which corre-
sponds to the HO4S

–1, a typical ion fragment which exhibits the
common fragmentation behaviour of glucosinolates. The product
ions at m/z 275, 259, 208, 144 (Fig. 3A) have already been
described in Lelario et al. (2012). It seems that the Loiret region
is more favourable for the production of this glucosinolate than
the Meurthe-et-Moselle region. For both regions, this environ-
mental impact is expressed similarly for all the varieties as

shown in Fig. 3B. The second metabolite identified was also an
aliphatic glucosinolate and corresponds to gluconapin which is
characterized by a [M-H]– at m/z 372.0425. The fragmentation
pattern obtained from this glucosinolate has also been described
in Cataldi et al. (2010) (Fig. 3C). This glucosinolate is more
expressed in the Loiret region than in Meurthe-et-Moselle and
this observation is reported similarly for all the varieties
(Fig. 3D). Another major glucosinolate also identified among
the discriminant variables was progoitrin. In fact, progoitrin is
an aliphatic glucosinolate and is considered along with glucona-
pin as the most prevalent glucosinolate in B. napus (Fang et al.,
2012) as well as in other Brassicacea. Progoitrin was characterized
by a [M-H]– at m/z 388.0375. This glucosinolate was also more
expressed in Loiret than it was in Meurthe-et-Moselle. The results
also showed that the Loiret region is favourable for the accumula-
tion of other aliphatic glucosinolates, such as glucoalyssin, gluco-
napoleiferin, glucocochlearin and sinigrin, but also indole
glucosinolates such as 4-hydroxyglucobrassicin (Table 1 and
Fig. S7). The results described above seems to be in agreement
with other studies where the authors reported how the accumula-
tion of glucosinolates in seeds was modified by environmental
factors. For instance, Jensen et al. (1996) Jensen et al., 1996
reported that the level of glucosinolates in seeds of Brassica
napus L. was dependent on the soil properties especially in
response to drought. Indeed, by controlling irrigation of B.
napus L. in field trials, these authors showed that (i) the glucosi-
nolate content in seeds was 2-fold higher in plants exposed to
drought during the vegetative, flowering or pod filling stages,
and (ii) the accumulation of glucosinolates in seeds was more
important for water-stressed plants grown in loamy soil than in

Fig. 2. Partial Least Squares Discriminant Analysis (PLS-DA) of the cultivar seeds metabolome grown in either Meurthe-et-Moselle or Loiret regions. Both regions are
used as a class setting in the supervised model.
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sandy soil. Recent work has also demonstrated that quantitative
and qualitative composition of glucosinolates in seeds of B.
napus L. were significantly modified by the mineral composition
of soil. For instance, an increase of sulfur (Jankowski et al., 2008)
or boron (Jankowski et al., 2016) fertilization led to increased con-
tent of progoitrin in seeds of B. napus L. Interestingly, in our
study, the sites of Loiret and Meurthe-et-Moselle differ mainly
by their soil characteristics (Table S1; Loiret: flinty loam;
Meurthe-et-Moselle: calcacerous clay). Thus, regarding previous
work and data presented in our study, it appears that it would
be relevant to consider environmental factors such as soil proper-
ties (including the mineral composition) in relationship with abi-
otic factors (temperature, rainfall) to influence the glucosinolate
content in seeds of B. napus L.

Among the discriminating metabolites, several polyphenols
were also identified. Hydroxycinnamic acids were the major

phenolic compounds with the most discriminating power. The
hydroxycinnamic acids are a class of non-flavonoid phenols char-
acterized by the C6-C3 structure. These compounds are abundant
in plants and are used for both structural and chemical defence
purposes. It is also known that in Brassica vegetables the most
common are sinapic, p-coumaric and ferulic acids, often found
in conjunction with sugar or other hydroxycinnamic acids
(Cartea et al., 2011). Based on the statistical analysis,
1-O-sinapoyl-beta-D-glucose is one of the most discriminating
hydroxycinnamic derivatives. This phenolic compound was char-
acterized by a [M-H]– at m/z 385.1139. The product ion at m/z
223.0606 corresponds to sinapic acid and is a typical ion fragment
which exhibits the common fragmentation behaviour of the sina-
pic acid derivatives (Fig. 4A). It is very important to note that
1-O-sinapoyl-beta-D-glucose is one of the major phenolic com-
pounds found in B. napus besides sinapine and sinapic acid

Table 1. Discriminant metabolites when comparing Meurthe-et-Moselle (MM) and Loiret region (L)

Metabolites [M-H]– [M + H]+ Fragments

P-value
(Wilcoxon

rank-sum test) FDR
Log2 FC
(L/MM)

identification
level

1-O-sinapoyl-β-D-glucose 385.1139 — 223; 205 0.0001554 0.00053872 –0.5748 2

4-Hydroxyglucobrassicin 463.0486 — 285; 267;
259; 221; 97

0.0001554 0.00053872 0.4925 2

Caffeic acid glucoside 341.0876 — 179; 161; 135 0.0001554 0.00053872 0.6702 2

Caffeyl alcohol 3-4-O-hexoside 327.1085 — 165; 147; 129 0.0001554 0.00053872 1.0300 2

Glucobrassicanapin 386.0582 — 275; 259;
208; 195; 97

0.0001554 0.00053872 1.1246 2

Gluconapin 372.0425 — 259; 195;
130; 97

0.0001554 0.00053872 0.8499 2

L-Glutathione 306.0767 — 288; 272;
254; 210; 143

0.0001554 0.00053872 2.0198 2

Malic acid 133.0141 — 115 0.0001554 0.00053872 –0.5592 2

Sinapoyl ester 577.1562 — 353; 223 0.0001554 0.00053872 0.7876 2

Sinapoyl malate 339.0717 — 223; 164;
149; 115; 71

0.0001554 0.00053872 –0.5701 2

Adenine — 136.0618 119; 97; 94 0.0001554 0.00053872 –1.6063 2

Adenosine — 268.104 136 0.0001554 0.00053872 –1.5663 2

p-Aminobenzoic acid — 138.0551 120; 94; 77 0.0001554 0.00053872 –0.3779 2

Gluconapoleiferin 402.0531 — 275; 259;
224; 195; 97

0.0003108 0.00085061 0.8829 2

Progoitrin 388.0375 — 332; 308;
275; 259; 97

0.0003108 0.00085061 0.4586 2

Tryptophane — 205.0973 188; 170;
159; 146; 144

0.0003108 0.00085061 –0.5666 2

Phenylalanine — 166.0864 120; 103 0.0006216 0.0016162 –0.7506 2

Sinigrin 358.0274 — 259; 195;
181; 97

0.0010878 0.0026936 0.4869 2

Hydroxycinnamic acid
derivative

723.2147 — 499; 259; 223 0.006993 0.015152 0.6784 2

Vanilloylcholine 4-O-hexoside — 416.1915 357; 254; 195 0.006993 0.015152 0.4799 2

1,2-Disinapoylgentiobioside 753.2246 — 223; 205 0.014763 0.029526 0.3795 2

glucoalyssin 450.057 — 386; 97 0.014763 0.029526 0.9673 2

1-O-(4-coumaroyl)-β-D-glucose 325.0928 — 163; 145 0.020668 0.039805 –1.0007 2
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(Khattab et al., 2010). PLS-DA results show that
1-O-sinapoyl-beta-D-glucose was more expressed in the region
of Meurthe-et-Moselle than in the Loiret region and this observa-
tion is reported similarly for all the varieties (Fig. 4B). Another
sinapic acid derivative identified among the discriminating mole-
cules was sinapoyl malate (Fig. 4C). This phenolic compound is
characterized by [M-H]– at m/z 339.0717 and a product ion at
m/z 223.0606 which corresponds to sinapic acid. Similar to
1-O-sinapoyl-beta-D-glucose, the PLS-DA results show that sina-
poyl malate was also more expressed in Meurthe-et-Moselle than
in Loiret (Fig. 4D). Another discriminating metabolite identified
was 1-O-(4-coumaroyl)-β-D-glucose. This coumaric acid deriva-
tive was characterized by [M-H]– at m/z 325.0928 and a product
ion at m/z 163 which corresponds to coumaric acid. The results
show that Meurthe-et-Moselle is also more favourable than
Loiret for the expression of 1-O-(4-coumaroyl)-β-D-glucose
(Fig. S7, in Supplementary Material).

From an agronomic point of view, these results are very inter-
esting for the following reasons. Not only was the
Meurthe-et-Moselle region favourable for the expression of
some of the major phenolic compounds, but it was also unfavour-
able for the production of the predominant glucosinolates consid-
ered to be undesirable molecules for livestock as their derived
compounds interfere with the synthesis of thyroid hormones,
leading eventually to hypothyroidism and enlargement of the thy-
roid gland (goitre) (Fenwick and Heaney, 1983). They are also
considered anti-nutritional by decreasing protein absorption in
cattle (Mawson and Heaney, 1994). Nevertheless, the PLS-DA
results show that the Loiret region could also be favourable to
the expression of some minor hydroxycinnamic acid derivatives
such as 1,2-Disinapoylgentiobioside or feruloyl sinapoyl hexose
which were characterized by [M-H]– at m/z 753.2246 and
561.1615, respectively (Fig. S7). The results showed also that
there were no flavonoids among the discriminating molecules,

such as sinapine which is the most predominant phenolic com-
pound in B. napus (Fang et al., 2012). The main difference was
seen for secondary metabolites, in which the ratio of phenolic
compounds/glucosinolates varied reversely between the two loca-
tions. We thus demonstrated that some cultivation conditions can
be overwhelming over genetic influence for seeds quality in B.
napus, and that metabolomics is well suited to highlight such
differences.

Semi-targeted metabolomics
All the results thus far discussed demonstrated how non-targeted
metabolomics facilitates investigation into the impact of both
genotype and environment on the metabolome of B. napus with-
out any prior knowledge of the identity of the molecules. Also, of
great interest is the fact that the major impacted molecules are
secondary metabolites, among which we found mostly the phen-
olic compounds and glucosinolates. Nevertheless, neither all the
phenolic compounds nor the minor glucosinolates were involved
in the discriminating results when comparing the most impacting
environment. If the objective is to focus on animal or human
health, then a semi-targeted analysis, focusing only on health-
promoting compounds such as secondary metabolites, would be
more appropriate to determine the most stable or favourable can-
didate (variety) for the expression of these metabolites (Dunn
et al., 2013). In order to achieve this second purpose, i.e. the
determination of the most stable or favourable candidate for
health-promoting molecules, a heatmap was generated by com-
paring all the samples according to secondary metabolites
where the phenolic compounds and glucosinolates represented
the main molecules. The heatmap is a commonly used visualiza-
tion tool for metabolomic data where the relative abundance of
ions detected in each sample is represented with colour intensity
(Ivanisevic et al., 2015) and provides a global perspective of
metabolite changes in response to genetic background and

Fig. 3. MS/MS spectrum of glucobrassicanapin and gluconapin (A,C). Relative abundance of glucobrassicanapin and gluconapin in the Loiret and
Meurthe-et-Moselle regions (B,D).
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environment. As shown in Fig. 5, the samples are gathered
according to the similar patterns of the metabolites.
Interestingly, some varieties behave similarly across different loca-
tions and are grouped in a distinct cluster, meaning that their level
of glucosinolates and phenolic compounds remain similar even
when cultivated in different environments. These clusters are
Dalton, Pamela, Bonanza and DK-Expertise (Fig. 5a–d). The
observation described below shows that the above-mentioned cul-
tivars consistently tended to express these kinds of major
health-impacting molecules. This stability is more or less relevant
depending on the variety. In fact, among the above-mentioned
varieties, the Dalton cultivar seems to be the most
environment-resistant cultivar regarding the expression of gluco-
sinolates and phenolic compounds. The heatmap shows also that
there is a slight environmental effect when considering only the
major secondary metabolites. In fact, the Loiret region seems to
be the major impacting environment followed to a lesser extent
by Meurthe-et-Moselle and Lot-et-Garonne (Fig. 5e–g). Overall,
our graph analysis provided an overview of how metabolite levels
changed due to genetic background or environment.
Furthermore, not only does it provide an overview of similarities
between the samples under analysis, but the metabolite pattern
throughout the data set can also be obtained, thereby suggesting
possible metabolic relationships (Widodo et al., 2009). Almost
all these observations agree with the HCA results described earlier
with few exceptions, such as the Dalton cultivar. The semi-
targeted metabolomics focused on secondary metabolites and dis-
played in the heatmap, revealing that the Dalton cultivar behaved
consistently and is irrespective of environmental influences about
major secondary metabolites, while the non-targeted metabolo-
mics revealed a sensitivity to the environment for this same cul-
tivar. When combining these two approaches, the environment
could affect pathways other than secondary metabolism, which
may explain why the Dalton cultivar was spread across the

hierarchical ascendant classification when performing the non-
targeted approach. Therefore, the semi-targeted and non-targeted
approaches are complementary approaches in providing informa-
tion on which scale of the metabolism (overall, or primary or sec-
ondary) is mainly associated to environmental or genetic
influences.

Glucosinolates, phenolic compounds and metabolic pathway

The results described above showed how both the environment
and the genetic background could influence the expression of
the secondary metabolites. From a biological point of view,
these observations agree with previous studies that describe the
secondary metabolites as a natural defence system which is
induced in response to biotic or abiotic stress, in connection to
the genetic background. Among these secondary metabolites,
the glucosinolates and the phenolic compounds are the major
metabolites involved in the defence system of the brassica family
(Jahangir et al., 2009). The glucosinolates are synthesized from a
variety of typical amino acids (methionine, tryptophan and
phenylalanine) and are responsible for diverse physiological
effects such as inhibitors of microbial growth, attractants for par-
ticular insects, deterrents of different herbivores and as flavouring
compounds (Petersen et al., 2002). This biological effect is pre-
dominantly related to the glucosinolate-derived compounds
which correspond to breakdown products released after the
hydrolysis of the intact form of the glucosinolates by the myrosi-
nase upon tissue damage. Although some of these derived pro-
ducts have toxic effects on farm animals, it is now very well
established that some of them can be beneficial to health such
as supporting anti-cancer activity (Keum et al., 2004). As
described earlier, the statistical analysis performed on our samples
revealed a significant environmental impact on the accumulation
of the major glucosinolate in B. napus which corresponded to the

Fig. 4. MS/MS spectrum of 1-O-sinapoyl-beta-D-glucose and sinapoyl malate (A,C). Relative abundance of 1-O-sinapoyl-beta-D-glucose and sinapoyl malate in the
Loiret and Meurthe-et-Moselle regions (B,D).
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gluconapine and progoitrin. This observation is in agreement
with other studies performed on B. napus (Jensen et al., 1996;
Jankowski et al., 2008, 2016). Furthermore, these two glucosino-
lates have been correlated to bitterness in brassicacea (Kim
et al., 2010); however, unlike other aliphatic glucosinolates, noth-
ing is known about the anti-cancer properties of these glucosino-
lates. Therefore, an attractive objective would be to reveal the
possible health beneficial effects of the above-mentioned glucosi-
nolates and then use them in functional food products or phar-
maceuticals which may provide additional interesting routes of
rapeseed by-products valorization.

The phenolic compounds represent the second largest group
among the secondary metabolites in the brassica family. They
are derived from the aromatic amino acid phenylalanine which
is produced via the shikimic pathway. In the last two decades,
there has been a strong interest in the biological effects of phen-
olic compounds in dietary plants. Besides the multiple roles in
plants such as attracting insects for seed dispersion and pollin-
ation or hormone controllers, phenolic compounds are also part
of the natural defence system and are responsible for diverse
physiological effects against insects, bacteria, viruses and fungi
(Lattanzio et al., 2006). Moreover, the phenolic compounds
have been intensively explored in recent years because of their
potential health-promoting effects. Thus, several beneficial prop-
erties for human health have been reported such as anti-
microbial, anti-allergic, anti-inflammatory, vascular protection
and cytotoxic anti-tumor activity and most importantly an anti-
oxidant activity (Pandey and Rizv, 2009; Huang et al., 2016).
This information is very useful for developing new cultivars
with an appropriate phenolic compound/glucosinolates profile,
from which high-quality added value products can be produced.
However, the manipulation of the content of phenolic

compounds and glucosinolates in B. napus by the environment
or cultural practices is very challenging and requires a deep
understanding of the activation and the regulation of the defence
mechanisms. One way to achieve this purpose is to map the
detected metabolites into metabolic pathways by using informat-
ics tools such as the Kegg mapper Atlas (Kanehisa et al., 2017).
This tool can represent the entire metabolism of B. napus and
allow not only the visualization of all the discriminating com-
pounds by highlighting them according to their expression level,
but also show all the enzymes and genes responsible for these
observed modifications. As most of the identified molecules are
among the hydroxycinnamic derivatives, we have focused only
on the phenylpropanoid pathway. As shown in Fig. 6, the non-
discriminant metabolites we identified are highlighted in green,
whereas the discriminant ones are highlighted in red. When look-
ing at the metabolic map we noticed that the impacted point starts
from 1-O-sinapoyl-beta-D-glucose as all the upstream molecules
seem to be unmodified (coloured in green). Therefore, this obser-
vation could be explained either by an increase of its precursors
which correspond to the sinapate and glucose or by a modifica-
tion in the expression of the gene coding for the sinapate 1-glu-
cosyltransferase. This enzyme belongs to the UGT84A
subfamily of plant glycosyltransferase family 1 and is designated
UGT84A2 (Sinlapadech et al., 2007). The results obtained from
the statistical analyses show that the two precursors could not
be responsible for the modification of the expression of
1-O-sinapoyl-beta-D-glucose as these metabolites were not
impacted (P-value greater than 0.05). This could be explained
by a modification of the activity of the sinapate glucosyl transfer-
ase gene upon environmental influences. This is in agreement
with other studies where the authors described how a stress-
responsive glucosyltransferase belonging to the subfamily of

Fig. 5. The heatmap is a graphical representation of data where the samples are clustered according to the proximity of their metabolome (intensity metabolites).
The green areas correspond to over-expressed metabolites, while the red areas are the under-expressed metabolites.
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UGT84A played a crucial role in modulating phenylpropanoid
synthesis, modification, bioactivity, and/or stability in response
to environmental cues (Babst et al., 2014). Moreover, the meta-
bolic map shows also that the other impacted metabolite is the
sinapoyl malate (coloured in red). This metabolite corresponds
to the end product of the phenylpropanoid pathway and is gener-
ated from the conversion of the 1-O-sinapoyl-beta-D-glucose
under the action of sinapoylglucose:malate sinapoyltransferase.
This enzyme belongs to the SNG subfamily and is designated as
SNG1 (Lehfeldt et al., 2000). This seems to be the preferred
route of metabolism over the production of sinapoyl choline
which remained unchanged. The observation described below
seems to be in agreement with the modification of the
1-O-sinapoyl-beta-D-glucose suggesting that this modification
of the sinapoyl malate could be the result of an accumulation of
its precursor sinapoylglucose or the accumulation of the malic
acid. The results obtained from the statistical analyses show that
the malic acid appears among the discriminating molecules (P
= 1.55 × 10–4). This observation is in agreement with other studies
describing how the expression of the malate during the Krebs
cycle is highly modified under the stress conditions (Lehmann
et al., 2015). This observation could be the origin of a chain reac-
tion that led to the accumulation of the sinapoyl malate.
Nevertheless, the modification of the sinapoyl malate by the accu-
mulation of the 1-O-sinapoyl-beta-D-glucose seems to be the
most plausible explanation. All these observations show how
metabolomics is capable of generating a new regulating
hypothesis at the enzyme and/or gene expression level, and
could help selecting cultivar and/or cultivation conditions to pro-
mote one pathway over another to control the content of some

anti-nutritive compounds or health-promoting molecules in the
B. napus seeds.

In conclusion, we have applied the metabolomic approach to
reveal the impact of gene × environment interactions on the qual-
ity of rapeseed. We were able to determine that some varieties are
very sensitive to environmental conditions such as soil character-
istics, while others are more resilient for certain traits. We also
demonstrated in this study that the semi-targeted metabolomics
is a great approach to allow an overview of how the glucosinolates
and the phenolic compounds are regulated in all the varieties
across the different locations in one analysis. This helps to the
identification of varieties with high and stable glucosinolate or
phenolic compound content. It allows identification of target
genes and helps designing/selecting new varieties with desired
characteristics, either useful for human health or livestock feeding.
We believe that this is an innovative paradigm as it reverses the
downward vision of the gene to the prevailing phenotype in
favour of a top-down approach starting from the phenotype to
identify the target genes. Reversely, it can be also used to seek
and control the main contributing environmental factors to
obtain the desired seed quality.

Although metabolomics has been used in other plants with a
similar design (Asiago et al., 2012), this is the first study of that
kind performed on Brassica napus seeds. It was thus necessary
to first get an overview of the impact of the main ‘raw’ factors
on the seeds metabolome, e.g. the region and cultivar (genetics).
This allowed us to draw reliable conclusions about the variation or
stability of the polar fraction of the different varieties over several
regions gathering high contrast in terms of climate and nature of
soil. From that first step, it is now essential to design new studies

Fig. 6. Metabolic pathways (Kegg Mapper), green: normally expressed; red: impacted by the environment.
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addressing the quality traits over multiple growth and several har-
vest cycles and to refine intra-regional variability. Careful experi-
mental designs using well-controlled environments (drought,
light, heat, soil and minerals) addressing plant-to-plant variations
can also provide meaningful information and give complemen-
tary mechanistic explanations with regard to quality traits.

Supplementary Material. To view Supplementary Material for this article,
please visit: https://doi.org/10.1017/S0960258519000138
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