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Abstract

The article presents the multigroup kinetic approximation of radiation transport in hohlraum systems. The view
factor-based method of numerical solution is proposed. Its advantages are a detailed account of the problem geometry
and accurate handling of the solution angular anisotropy and discontinuities. The method is computationally efficient
and easily parallelizable. Coupled to the kinetic1 hydro description of the wall dynamics, it represents a powerful tool
for integrated investigation of the systems with strongly inhomogeneous optical properties.
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1. INTRODUCTION

The problem of inertial fusion energy~IFE! production is
addressed by many research groups. Its attractiveness has
increased recently with the development of high power laser
@e.g., National Ignition Faciltiy~NIF! ~USA!, MEGAJOULE
~France!# and accelerator@e.g., Heavy Ion Synchrotron~SIS!
~Germany!, Terawatt Accumulator~TWAC! ~Russia!# facil-
ities. The estimated parameters of these machines would
allow researchers to achieve high plasma parameters, and,
therefore, make a good step forward toward the investiga-
tion of IFE targets. The laser Phelix constructed at present at
Gessellschaft für Schwerionenforschung~GSI, Germany!
provides the unique capability to investigate the physics of
high energy density in matter using both laser and ion beams.

The investigation of such complex systems requires a
combination of experimental studies using high-resolution
diagnostics methods and advanced numerical techniques.
One of the basic physical processes is soft X-ray transport
in hohlraums. The reliable modeling of radiation transport
requires taking into account various parameters, such as
radiation intensity, spectrum, and angular and spatial flux
distribution, as well as optical and thermodynamical prop-
erties of the medium. The selection of an adequate approx-
imation for description of radiation transport in these
conditions becomes crucial.

In most of the systems of interest both for IFE research
and current and near-future experimental investigations of
high energy density in matter, optical properties of the me-
dium and thermal conditions change both from one region to
another and in time. Therefore, a self-consistent combina-
tion of different approximations of radiation transport is
required.

2. THE KINETIC EQUATION OF
RADIATION TRANSPORT

Let us consider in more detail the process of radiation trans-
port in a hohlraum, be it an inertial confinement fusion
~ICF! or an experimental target. The optical properties of
the medium are known to vary strongly within the problem.
The radiation is absorbed practically completely in a surface
layer of the optically thick casing, heating the material. The
material, under the impact of radiation, changes its internal
and kinetic energy and starts expanding, and, therefore, its
optical properties change as well~the optical depth of the
surface layer, heated and expanded, decreases!. In the opti-
cally thin interior of the casing~vacuum or filled with low-
density and0or low-Z material!, on the contrary, radiation
penetrates through the whole region with only a small frac-
tion of its energy lost~absorbed and scattered! on the way.
Therefore, it is necessary to account for the long-range ef-
fects of X-ray interaction with the medium. The radiation
diffusion approximation, which implies local equilibration
of radiation field and material thermal properties, cannot
account for remote energy sources. So, to adequately de-
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scribe the physics, the kinetic equation of radiation trans-
port should be applied in this case:
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wheret is time,c is the light velocity,In~r ,v, t ! is spectral
radiation intensity at pointr in the directionv, «n~r ,v, t ! is
the equilibrium radiation flux at pointr in the directionv,
kn~r , t ! is the spectral radiation attenuation coefficient.

Assuming that the surface radiates according to the Lam-
bert law, In~v! 5 const, we get for the radiation flux into
half-space
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The radiation intensity as a function of frequency is, ac-
cording to the Planck law

Jn dn 5 p{In dn 5
22phn3

ehn0kT 2 1
dn, ~3!

whereh is Planck’s constant,k is Boltzmann’s constant, and
T is the effective temperature.

Neglecting the interaction of radiation with the medium
inside the hohlraum, the transport equation can be written in
the integral form:
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K~P,Q! 5 cos~nP, PQ!{cos~nQ,QP!0pr 2, ~5!

Jn
2~P, t ! 5 Jn
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Heret is time,c is the light velocity,P, Q are the points on
the boundary surfaceSof the vacuum region,r ~P,Q! is the
distance between these points,n is the inner normal to the
surfaceS, Jn

1 , Jn
2 are one-way fluxes along the inner and the

outer normals toS, respectively,qn is the normal component
of the total radiation flux, andS~P! is the part of the surface
Svisible from the pointP.

One of the specific features of Eq.~4! is that it can have a
discontinuous solution integrable over the surface, depict-
ing the geometry of the system or the discontinuities of the
boundary conditions~Babaevet al., 1978!.

There are clear physical reasons why such solutions oc-
cur. The boundary of the system may be “spotted,” with
sharp interfaces between illuminated and shaded regions
due to the system and source geometry. The other reason is
the discontinuity of the boundary conditions, that is, a strong
local change of absorbing and reflecting properties of the
walls, for example, for different wall materials, or in case of
slits or holes in the surface.

For a numerical solution, the surface is approximated by
a set of patches, discretization over the frequency range is
made, andJ1~n!, J2~n! are substituted byJnk

1 , Jnk

2:
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nk21
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J1~n! dn, Jnk
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whereNn is the number of frequency intervals. So, Eq.~4! is
replaced by the following set of equations:
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2 ~t ! 5 ( aij Jnk j
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and Eqs.~5! and~6! by
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The relation betweenJnk

1 andJnk

2 is

Jnk i
1 ~t ! 5 Jnk i

1 ~t ! 1 qnki
~t !, k 5 1, . . . ,Nn . ~11!

In the case of the “grey”~single-group! approximation,
the equations take the form

Ji
2~t ! 5 ( aij Jj

1St 2
rij

c
D, ~12!

Ji
2~t ! 5 Ji

1~t ! 1 qi ~t !, ~13!

whereqi ~t ! ; T 4. The coefficientsaij are the view factors
between the surface elementsi and j. The accuracy of the
numerical solution of Eqs.~8! is determined by the accuracy
of the view factor calculation, which is often more compli-
cated than the solution of the radiation transport problem
itself. The view factor for isotropic surface sources is deter-
mined by the formula~see, e.g., Siegel & Howell, 1998!

aij 5E
Si

E
Sj

cosai cosaj

prij
2 dSi dSj , ~14!

whereSi , Sj are the areas of the surface elementsi, j ; ai , aj

are the angles between the normals to the surfaces at certain
points of these elements and the straight line connecting
these points; andrij is the distance between these surface
points. Integration is done over the visible fractions of the
surfacesSi , Sj . Thus the defined view factor is symmetric:
aij 5aji . It is evident also, that(j aij 5Si . Source anisotropy
may easily be accounted for by introducing the weighting
functionw~ui ! in the view factor integral to determine non-
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uniform input of different directions into the radiation in-
tensity integrated over the solid angle:

aij 5E
Si

E
Sj

cosai cosaj

prij
2 w~ui ! dSi dSj , ~15!

The efficient method of view factor calculation for axisym-
metrical two-dimensional~2D! geometries is described by
Vasina ~1997! and Vasina and Chekshin~1998!. Equa-
tions ~8! are solved by the “saldo” method using view fac-
tors~see, e.g., Abzaevet al., 1999; Vasinaet al., 2001!.

3. TREATING OF DISCONTINUITIES OF
BOUNDARY CONDITIONS AND SOLUTION
WITH THE VIEW FACTOR APPROACH

The capability of a numerical model to reproduce such pe-
culiarities of real problems as various kinds of discontinu-
ities is very important in cases when high accuracy of
radiation transport simulation is crucial. Two problems hav-
ing analytical solutions illustrate how they are handled using
the view factor approach.

3.1. Radiation transport in a spherical cavity
with three types of boundary conditions

There is a time-independent radiation source with the flux
q1 at the fraction of the spherical surfaceS1; the surfaceS2 is
an absolute diffuse reflector,q2 5 0; the surfaceS3 is an
absolute absorber,q3 5 J1. This stationary problem has an
analytical solution. The temperaturesT1, T2, andT3 depend
only on the value of the source flux and the ratios of the
surface areas, rather than on the shape and place ofS1, S2,
andS3. ForS1 5 S3, andq1 5 Q1 , 0 the stationary temper-
atures are

T1 5 4!2
3Q1

2

4

sc
, T2 5 4!2Q1

4

sc
, T3 5 4!2

Q1

2

4

sc
.

~16!

The numerical solution precisely follows the discontinuities
of the boundary conditions~see Table 1!.

3.2. Cooling of a sphere—time-dependent solution
and radiation intensity at the boundary
as a function of angle

The problem of cooling of a sphere uniformly filled with
radiation corresponding to effective temperatureT0 at the
initial moment has an analytical solution~V.A. Karepov,
pers. comm.!. The temperature at the boundary of the
sphere is

T~t ! 5 T0
4!1

2
{S12 S c{t

D
D2D, ~17!

where c is the light velocity,t is the time, andD is the
diameter. This problem has an intrinsically three-dimensional
~3D! character and cannot be adequately modeled in the 2D
approximation. Table 2 shows the accuracy of the calcula-
tion of the 3D view factors and temperature at the surface
~the errors do not grow in time!.

The radiation intensity and flux are, in principle, func-
tions of the solid anglev into which a point radiates. The
angular dependence of radiation field parameters not only
influences redistribution of integral fluxes between differ-
ent surface patches, but also affects local interaction of ra-
diation illuminating the walls at different angles.

The radiation flux indicatrix at the surface of the sphere is
at each moment of time a step function:

§ 5 Hconst, q $ q~t !,

0, q # q~t !,
q~t ! 5 p 2 arccosS2S c{t

D D2

2 1D,

~18!

whereq is the angle of the arc at the maximum cross section
of the sphere from the considered point to the point from
which radiation reaches the sphere boundary, 0# q # p.
The numerical solution is also a step function, and the ac-
curacy of it is determined by the angular size of the mesh
cell at the sphere boundary~no smearing occurs!.

4. CONCLUSION

The hohlraum systems are typical in ICF research and ex-
perimental investigation of X-ray–matter interaction. Mod-

Table 1. The deviation of the calculated temperatures from the
analytical ones for the different surface grids

Number
of

patches

Temperature
error on
S1, %

Temperature
error on
S2, %

Temperature
error on
S3, %

Average
error, %

50 0 0.011 0.014 0.0097
100 0 0.0028 0.0036 0.0025
167 0.0008 0.0016 0.0017 0.0015
200 0.0014 0.0019 0.0014 0.0017

Table 2. Numerical “non-sphericity” as a function of the
number of surface patches

Number
of

patches

Ratio of
numerical

“nonsphericity”
View factor

error, %
Temperature

error, %

203 10 1.0038 0.015 1
203 20 1.0012 0.015 0.5
503 20 1.0005 0.003 0.3
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eling of such systems is quite complicated and requires a
thorough account of various features characteristic of these
problems: the system geometry~shading by occluding bod-
ies, etc.!, the discontinuities of initial and boundary condi-
tions, and angular anisotropy of absorbing and reflecting
properties of the wall material. The multigroup kinetic ap-
proximation of radiation transport allows us to reliably model
such problems. The optimal numerical implementation of
this model is the integral transport equation solved with the
view factor method.

This approach was successfully used to simulate plasma
conditions for the proposed experiments at the Phelix1 SIS
complex~GSI, Germany; Vasina & Vatulin, 2000!. The pre-
paratory experimental study in this direction was started
recently with the nhelix laser at GSI Plasma Physics group
~M. Roth & T. Schlegel, pers. comm.!.

The method has been applied to modeling of experi-
ments on X-ray–matter interactions carried out during sev-
eral years on the ISKRA-5 laser~All-Russian Scientific
Research Institute of Experimental Physics~VNIIEF !, Rus-
sia! and has proven its reliability~see, e.g., Abzaevet al.,
1999!. Coupled to the kinetic1 hydro description of the
wall dynamics, it represents a powerful tool for integrated
investigation of the systems with strongly inhomogeneous
optical properties.
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