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Semigroup compactifications and chaotic flows
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Abstract. We use the concept of enveloping Ellis semigroups in order to classify the
behaviour of dynamical systems on intervals. Several notions of chaos and non-chaos
are expressed by means of algebraic properties of the corresponding Ellis semigroups.

It has become evident in the last few decades that many apparently simple dynamical
systems exhibit surprisingly complicated behaviour and show various forms of mixing
properties or ‘chaos’. To study such qualitative behaviour there seem to be at least two
different and quite unrelated approaches. Ellis [3], Auslander [1] and many others have
looked at the continuous action of a groupG on some compact spaceX and characterized
the dynamical behaviour by abstract algebraic-topological properties ofG, for example,
compactifications of the groupG. Others, like, for example, Block and Coppel [2], have
studied the iterates of a continuous mapϕ : [0,1] → [0,1] using subtle definitions and
methods based on the topological nature of the unit interval. There seems to be little
interaction between the two fields and we will try to connect them in the following.

In the approach to dynamical systems initiated by Ellis [3] and others, one considers
flows, i.e. groups of continuous self-maps on arbitrary compact spaces. Then several
classes of flows such as equicontinuous flows can be described in detail.

A technique widely used in Ellis’ work is the description of dynamical properties of
a flow in algebraic terms. To this purpose he introduced the following notion, which we
use here for semigroups rather than for groups of continuous maps.

Definition.Let X be a compact topological space andS a semigroup of continuous self-
maps ofX. Then theenveloping Ellis semigroup6(X, S) of the flow (X, S) is the
closure ofS in the topology of pointwise convergence onXX.

It is easy to see that6(X, S) is in fact a compact, right topological semigroup (where
right topological means that for everyη ∈ 6(X, S) the map6(X, S) → 6(X, S) : ψ 7→
ψ ◦ η is continuous). By Ruppert’s structure theorem for compact, right topological
semigroups [9, Ch. I.3],6(X, S) contains at least one idempotent and has a minimal ideal
which is a paragroup (see [9] for the details). The Ellis semigroup has been extensively
used in topological dynamics, for example in [1, 3, 4, 7, 8], and some algebraic properties
of enveloping Ellis semigroups, such as the existence and the cardinality of certain
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398 A. Köhler

subsemigroups, ideals and sets of idempotents, correspond to dynamical properties of
the underlying flows. An example for this connection is the following result, which has
been proved in [3] for groups of continuous maps.

Definition.Let (X, S) be a flow. A pair of pointsx, y ∈ X with x 6= y is calledproximal
if there is a pointz ∈ X and a net(ϕα) ⊂ S such that

lim
α
ϕα(x) = lim

α
ϕα(y) = z.

The flow (X, S) is calleddistal if no proximal pairs exist.

PROPOSITION. A flow is distal if and only if its Ellis semigroup is a group whose neutral
element is the identity.

Proof. Let (X, S) be a distal flow. Since no proximal pairs exist, there cannot be any
idempotent other than the identity in6(X, S). By Ruppert’s structure theorem there is
an idempotente ∈ 6(X, S) such thate6(X, S)e is a group. Now by the distalitye must
be the identity and6(X, S) = e6(X, S)e is a group.

Conversely, let6(X, S) be a group whose neutral element is the identity map. Then
every map in6(X, S) is invertible, and hence injective, so there cannot be any proximal
pairs inX. �

Other theorems of this kind have been proved, for example in [1] and [3]. However,
the assumptions are so general that many of the properties of dynamical systems on simple
topological spaces cannot be described by them. In particular, on the unit interval there
are many standard examples whose complicated behaviour has been known for a long
time. The bifurcation points and mixing properties of such maps have been thoroughly
investigated, but many of the notions used in this context cannot be generalized to maps
on arbitrary compact spaces and are therefore not considered in topological dynamics.

Let ϕ be a continuous self-map of the unit interval. In this case the Ellis semigroup
of the iterates ofϕ (which will be denoted by6(X, ϕ)) is a semigroup compactification
of the natural numbers. In the category of compactifications ofN there is a universal
element, namely the Stone–Čech compactificationβN (see [11] for details). Hindman has
shown in [5] that there is a natural semigroup structure onβN which is right topological
and extends the usual addition of natural numbers. It follows directly from the universal
property thatβN, equipped with this non-commutative addition, is universal for the
enveloping Ellis semigroups in the sense that every Ellis semigroup of the iterates of a
single map must be a factor of the semigroupβN. This gives us an upper bound for the
complexity of enveloping Ellis semigroups. The cardinality ofβN is 2c, and its algebraic
structure is quite complicated sinceβN has 2c minimal right ideals and 2c minimal left
ideals, and each of these contains 2c idempotents (see [6, Corollary 2.6]).

For the iteration of a single map on the unit interval several different notions of chaos
and regularity have been introduced by various authors. Our aim is to show how these
notions are reflected by properties of the corresponding Ellis semigroups and that chaos
can thus be studied via semigroup compactifications of the natural numbers.

For this purpose we need the following striking theorem due toŠarkovskii [10].
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ŠARKOVSKII’S THEOREM. Letϕ be a continuous map from[0,1] into itself. Let the natural
numbers be ordered in the following way:

3 ≺ 5 ≺ 7 ≺ 9 ≺ · · · ≺ 2 · 3 ≺ 2 · 5 ≺ · · · ≺ 22 · 3 ≺ 22 · 5 ≺ · · · ≺ 23 ≺ 22 ≺ 2 ≺ 1.

If ϕ has a periodic orbit of periodn and if n ≺ m in the order given above, thenϕ also
has a periodic orbit of periodm.

One expects that dynamical systems with simpler behaviour have smaller Ellis
semigroups than more complicated and ‘chaotic’ systems since, for example, all orbits
are convergent if and only if the Ellis semigroup is the one-point compactification of
the natural numbers. We therefore begin with the simplest case in which every orbit
converges to a periodic orbit.

THEOREM 1. Let ϕ be a continuous self-map of the unit intervalI . Then the following
assertions are equivalent:
(i) ϕ has periodic points of only finitely many different periods;
(ii) 6(I, ϕ) ∼= N ∪ {ω1, . . . , ωk}.
In this case the number of accumulation points in6(I, ϕ) is a power of two and coincides
with the greatest period of a periodic point inI .

Proof. (i) ⇒ (ii): If (I, ϕ) has finitely many different periods, these are byŠarkovskii’s
Theorem exactly the numbers 1,2,4, . . . ,2d for some numberd ∈ N. The mapη := ϕ2d

has no periodic points apart from its fixed points, hence the sequence(ηn)n∈N converges
pointwise onI to a mapψ ∈ 6(I, ϕ) which mapsI into the set of all fixed points
of ϕ (see [2, VI.1.1]). Thus the sequence(ϕn) is the disjoint union of 2d convergent
subsequences, namelyηn → ψ , ηnϕ → ψϕ etc., so

6(I, ϕ) = {ϕn | n ∈ N} ∪ {ψ,ψϕ,ψϕ2, . . . , ψϕ2d−1}.
(ii) ⇒ (i): Let m be the number of accumulation points of(ϕn)n∈N in 6(I, ϕ). We

assume that(I, ϕ) has periodic points of infinitely many different periods. Then there is
a periodic pointx ∈ I whose period isl > m. Each of the subsequences

(ϕln)n∈N, (ϕ
ln+1)n∈N, . . . , (ϕ

ln+(l−1))n∈N

is constant onx, and their values onx are pairwise distinct. Letψ0, ψ1, . . . , ψ(l−1)

be pointwise accumulation points of the respective subsequences. These accumulation
points are pairwise distinct, since they differ on the pointx. Hence6(I, ϕ) has at least
l elements, which contradicts the assumption|6(I, ϕ) \ {ϕn | n ∈ N}| = m. �

Examples for the situation of the above theorem are given by maps such asx 7→ x2

andx 7→ 1− x2 on the interval. In fact, for everyd ∈ N there are examples of maps for
which periodic points of exactly the periods 1,2,4, . . . ,2d exist (see [2, Example I.2.13]).

We show next that chaotic flows have large and complicated Ellis semigroups. We
will use the following notion of chaos which can be found in [2, Ch. II]. One should,
however, keep in mind that various authors have given slightly different definitions of
the term ‘chaos’.
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Definition. TakeY = {0,1}N with its usual product topology, which is induced by the
metric d with

d(a, b) :=
∑
n∈N

2−n|an − bn| for a = (an)n∈N, b = (bn)n∈N ∈ Y

and the shift mapτ : Y → Y : (an)n∈N 7→ (an+1)n∈N. Let I be the unit interval. A
continuous mapϕ : I → I is calledchaotic if there is a positive integerm, a closed,
ϕ-invariant subsetX ⊆ I and a continuous, surjective maph : X → Y such that

h ◦ ϕm(x) = τ ◦ h(x) for all x ∈ X,
i.e. if the following diagram commutes:

X
ϕm

−−−−−→ X

h

y
y h

Y −−−−−→
τ

Y

It has been shown in [2] that a continuous self-map of the unit interval is chaotic if
and only if it has a periodic point whose period is not a power of two. In order to show
that the Ellis semigroup is very large in these cases, we need the following lemma.

LEMMA 1. Let S1 and S2 be compact, monothetic, right topological semigroups, and let
5i : βN → Si be the canonical epimorphisms fori = 1,2. Then there exists an
epimorphism9 : S1 → S2 satisfying9 ◦ 51 = 52 if and only if 51(p) = 51(q)

implies52(p) = 52(q) for all p, q ∈ βN.

Proof. If the epimorphism9 with the required property exists, then51(p) = 51(q)

implies that52(p) = 9(51(p)) = 9(51(q)) = 52(q) for all p, q ∈ βN.
Conversely, assume that51(p) = 51(q) implies52(p) = 52(q) for all p, q ∈ βN.

For everys1 ∈ S1 take anyp ∈ 5−1
1 and define9(s1) := 52(p). This yields a map

9 : S1 → S2 which is well defined since5−1
1 (s1) 6= ∅ and since two different elements

p, q ∈ 5−1
1 (s1) are by assumption mapped onto the same element ofS2. It is clear from

the definition that9 satisfies9 ◦51 = 52.
Furthermore,9 is continuous. In fact, ifU ⊆ S2 is a closed set, then5−1

2 (U) is closed
by the continuity of52 and therefore compact inβN, and thus51(5

−1
2 (U)) = 9−1(U)

must be compact and hence closed inS1.
It is clear that9 canonically mapsN ⊂ S1 onto N ⊂ S2, so by continuity it must be

a homomorphism of the right topological semigroups. Furthermore, for everys2 ∈ S2

there existsp ∈ βN with 52(p) = s2, and9 maps51(p) onto s2, hence9 is onto. �

THEOREM 2. Let ϕ : I → I be continuous and chaotic. Then there is an integerm ∈ N

such that
{ϕnm | n ∈ N}I

I ∼= βN,
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where the closure is taken in the topology of pointwise convergence onI . In particular,
βN is a subsemigroup of6(I, ϕ).

Proof. (a) For the flow(Y, τ ) the Ellis semigroup6(Y, τ) is homomorphic toβN. In
fact, by the universal property the mapN → 6(Y, τ) : n 7→ τn can be extended to a
continuous, surjective map8 : βN → 6(Y, τ), which is by its continuity automatically
a homomorphism of the right topological semigroups. So it remains to show that8 is
injective. Lets 6= t ∈ βN. Then there are disjoint setsA,B ⊂ N such thats ∈ A and
t ∈ B ⊂ βN. Define a sequencex ∈ Y by

xn :=
{

0 for n ∈ A,
1 for n 6∈ A.

The zeroth component ofτn(x) = 8(n)(x) is zero for everyn ∈ A and one for every
n ∈ B. Therefore, the zeroth component is zero in8(s)(x) and one in8(t)(x), so
8(s) 6= 8(t), i.e.8 is injective.

(b) Letϕ be a chaotic self-map of the interval. By definition there is an integerm ∈ N,
a closed subsetX ⊆ I and a continuous maph : X → Y such thatϕm(X) ⊆ X and
h ◦ ϕm = τ ◦ h on X. Let η := ϕm, let 5 : βN → 6(X, η) and8 : βN → 6(Y, τ) be
the canonical maps, and lety ∈ Y andp, q ∈ βN with 5(p) = 5(q). If y = h(x), then

8(p)(y) = 8(p)(h(x)) = h(5(p)(x)) = h(5(q)(x)) = 8(q)(h(x)) = 8(q)(y),

so8(p) = 8(q). By Lemma 1 there is an epimorphism6(X, η) → 6(Y, τ) ∼= βN.
Since5 is the inverse of this epimorphism,6(X, η) must be isomorphic toβN, which
implies6(I, η) ∼= βN since6(X, η) is a factor of6(I, η). �

COROLLARY Letϕ be a chaotic, continuous map from the unit interval into itself. Then the
enveloping Ellis semigroup6(I, ϕ) has the cardinality2c and contains2c idempotents.

Proof. By the above theoremβN is a subsemigroup of6(I, ϕ), and there are 2c

idempotents in the minimal ideal ofβN (see [6, Corollary 2.6]). �

Theorems 1 and 2 describe in some sense the least and the most chaotic maps, and
hence the smallest and the largest possible Ellis semigroup. We will look at another
notion of dynamical behaviour that lies between these extreme cases, again using the
terminology according to [2].

Definition. Let ϕ : I → I be a continuous map. A pointy ∈ I is calledasymptotically
periodic if there is a periodic pointx ∈ I such that|ϕn(y) − ϕn(x)| → 0 for n → ∞.
The dynamical system(I, ϕ) is called strongly non-chaoticif every point in I is
asymptotically periodic.

The class of strongly non-chaotic dynamical systems obviously includes the cases
considered in Theorem 1, but there are examples of interval maps for which every power
of two occurs as the period of a periodic point (see [2, Example I.14]). On the other
hand, it has been shown in [2, VI.3], that all strongly non-chaotic maps are non-chaotic,
so there cannot be any periods other than the powers of two.
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In the following we will fully characterize the enveloping Ellis semigroups of the
strongly non-chaotic systems for which every power of two occurs as the period of a
periodic point and show that they are much less complicated than the Ellis semigroups
of chaotic systems. For this, we will establish three lemmas.

LEMMA 2. Let ϕ be a continuous, strongly non-chaotic map that has periodic points of
infinitely many different periods. Then the Ellis semigroup contains exactly one idempotent
χ which mapsI onto the set of all periodic points ofϕ. Furthermore, the minimal ideal
of the Ellis semigroup6(I, ϕ) is a group, and6(I, ϕ) is the disjoint union of the minimal
ideal and{ϕn | n ∈ N}.
Proof. It is clear that an idempotentχ in 6(I, ϕ) acts as the identity on the periodic
points. However, sinceϕ is strongly non-chaotic, the behaviour of the sequence(ϕn) is
fully determined by the behaviour on the periodic points. In particular, a net(ϕnα ) that
converges to a projectionχ satisfiesϕnα (x) → x for every periodic pointx and hence
ϕnα (y) → x for every pointy whose orbit approximates the orbit ofx. Therefore, the
idempotent is uniquely determined and it follows from Ruppert’s structure theorem for
compact, right topological semigroups that the minimal idealχ6(I, ϕ)χ = 6(I, ϕ)χ is
in fact a group whose unit element isχ . The last statement is obvious since the iterates
of ϕ are the only elements of6(I, ϕ) that do not map all points inI onto periodic
points. �

LEMMA 3. Let ϕ : I → I be a continuous, strongly non-chaotic map that has periodic
points of infinitely many different periods. Let5 : βN → 6(I, ϕ) \ {ϕn | n ∈ N} be the
canonical continuous extension of the mapn 7→ ϕnχ , whereχ is the unique idempotent
in 6(I, ϕ). Letp, q ∈ βN. Then the following assertions are pairwise equivalent:
(i) 5(p) = 5(q);
(ii) 5(p)(x) = 5(q)(x) for every periodic pointx;
(iii) for everyd ∈ N there is an open neighbourhoodU ofp andq in βN such thatn ≡ m

mod2d for all n,m ∈ U .

Proof. (i) ⇒ (ii) is trivial.
(ii) ⇒ (i): Sinceϕ is strongly non-chaotic, all points are asymptotically periodic. Let

y be any point inI , let x be a periodic point whose orbit approximates the orbit ofy,
and letε > 0 andnε ∈ N such that

|ϕn(y)− ϕn(x)| < ε for all n ≥ nε.

If 5(p) = ψ and5(q) = η, then we have

|ψ(y)− η(y)| ≤ |ψ(y)− ψ(x)| + |ψ(x)− η(x)| + |η(x)− η(y)|.
By the assumption|ψ(x)− η(x)| = 0. Furthermore,

|ψ(y)− ψ(x)| ≤ |ψ(y)− ϕn(y)| + |ϕn(y)− ϕn(x)| + |ϕn(x)− ψ(x)|.
Sinceψ is a pointwise accumulation point of the sequence(ϕn), we can choose the
number n ≥ nε such that|ψ(y) − ϕn(y)| < ε and |ϕn(x) − ψ(x)| < ε. Hence
|ψ(y)− ψ(x)| < 3ε.
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The same argument shows that|η(x) − η(y)| < 3ε, so we get|ψ(y) − η(y)| < 6ε.
Sincey andε were chosen arbitrarily, this yieldsψ = η, i.e.5(p) = 5(q).

(ii) ⇒ (iii): Let d ∈ N and let x be a periodic point with period 2d . By the
assumption,5(p)(x) = 5(q)(x) = ϕk(x), wherek ∈ {0,1,2, . . . ,2d − 1}. The set
{ψ ∈ 6(I, ϕ) | ψ(x) = ϕk(x)} is open in6(I, ϕ), so its counterimageU is open inβN

and containsp andq. For all n ∈ N ∩ U we haveϕn(x) = ϕk(x), i.e. all elements of
N ∩ U are congruent to each other modulo 2d .

(iii) ⇒ (ii): Let x be a periodic point. The period ofx must be 2d for somed ∈ N,
since other periods occur only in chaotic dynamical systems. By (iii) there is an open
neighbourhoodU of p andq such thatn ≡ m ≡ k mod 2d for all n,m ∈ N ∩U , where
k ∈ {0,1,2, . . . ,2d − 1}. Then we have5(n) = ϕk(x) for everyn ∈ N ∩ U and hence
5(p)(x) = 5(q)(x) = ϕk(x). �

LEMMA 4. Let σ : βN → {0,1}N be the canonical, continuous extension of the map
N → {0,1}N : n 7→ (c(n)(k))k∈N with n = ∑∞

k=0 c(n)(k)2
k. Then forp, q ∈ βN the

following assertions are equivalent:
(i) σ(p) = σ(q);
(ii) assertion(iii) of Lemma 3 holds.

Proof. (i) ⇒ (ii): Let σ(p) = σ(q). Let d ∈ N, and for all k ≤ d let σ(p)(k) =
σ(q)(k) = zk ∈ {0,1}. The setUk = {r ∈ βN | σ(r)(k) = zk} is open inβN for all
k ≤ d, so the intersectionU := ⋂d

k=0Uk of these sets is open inβN and containsp and
q by definition. For alln,m ∈ N ∩ U we haveσ(n)(k) = σ(m)(k) = zk ∀k ∈ d, i.e.
n ≡ m mod 2d .

(ii) ⇒ (i): Let σ(p) 6= σ(q). Then there exists a numberd ∈ N such that
σ(p)(d) 6= σ(q)(d), say, σ(p)(d) = 0 and σ(q)(d) = 1. In every neighbourhood
of p there is ann ∈ N with σ(n)(d) = 0, and in every neighbourhood ofq there is an
m ∈ N with σ(m)(d) = 1, i.e.n 6≡ m mod 2d . �

We can now characterize the Ellis semigroup of this class of dynamical systems.

THEOREM 3. Let ϕ : I → I be a continuous, strongly non-chaotic map that has periodic
points of infinitely many different periods. Then6(I, ϕ) \ {ϕn | n ∈ N} is isomorphic to
the group of the 2-adic integers.

Proof. The group of the 2-adic integers is just the set{0,1}N, equipped with the addition
of binary numbers and the usual compact, metrizable topology.

Let 5 : βN → 6(I, ϕ) \ {ϕn | n ∈ N} be the epimorphism of Lemma 3 and
σ : βN → {0,1}N the epimorphism of Lemma 4. It follows from Lemmas 3 and 4 that
σ(p) = σ(q) if and only if 5(p) = 5(q). By Lemma 1 there is an epimorphism from
6(I, ϕ) \ {ϕn | n ∈ N} onto {0,1}N and an inverse of this epimorphism. Hence the two
semigroups must be isomorphic. �

COROLLARY. Let ϕ : I → I be a continuous, strongly non-chaotic map that has periodic
points of infinitely many different periods. Then the enveloping Ellis semigroup has the
cardinalityc, and all pointwise accumulation points of the sequence(ϕn)n∈N are the limits
of convergent subsequences. Furthermore,6(I, ϕ) \ {ϕn | n ∈ N} is an abelian group.
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COROLLARY. Let ϕ be a continuous self-map of the unit intervalI . Then6(I, ϕ) \ {ϕn |
n ∈ N} is either finite or uncountable.

Proof. If ϕ has only periodic points of finitely many different periods, the sequence
(ϕn)n∈N has by Theorem 1 only finitely many accumulation points in6(I, ϕ). So assume
that infinitely many periods occur.

If there is a periodic point whose period is not a power of two, then the system is
chaotic and by Theorem 2 the cardinality of6(I, ϕ) is 2c.

So it remains to consider the dynamical systems whose periods are exactly the powers
of two. It can be seen in the proofs of the above lemmas that for such systems
5(p) = 5(q) always impliesσ(p) = σ(q) (since we have actually used the assumption
of ‘strong non-chaos’ only to prove (ii)⇒ (i) in Lemma 3). Hence by Lemma 1 there
exists an epimorphism from6(I, ϕ) \ {ϕn | n ∈ N} onto the 2-adic numbers, which
shows that6(I, ϕ) must at least have the cardinalityc of {0,1}N. �

These results justify the study of chaos by means of compactifications. We expect that
many more connections between the dynamics of a system and the algebraic structure of
the corresponding Ellis semigroup exist. In particular, it should be possible to classify
algebraically the flows that are non-chaotic without being strongly non-chaotic, for
example by the number of idempotents or the ideal structure of their Ellis semigroups.
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