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Abstract We use the concept of enveloping Ellis semigroups in order to classify the
behaviour of dynamical systems on intervals. Several notions of chaos and non-chaos
are expressed by means of algebraic properties of the corresponding Ellis semigroups.

It has become evident in the last few decades that many apparently simple dynamical
systems exhibit surprisingly complicated behaviour and show various forms of mixing
properties or ‘chaos’. To study such qualitative behaviour there seem to be at least two
different and quite unrelated approaches. EWfs Puslander ] and many others have
looked at the continuous action of a groGpon some compact spaéeand characterized

the dynamical behaviour by abstract algebraic-topological properti€s &r example,
compactifications of the grou@. Others, like, for example, Block and Copp#],[have
studied the iterates of a continuous map [0, 1] — [0, 1] using subtle definitions and
methods based on the topological nature of the unit interval. There seems to be little
interaction between the two fields and we will try to connect them in the following.

In the approach to dynamical systems initiated by Eflsdnd others, one considers
flows i.e. groups of continuous self-maps on arbitrary compact spaces. Then several
classes of flows such as equicontinuous flows can be described in detail.

A technique widely used in Ellis’ work is the description of dynamical properties of
a flow in algebraic terms. To this purpose he introduced the following notion, which we
use here for semigroups rather than for groups of continuous maps.

Definition. Let X be a compact topological space afid semigroup of continuous self-
maps of X. Then theenveloping Ellis semigroufx (X, S) of the flow (X, §) is the
closure ofS in the topology of pointwise convergence & .

It is easy to see thdk (X, S) is in fact a compact, right topological semigroup (where
right topological means that for everye X (X, S) the mapz(X, S) - (X, S) : ¥ —
¥ o n is continuous). By Ruppert's structure theorem for compact, right topological
semigroups9, Ch. .3], X (X, S) contains at least one idempotent and has a minimal ideal
which is a paragroup (se8][for the details). The Ellis semigroup has been extensively
used in topological dynamics, for example i 3,4, 7, 8], and some algebraic properties
of enveloping Ellis semigroups, such as the existence and the cardinality of certain
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subsemigroups, ideals and sets of idempotents, correspond to dynamical properties of
the underlying flows. An example for this connection is the following result, which has
been proved inJ] for groups of continuous maps.

Definition.Let (X, S) be a flow. A pair of points, y € X with x # y is calledproximal
if there is a point; € X and a nef(g,) C S such that

“En (ﬂa()C) = ||£n (ﬂa()’) =Z.
The flow (X, S) is calleddistal if no proximal pairs exist.

PropPosITION A flow is distal if and only if its Ellis semigroup is a group whose neutral
element is the identity.

Proof. Let (X, S) be a distal flow. Since no proximal pairs exist, there cannot be any
idempotent other than the identity (X, S). By Ruppert’s structure theorem there is
an idempotent € (X, S) such thatX (X, S)e is a group. Now by the distality must
be the identity and (X, S) = eX (X, S)e is a group.

Conversely, le (X, S) be a group whose neutral element is the identity map. Then
every map inz (X, S) is invertible, and hence injective, so there cannot be any proximal
pairs in X. O

Other theorems of this kind have been proved, for exampldjiard [3]. However,
the assumptions are so general that many of the properties of dynamical systems on simple
topological spaces cannot be described by them. In particular, on the unit interval there
are many standard examples whose complicated behaviour has been known for a long
time. The bifurcation points and mixing properties of such maps have been thoroughly
investigated, but many of the notions used in this context cannot be generalized to maps
on arbitrary compact spaces and are therefore not considered in topological dynamics.

Let ¢ be a continuous self-map of the unit interval. In this case the Ellis semigroup
of the iterates ofp (which will be denoted by (X, ¢)) is a semigroup compactification
of the natural numbers. In the category of compactification® dhere is a universal
element, namely the Stonéech compactificatiogN (see [L1] for details). Hindman has
shown in p] that there is a natural semigroup structuregd¥ which is right topological
and extends the usual addition of natural numbers. It follows directly from the universal
property thatgN, equipped with this non-commutative addition, is universal for the
enveloping Ellis semigroups in the sense that every Ellis semigroup of the iterates of a
single map must be a factor of the semigr@ip. This gives us an upper bound for the
complexity of enveloping Ellis semigroups. The cardinalitysdf is 2, and its algebraic
structure is quite complicated sing& has 2 minimal right ideals and 2minimal left
ideals, and each of these contairisid&mpotents (see] Corollary 2.6]).

For the iteration of a single map on the unit interval several different notions of chaos
and regularity have been introduced by various authors. Our aim is to show how these
notions are reflected by properties of the corresponding Ellis semigroups and that chaos
can thus be studied via semigroup compactifications of the natural numbers.

For this purpose we need the following striking theorem duBadkovskii fLq].
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SARKOVSKII's THEOREM. Letg be a continuous map frof), 1] into itself. Let the natural
numbers be ordered in the following way:

3<5<7<9<..-<2.3<2.5<...<22.3<22.5<...<284222<1.

If ¢ has a periodic orbit of perioa and ifn < m in the order given above, then also
has a periodic orbit of period:.

One expects that dynamical systems with simpler behaviour have smaller Ellis
semigroups than more complicated and ‘chaotic’ systems since, for example, all orbits
are convergent if and only if the Ellis semigroup is the one-point compactification of
the natural numbers. We therefore begin with the simplest case in which every orbit
converges to a periodic orbit.

THEOREM 1. Let ¢ be a continuous self-map of the unit intendal Then the following
assertions are equivalent:

() ¢ has periodic points of only finitely many different periods;

(II) E(I, (p) =NU {a)]_, ey a)k}.

In this case the number of accumulation point&ity, ¢) is a power of two and coincides
with the greatest period of a periodic point in

Proof. (i) = (ii): If (I, ¢) has finitely many different periods, these are3srkovskii's
Theorem exactly the numbers2 4, ..., 2¢ for some numbei € N. The mapy = ¢?'
has no periodic points apart from its fixed points, hence the sequgtfzey converges
pointwise on/ to a mapy € X(I, ¢) which maps! into the set of all fixed points
of ¢ (see P, VI.1.1]). Thus the sequencg”) is the disjoint union of 2 convergent
subsequences, namefy — ¥, n"¢ — ¢ etc., so

SU,g) ={¢" |n e NYU{Y, yo, g2, ..., vp? 1)

(i) = (i): Let m be the number of accumulation points @),y in X (7, ¢). We
assume that/, ¢) has periodic points of infinitely many different periods. Then there is
a periodic pointx € I whose period i$ > m. Each of the subsequences

(@"ens (@ e, -, (@MY, oy

is constant onx, and their values onx are pairwise distinct. Letjg, Y1, ..., ¥y-1

be pointwise accumulation points of the respective subsequences. These accumulation
points are pairwise distinct, since they differ on the paintHenceX (I, ¢) has at least

[ elements, which contradicts the assumpti@ni/, ¢) \ {¢" | n € N}| = m. O

Examples for the situation of the above theorem are given by maps such-as?
andx — 1—x? on the interval. In fact, for every e N there are examples of maps for
which periodic points of exactly the periods2l 4, .. ., 2¢ exist (see?, Example 1.2.13]).

We show next that chaotic flows have large and complicated Ellis semigroups. We
will use the following notion of chaos which can be found B Ch. 1l]. One should,
however, keep in mind that various authors have given slightly different definitions of
the term ‘chaos’.

https://doi.org/10.1017/50143385798100494 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385798100494

400 A. Kéhler

Definition. Take Y = {0, 1} with its usual product topology, which is induced by the
metric d with

d(a,b) =Y 2"lay —b,| fora=(@)pe, b=been €Y
neN
and the shift mapr : Y — Y : (@y)neny = (@ni1)nen. Let I be the unit interval. A
continuous magp : I — I is calledchaoticif there is a positive integet:, a closed,
p-invariant subse C I and a continuous, surjective map X — Y such that

hoe"(x)=to0oh(x) forallx e X,

i.e. if the following diagram commutes:

X — X

It has been shown in2] that a continuous self-map of the unit interval is chaotic if
and only if it has a periodic point whose period is not a power of two. In order to show
that the Ellis semigroup is very large in these cases, we need the following lemma.

LEMMA 1. Let S; and S, be compact, monothetic, right topological semigroups, and let
I, : BN — S; be the canonical epimorphisms for= 1,2. Then there exists an
epimorphism¥ : §; — S, satisfyingW o IT1; = I, if and only if [T1:(p) = T1(g)
impliesTI(p) = 2(q) for all p,q € BN.

Proof. If the epimorphism¥ with the required property exists, thdm(p) = I[11(g)
implies thatll,(p) = W (I11(p)) = ¥ (I11(qg)) = II2(g) for all p,q € BN.

Conversely, assume tht;(p) = I11(g) implies ITo(p) = I2(g) for all p, g € BN.
For everys; € S; take anyp € 1‘[[1 and defineW (s1) := Ilx(p). This yields a map
¥ S; — S, which is well defined since’lgl(sl) # () and since two different elements
p,q € HIl(sl) are by assumption mapped onto the same elemesy.dt is clear from
the definition that¥ satisfiesW o I1; = I5.

FurthermoreW is continuous. In fact, it/ C S, is a closed set, thefl, *(U) is closed
by the continuity ofl1, and therefore compact i8N, and thusl‘ll(l‘lgl(U)) = v L)
must be compact and hence closedsin

It is clear that¥ canonically mapsN C S; ontoN C S,, so by continuity it must be
a homomorphism of the right topological semigroups. Furthermore, for egegy S,
there existyp € BN with TTy(p) = 52, and W mapsIli(p) onto sz, henceV is onto. [

THEOREM 2. Let¢ : I — I be continuous and chaotic. Then there is an integes N
such that y
{"" |n e N} = BN,
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where the closure is taken in the topology of pointwise convergende tmparticular,
BN is a subsemigroup at (7, ¢).

Proof. (a) For the flow(Y, t) the Ellis semigroup= (Y, ) is homomorphic to8N. In
fact, by the universal property the map— (Y, 1) : n — 1" can be extended to a
continuous, surjective mag : SN — X (Y, t), which is by its continuity automatically
a homomorphism of the right topological semigroups. So it remains to shovwbthsat
injective. Lets # ¢ € BN. Then there are disjoint sets, B N such thats € A and

t € B C BN. Define a sequence e Y by

_ 0 forneA,
"1 forn ¢ A.

The zeroth component af'(x) = ®(n)(x) is zero for everyn € A and one for every
n € B. Therefore, the zeroth component is zerodiis)(x) and one in®(¢)(x), SO
D(s) # D(1), i.e. ® is injective.

(b) Lety be a chaotic self-map of the interval. By definition there is an integerN,
a closed subseX C I and a continuous map : X — Y such thaty™(X) € X and
hogp™ =tohonX. Letn:=¢", letll: BN — Z(X,n) and® : BN — X (Y, t) be
the canonical maps, and lete Y and p, g € BN with TT1(p) = I1(g). If y = h(x), then

Q(p)(y) = @(p)(h(x)) = h(I1(p)(x)) = h(Il(g)(x)) = P(g)(h(x)) = P(g)(y),

so ®(p) = P(¢q). By Lemma 1 there is an epimorphisBx(X, n) — (Y, 1) = gN.
Sincell is the inverse of this epimorphisnx (X, n) must be isomorphic t@N, which
implies (1, n) = BN sinceX (X, n) is a factor ofX(Z, n). O

COROLLARY Letg be a chaotic, continuous map from the unit interval into itself. Then the
enveloping Ellis semigroul (1, ¢) has the cardinality?° and contain®“ idempotents.

Proof. By the above theorengN is a subsemigroup ok ([, ¢), and there are <2
idempotents in the minimal ideal @¢fN (see p, Corollary 2.6]). O

Theorems 1 and 2 describe in some sense the least and the most chaotic maps, and
hence the smallest and the largest possible Ellis semigroup. We will look at another
notion of dynamical behaviour that lies between these extreme cases, again using the
terminology according toZ].

Definition.Let ¢ : I — I be a continuous map. A pointe I is calledasymptotically
periodic if there is a periodic poink € I such that¢"(y) — ¢"(x)| — 0 for n — oo.

The dynamical systentl, ¢) is called strongly non-chaoticif every point in I is

asymptotically periodic.

The class of strongly non-chaotic dynamical systems obviously includes the cases
considered in Theorem 1, but there are examples of interval maps for which every power
of two occurs as the period of a periodic point (s@e Example 1.14]). On the other
hand, it has been shown i,[VI.3], that all strongly non-chaotic maps are non-chaotic,
so there cannot be any periods other than the powers of two.
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In the following we will fully characterize the enveloping Ellis semigroups of the
strongly non-chaotic systems for which every power of two occurs as the period of a
periodic point and show that they are much less complicated than the Ellis semigroups
of chaotic systems. For this, we will establish three lemmas.

LEMMA 2. Let ¢ be a continuous, strongly non-chaotic map that has periodic points of
infinitely many different periods. Then the Ellis semigroup contains exactly one idempotent
x wWhich maps/ onto the set of all periodic points @f. Furthermore, the minimal ideal

of the Ellis semigroufx (1, ¢) is a group, and> (I, ¢) is the disjoint union of the minimal
ideal and{¢" | n € N}.

Proof. It is clear that an idempotent in (1, ¢) acts as the identity on the periodic
points. However, since is strongly non-chaotic, the behaviour of the sequeide is

fully determined by the behaviour on the periodic points. In particular, agiey that
converges to a projectiop satisfiesp™ (x) — x for every periodic pointt and hence

" (y) — x for every pointy whose orbit approximates the orbit of Therefore, the
idempotent is uniquely determined and it follows from Ruppert’'s structure theorem for
compact, right topological semigroups that the minimal ide&l(Z, ¢)x = (I, ¢)x is

in fact a group whose unit element s The last statement is obvious since the iterates
of ¢ are the only elements of (7, ¢) that do not map all points id onto periodic
points. O

LEMMA 3. Letg : I — I be a continuous, strongly non-chaotic map that has periodic

points of infinitely many different periods. LBt: BN — X (7, ¢) \ {¢" | n € N} be the

canonical continuous extension of the map> ¢" x, wherey is the unique idempotent

in (1, ¢). Letp, g € BN. Then the following assertions are pairwise equivalent:

(i) TM(p) =T(g);

(i) TI(p)(x) = (g)(x) for every periodic poink;

(iii) for everyd € N there is an open neighbourhoddof p andg in BN such that: = m
mod2? for all n,m € U.

Proof. (i) = (ii) is trivial.

(ii) = (i): Sinceg is strongly non-chaotic, all points are asymptotically periodic. Let
y be any point in/, let x be a periodic point whose orbit approximates the orbi pf
and lete > 0 andn, € N such that

lo"(y) — ¢"(x)] <& forall n=>n,.
If TI(p) = ¢ andIl(g) = n, then we have
W) —=nWI <) =¥+ 1Y) —n@)] + [n(x) = n()I.
By the assumptiomy (x) — n(x)| = 0. Furthermore,
V() =¥ =) ="M+ 1" () — " ()] + " (x) — ¥ ()]

Since ¢ is a pointwise accumulation point of the sequerig&), we can choose the
numbern > n, such that|y(y) — ¢"(y)] < ¢ and |¢"(x) — ¥ (x)] < &. Hence

V() — ()] < 3e.
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The same argument shows thatx) — n(y)| < 3e, so we getly (y) — n(y)| < 6e.
Sincey ande were chosen arbitrarily, this yieldg = », i.e. [1(p) = [1(q).

(i) = (iii): Let d € N and letx be a periodic point with period?2 By the
assumption,IT(p)(x) = I(g)(x) = ¢*(x), wherek € {0,1,2,...,2¢ —1}. The set
(Y € 2, ) | ¥(x) = ¢"(x)} is open inX (1, ¢), So its counterimagé® is open ingN
and containg andgq. For alln e NN U we havey”(x) = ¢X(x), i.e. all elements of
NN U are congruent to each other moduth 2

(i) = (ii): Let x be a periodic point. The period af must be 2 for somed € N,
since other periods occur only in chaotic dynamical systems. By (iii) there is an open
neighbourhood’ of p andg such that: = m = k mod 2 for all n, m e NN U, where
ke{0,1,2 ...,2¢ —1}. Then we havdl(n) = ¢*(x) for everyn ¢ NN U and hence
M(p)(x) = T(g)(x) = ¢*(x). U

LEMMA 4. Leto : BN — {0, 1} be the canonical, continuous extension of the map
N — {0,1N : n = (c(n)(k))ren With n = Y 12 c(n)(k)2*. Then forp,q € BN the
following assertions are equivalent:

() o(p)=o0(q);

(ii) assertion(iii) of Lemma 3 holds.

Proof. (i) = (ii): Let o(p) = o(q). Letd € N, and for allk < d let o(p)(k) =
o(q)(k) = zx € {0,1}. The setU; = {r € BN | o(r)(k) = z} is open ing8N for all
k < d, so the intersectioly := ﬂfzo U, of these sets is open BN and containg and
g by definition. For alln,m € NN U we haveos (n)(k) = o(m)(k) = zxVk € d, i.e.
n=mmod 2.

(i) = (): Let o(p) # o(g). Then there exists a numbet € N such that
o(p)(d) # o(g)(d), say,o(p)(d) = 0 ando(gq)(d) = 1. In every neighbourhood
of p there is am € N with o(n)(d) = 0, and in every neighbourhood gfthere is an
m e N with o (m)(d) = 1, i.e.n # m mod 2. O

We can now characterize the Ellis semigroup of this class of dynamical systems.

THEOREM 3. Lety : I — I be a continuous, strongly non-chaotic map that has periodic
points of infinitely many different periods. Th&17, ¢) \ {¢" | n € N} is isomorphic to
the group of the 2-adic integers.

Proof. The group of the 2-adic integers is just the &t1}", equipped with the addition
of binary numbers and the usual compact, metrizable topology.

Let IT : BN — 2(1,¢) \ {¢" | n € N} be the epimorphism of Lemma 3 and
o : BN — {0, 1} the epimorphism of Lemma 4. It follows from Lemmas 3 and 4 that
o(p) =o(q) if and only if IT(p) = I1(g). By Lemma 1 there is an epimorphism from
(I, ¢)\ {¢" | n € N} onto {0, 1} and an inverse of this epimorphism. Hence the two
semigroups must be isomorphic. O

COROLLARY. Lety : I — I be a continuous, strongly non-chaotic map that has periodic
points of infinitely many different periods. Then the enveloping Ellis semigroup has the
cardinality ¢, and all pointwise accumulation points of the sequefce, .y are the limits

of convergent subsequences. Furthermarél, ¢) \ {¢" | n € N} is an abelian group.
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COROLLARY. Let ¢ be a continuous self-map of the unit intervalThenX= (7, ¢) \ {¢" |
n € N} is either finite or uncountable.

Proof. If ¢ has only periodic points of finitely many different periods, the sequence
(¢")nen has by Theorem 1 only finitely many accumulation point&ifT, ¢). So assume
that infinitely many periods occur.

If there is a periodic point whose period is not a power of two, then the system is
chaotic and by Theorem 2 the cardinality Bf1, ¢) is 2.

So it remains to consider the dynamical systems whose periods are exactly the powers
of two. It can be seen in the proofs of the above lemmas that for such systems
I1(p) = l(g) always impliess (p) = o (¢) (since we have actually used the assumption
of ‘strong non-chaos’ only to prove (ig> (i) in Lemma 3). Hence by Lemma 1 there
exists an epimorphism fronx (7, ¢) \ {¢" | n € N} onto the 2-adic numbers, which
shows thatz (1, ¢) must at least have the cardinalityof {0, 1}V. O

These results justify the study of chaos by means of compactifications. We expect that
many more connections between the dynamics of a system and the algebraic structure of
the corresponding Ellis semigroup exist. In particular, it should be possible to classify
algebraically the flows that are non-chaotic without being strongly non-chaotic, for
example by the number of idempotents or the ideal structure of their Ellis semigroups.
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