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We investigate deterministic and stochastic bifurcations in electroconvecitve flows of
a dielectric liquid confined between two parallel plates subjected to a strong unipolar
injection by direct numerical simulations. A long-standing discrepancy of linear instability
criteria between the experiment and theory exists in this flow. We here test the hypothesis
that the discrepancy may be related to the inhomogeneity in ion-exchange membranes
used in experiments, contrasted by the homogeneous ion injection assumed in theoretical
and numerical analyses. To study this effect, we consider stochastic boundary conditions
around linear criticality and first bifurcations in this flow. For a complete presentation
of flow bifurcations, deterministic bifurcation analysis (without stochasticity) is first
performed to investigate primary bifurcations in this flow by progressively increasing the
strength of electric field. Lyapunov spectrum and dimension are calculated and probed to
characterise the chaotic motion therein. Our results confirm the high dimensionality of
chaos in electroconvective flows and reveal for the first time that its chaos is extensive
in a range of finite-sized systems. We then conduct stochastic bifurcation analyses by
considering random perturbations in the boundary conditions of charge density and
electric potential. Owing to the subcritical nature of electroconvective flows, the linear
instability criteria under stochastic boundaries are closer to the experimental values than
former theoretical and numerical results (assuming the homogeneous charge injection)
for different levels of stochasticity, which confirms the hypothesis aforementioned.
Furthermore, stochasticity can also enhance the efficiency of ionic transport.
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1. Introduction

Electrohydrodynamics (EHDs) studies interactions between an electric field and a
dielectric fluid of very low conductivity. This flow configuration has been widely applied
in many industrial procedures. When an electric field is applied in thermoconvection flows,
the thermal Nusselt number (ratio of convection to conduction, which quantifies the degree
of heat transfer) will increase by up to an order of magnitude (McCluskey, Atten & Perez
1991). The induced Coulomb force by the electric field can help create three kinds of EHD
pumping, namely the induction pumping, ion-drag pumping and conduction pumping
(Seyed-Yagoobi 2005). In addition, the electric force can also be used to destabilise the
interface between different liquids, improving the efficiency of mixing in the liquid-liquid
system, which assists to step forward the design of EHD mixers (Jalaal, Khorshidi &
Esmaeilzadeh 2013). Therefore, understanding thoroughly the flow motions in EHD is
important. One typical problem of EHD, which encompasses the essential flow dynamics
under the electric field and is suitable for theoretical studies, is an electroconvective (EC)
flow in a dielectric liquid. This EC flow is confined between two parallel plane electrodes
(i.e. injector and collector) and subjected to a unipolar injection of charges generated by
ion-exchange membranes. However, the EC flow is not fully understood, exemplified by a
lack of understanding of the discrepancy between the theoretical and experimental linear
instability criteria (with the theoretical value being larger than the experimental one, see
below). In the following, we will first summarise the works on the linear stability analyses
and bifurcation analyses of the EC flow and then discuss concisely the position of the
current work in the literature.

1.1. Linear instability in electroconvective flows

The EC flows that are considered in this work refer to the convective motion induced by the
potential difference applied to two plane electrodes covered by ion-exchange membranes
(Lacroix, Atten & Hopfinger 1975). The linear instability in this flow was first studied by
Atten & Moreau (1972), and the diffusion effect of charges was often neglected because
of their negligible effect on the current generation (to be discussed further below). The
parameter that controls the flow instability/stability is called the electric Rayleigh number
T, which quantifies the strength of the electric field. When the charge injection is very
weak (i.e. C < 1, where C is a non-dimensional number quantifying the charge injection
level), the linear stability criterion is dependent on the injection strength, namely 7,.C? &
220.7. In the case of space-charge-limit injection (SCL when C — 00), the result indicated
that the linear stability criterion 7, ~ 160.75. However, the linear stability criterion was
experimentally estimated to be in a range of 7, &~ 100 % 10 (Lacroix et al. 1975; Atten &
Lacroix 1978, 1979). Lacroix et al. (1975) mentioned that the perturbations they introduced
into the EC flows for the onset of convection were small, which eliminated the possibility
that they have mistakenly taken the finite-amplitude disturbance as infinitesimal (however,
we mention in passing that the amplitude of the disturbance needed to trigger subcritical
convections does depend on how subcritical is the flow system, that is, a more subcritical
system only needs smaller finite-amplitude disturbances to transition to turbulence). Atten
& Lacroix (1978) clearly demonstrated the subcritical nature of EC flows with a hysteresis
loop (their figures 4 and 5), with the following critical values of T for a strong injection

(C =10),
Theory: T.=~ 161, Ty~ 110, (LD)
Experiment: T, ~ 100, Ty~ 90, ’
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where Ty is the threshold for the finite-amplitude solution, under which no such solution
exists. Note that when the injection is weak (C is small), the stability conditions change;
and we will focus on discussing the values of 7, in the SCL regime, for which the
experimental result is far lower than that theoretically predicted. This disagreement may
originate from the following (but not limited to) facts that: first, the charge diffusion effects
were neglected in the theoretical analysis; second, subcritical mechanisms may be at play;
third, some inherent imperfections in experiments were not correctly modelled by the
equations. The first issue was addressed by Pérez & Castellanos (1989) who reported a
non-negligible effect of charge diffusion on the linear stability criterion, which decreases
as the charge diffusion effect increases. The second issue was discussed by Zhang et al.
(2015) who performed modal and non-modal stability analysis (linear subcritical energy
growth) with the charge diffusion included in the governing equations. However, the
authors found that the transient energy growth in EC is small, and thus concluded that
this issue is unimportant in this matter. This urges us to consider the third factor aforesaid.

The imperfections in the experiments may result in mismatch between theoretical
modelling and experimental conditions. The imperfections we are going to discuss and
model are those in the ion-exchange membranes, which include different degrees of,
e.g. non-uniformity, morphology, surface unevenness, unclearness/fouling, all of which
can to some extent result in local clustering of the ions generated, thus leading to a
non-uniform or inhomogeneous charge injection; however, in the theoretical modelling,
a homogeneous ion-injection mechanism is conventionally assumed. In the experiments
of EC flows, e.g. in the papers by Lacroix et al. (1975), Atten & Lacroix (1978), typically
two planar or circular electrodes were covered with ion-exchange membranes, with one
electrode serving as an ion injector and the other as collector. AMF A 60 was mainly
used; but occasionally, metal plated and varnished glass electrodes were also used.
These authors reported that a strong and reproducible injection of ions into polar liquids
could be achieved. Although they have paid special attention to the purification of the
tested liquid, they did not mention the possibility of imperfections in their ion-exchange
membranes used or discuss its effect. On the other hand, the ion-exchange materials
are prone to be spatially non-uniform, even in the advertised homogeneous membranes
and gel ion-exchangers (Zabolotsky & Nikonenko 1993). In fact, in the community
of membrane science, reporting and studying the imperfections in the membrane are
important and necessary (Selvey & Reiss 1985; Vrijenhoek, Hong & Elimelech 2001;
Tanaka 2015) as the non-uniformity/morphology/fouling in the membrane is detrimental
and inevitable (to some degree). In the context of EC flows, this non-uniformity of
ion-exchange membranes may affect the physical and chemical properties of ion-exchange
systems and the subsequent fluid motions driven by the Coulomb force therein. For a
more detailed discussion on the inhomogeneity on the ion-exchange membranes, the
reader is referred to Appendix A, where we also mention an early EHD experiment
where ion-exchange membranes were not used and the authors found that the linear
criteria between theory and experiment matched each other. These imperfections in the
experiments involving ion-exchange membranes (Lacroix et al. 1975; Atten & Lacroix
1978) may result in mismatch between theoretical modelling and experimental conditions.
However, in theoretical and numerical studies, as we just mentioned, for the sake of
simplicity, homogeneous injections and electric potential are conventionally assumed with
an untested understanding that such simplification will not exert a significant influence on
the results. In this work, we will study the effect of the inhomogeneity in the ion-injection
mechanism, which results from the aforementioned imperfections in the ion-exchange
membrane, by using stochastic bifurcation analyses. In the following, we review works
on deterministic and stochastic bifurcation analyses of convective flows.
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1.2. Bifurcation and chaos in electroconvective flows

After the emergence of electroconvective flows, as the strength of the electric field
further increases, various successive flow bifurcations can take place, such as periodic
(i.e. Hopf bifurcation), quasi-periodic and even chaotic motions. The first bifurcation
in EC flows is subcritical (Félici 1971; Lacroix et al. 1975; Zhang 2016), which is
characterised by an abrupt jump in the strength of flow motion from zero to a finite
value when finite-amplitude perturbations are present. For this subcritical bifurcation, T
is larger than Ty (i.e. nonlinear stability criterion for the finite-amplitude solution. When
T < Ty, finite-amplitude perturbation cannot trigger flow motion) and smaller than 7.
For infinitesimal perturbations, only the supercritical transition route is possible, i.e. the
required value of T for flow motion should be larger than T,.. That Ty is smaller than T,
manifests a hysteresis loop, which is a unique feature of subcritical systems.

The chaotic characteristics of EC flows have been confirmed in some experiments.
In the case of strong unipolar injection in confined circular boxes, the EC flow
became time-dependent and chaotic above the instability threshold (Atten, Lacroix &
Malraison 1980). Such a phenomenon has been observed for all aspect ratios ranging
from approximately 2 up to 30 in their experiment, and one characteristic frequency
and its subharmonic were found in the power spectra of the total current fluctuations.
This characteristic frequency may originate from an oscillatory instability of the basic
convection in each cell as it shows similar frequency with the normal velocity component.
Malraison & Atten (1982) found two types of chaotic behaviours in the power spectra of
the intensity fluctuations, namely the exponential decay in the viscous-dominated flow
and a power-law decay in the inertially dominated flow. Furthermore, the trajectories in a
n-dimensional phase space have been reconstructed based on the experimentally obtained
time series of the total current fluctuations with a time-delay technique (Malraison
et al. 1983), then the fractal dimension of chaotic attractor was calculated based on
the Grassberger—Procaccia method (Grassberger & Procaccia 1983). In this problem
of strong unipolar injection with an external voltage U = 270 V in a dielectric liquid
(critical voltage U, >~ 50 V) confined in a cylindrical container of aspect ratio I" & 1,
the corresponding fractal dimension was estimated as 5.1 4= 0.3, which indicates that
the attractor is of a strange type. However, this method becomes inapplicable when the
logarithm of the integral correlation function does not show a defined slope. In such a
case, Atten et al. (1984) concluded that the fractal dimension seems to increase without
limit. For the thermal convection, or Rayleigh-Bénard convection (RBC, which has also
been studied by Malraison et al. 1983), its dimension of strange attractor is approximately
2.8 0.1 under conditions Pr = 40, Ra/Ra. = 235 and aspect ratios [, =2, I, =1.2
in a rectangular container (where Pr is the Prandtl number quantifying the ratio between
momentum diffusivity to thermal diffusivity and Ra is the Rayleigh number in thermal
convection measuring the relative strength between buoyancy and viscosity). In a larger
container Iy = Iy, =2 with parameters Pr =1 and Ra =2 x 10%, the dimension of
chaotic attractor for thermal convection is found to be 3.3 with two positive and one
possibly zero Lyapunov exponents (Urata 1987; Castellanos 1990).

In addition to the aforementioned experiments, the chaotic nature of EC flow has also
been investigated in numerical simulations. By extracting time series from numerical
simulations, Chicén, Pérez & Castellanos (2001) calculated the largest Lyapunov
exponents to evidence the chaos in the EC flow with weak injection (i.e. C = 0.1). After
constructing an m-dimensional phase space s, from time series, they applied the algorithm
proposed by Kantz & Schreiber (2004) to obtain a linear function S(An) whose coefficient
of proportionality was the desired largest Lyapunov exponent. Their work not only verified
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the emergence of chaos by positive largest Lyapunov exponents, but also indicated that
the largest Lyapunov exponent is an increasing function of the average amplitude of the
velocity, which means that the system became more and more chaotic as the liquid velocity
increases. Near the nonlinear criterion of chaos, they also found that the largest Lyapunov
exponent is quite small and the dimension of strange attractor may be smaller than 5.
However, their algorithm of computing Lyapunov exponents only works well when the
embedding dimension m is enough to support the attractor; otherwise, the Lyapunov
exponent estimated from the linear part of S(An) usually decreases when this dimension
m is increased. In addition, their numerical simulations focused on the regime of weak
injection, while the strong injection case will be studied in the current work.

In the former literature on electroconvection, the estimation of Lyapunov exponent and
the fractal dimension for electroconvective flow was based on the time series obtained
from experiments and numerical simulations, but in these algorithms some free parameters
must be introduced such as the embedding dimension and delay time. To characterise the
chaotic motions in EC flows in a more systematic way and avoid assigning free parameters,
we will follow the method of Wolf er al. (1985), which has the capacity to compute
multiple Lyapunov exponents. In this method, the Lyapunov spectrum is obtained by
constructing multiple trajectories in the phase space, and these trajectories are evolved
by solving the nonlinear and linear governing equations simultaneously. After obtaining
the Lyapunov spectrum, the fractal dimension of attractor can be estimated from the
well-known Kaplan—Yorke formula (Kaplan & Yorke 1979). The estimation of Lyapunov
exponents based on this method has been widely applied in the study of chaos in RBC
(Egolf & Greenside 1994; Egolf et al. 2000; Paul et al. 2007; Levanger et al. 2019),
but not so in electroconvection. Their results have revealed that the dynamics in thermal
convection is truly chaotic as illustrated by a positive leading-order Lyapunov exponent
and that the chaos in RBC is extensive over a range of finite-sized systems indicated
by a linear scaling between the Lyapunov dimension of the chaotic attractor and the
system size. In large chaotic systems, the Lyapunov dimension was first conjectured to
be extensive by Ruelle (1982). Such extensive characteristic indicates the weak coupling
between different subsystems if they are extracted from the same chaotic system, and
these subsystems contribute additively to the overall fractal dimension (Eckmann & Ruelle
1985); namely the summation of Lyapunov dimensions for each subsystem refers to the
Lyapunov dimension of overall system.

The above paragraphs review the results of deterministic bifurcations of EC flows with
some possible improvement areas being identified. A stochastic bifurcation analysis, on
the other hand, has not been performed for EC flows. As discussed above, the stochastic
bifurcation analysis may be used to model the imperfections in the experiments, to some
degree. Such stochastic effects have been investigated in the case of RBC. Venturi, Wan
& Karniadakis (2010) studied the stochastic bifurcation and stability of RBC within
two-dimensional (2-D) square enclosures. They took into account two different sources
of uncertainty. One source of uncertainty is represented by the random Ra, the range of
which includes the onset value for convective instability. The other source of uncertainty
is the random initial conditions which can eventually induce different convection patterns.
Their results indicated that the most probable convection pattern which develops from
a low-wavenumber initial state is a one-roll pattern. Furthermore, Venturi, Choi &
Karniadakis (2012) also considered stochastic temperature distribution at solid boundaries
subjected to non-uniform unpredictable perturbations to mimic the realistic boundary
conditions in thermal convection problems. In such a case, the bifurcation process leading
to convection cannot provide a critical Ra because convection occurs for most Rayleigh
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numbers (Ahlers, Meyer & Cannell 1989), and the pure conduction state no longer exists,
being replaced by a quasi-conduction regime (Kelly & Pal 1978). Motivated by their works,
we will in this work apply the stochastic bifurcation analysis to the EC flows to study the
effects of stochasticity added into the boundaries of electric potential and charge injection.

1.3. The position and structure of the current work

To sum up, after reviewing the above works, we realise that the deterministic bifurcation
analysis of EC flows can be further refined by using a more systematic approach
and the stochastic bifurcation analysis can be used to study and model the inevitable
non-uniformity of the ion-exchange membrane in EHD experiments. By doing so, the
position of the current work is clear: we will obtain more methodical results regarding
the chaos in EC flows and also investigate to what extent the assumption of homogeneous
injection and electric potential on electrodes can influence the theoretical results on the
flow stability and bifurcation in EC flows. This will help to forge part of a plausible
explanation in resolving the long-standing discrepancy of linear stability criteria between
the experiment and theory.

The paper is organised as follows. In §2, we introduce the configuration of
electroconvective flows, the nonlinear governing equations and their corresponding
linearisation around the base flow, the deterministic and stochastic boundary conditions,
as well as the numerical method. In § 3, the numerical code is validated against existing
results in the literature. Our results concerning the bifurcations of EC flows are analysed,
which includes the deterministic and stochastic bifurcation analyses. Finally, in §4, we
summarise our conclusions and discuss possible future works.

2. Problem formulation and numerical method
2.1. Mathematical modelling

We consider a dielectric liquid confined between two parallel planar electrodes separated
by a distance H* and with a length L* in an x—y plane (see figure 1), where the superscript
asterisk * denotes dimensional variables. Because we focus on the linear criticality and
primary bifurcations, it is appropriate to study 2-D EC flows in this work. The DC
voltage difference between the top and bottom electrodes is given as A¢;. Autonomous
unipolar charges are generated through electrochemical reactions (Alj et al. 1985) and are
injected into a dielectric fluid from the bottom electrode with the charge density Q. In the
current work, this dielectric liquid is assumed to be incompressible, Newtonian, isothermal
and homogeneous. The governing equations consist of the incompressible Navier—Stokes
equations and a reduced set of Maxwell’s equations where the magnetic field is neglected
owing to the low electric conductivity of the dielectric liquid, and only the Coulomb force
is considered to be exerted on the fluid of constant permittivity €* and viscosity p*. For
the non-dimensionalisation, the length is non-dimensionalised by H*, electric potential
by Agj, charge density by Q. electric field E* by A¢;/H*, velocity by the ionic drift
velocity K*E™ (i.e. K* Agy/H*), where K* is the ionic mobility, time by H*?/(K* Ady)
and finally pressure by p K*>A¢g?/H*2. This yields the non-dimensional EHD equations
as follows:

V¢ = —CQ (2.1a)
E—=_V¢ (2.1b)
922 A20-6
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Figure 1. Schematic of stochastic perturbations g;(x) on bottom and top plates with perturbation amplitude
o = 10% and two different correlation lengths. Solid line, /. = 1.0; dash—dotted line, /. = 0.25. Smaller
correlation length can induce more wavy oscillations. The two dashed ellipses refer to the electroconvective
flow within the dielectric liquid. Stochastic boundaries may induce asymmetric motions.

0 I _,
— + V- [(E+U)Q]l=_-VQ (2.1¢)
ot Fe
V-U=0 (2.1d)
aU M?_, )
E+(U~V)U=—VP—|— ?V U+ CM-QFE (2.1e)
where
* x\1/2 * A d* *H*Z K*Aod*
m= PO A QO* CR=N%% o
K* K*p* Agpye* D3

The first parameter M denotes the ratio between the hydrodynamic mobility (¢*/ ,0(’)")1/ 2

and the ion mobility K*. It is less than 0.1 for gases but larger than 1 for liquids (Castellanos
& Agrait 1992). The electric Rayleigh number 7 represents the ratio of the Coulomb force
to the viscous force, which plays a similar role as the Rayleigh number Ra in RBC. The
C measures the injection strength of charges. Here, C >> 1 refers to the strong-injection
regime (including the SCL) and C « 1 to the weak-injection regime. In the current work,
we only consider the strong-injection regime as this is easier to realise in experiments
and the linear criterion that we are going to investigate pertains to this regime. Finally,
Fe is the reciprocal of the charge diffusivity coefficient. A more detailed discussion of
the above EHD equations and parameters can be found in the literature (Castellanos 1998;
Zhang et al. 2015).

We now discuss the boundary conditions for field variables U = (U, V, W), Q and ¢. In
the current work, the deterministic and stochastic bifurcations are studied under different
boundary conditions. In the deterministic case, the boundary conditions in the vertical
direction are given as

y=0:U=0,0=1,¢=1; (2.3a)
y=1: U=0, 30/dy =0, ¢ = 0. (2.3b)
922 A20-7
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If we consider (2.1) plus the above boundary conditions and assume homogeneity in
wall-parallel directions, we can see that the system has the equivalence that (y, v, E,) —
(I =y, —v, —Ey), where E, is the y component of the electric field. This equivalence
indicates that the injection from the top plate is the same as the injection from the bottom
plate. In the current work, we consider the injection from the bottom.

Because in the current work the computational domain is finite in the lateral direction,
we also need to specify boundary conditions on the lateral walls. Two choices for the
velocity fields are considered, namely the no-slip (i.e. U = 0) and periodic boundaries.
They are used for different purposes: with the no-slip boundary condition, we can study
the EC flow in finite domains of different aspect ratios with 0Q/dx = 0 and d¢/dx = 0
as the lateral boundaries of charge density and electric potential; under the periodic
boundary conditions, the bifurcation of EC flows between two infinite parallel plates
can be investigated. Note that in Appendix B, we also present the results of symmetric
boundary conditions applied on the lateral walls to compare our results with those in the
literature.

Owing to the inhomogeneity of ion-exchange membranes and their resistance on
the transport of ions, inhomogeneous potential differences and charge injection can be
induced on the membrane surface. In our study, these effects will be modelled by adding
three spatially random perturbations g1(x), g2(x) and g3(x) into the Dirichlet boundary
conditions of charge density Q and electric potential ¢, namely Q(0) =1+ g1(x),
¢(0) =1+ go(x) and ¢ (1) = g3(x), whose schematic is shown in figure 1. The above
perturbations are quantified by two parameters, which are o as the maximum amplitude
of the perturbation (with respect to the normalised boundary conditions) and /. as the
correlation length normalised by the streamwise length L. One can also assign different
values of o to different variables, but because we have considered normalisation in
the boundary conditions and owing to the space limit, this parametric study will not
be conducted in this work. These perturbations are designed to have a zero mean in
the streamwise range x € [0, L], and they also follow the Gaussian correlation function
(following Venturi, Wan & Karniadakis 2008; Venturi et al. 2012):

Y
(x1 —x2) ) 2.4)

(gi(x1)gi(x2)) = 0% exp (—A i

C
where (-) denotes the ensemble average and A refers to the normalisation constant. To
eliminate the correlation between g;(x;) and g;(x2) at the distance of correlation length,
here the normalisation constant is chosen to be A = 6. Based on the Karhunen—Logve
theorem and spectral analysis of (2.4), a stochastic process can be represented by a linear
combination of orthogonal bases,

NS’
giv) =0 Y ()2 e, i=1,2,3, (2.5)
k=1

where N, refers to the dimensionality of series expansion, § ,El) are zero-mean uncorrelated
Gaussian random variables with unit variance and the orthogonal basis 1 (x) is given as
Yox) = 1, Y (x) = V2 cos(2kmx/L + é,? ), which satisfy the periodic boundary condition
along the streamwise direction. From the above (2.4) and (2.5), the covariance of g;(x) can
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be obtained:

. . 2 Ng
Clrn ) = BV o (<620 ) =S whimromatn). 26)
¢ k=1

Thus, the positive Fourier coefficients (b,%) can be obtained by projecting this Gaussian
covariance C(x1, x2) onto the basis {{(x)},

L pL
(b;%>=/0 /O Clxr, x2) Y (x1) Y (x2) doxy doxs. 2.7)

With the above definitions of stochastic perturbations g;(x), the boundary conditions in the
stochastic bifurcation analysis read:

y=0:U=0,0=1+g1(x), ¢ =1+ g(x); (2.8a)
y=1:U=0,030/0y=0, ¢ =g3(x); (2.8D)
x=0& x = L : periodic boundary. (2.8¢)

As mentioned above, because 2-D EC flows are to be studied here, but the
non-uniformity in the ion-exchange membranes in reality is inherently three-dimensional
(3-D), the results shown below should be interpreted with a local significance related to
either one x—y slice in 3-D EC flows or the non-uniformity has a larger length scale in the
z direction than the 2-D EC flow structures we consider here. We mention in passing that
the stochastic bifurcation analyses in Venturi et al. (2010, 2012) were also 2-D.

2.2. Linearisation and stability analysis
The first bifurcation can be studied using a linear stability analysis. The linearised
governing equations are obtained by decomposing the field variable into a sum of base
state and perturbation, i.e. U = U+u, P= [:"—}—p, E=E+e, 0= Q+ q and ¢ =
¢ + ¢. After substituting the above decompositions into the governing equations (2.1),
by subtracting from them the governing equations for the base states and neglecting the
second-order terms, the linearised governing equations read:

V2p = —Cqg (2.9a)
e=—Vyp (2.9b)
aq - _ - I _,
—+V-[(E+U)qg+(e+uQ]l=—-Vyq (2.9¢)
at Fe
Veu=0 (2.9d)
u _ _ M? 2 ), = -
E—i—(u-V)U—i—(U-V)u:—Vp—I-TV u+ CM*(gE + Qe). (2.9¢)

For the linear stability analysis in deterministic and stochastic cases, the boundary
conditions of perturbed fields are given as

y=0: u=0,9g=0, ¢ =0; (2.10a)
922 A20-9
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Figure 2. Hydrostatic solutions of charge density Q for electroconvective flows in deterministic and stochastic
cases with C = 10 and Fe = 10*: (@) base field O under deterministic boundaries; (b) base field Q under
stochastic boundaries with 0 =2 % and /. = 0.5. Only part of the field 0 < y < 0.2 is presented for a clear
visualisation (the charge density in the range of 0.2 <y < 1 is relatively small); (¢) comparison of profiles
for Q between deterministic (black line) and stochastic cases (grey lines, at 12 different x stations, separated
equally).

y=1:u=0,0q/dy=0, ¢ =0; (2.10b)
x=0&x=L: u=0, dq/ox =0, d¢/dx = 0 or periodic boundary. (2.10¢)

Some discussions on the difference between the deterministic and stochastic cases in
the stability analysis are in order. The difference mainly lies in the different boundary
conditions in the base flows to be used. In the deterministic case, the hydrostatic solutions
to the governing equations are adopted as the base flow (U = 0 and steady solutions
to Maxwell’s equation with homogeneous boundary conditions, which is the common

practice in the previous works). In the stochastic case, we also use U = 0 for the velocity
field but the steady solutions to Maxwell’s equation with stochastic boundary conditions
for the electric field as the base flow. Figure 2 shows the steady solutions of charge density
with deterministic and stochastic boundary conditions. The variation of Q mainly locates
around the bottom boundary (i.e. y = 0). It can be understood that in the deterministic
case, if the flow is unstable, the intrinsic nonlinearity mechanism in the equations is the
only source for the nonlinear development in this flow; whereas in the stochastic case, if
the flow is unstable, in addition to the intrinsic nonlinearity mechanism, the stochastic
boundary conditions will serve as a catalyst to bring the flow to a nonlinearly saturated
state more quickly (in a shorter time) or more easily (requiring a lower 7'). We will discuss
this point further in § 3.

Based on the above non-dimensional perturbation variables, the total energy density in
electroconvective flows can be defined by

E =&+ & =S+ Me), (2.11)

where the perturbation velocity u = (u, v, w) and electric field e = (ey, ey, e;). The total
energy in EC flow consists of kinetic energy & and the perturbed electric energy &,. The
latter follows the definition by Castellanos (1998) and has also been used by Zhang et al.
(2015) and Zhang (2016).

We now discuss the method for quantitative determination of linear stability criterion 7.
We here use T as the stability parameter. The above linear equations (2.9) can be rewritten
in the following form:

of
o =L 2.12)
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where L refers to the linear evolution operator and f"is the array for the perturbed variables
in the above linear equations. When steady base states are considered, the small-amplitude
perturbations can be assumed to take on wave-like shapes in time, thus they can be denoted
by

f@y, 0 =fx,y) e, (2.13)

where w = w, + iw;, @, denotes the temporal growth rate of perturbations and w; is the
phase speed. If w, is positive, the perturbations will grow in time and the system is
unstable. After substituting the above expression of the linear perturbations into (2.12),
the following eigenvalue problem can be obtained:

of = Lf. (2.14)

Because we will consider a confined space in x, y directions (thus, the corresponding
analysis becomes a global stability analysis, see Theofilis 2011), we use the matrix-free
method based on a time-stepping method (Edwards ef al. 1994; Tuckerman & Barkley
1999), where the action of the evolution operator on the perturbation vector can be
implemented by integrating in time the linearised equations. In such a time-stepping
technique, the Arnoldi algorithm is applied to extract the eigen-information in the
linearised system by constructing a Krylov subspace using snapshots taken from the
linear evolution of the perturbation vector. Based on our above definition of total energy
density, here the perturbation vector only involves u and e, and other variables can be
readily computed from these two. To obtain better convergence and accuracy, the implicitly
restarted Arnoldi method (IRAM) from the ARPACK library (Lehoucq, Sorensen & Yang
1998) is applied to solve the above eigenvalue problem. For linear stability analysis, the
steady solution to the nonlinear equations (2.1), with either deterministic or stochastic
boundary conditions, has been applied as the base state for the linear equations (2.9). Once
enough data (3—4 data points) of the growth rates around w, = 0 for different stability
parameters T are obtained, the linear stability criterion can be calculated by a linear
interpolation of the data to determine the value of T, at which w, = 0. Below, the results of
the linear stability using the time-stepping Arnoldi method will be compared extensively
with those of the linear stability analysis by Zhang et al. (2015) when the comparison is
possible.

2.3. Lyapunov exponents and Lyapunov dimension

In the current work, we will additionally calculate the spectrum of Lyapunov exponents
based on the governing equations of electroconvective flow by applying the algorithm
proposed by Wolf et al. (1985). A Lyapunov exponent characterises the rate of separation
of a pair of initially infinitesimally close trajectories in a phase space. We choose the
state vector Hy = [U, E] evolved by the nonlinear equations (2.1) as the reference
trajectory. The other trajectory, evolving around the reference trajectory, is constructed
by the state vector, Hy = Ho + hy = [U + ui, E+ ] (k= 1,2, ..., m), where m refers
to the number of desired Lyapunov exponents (equivalently, m pairs of trajectories with
the common one being the reference trajectory aforementioned), and then the separated
distance between Hy and Hj can be evaluated by the magnitude of corresponding
perturbed vector Ay in the energy norm (2.11):

1
ViGe, )] = / 5 f / [ (x, D + Mey (x, 17 dx dy. 2.15)
1%
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Each perturbed vector is evolved by a set of linear equations (2.9) which adopt the
state vector Hy as the base field. In addition, to trace the fastest change of A, a
Gram—Schmidt procedure is repeatedly applied to the perturbed vectors at each At interval.
The instantaneous Lyapunov exponent for a continuous-time dynamical system is defined
as the derivative of the logarithm of the divergence rate (Shin & Hammond 1998). Thus,
its discrete form ;l}'{ at time # can be calculated as

- 1 hi(x, £+ Af
B=—In NxCx, 7+ AN (2.16)
At Ak Cx, )|
The above procedure is required to be repeated until the convergence of the finite-time
Lyapunov exponent,

NL
1 »
Ay = — E A 2.17)
N3 ‘

where N is the total number of Gram—Schmidt orthonormalisations. The convergence
criterion is the relative error between the i-th and i 4+ 1-th Gram—Schmidt procedures being

less than 1077,
As the perturbed vectors are orthogonal to each other after the Gram—Schmidt

procedure, the summation of Ny Lyapunov exponents ZfVZL] A; can describe the growth
rate of a Nz-dimensional ball. Thus, the number of Lyapunov exponents that are summed
to be zero corresponds to the dimension of this ball which will neither grow nor shrink,
and this is the so-called Lyapunov dimension D,, which is the minimum number of active
degrees of freedom that characterise the chaotic dynamics (Farmer, Ott & Yorke 1983).
After obtaining a sufficient number of Lyapunov exponents Ay, D, can be computed based
on the Kaplan—Yorke formula: (Kaplan & Yorke 1979)

Sk

Dy=K+ ;
|k 411

(2.18)

where K is the largest n for S, = Y"1 4; > 0, namely Sx > 0 and Sk < 0.

2.4. Numerical method

The direct numerical simulations (DNS) of electroconvection flows are performed using
the computational fluid dynamics solver Nek5000 (Fischer, Lottes & Kerkemeier 2008),
which is based on the spectral element method (SEM) (Patera 1984). It is well-known
for its high accuracy, favourable dispersion properties and efficient parallelisation. This
code has been widely used in the study of RBC (Paul er al. 2003; Sakievich, Peet
& Adrian 2016) and other flows. In the current work, Py — Py_, formulation is
applied for spatial discretisation; that is, the basis for the velocity space are Nth-order
Lagrange polynomial interpolants on Gauss—Lobatto—Legendre (GLL) points, while the
pressure space is discretised using Lagrange interpolants of order N — 2 defined on the
Gauss—-Legendre quadrature points. The polynomial order is set to 11 (i.e. N = 12) for
all following cases, thus, each spectral element is further discretised by 12 x 12 GLL
points. The second-order backward difference scheme (BDF2), coupled to a second-order
extrapolation scheme (EXT2), is applied for time integration. The time step ¢ is
determined by the Courant-Friedrichs—Lewy (CFL) condition with the target Courant
number being 0.15.
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3. Results and discussions
3.1. Global linear instability (as a validation step)

In this section, we first present the results of the grid independency test and validation for
the current EHD solvers. To facilitate the discussions below, we define an electric Nusselt
number Ne (Traoré & Pérez 2012; Zhang 2016), which reads:

N—Ie I, = V+E 190 dxd 3.1ab
I A LI e

where I, is the total current and [y refers to the total hydrostatic current when there is
no fluid motion. Thus, the electric Nusselt number can be used to evaluate the efficiency
of the transport of the electric current. Here, the charge diffusion has also been included
to be consistent with our theoretical modelling above; but we did notice that its value is
negligible compared with the other two ion-transport mechanisms. However, even though
its contribution to Ne is small, the charge diffusion has a non-negligible effect on the
linear instability criterion and finite-amplitude solutions, as has been shown by Pérez &
Castellanos (1989), Zhang et al. (2015) and Zhang (2016).

We now turn to the discussion of grid independence. Here the element size is used
to represent different mesh resolutions, but it should be noted that each spectral element
also contains 12 x 12 GLL points when computing the total number of grid points. For
the electroconvective flow under periodic lateral boundaries, two element sizes, namely
12 x 16 and 18 x 24, have been tested with parameters C = 10, M = 10 and Fe = 10%.
The time-averaged electric Nusselt numbers (i.e. Negy,) are computed for multiple electric
Rayleigh numbers involving both the steady and chaotic cases. In the current work, steady
and chaotic flow regimes are considered. In the former regime, the variation of the linear
stability criterion is discussed, while chaotic characteristics of the EC flow are investigated
in the latter regime. The results of grid independence are shown in table 1. It is found
that the relative errors between element sizes 12 x 16 and 18 x 24 are all less than 1 %.
Therefore, the element size of 12 x 16 is applied in the following numerical simulations
considering both the accuracy and computational efficiency. For different geometry aspect
ratios I' = L*/H*, the number of elements in the normal direction remains constant,
while the number of elements in the lateral direction increases with I”. In addition, those
elements close to the top and bottom planes have been refined. As the GLL quadrature
cluster those grid points around the edge of elements, the resolution is further improved
near the walls.

At the first step of validation, we verify the calculation of the steady solution to the
nonlinear equations (2.1) with deterministic boundary conditions. Under the condition of
steady flow field U = 0 (i.e. no fluid motion), the steady electric field depends only on
the injection strength C and the reciprocal of the charge diffusion coefficient 1/Fe. Such a
steady hydrostatic solution can also be obtained by directly solving for the steady solution
to the electric governing equations (i.e. (2.1a—c) with U = 0), which can be easily obtained
using an ordinary differential equation (ODE) solver, as done by Zhang et al. (2015). In
figure 3, we use two levels of injection strength C = 10 and C = 20 for validating our
numerical steady solutions by DNS against the results obtained by the ODE solver (Zhang
et al. 2015). At C = 10, the difference is 0.080 % for Q and 0.183 % for E, in terms of
the root-mean-square error. At C = 20, the root-mean-square error is 0.072 % for Q and
0.186 % for E\. Thus, these two results agree with each other quite well.

Next, the accuracy of simulating the dynamics in the nonlinear equations is tested
by numerically evolving them to calculate the linear and nonlinear criteria. As we have
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Element size T =170 T =190 T =240 T =250 T =305 T =315

12 x 16 1.4585 1.5142 1.6192 1.6351 1.4636 1.4982
18 x 24 1.4592 1.5158 1.6197 1.6360 1.4622 1.5018
Relative error ~ 0.048 % 0.106 % 0.031 % 0.055 % 0.096 % 0.241 %

Table 1. Grid independency test for electroconvective flows by time-averaged electric Nusselt numbers Negyg
at different electric Rayleigh numbers 7" within the domain range [0, 1.228] in the x direction and [0, 1] in the
y direction.

(a)1.0 15 (b) 1.0 2.0
: g
0.8 Y 0.8
1.5
1.0
0.6 0.6
0 E, 0 10 E,
0.4 0.4
0.5 ]
0.5
0.2 02}
‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ 0
0 02 04 06 08 10 0 02 04 06 08 10
y y

Figure 3. Validation of hydrostatic solutions of charge density Q and electric field Ey, for electroconvective
flows at M = 10, Fe = 10* and two different injection strengths: (a) C = 10; (b) C = 20. Circle and square
symbols refer to results of charge density and normal electric field from the current numerical simulations, and
the solid line is obtained by an ODE solver solving the electric equations.

discussed in the introduction section, there are two critical values of T, i.e. linear criterion
T and finite-amplitude (or nonlinear) criterion 7. We will calculate their values at C =
10, M = 10 and Fe = 10*. The periodic boundary condition is applied on the lateral walls.
The spatial length in the x direction is L = 1.228, which corresponds to the wavelength of
the least stable mode in the linearised EC flow at these parameters (Atten & Moreau 1972;
Zhang et al. 2015).

Figure 4 shows the relation between the electric Nusselt number Ne and the electric
Rayleigh number 7 with a hysteresis loop. The two stability criteria are numerically
obtained as 7. = 162.5 and Ty = 110.4. This linear stability criterion agrees very well with
that predicted by the stability analysis approach 7, = 162.6 (Zhang et al. 2015). Under
the symmetric lateral boundary conditions (with the computational length L = 0.614) and
parameters M = 10, C = 10, the above two criteria are obtained as 7. = 163.7, Ty = 108.2
by Wu et al. (2015), and T, = 164.1, Ty = 109 by Wang & Sheu (2016). The diffusion
effect was neglected in these two cited works which used the finite volume method.
We can find that the current 7. is lower than their linear stability criteria, while the finite
amplitude stability criterion T is higher than theirs. Here, we attribute this discrepancy
to the effects of charge diffusion. Zhang (2016) analysed the weakly nonlinear stability of
electrohydrodynamic flow of dielectric liquids subjected to strong unipolar injection with
the charge diffusion effect taken into account. It is found that the charge diffusion can
destabilise the linearised EC flow, but stabilise the flow in an early phase of the nonlinear
development of the disturbance, which means that higher Fe (i.e. weaker charge diffusion)
leads to greater T, and smaller 77, which is consistent with the comparison here (because

922 A20-14


https://doi.org/10.1017/jfm.2021.518

https://doi.org/10.1017/jfm.2021.518 Published online by Cambridge University Press

Deterministic and stochastic bifurcations in 2-D EC flows

1.6 ; , ,

2l /A
1.4+
Ne 13
1.2+
1.1+

7, T,
10—t A—A !
100 150 200
T

Figure 4. Subcritical bifurcation of electroconvective flows represented by the electric Nusselt number Ne
at C =10, M = 10 and Fe = 10*: upward-pointing triangles show the continuous increasing of 7', while
the downward-pointing triangles present the case of continuous decreasing. The two instability criteria are
numerically predicted as 7. = 162.5 and Ty = 110.4.

the charge diffusion can be considered smaller in the works of Wu et al. 2015; Wang &
Sheu 2016). This dual effect of charge diffusion has also been discussed by Castellanos,
Pérez & Atten (1989) in their DNS of such flows. The last point to note is that in the
works of Wu et al. (2015) and Wang & Sheu (2016), symmetric boundary conditions on
lateral walls are applied with L being the half-length of the most dangerous mode but
in our results, periodic boundary conditions are applied with L being the wavelength of
the most dangerous mode. The comparison is appropriate because we are comparing the
linear stability criterion, which should be the same in these two settings. However, when T
is increased further away from the linear criticality, only the periodic boundary conditions
will be feasible, see the discussion to be presented below.

In the end, the linear solver coupled with the IRAM has also been tested against the
linear stability analysis by Zhang et al. (2015) in terms of 7. and eigenfunctions. In this
example, the linear boundary conditions (2.10) with the periodic boundary on lateral walls
are applied in the linear solver. The domain range is again set to [0, 1.228] in the x direction
and [0, 1] in the y direction. We seek the real part of the eigenvalue and the shape of
the eigenfunction of the most dangerous mode. First, the stability criteria 7, under two
different charge diffusion effects Fe = 10* and Fe = 107 are calculated at C = 10 and M =
10, and the result of the eigenvalues is shown in figure 5. By applying the standard linear
least square method, the critical electric Rayleigh numbers are found to be approximately

T. = 162.56 and T, = 164.04 for Fe = 10* and Fe = 107, respectively. The former value
is very close to the result obtained from nonlinear equations, as shown in figure 4, as
well as the value predicted by stability analysis approach (Zhang et al. 2015). The effect
of charge diffusion becomes very small as Fe increases to 107, thus its linear stability
criterion 7, = 164.04 is larger than the former one, and this value also agrees well with
T. = 164.09 from the work of Pérez et al. (2014), in which the charge diffusion effect was
neglected. Such an increase of T, with Fe has verified again the effects of charge diffusion
found in the above validation of code for nonlinear equations. In addition, because higher
values of C will require higher resolution of the boundary layer around the electrodes, a
difficulty faced by many DNS investigations of the EC flows using e.g. the finite-volume
method, we test a higher value of C = 40 here. This linear stability criterion for C = 40 is
also shown in figure 5 with the value of 7, = 160.80, and it agrees well with 7. = 160.90
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Figure 5. Growth rate w, of the least stable mode in electroconvective flows at M = 10. The circle, diamond
and square symbols refer to results from the current time-stepping Arnoldi method for the C =40 and

Fe=10% C =10 and Fe=10% and C =10 and Fe = 107 cases, respectively. The solid lines are the
corresponding linear fitted results and the black solid dots are the x-intercepts of the linear fitted lines where
w; = 0. The critical T, values for the three cases are: T, = 160.80; T, = 162.56; T, = 164.04.

(Zhang et al. 2015). In addition, at Fe = 10%, C =10, M =10 and T = 165, the
eigenfunctions u and v are presented in figure 6. For this relatively small 7, the
eigenfunction of the least stable mode presents extended structures, similar to the results
of Li et al. (2019).

3.2. Deterministic bifurcation analysis

To perform the deterministic bifurcation analysis, the deterministic boundary conditions
(2.3) for nonlinear equations are applied, and the periodic boundary condition is used in
the lateral direction. The domain range is set to [0, 1.228] at the x axis and [0, 1] at the y
axis, and other parameters are C = 10, M = 10 and Fe = 10*. In addition, because when
solving for the bifurcations, we use the end state of the numerical simulation at a high
electric Rayleigh number 7 as the initial condition for the low-T case, the simulation can be
accelerated to reach a converged state. When T is larger, we in general simulated a longer
time to assure that the converged state is achieved. When the bifurcation happens, i.e.
around 7,1 and T, we have also used a long simulation to make sure that the simulations
are converged. The exact simulation may depend on the numerical method and the initial
conditions to be used.

First, we present in figures 7-9 the flow fields and the temporal evolution of electric
Nusselt number at 7 = 170, T = 270 and T = 325, which are larger than the linear
stability criterion 7, = 162.5, and these simulations start from the initial condition of a
rest state, namely U = 0, ¢ = 0 and Q = 0. Note that with this initial condition, the value
of Ne should initially be zero, but increases to 1 in a very short time, forming the peaks
in the beginning. For a better presentation, we show the results of Ne > 1. The insets in
figures 7(a,c) and 8(a) show the deviation of Ne from 1, which can be viewed as a measure
of the disturbance amplitude. A linear phase is clearly seen in these insets before the
nonlinear saturation (Ne — 1 is an exponential function of 7) and we have checked that the
growth rates wpy, shown in the insets are very close to the growth rates calculated using
the linear stability analysis (Zhang et al. 2015), see the caption for more details. In addition,
the value of Ne — 1 shown in the time series of 7 = 170 (a case which is slightly above the
linear criticality) after the linear phase around 7 ~ 100 increases at a slightly larger slope
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Figure 6. Eigenfunctions of least stable mode for electroconvective flows at Fe = 10* and T = 165, C = 10,
M = 10 with periodic lateral boundaries: (a) current result of eigenfunction u; (b) comparison of profiles for u
between the current result at x = 0.1 (circles) and linear stability analysis (solid line) from the work of Zhang
et al. (2015); (c¢) current result of eigenfunction v; (d) comparison of profiles for v between the current result
at x = 1.05 (circles) and linear stability analysis (solid line).

than that in the linear phase, which implies that the weak nonlinearity is destabilising the
flow (as similarly discussed by Henderson & Barkley (1996) for the subcritical second
instability in wake flows). This is consistent with the subcritical nature of EC flows (Félici
1971; Lacroix et al. 1975; Zhang 2016). When the value of T is even larger, placing
the flow further away from the linear criticality, such an indication does not necessarily
exist, which can be seen in the temporal evolution of 7 = 270 (in figure 7c) and T = 325
(in figure 8a).

After the linear phase, the steady state can be achieved at 7 = 170, and a charge-void
region (where the value of Q is almost zero) is formed as the magnitude of maximum
velocity is larger than 1 (the fluid velocity is non-dimensionalised by ionic drift velocity),
similar to previous works (Traoré & Pérez 2012; Wu et al. 2015). This charge-void region
forms owing to the competition between ionic velocity and fluid velocity (Castellanos,
Atten & Perez 1987), and the flow is characterised by two steady rolls (represented by
the black streamlines). As the electric Rayleigh number increases to 7 = 270, a periodic
oscillation takes place, and there is one pair of local minima and maxima amplitudes
existing in the time series. The two-roll structure is still maintained but oscillates with
time. At higher electric Rayleigh number 7" = 325, from figure 8(a), more local minima
and maxima amplitudes emerge in the time series of Ne, which indicates the onset of more
complex flow motion. Irregular oscillations are observed for large time ¢ > 115, and this
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Figure 7. Temporal evolution of electric Nusselt number Ne and corresponding flow pattern for
electroconvective flows under periodic lateral boundaries: (a) time series of Ne at T = 170. The inset shows the
value of Ne — 1 on a semi-logarithmic scale. The growth rate w (Ne) = 0.419 is very close to the linear stability
analysis (= 0.409); (b) contour of charge density Q (i.e. the colour background) and two steady rolls (i.e. black
lines) at r = 100; (c) time series of Ne at T = 270. The growth rate w (Ne) = 4.504 in the inset is very close to
the linear stability analysis (=4.519); (d) contour of Q and two oscillating rolls at = 230.
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Figure 8. Temporal evolution of electric Nusselt number Ne for electroconvective flows under periodic lateral
boundaries: (a) time series of Ne at T = 325. The growth rate @ (Ne) = 6.050 in the inset is very close to the
linear stability analysis (=6.070); (b) zoom-in of the time series in panel (a).

corresponds to the intermittency of spatial structures in the current EC flow. The temporal
evolution of the former primary two-roll structure is found to show more fluctuation at
T = 325. In figure 8(b), six instants are chosen for presenting the evolution of the spatial
structures, which are shown in figure 9. It can be seen that there are two primary oscillatory
rolls at 1 = 152.0. At t» = 152.3, two secondary rolls emerge around the bottom plate.
These two secondary rolls grow gradually with time, and finally achieve a similar size
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Figure 9. Temporal development of streamline patterns within the electroconvective flow of 7' = 325 at the
six instants shown in figure 8(b). Note that the periodic boundary condition is applied on the lateral walls. The
background colour contour refers to the distribution of charge density Q.

with the existing two rolls as shown at 13 = 152.6 and 74 = 153.6. These four oscillatory
rolls can co-exist for some time. At t5 = 154.6 and tg = 155.3, two of the four rolls start to
shrink and finally disappear around the top plate. Thus, from #; to #¢, the dynamics of the
EC flow is that the two-roll structure is jittered by the appearance and disappearance of a
four-roll structure. Meanwhile, the variation of electric Nusselt number is closely related
to the dynamics of the flow structures. Around the instant #,, Ne decreases (smaller than
1.5 as shown in figure 8b) as those two secondary rolls only exist around the bottom plate
and they cannot efficiently transport the charge density to the top plate. While during the
time range ¢ € [f3, fg], four oscillatory rolls and the plumes (green background) can all
contact the plates, which contribute to higher values of Ne.

From the time series of Ne in figures 7(a), 7(c) and 8(a), it can be inferred that the
number of extreme values of Ne(T) (i.e. those local minima and maxima) can be used to
predict the state of EC flow at a specific 7; more specifically, a single value of Ne at a
large time indicates a steady state, two points at a large time indicate periodic unsteady
oscillations and more than 2 points indicate quasi-periodic oscillations. Once there are a
large number of local minima and maxima values of Ne, it is believed that the chaotic
motions take place. With such a criterion, we can obtain the deterministic bifurcation
diagram of Ne(T) as shown in figure 10(a). Both steady and unsteady states are illustrated
with T ranging from 7, = 162.5 to T = 328. This sequence of bifurcations include the
transition from conduction to convection, transition from steady convection to periodic
oscillation and the route to chaotic motions. Thus, three stability criteria can be obtained,
namely 7, = 162.5 indicating the linear stability criterion, 7.1 = 258 the Hopf bifurcation
and T.» = 296 the onset of chaos in the current EC flow. As the electric Rayleigh number
increases, the electric Nusselt number also increases before 7., while after T > T, the
maxima amplitudes of Ne present an abrupt decrease. This is related to the discussion
we had earlier on figure 9 where the vertical transport of the ions is interrupted by the
appearance and disappearance of secondary roll structures. Thus, based on the definition
of Ne in (3.1a,b), the electric Nusselt number becomes smaller.
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Figure 10. Deterministic bifurcation diagrams for electroconvective flows with periodic lateral boundaries
under different grid resolutions. The steady states are denoted by the solid line, while unsteady states are
represented by solid circles which show all the possible local maxima and minima amplitudes of Ne at a
specific T (a) element size 12 x 16, the Hopt bifurcation takes place at approximately 7,.; = 258 and chaos
of EC flow emerges at approximately 7., = 296; (b) element size 18 x 24, the Hopf bifurcation takes place at
approximately 7,1 = 274 and chaos of EC flow emerges at approximately 7> = 300.

The above bifurcation diagram of EC flow in figure 10(a) is obtained with the element
size 12 x 16. Although the grid independency test in table 1 indicates that the averaged
Ne for both steady and unsteady EC flows changes very slightly between the element
sizes 12 x 16 and 18 x 24, the bifurcation points 7.; and T., may be sensitive to the
grid resolution. To get an idea of the effect of the grid resolution on the values of T,
and T, the bifurcation diagram with element size 18 x 24 is obtained under the same
parameters and conditions as shown in figure 10(b). This bifurcation diagram presents
a similar bifurcation sequence to that in figure 10(a), while the Hopf bifurcation takes
place at approximately 7.1 = 274 and after T, = 300 the chaotic state emerges. These
two bifurcation criteria are larger than those with element size 12 x 16, but chaotic
transition T, presents a smaller difference (i.e. approximately 1.333 %) than the Hopf
bifurcation T, (i.e. approximately 5.839 %). We mention that in the literature of the
relatively well-studied lid-driven cavity flow, works exist reporting scattered values of the
critical parameters for Hopf bifurcation, for example, see the papers by Lestandi et al.
(2018), Cadou, Potier-Ferry & Cochelin (2006) who attributed the reason to the numerical
methods and the mesh. As this paper mainly focuses on the flow physics in EHD flows and
the simulations of using a more refined grid require a much more significant amount of
time, a parametric study of the dependence of the critical 7,1 on the grid resolution will
not be conducted here and can be left as a future work.

The currently obtained bifurcation diagrams in figures 10(a) and 10(b) present a
different bifurcation sequence from the former bifurcation analysis of EC flow (Wang &
Sheu 2016). In their work, the charge diffusion effect was neglected and a symmetric
boundary condition with spatial length L = 0.614 was applied in the lateral direction.
To validate our algorithm of bifurcation analysis and explore the effects of lateral
boundary conditions and charge diffusion on further bifurcations, we also generated such a
bifurcation diagram with the same parameters using the charge diffusion effect considered
in our case. The results under symmetric lateral boundaries are shown in Appendix B,
which includes a detailed description of bifurcation diagram and the flow dynamics under
the symmetric boundary conditions. The symmetric lateral boundary is usually used to
single out a desired wave (with a wavelength 1.228 here, the corresponding wavenumber
is o = 5.1166), while suppressing the development of other waves. At small 7', the wave
with a wavelength 1.228 is the least stable mode (with C, M, Fe as specified above),
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T 250 288 296 310 400 450 500
A —0.0339  -0.0043  0.4215 04735  0.5026 0.5737 0.7704
D, — — 4.0257  4.2184  8.7249 10.0658 14.0524

Table 2. Largest Lyapunov exponents A; and Lyapunov dimensions D, of electroconvective flows at different
electric Rayleigh numbers 7" with periodic lateral boundaries and element size 12 x 16.

thus, the linear stability criterion 7, can be obtained accurately under symmetric lateral
boundaries. However, at higher 7', the wavelength of the least stable mode decreases rather
than remaining at 1.228 (see the discussion in Appendix C). Thus, the symmetric boundary
condition cannot always follow the most dangerous route in the bifurcation because it only
selects the waves for which L = 0.614 is the integer multiple of their half-wavelength.
On the other hand, the periodic boundary condition is able to accommodate the most
dangerous modes even at a larger T because a range of waves can be accommodated in
such a domain (see figure 23 in Appendix C).

3.3. Lyapunov exponents and Lyapunov dimension

The deterministic bifurcation diagram Ne(T') can be used to discuss the onset of chaos
in EC flow. Apart from this method, the largest Lyapunov exponent A; is another widely
used indicator to signal the appearance of chaos when A; > 0. Based on the algorithm in
§ 2.3, the largest Lyapunov exponents are evaluated for multiple electric Rayleigh numbers
below. Before computing the Lyapunov exponents, the nonlinear equations (2.1) are first
integrated for a long time to decay all initial transients and let the flow enter the chaotic
state without such disturbance. For EC flows with periodic lateral boundaries, we start the
computation of the Lyapunov spectrum from the chaotic results obtained in figure 10(a)
(to reduce the computational time). While in EC flows with no-slip lateral boundaries,
the nonlinear equations (2.1) are first evolved for 100 time units and the chaotic states
can be obtained owing to very high electric Rayleigh numbers. After that, the linear
equations (2.9) are evolved simultaneously with nonlinear equations for approximately
60 time units. During this time, Gram—Schmidt procedures are performed iteratively
every 10 time steps. After obtaining the full Lyapunov spectrum, the corresponding
Lyapunov dimension is then computed using the Kaplan—Yorke formula. The results are
listed in table 2. The values of A; and D, increase as the electric field is intensified. At
T =250 and T = 288 which are smaller than T, = 296, the first Lyapunov exponents
are negative 41 < 0, which means that these flows are not chaotic. While at T = 296, the
positive 41 = 0.4215 > 0 indicates the onset of chaos, and this result is consistent with the
observation in figure 10(a). Around this transition criterion 7, of chaos, the variation of
A1 and D, is not significant, and these Lyapunov dimensions are found to be smaller than
5. However, from table 2, at T > 400 the D, is larger than 5 and the values of 41 and D,
become larger as T increases, which indicates that the flow becomes very chaotic.

In the above, the effects of electric Rayleigh number 7 on the largest Lyapunov exponent
A1 and Lyapunov dimension D, have been investigated for EC flow under periodic lateral
boundaries. To further characterise the chaos in the current EC flow, it will also be
interesting to study the effects of the size of the (finite closed) domain on these indicators.
To this end, the deterministic boundary conditions on the electrodes remain the same,
but the lateral boundary for velocity is replaced by no-slip boundary conditions to form a
closed domain. The parameters are C = 10, M = 10 and Fe = 10*, and the range of the y
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Figure 11. Computation of Lyapunov exponents for electroconvective flows at I" =2 and 7T = 900:
(a) temporal history of instantaneous largest Lyapunov exponent (solid line) and its finite-time largest Lyapunov
exponent (dashed line); (b) spectrum of Lyapunov exponents A and their cumulative summation S, where k =
1,2, ..., mrefers to the index and m = 75 is the number of Lyapunov exponents computed; (c¢) instantaneous
(solid line) and averaged (dashed line) Lyapunov dimensions.

axis is [0, 1] and the length of x axis is determined based on different aspect ratios I" of the
computational domain. As presented above, the Lyapunov exponents are calculated from
the temporal average of instantaneous Lyapunov exponents and the Lyapunov dimension
is computed from the Lyapunov spectrum, which indicates that the Lyapunov dimension
also evolves with time. We calculate its time-averaged value, as shown in figure 11, which
presents the results at 7 = 900 and I" = 2 with 75 Lyapunov exponents being computed
as an example. Panel (a) shows the time-averaging of the largest Lyapunov exponent A1,
panel (b) the averaged Lyapunov spectrum 4; and their cumulative summation S, and
panel (c) the time-averaging of D,. The Lyapunov exponent and Lyapunov dimension both
converge with time. The corresponding Lyapunov dimension is shown to be D, = 56.02
in this specific case. Additionally, the effect of T under the no-slip lateral boundaries is
studied, as shown in table 3. It is found that the largest Lyapunov exponent 4; and the
corresponding Lyapunov dimension D, increase with the electric Rayleigh number. At
T > 900, D, are usually larger than 5, which explicitly confirms the high dimensionality
of chaos in EC flow (Atten et al. 1984).

Furthermore, to study the effect of aspect ratio on the Lyapunov dimension, we fix the
electric Rayleigh number at 7 = 900 and change the aspect ratio of the computational
domain with I" = [0.614, 1.0, 1.5, 2.0, 3.0, 4.0]. All these flows can enter the chaotic state
as shown by their contours of charge density Q in figure 12. It can be found that more plume
flows emerge as the aspect ratio is increased. From the bifurcation theory, the variation of
Lyapunov dimension with domain size is said to be extensive if Dy o< I s in the large
system limit, where d; is the number of spatially extended directions. In the current work,
only 2-D electroconvective flows are studied, thus we have d; = 1. As shown in figure 13,
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T 900 1000 1200 1500
A 0.1512 0.5084 1.2863 2.1174
D, 5.45 8.75 19.91 32.73

Table 3. Largest Lyapunov exponent 1; and Lyapunov dimensions D, of electroconvective flows at different
electric Rayleigh numbers with no-slip lateral boundaries and aspect ratio I" = 0.614.
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Figure 12. Contour of charge density Q for electroconvective flows at 7 = 900 with no-slip lateral
boundaries and different aspect ratios I": (@) I' =1, (b) ' =2;(c) ' =3;(d) " =4.

the obtained Lyapunov dimension D, increases almost linearly with the aspect ratio I,
which indicates the nature of extensive chaos in electroconvective flows (with the expected

d; = 11in 2-D).

3.4. Stochastic bifurcation analysis

In the previous section, the deterministic bifurcation diagram has been obtained
numerically for electroconvective flows with uniform electric potential and charge density
boundary conditions. As introduced above, we aim to numerically study the effect of
non-uniformity in the boundary conditions on the flow stability and bifurcations. Thus,
in this section, the stochastic boundary conditions (2.8) are applied. The domain ranges
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Figure 13. Relation between the Lyapunov dimension D, and aspect ratio I" for electroconvective flows.
Circles refer to the result of the current numerical simulations and the solid line is the linear fitted result.
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Figure 14. Temporal evolution of electric Nusselt number for electroconvective flows under deterministic
(dashed line) and stochastic boundaries (solid line) with 0 = 1 % and I, = 0.5: (a) time series at T = 150 for
both cases (there is no electroconvection in the deterministic case); (b) time series at 7 = 170 for the stochastic
and deterministic cases. All the simulations use U = ¢ = Q = 0 as the initial condition.

are still [0, 1.228] at the x axis, [0, 1] at the y axis, and other parameters are C = 10,
M =10 and Fe = 10* to be consistent with the above deterministic bifurcation analysis.
Periodic boundaries are used at the lateral walls. When comparing the values of Ne in
the stochastic and deterministic cases, we use the deterministic /y in the definition of Ne
(3.1a,b) in both cases for a more consistent comparison.

First, the effect of the stochastic boundaries on the flow structure is investigated in
detail at T = 150. The two controlling parameters of the stochastic boundary are set to
0 =1.0% and [, = 0.5, and the numerical simulation is started from the rest state (i.e.
U=0,¢=0and Q =0). The temporal evolutions of the electric Nusselt number Ne
under deterministic and stochastic boundaries are shown in figure 14(a). As T = 150 < T,
there is no EC flow (i.e. hydrostatic state with Ne = 1) in the deterministic case, as
shown in figure 10(a). Under stochastic boundaries two steady rolls are generated, and
this convective flow is triggered from the rest state within a very short time (smaller than
t = 9 where one can see some peaks). Furthermore, the value of Ne is apparently enhanced
owing to the usage of stochastic boundaries (thus greater efficiency in transporting the
ions). These results indicate the subcritical behaviours of EC flows (T = 150 < T,),
which are consistent with the theoretical and numerical investigations of Félici (1971),
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Figure 15. Temporal development of streamline patterns within the electroconvective flow of 7' = 150 under
stochastic boundaries at the four instants shown in figure 14(a). The background contour refers to the
distribution of charge density Q.

Lacroix et al. (1975) and Zhang (2016). The temporal evolution of flow structures are
analysed by choosing four instants from the time series of Ne under stochastic boundaries,
as shown in the inset of figure 14(a). The flow structures are presented in figure 15. Initially
at t1, plenty of small rolls start to appear close to the injector (the bottom plate) and they
quickly merge with adjacent rolls to form larger roll structures at #>. In panel (b), we show
that if the flow is able to arrive at a convective state (7 = 170 > T,) in the stochastic and
deterministic cases, the stochastic case in general requires a much shorter time to reach
nonlinear saturation because of the catalyst effect of the stochastic boundary conditions.
The green ellipse indicates the increase of Ne arising from the stochasticity whereas the
grey ellipse represents the intrinsic nonlinear mechanism in the flow that transports the
ions. To sum up, the stochastic boundary conditions can bring the flow to the nonlinearly
saturated state more easily (requiring a lower 7, as demonstrated in panel (a)) or more
quickly (in a shorter time, as demonstrated in panel (b)).

Next, we study the effects of perturbation amplitudes o and correlation lengths /. on
linear and nonlinear criteria (i.e. T and Ty) represented by a hysteresis loop as shown
in figure 16. The red dots are computed by increasing the electric Rayleigh number
gradually from the hydrostatic state for indicating the onset of EC and approximating the
linear stability criterion 7., and the blue dots are obtained by continuously decreasing
T from the steady state at 7 = 200 for verifying the nonlinear stability criterion 7.

At each electric Rayleigh number 7', the group of Gaussian random numbers élfi) has
been updated to generate new stochastic boundaries. It is found that the electric Nusselt
number Ne presents strong fluctuations around the deterministic bifurcation diagram

922 A20-25


https://doi.org/10.1017/jfm.2021.518

https://doi.org/10.1017/jfm.2021.518 Published online by Cambridge University Press

Z. Feng, M. Zhang, P.A. Vazquez and C. Shu

(a) (b) ()
17 17 17
16 0=05% 16 0=05% 1.6 0=05%
15 =025 s 1,=05 15 =10
14 14 14
Ne 13 13 13
12 12 12
11 1.1 11
1.0 1.0 1.0
0 50 100 200 50 200 50 100 150 200
() () N
1.7 17 1.7
6 0=1.0% s 0=1.0% 6 0=10%
15 1,=025 15 1,=05 1=10
14 1.4
Ne 3 I
12 12
1.1 1.1
1.0 1.0
50 50 50
) )
17 17 -
16 0=2.0% 16 0=2.0%
15 1,=025 s 1,=1.0
14 14
Ne 13 13
12 12
11 -4 1.1
10 TN 1.0 -
50 0 50
) (k)
16 0=3.0%
L5 [.=1.0

200

50

150

200

Figure 16. Stochastic bifurcation diagrams of electroconvective flows around the linear and nonlinear stability
criteria with periodic lateral boundaries at C = 10, M = 10 and Fe = 10*. Presented are samples of Ne versus
T corresponding to different choices of o and /.. The solid line represents the deterministic bifurcation diagram
around 7. = 162.5 and 7y = 110.4, and the red and blue dots refer to the Ne obtained under stochastic boundary
conditions. Red dots are converged Ne computed by gradually increasing 7 from the hydrostatic state and blue
dots are obtained by gradually decreasing 7" from the steady state of 7' = 200. The stochastic boundary varies
at different 7 for obtaining a more general stochastic bifurcation diagram.

(black lines) under stochastic boundaries. At small perturbation amplitudes, the values
of Ne distribute very closely to the deterministic bifurcation diagram, while at larger
perturbation amplitudes, they fluctuate within a wider range of Ne around the deterministic
route. Under the same perturbation amplitude, a smaller correlation length (from right to
left columns) can induce a wider range of fluctuations. Based on the above definition of
stochastic perturbations, a smaller correlation length indicates stronger randomness; thus,
it can induce more spatial variations of the electric potential and charge density around
the electrodes. Compared with the deterministic bifurcation diagram, with the increase of
o and decrease of /., the transport efficiency of current can be enhanced (i.e. larger Ne)

922 A20-26


https://doi.org/10.1017/jfm.2021.518

https://doi.org/10.1017/jfm.2021.518 Published online by Cambridge University Press

Deterministic and stochastic bifurcations in 2-D EC flows

a b c
@ . ®), ©),
6 | T=140 : T=155 10
i 1 10 ! 8
p(Ne)3 | ; 6
1 ! ! 2
0 1 0 o~ 0
08 10 12 14 16 08 10 12 14 16 13
e
()12 (f)12 _
10 10 T=190
8 8
6 6
4 4
2 2 2
0 ‘ 0 0
13 14 15 16 17 13 13 14 15 16 17

Ne Ne

Figure 17. Probability density function p(Ne) of the electric Nusselt number for electroconvective flows under
stochastic boundaries with o = 1.0 % and /. = 0.5 at six different electric Rayleigh numbers. For comparison,
the dashed line represents the value of Ne under deterministic boundary conditions. At each 7', 2000 different
stochastic boundaries are performed for statistical calculation.

with a higher probability. In addition, the EC flow takes place at a smaller 7, as shown in
these stochastic bifurcation diagrams, which corroborates the fact that the critical electric
Rayleigh number 7, of EC flows drops under specific stochastic boundaries. Compared
with the result of 77 under deterministic boundaries, the stochasticity can also reduce the
nonlinear criterion in numerical studies. Furthermore, when intensifying the stochasticity
(i.e. by decreasing /. or increasing o), the distance between Ty and T, becomes narrower.
Even though we do not know the exact level of the non-uniformality in the ion-exchange
membrane (thus the used values of o and /. are still arbitrary), this result indicates that
the stochasticity in the boundary condition may indeed be important in determining and
influencing the linear and nonlinear stability criteria. To close the discussion on this figure,
we take panel (/) as the example and mention that there are two clusters of Ne values
corresponding to the two aforesaid mechanisms inducing the ion transport in the stochastic
case. The first is the intrinsic nonlinear mechanism in the flow system, represented by
the grey ellipse in figure 16(%). The flow is characterised by a charge-void region as we
have discussed above. The second is a stochasticity-promoted mechanism, as shown by
the green ellipse, and the value of Ne is in general small. This difference between the two
cases will be further discussed below.

Compared with the deterministic bifurcation diagram, the stochastic boundaries can
either enhance or suppress the transport efficiency of electric current. To show their
statistical effects on Ne, for some given electric Rayleigh numbers, 2000 computational
instances are performed with 2000 profiles of the stochastic boundary conditions (i.e. g;
in (2.5) are different) with 0 = 1.0 % and /. = 0.5. Based on these samples of Ne, the
probability density function (p.d.f.) is computed, as shown in figure 17. The vertical dashed
line represents the corresponding electric Nusselt number in the case of deterministic
boundaries. With the stochasticity, it is found that values of Ne smaller and higher than the
deterministic case are both possible, with a distribution somewhat similar to the Gaussian

distribution as the Gaussian random number é,fi) has been used. At T = 140 and T = 155
922 A20-27
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in panels (a) and (b), two peaks exist in the distribution of p(Ne). The first peak pertains
to the case of small-magnitude convective motions, as shown in the stochastic bifurcation
diagram of figure 16(h) (green ellipse), in which Ne has a small magnitude, while the
second peak corresponds to the case of large-magnitude EC flows (grey ellipse in the
same figure). However, as the strength of electric field increases (larger 7'), the probability
of the emergence for such small-magnitude convective motions gradually decreases. Thus,
the stochastic boundary can lead to a higher possibility of enhanced Ne compared with
that in the deterministic case.

To gain more insights into the influence of stochastic perturbations on EC flows, we
perform global linear stability analysis based on the time-stepping Arnoldi method to study
the linearised EC flow, as shown in figure 18. It is important to understand that the base
flow in this stability analysis is the steady solutions to Maxwell’s equations with stochastic
boundary conditions (see figure 2b). This base flow is presumably a better representation
of the real situation in the experiments compared with the deterministic case because of
the stochastic boundary conditions considered. Therefore, the interpretation of the results
should be pertaining to this base flow and the 7, calculated is the critical T for the cases
in the grey ellipse in figure 16() (and alike). The stochasticity-promoted ion transport
mechanism is included in the stochastic base flow and thus this linear stability analysis
pertains to the intrinsic nonlinear mechanism for the ion transport. The growth rates w, of
multiple electric Rayleigh numbers have been computed to find 7, for nine groups of o
and /., as shown in figure 18. At very small perturbation amplitude o = 0.1 %, the linear
stability criterion is very close to that of the deterministic case, as shown in figure 5 with

C = 10 and Fe = 10*. However, with the increase of perturbation amplitude or decrease of
correlation length, the stability criterion becomes lower, which means that the stochastic
base flow becomes more unstable if we consider stronger stochasticity, which is consistent
with the observation in figure 16.

4. Conclusions and future works

Prompted by the consideration that the experimental realisation of charge injection and
electric potential on electrodes is inevitably inhomogeneous owing to the proneness of the
ion-exchange membranes to be non-uniform, contrasted by the homogeneous assumption
of the charge injection usually assumed in theoretical and numerical investigations of EC
flows, and the fact that transitional EC flows are subcritical, in this work, we explored the
possibility of considering stochastic boundary conditions that mimic the aforementioned
material inhomogeneity in the modelling of EC flows to attempt to test the hypothesis that
the long-standing discrepancy of the linear stability criteria in experimental and theoretical
results from such flows may be related to this effect. For a complete description of the
flow bifurcations therein as well as a better understanding of the results of the stochastic
bifurcations, we first studied the deterministic bifurcation of the EC flow. By doing so, we
not only reproduced and verified some of the previous findings (using a more systematic
and methodological means), but also found new flow physics and significance. The results
are summarised below.

For the deterministic bifurcations with periodic lateral boundaries, we observed the
effect of increasing the strength of the electric field, thus nonlinearity, on generating
more complex flow structures, manifested as more irregular and chaotic flow structures
and signals of Ne, which lead to flow bifurcations. The global bifurcation diagram using
the electric Nusselt number Ne as a function of electric strength shows clearly how EC
flows starting from a hydrostatic state evolve to more complex flows via linear instability,
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Figure 18. Growth rate of the least stable mode for electroconvective flows under stochastic boundary
conditions with different perturbation amplitudes o and correlation lengths /.. Circle, diamond and square
symbols refer to the result from the current time-stepping Arnoldi method, the solid lines are the corresponding
linear fitted results and the black solid dots are the x intercept of the linear fitted line where w, = 0.
(a) 0 =0.1%: T, = 160.36 at [, = 0.25, T, = 162.48 at [. = 0.5, T, = 162.55 at [, = 1.0; (b) 0 = 2.0 %:
T, =117.46 at [ = 0.25, T, = 144.73 at [. = 0.5, T, = 157.06 at . = 1.0; (¢) 0 =5.0%: T, = 90.25 at
l.=025T,=122.16 atl. = 0.5, T, = 147.20 at [, = 1.0.

Hopf bifurcation and so on. In this regard, our results are different from the bifurcation
diagram of EC flows of Wang & Sheu (2016), where the symmetric lateral boundaries
were used and the charge diffusion effect was neglected. Such symmetric lateral boundary
conditions do not trace the development of the most dangerous mode at stronger electric
strength, whereas, in the case of periodic boundary conditions, the current computational
domain can accommodate the most dangerous mode even at a larger 7.

Quantitative characterisation of the deterministic bifurcation and chaos in EC flows
has also been conducted by probing their Lyapunov exponents, spectrum and dimension.
In the case of infinite parallel plates, the largest Lyapunov exponent increases with the
strength of the electric field; as does the Lyapunov dimension, which is usually larger than
that in natural convection, indicating, to some extent, that the nonlinearity in EC flows is
stronger than that in the RBC. In the case of the finite-sized domain with no-slip lateral
boundaries, we found for the first time that the chaos in EC flows is extensive, i.e. the
Lyapunov dimension scales as the aspect ratio raised to the first power in 2-D flows, which
is the same as that in natural convection under the Boussinesq approximation, although
EC flows and RBC are featured by different bifurcation mechanisms.

The stochastic bifurcation analysis is applied to EC flows for the first time, with
encouraging results. Owing to the subcritical nature of the EC flow, the stochasticity in
boundary conditions induces an early onset of the convective motion under different levels
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of stochasticity as well as intrinsic coherence. Stronger electric fields can better harness the
stochasticity to occasionally have a larger Ne. Compared with the deterministic boundary
conditions, around the linear criticality, stronger randomness and smaller coherence will
lead to a more scattered distribution of Ne around the deterministic route. Essentially,
the flow can thus be brought to convection at a smaller 7. subjected to stochasticity in
the boundaries, as shown by our results with both nonlinear evolution and the linear
time-stepping Arnoldi method (as a byproduct of our simulations, the finite-amplitude
stability criterion Ty also drops under such stochastic boundaries). The decreased linear
criteria, which are closer to the experimental observations where stochasticity seems
inevitable, confirmed our hypothesis made in the beginning. Although the exact degree
of stochasticity in experiments is unknown to us (and we are not claiming that the current
analysis completely solves the discrepancy), our results indicate that the non-uniformity
on the ion-exchange membrane is definitely a factor that needs to be considered when
studying the linear criticality in EC flows. Finally, the stochastic model in this work
can certainly be improved. More flow physics can be attached to the model if one can
come up with a more physical model for the inhomogeneous membranes and if detailed
characterisation of the membranes used in EHD experiments is available (to determine the
parameter values in the stochastic models).

Therefore, with these results, we suggest as future experimental studies on EC flows that
a systematic and comprehensive characterisation of the non-uniformity in ion-exchange
membranes needs to be performed. The levels of stochasticity investigated in the current
work are admittedly arbitrary, which is not a problem for studying the general effects and
trend of stochasticity on the EC flow; however, for a better and more detailed comparison, a
coordinated experimental and theoretical study on this problem is necessary. If decreasing
the degree of inhomogeneity in the membrane is exceedingly difficult, some stochasticity
can be intentionally introduced near the onset of EC flows, which, according to our results
above, will reduce the onset 7, in these flows and lend some support to our conclusions.
Furthermore, our results will also be useful for studying in general the effect of other
imperfections on the electrodes in the future. We have also focused solely on the SCL
regime (which is more easily realised in experiments), so future works can study the
weak-injection regime. In the end, we completely miss the more complex bifurcations
in three-dimensional EC flows in this work, which will also be interesting to study in the
future.
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Appendix A. Ion-exchange membranes and the work by Watson, Schneider & Till
(1970)

In this appendix, we compile descriptions of the structure in ion-exchange membranes
and discuss why the inhomogeneity can be easily formed, as well as how the stochastic
perturbations g1 (x), g2(x) and g3(x) are related to such inhomogeneity.

Owing to the complicated internal structure of ion-exchange membranes (IEM), some
ions cannot enter the dielectric liquid smoothly via the pores of the membrane, and
such resistance can be attributed to the plugging and adsorption of ions in the pore, as
well as the concentration polarisation (CP) of ions in the feed side. When ions or some
other particles in the feed solution block the membrane pores, pore plugging can take
place. Then the transport number of ions drops around such pores, which can explicitly
cause an inhomogeneous injection of ions on the membrane surface. In addition, some
anions and cations may be trapped by the membrane pores and they can constitute fixed
ion clusters inside the membrane (Moleén & Moya 2009; Kamcev, Paul & Freeman
2017). Thus, the internal structure of these membranes becomes heterogeneous owing
to the inhomogeneous distribution of fixed ions. By solving the Nernst—Planck and
Poisson equations, the symmetric cosinoidal distribution of fixed ions inside the IEM
can give rise to increased current efficiency owing to the potential produced by the
fixed ions (Selvey & Reiss 1985). Under the linear and exponential distributions of fixed
charge, the membrane can also present higher permselectivity than the homogeneous
membranes, which is mainly determined by the average fixed charge concentration
(Sokirko, Manzanares & Pellicer 1994). Thus, the above inhomogeneous distributions of
fixed ions inside the membrane can enhance the transport efficiency of ions through the
membrane. Concentration polarisation occurs when ions of opposite polarity accumulate
around the membrane surface at the feed side owing to the permselective property of
ion exchange membranes (Luis 2018). The CP can make conductance non-uniform on
the membrane surface and increase the resistance to ion transport through the membrane
(Ibanez, Stamatialis & Wessling 2004). The above resistances to ionic transport originating
from pore plugging, pore adsorption, concentration polarisation as well as some other
possible sources can affect the permselectivity of ions (Takagi, Vaselbehagh & Matsuyama
2014), thus the injection of ions through the IEM is not uniform, and the gain/loss of
ions can be modelled by the stochastic perturbation g1 (x). Furthermore, the resistance to
ionic transport can induce extra potential differences according to Ohm’s law (Galama,
Hoog & Yntema 2016), which indicates that the potential distribution on the membrane
surface can also be non-uniform. Thus, the random perturbations g>(x) and g3(x) are
used to incorporate the extra potential differences into the numerical study of EC flows.
More refined profiles of gi(x), g2(x) and g3(x) can be certainly obtained when the
characterisation of the membranes used in EHD experiments is available, as we have
discussed in the conclusion.

In fact, Schneider & Watson (1970) have already pointed out that the non-uniformness
on the metal electrodes has a detrimental effect to realising homogeneous injection. Thus
in their experiment, the ion exchange membrane and metal electrode (i.e. the composite
metal-membrane electrode Atten & Gosse 1969; Lacroix et al. 1975) were replaced by
an electron beam that served as a virtual cathode, which injected electrons into the free
surface of the dielectric liquid. The use of electron beams in their experiment eliminated
the potential effects of ion-exchange membranes on EC flows. Interestingly, they found
that the critical voltage indicating onset of convection obtained in their experiments
agreed well with their corresponding theoretical studies (Schneider & Watson 1970) (both
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yielding a linear stability criterion 7, ~ 99. In their notation, R was used). To some extent,
the consistency of their experimental and theoretical results adds to the culpability of the
above composite electrode on generating the discrepancy of the linear stability criterion in
the EC flows using ion-exchange membranes.

Appendix B. Deterministic bifurcation diagram with symmetric lateral boundaries

The deterministic bifurcation diagram under symmetric lateral boundaries (B1) is shown
in figure 19. The spatial domain is [0, 0.614] at the x axis (i.e. L = 0.614), [0, 1] at
the y axis, and other parameters are C = 10, M = 10 and Fe = 10*. When the electric
Rayleigh number is smaller than the linear stability criterion 7, (=162.5 as verified in
the previous section), the fluid stays in the hydrostatic state. Once T > T, the transition
from conduction to convection takes place, and a one-roll convection pattern is generated,
as shown in figure 20(a). In numerical simulations, this convection pattern can show two
different rotational motions based on the initial conditions, one in the clockwise roll and
the other in the anticlockwise roll, which are intrinsically the same owing to the symmetric
conditions on the lateral wall. With the successive increase of T, the Hopf bifurcation
within the range of the one-roll pattern occurs at approximately 7.1 = 295. Then this
one-roll flow structure becomes unstable, and divides into two rolls when the electric
Rayleigh number increases to approximately 7. = 311. This steady two-roll structure,
as shown in figure 20(b), can be retained for a wide range of 7. Later, its motion becomes
periodically unsteady after approximately 7.3 = 660, where the Hopf bifurcation takes
place.

y=0:U=00=1,¢=1; (Bla)
y=1: U=0, 30/dy =0, ¢ = 0; (B1b)
x=0&x=L: U=0, 3V/dx=0, 30/dx =0, d¢/dx = 0. (Blc)

With the further increase of the electric Rayleigh number, more extreme values of the
electric Nusselt number appear in the bifurcation diagram for a specific 7', and the EC flow
is believed to enter the chaotic state. From the bifurcation diagram in figure 19, the chaos
seems to take place in the range between T = 900 and 7' = 950. To distinguish such chaos
from the numerically obtained signals of Ne, their power distributions across frequency are
presented by calculating the power spectral density as the analysis of experimental signals
in the works of Atten er al. (1980), Malraison & Atten (1982), and our results are shown
in figure 21. At T = 670 and T = 800, a discrete sharp central peak and its harmonics
can be clearly discerned. With the increase of electric Rayleigh number, the number of
peaks increases, and the power spectrum starts to become broadband, which indicates
the appearance of chaos. At T =900 and T = 920, their power spectra are featured by
broadband wiggles and oscillations, which confirms that the chaos of the current EC flow
increases in the range of [900, 920]. In addition, the largest Lyapunov exponent 4; is also
computed to evidence the onset of chaos in the above EC flows, as shown in table 4. It
is found that A; is positive at 7' = 920 but negative at 7 = 900, which provides a more
accurate and systematic prediction of the appearance of chaos within the range of T €
[900, 920].

This sequence of bifurcations for the EC flow under symmetric lateral boundaries has
shown some similarity to that reported by Wang & Sheu (2016). However, the difference
is that the charge diffusion effect was not considered in their work. Under the same
parameters, their bifurcation criteria are, using our notations, T, = 164, T, = 213, T,» =
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Figure 19. Deterministic bifurcation diagram for electroconvective flows with symmetric lateral boundaries.
The Hopf bifurcation for the one-roll pattern takes place at approximately 7.1 = 295, and the one roll is split
into two rolls at approximately 7., = 311. The Hopf bifurcation for two-roll pattern ensues at approximately
T3 = 660.
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Figure 20. Contour of charge density and streamline patterns of electroconvective flows with symmetric lateral
boundaries. To clearly show at least one complete charge-void region, the flow domain is unfolded with respect
to x = 0 owing to the symmetric boundary in the lateral direction: (a) T = 190, one-roll flow structure emerges
within [0, 0.614] of the x axis; (b) T = 340, two-roll flow structure takes place within [0, 0.614] of the x axis.

281 and T3 = 419, which are different from our values. When the charge diffusion effect
increases, the linear stability criterion 7. decreases, thus our estimated 7 is smaller than
theirs. In addition, the charge diffusion can help stabilise the finite-amplitude oscillations
in the flow (Zhang 2016), which explains that higher electric Rayleigh numbers must be
required for Hopf bifurcation and roll structure transition with charge diffusion considered;
thus, our 7,1, T;» and T3 values are larger than theirs (Wang & Sheu 2016).
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Figure 21. Power spectral density for the time series of electric Nusselt number at different electric Rayleigh
numbers with symmetric lateral boundaries. The spectrum starts to become broadband around 7' = 920.

T 900 920 950 1050 1200
A —0.0131 00179 0.0627 02355  0.5922
D, — 4.17 4.18 6.87 9.60

Table 4. Largest Lyapunov exponents 4; and Lyapunov dimensions D, of electroconvective flows at different
electric Rayleigh numbers 7' with symmetric lateral boundaries.

As one can see, the bifurcation results using the symmetric boundary conditions are
different from those using the periodic boundary conditions. In the latter case, the EC
flow bifurcates and becomes chaotic at a smaller value of 7'. This is consistent with our
discussion in the main text that using the periodic boundary conditions can follow the most
dangerous bifurcation route because the wavelength of the most dangerous mode decreases
as we increase T (see Appendix C), whereas using the symmetric boundary conditions,
one is confined to tracing the bifurcation route of the waves for which the computational
length L is an integer multiple of the half-wavelength, which is not necessarily the most
dangerous mode when one increases 7.

Appendix C. Effects of electric Rayleigh number on wavelengths of the least stable
mode

To present the inappropriateness of using symmetric lateral boundaries at higher electric
Rayleigh numbers, the effect of 7" on the wavelength of the least stable mode of EC flows
is studied in this appendix by evolving nonlinear EHD equations (2.1) with periodic lateral
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Figure 22. Distribution of the impulse disturbance added into the hydrostatic field of electroconvective flows:
(a) streamwise velocity U(x, y, t = 0); (b) normal velocity V(x, y, t = 0). Their initial perturbation amplitude
is very small. Only part of the flow field is presented here for a clear visualisation as the impulse is distributed
around the central location xp = 0.5 and yp = 60.

boundaries. Initially, an impulse disturbance, which serves as the wave packet with a broad
spectrum structure, is added into the hydrostatic field of the EC flow, as shown in figure 22.
The profiles of this impulse follow those of Delbende & Chomaz (1998) with o, = 0.3
along the x axis and o, = 0.2 along the y axis, which read:

o (x—x0)*  (y—y0)?
Ux,y, t=0) = —A(y — yo) exp |:— ( 202 + 20y2 >i| , (Cla)
oy x—x0>  (y—y)?
Vix,y,t=0) = —-A(x — xo)é exp |:— ( ZO'XZ + 20y2 , (C1b)

where xg = 60, yop = 0.5 refer to the central location of the impulse, and the perturbation
amplitude is set to A = 107>, The envelope of this initial disturbance is Gaussian, and it
satisfies the requirement of the continuity equation (2.1d).

By considering the temporal evolution of the EC energy spectrum (i.e. (2.11)) for this
wave packet in spectral space (i.e. performing a fast Fourier transform on £ along the
streamwise direction), the leading growth rate w, (o) can be calculated for each streamwise
wavenumber « (Delbende & Chomaz 1998). Note that the computational domain is long
enough and the periodic boundary conditions are applied on the lateral walls. In the current
case, the spatial range is set to [0, 120] at the x axis and [0, 1] at the y axis, the parameters
are C = 10, M = 10 and Fe = 10*.

At T = 190, the variation of the temporal growth rate w, with streamwise wavenumber
o is shown in figure 23(a). The current result agrees very well with those from the local
linear stability analysis in the work of Zhang et al. (2015). Note that we use a very small
amplitude of the impulse disturbance, so that the nonlinearity is not strongly triggered
in the early evolving stage. The wavenumber corresponding to the leading growth rate
is a; = 5.1313, and the wavelength is L = 27 /a; = 1.2245, which is very close to the
spatial length applied in the above bifurcation analysis. As the electric Rayleigh number
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Figure 23. Linear response of the impulse disturbance: (a) variation of temporal growth rate w, with the
streamwise wavenumber « at 7 = 190. The circles refer to the current result, and the solid line is the result
from the local linear stability analysis (Zhang et al. 2015); (b) relation between the wavenumber of the least
stable mode «; and the electric Rayleigh number 7. Note that the step-shape result for small values of «; is
related to the smallest increment of wavenumber. A longer streamwise length L can mitigate this problem.
However, the comparison of results between DNS (circles) and the linear stability analysis (the solid line)
clearly indicates the trend that the wavenumber of the least stable mode «; increases with 7.

T increases, the wavenumber of the least stable mode is found to increase, as presented
in figure 23(b), which indicates that the wavelength of the least stable mode decreases at
higher 7. Thus, in the current work, the use of periodic lateral boundaries with L = 1.228
can always allow the free development of the least stable mode (in the linear stage) at
higher electric Rayleigh numbers, while the symmetric lateral boundaries restrict the linear
EC flow with some quantised wavelengths.
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