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Generalized helical vortex pairs
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New solutions describing the interaction of helical pairs of counter-rotating vortices
are obtained using a vortex filament approach. The vortices are assumed to have
a small core size allowing the calculation of the self-induced velocities from the
Biot–Savart law using the cutoff theory. These new vortex structures do not possess
any helical symmetry but they exhibit a spatial periodicity and are stationary in a
rotating and translating frame. Their properties, such as radial deformation, frame
velocity and induced flow, are provided as a function of the four geometric parameters
characterizing each solution. Approximate solutions are also obtained when the mutual
interaction is weak. This allows us to provide explicit expressions for the rotation and
translation velocities of the structure in this limit. First-order corrections describing
helix deformation are also calculated and used for comparison with the numerical
results. The variation of the vortex core size induced by the helix deformation is
also analysed. We show that these variations have a weak effect on the shape and
characteristics of the solutions, for the range of parameters that we have considered.
The results are finally applied to rotor wakes. It is explained how these solutions
could possibly describe the far wake of an helicopter rotor in vertical flight.

Key words: vortex interactions

1. Introduction
Helical vortex structures are found in the wake of rotors in the context of helicopters

(Leishman 2006), wind turbines (Vermeer, Sørensen & Crespo 2003) and propellers
(Wald 2006). In the present work, we propose generalized helical vortex solutions to
describe these structures in the far field.

Having a good description of the wake is now recognized to be essential to optimize
rotor efficiency. Since the early momentum theory by Rankine (1865) and Froude
(1878), numerous improvements have been proposed by Betz (1926), Joukowski
(1929) and Goldstein (1929) (see Sørensen 2016, for a recent review). Of particular
interest for the present study is the model of Joukowski (1929) (see Okulov, Sørensen
& Wood 2015) where the wake from each blade is described by a bound vortex on
the blade, and two free vortices of opposite circulation detached from the hub and
the tip of the blade. For an N blade rotor, these vortices form in the far wake, a
uniform helical braid composed of N vortices of circulation Γ plus a central vortex
of circulation −NΓ .

† Email address for correspondence: duran@irphe.univ-mrs.fr
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Perfect helical vortex solutions have been the subject of numerous works since
the early works by Kelvin (1880), Da Rios (1916), Levy & Forsdyke (1928) and
Joukowski (1929). For instance, Betchov (1965) and Kida (1981) showed, using
the local induction approximation, that these structures rotate and translate without
changing form. When the vortex is (infinitely) thin, Hardin (1982) provided an exact
expression for the induced velocity field inside and outside the cylinder containing
the helix (Fukumoto, Okulov & Wood (2015) mention that Hardin’s results can also
be found in earlier works by Kawada (1936)). Ricca (1994), Kuibin & Okulov (1998)
and Boersma & Wood (1999) showed how the singularity of Hardin expression can
be extracted to compute the self-induced motion of the helix. Velasco Fuentes (2018)
recently applied these results to compute the motion of vortex elements on a helical
vortex, emphasizing the role of tangential velocities. In these works, the vortex core
size is implicitly assumed to be a small parameter. Lucas & Dritschel (2009) and
Selçuk, Delbende & Rossi (2017b) have shown how helical vortices with a thick
core can be obtained numerically by enforcing the helical symmetry in the governing
equations.

Solutions with a more complex geometry are scarce in the literature. Walther et al.
(2007) had looked at equilibrium solutions composed of undeformed helical vortex
pairs of the same pitch but different radius. They demonstrated that undeformed
helical vortex pairs of identical pitch and opposite circulation were possible for
a particular radius ratio. This analysis was further pursued by Okulov (2016) for
helical vortices with same sign circulation. Reducing the framework to nearly parallel
filaments (Klein, Majda & Damodaran 1995), Kwiecinski & Van Gorder (2018) were
recently able to provide more exotic solutions.

Our objective is to extend the Joukowski model to configurations formed of N
counter-rotating helical vortex pairs when the root vortices are not on the axis but at
a finite non-zero radius. Such a solution could be used to describe a rotor with a non-
constant circulation. As initially explained by Goldstein (1929), when the circulation is
not uniform, vorticity is emitted all along the blade with a circulation per length equal
to −∂rΓ . The subsequent evolution is a complicated roll-up process of the vortex
sheet into vortices of positive and negative circulation. In the simplest case where
the circulation profile has a single maximum, each blade is expected to create two
concentrated vortices of opposite circulation. In that case, after the roll-up phase, the
flow is then composed of N pairs of vortices of opposite circulation for a N blade
rotor. It is this flow that we want to analyse in the far field.

For this purpose, we use a free-vortex method. Such a method is now commonly
used for direct numerical simulations (Cottet & Koumoutsakos 2000; Winckelmans
et al. 2005). Here, we use its simplest form by considering thin vortex filaments.
Each vortex is discretized into straight-line segments and advected by the flow. This
approach is explained in length in the textbook by Leishman (2006).

The paper is organized as follows. In § 2, we introduce the vortex method
framework (§§ 2.1 and 2.2) and review some preliminary results on helical vortices
(§§ 2.3 and 2.4) in order to introduce the geometric parameters characterizing our
solutions (§ 2.5). In § 3, we first derive an approximation for the solutions by
neglecting helix deformations (§ 3.1). Then, we characterize the deformation of
the helices (§ 3.2) and the properties of the solutions in terms of structure velocities
(§ 3.3) and induced velocities (§ 3.4). The relevance of the solutions for the description
of helicopter wakes is addressed in § 5, before a brief conclusion provided in the last
section.
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2. Vortex filament framework
In this section, we describe the numerical method that we use. The method is

based on a Lagrangian description of the vortices and a discretization of the vortices
into segments. This discretization process allows us to use explicit expressions for
the induced and self-induced velocities. After having explained these two aspects, we
apply the method to special cases: first to single helices to validate the method, then
to non-interacting helical pairs to introduce the geometrical parameters that are used
to define the solutions.

2.1. Lagrangian description
We consider small core size vortices which can be described as vortex filaments. In
this framework, all the vorticity is concentrated along lines which move as material
lines in the fluid according to

dξ

dt
=U(ξ)=U∞ +Uind(ξ), (2.1)

where ξ is the position vector of the vortex filament, U the velocity field, composed
of an external field U∞ and a field Uind(ξ) induced by the vortex filaments. When
there are N vortices, this induced velocity is given by the Biot–Savart law

Uind(ξ)=

N∑
j=1

Γj

4π

∫
(ξj − ξ)× dτj

|ξj − ξ |2
, (2.2)

where the integrals cover each vortex filament defined by its circulation Γj, its position
vector ξj and its tangent vector τj.

On the vortex line, the Biot–Savart integral is singular, and the self-induced velocity
diverges. To avoid this singularity, one has to assume a small but finite core size
a. The self-induced motion is then obtained by an integral of the same form but
without considering the interval [−δa, δa] around the singular point. This so-called
cutoff method is explained at length in textbooks (see Saffman 1992). The value of δ
depends on the vortex core model. Here, we shall assume a Gaussian vorticity profile
for which δ ≈ 0.8736.

2.2. Vortex discretization
We follow the vortex method approach described for instance in Leishman (2006).
Each vortex filament is discretized in small segments in order to compute the velocity
field and follow its displacement (see figure 1a).

The velocity field induced by a given segment [ξ n
i , ξ

n+1
i ] of the ith vortex at a point

ξm
j can be calculated explicitly as

Useg
i,n (ξ

m
j )=

Γi

4π

((1− |rj,m
i,n |

2)|rj,m
i,n | + (1− |r

j,m
i,n |

2)|rj,m
i,n+1|)(r

j,m
i,n × rj,m

i,n+1)r
j,m
i,n · r

j,m
i,n+1

((rj,m
i,n · r

j,m
i,n+1)

2 − |rj,n
i,n|

2|rj,m
i,n+1|

2)|rj,m
i,n ||r

j,m
i,n+1|

, (2.3)

where rj,m
i,n = ξm

j − ξ n
i . This expression is defined everywhere except at the points ξ n

i

and ξ n+1
i defining the segment. To determine the contribution to the velocity field at

ξm
j of the adjacent segments [ξm

j , ξ
m+1
j ] and [ξm−1

j , ξm
j ], we replace the two segments by
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FIGURE 1. Discretization procedure of the vortex filaments. (a) Discretization in segments
of two filaments of circulation Γi and Γj. (b) Arc of circle formed by three consecutive
points of a discretized filament for the computation of the local contribution.

the arc of circle passing through the three points (ξm−1
j , ξm

j , ξ
m+1
j ) and use the cutoff

formula. We obtain

Uloc
j,m =

Γj

4πρm
j

ln
(
1φm

j ρ
m
j

δa

)
bm

j , (2.4)

where ρm
j and bm

j are the curvature radius and binormal vector at ξm
j respectively, and

1φm
j is the angle of the arc of circle (ξm−1

j , ξm+1
j ) as illustrated in figure 1(b). The

total induced velocity at ξm
j is then given by an expression of the form

Uind(ξm
j )=Uloc

j,m +

N∑
n=1

pn∑
i=1

Useg
i,n (ξ

m
j ), (2.5)

where pn is the number of points discretizing the nth vortex, and assuming implicitly
that Useg

j,m(ξ
m
j )=Useg

j,m−1(ξ
m
j )= 0.

This formula is tested against direct calculation of the cutoff integral in figure 2
for a single helix (see also Gupta & Leishman 2005). We observe that a good
approximation is obtained as soon as the helix is divided into 25 or more segments
by turn when the local contribution is included. When the local contribution is not
taken into account, a much larger number of segments by turn of order O(2πρ/a)
is needed to obtain a good approximation. In practice, we use pn = 30 in most
calculations.

2.3. Vortex ring and helical vortex
A vortex ring and a helical vortex are examples of vortex structures that move in space
at a constant speed without deformation. For these particular vortices, there exist a
unique moving frame where all the vortex elements are steady. For the ring, this frame
is translating along the ring axis. For the helix, it is both translating and rotating along
the helix axis.

The variation of the rotation rate and axial speed of a right-handed helix with
respect to the pitch is given in figure 3 for a typical vortex core size. As already
noticed by Velasco Fuentes (2018), it is interesting to see that the rotation changes
sign as the pitch varies. For a left-handed helix, the rotation rate is the same but the
axial speed is opposite. In figure 3, our numerical results are compared to theoretical
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FIGURE 2. (Colour online) Comparison of the cutoff formula (dashed red line) with the
approximate formula (2.5) (solid black line). Binormal component of the induced velocity
versus the number pn of segments by turn for an helix of circulation Γ = 1, pitch h= 1,
radius R= 1 and core size a= 0.05. The two contributions Uloc and Useg are also indicated
by the dash-dot and dotted lines, respectively.

approximations based on Hardin (1982) expressions. The dashed grey curves are
obtained by taking the mean value of Hardin expression at R − a and R + a as it
was done by Velasco Fuentes (2018). The solid dashed line is the same expression
corrected by a 1/4 term associated with local curvature (Ricca 1994; Kuibin &
Okulov 1998; Boersma & Wood 1999). This correction term permits us to take into
account the deformation of the vortex core induced by curvature. For completeness,
we provide these expressions of Ω and W in appendix A. In these theoretical works, a
Rankine vortex model (uniform vorticity in the core) is used, while we use a Gaussian
vorticity profile. We have thus applied the correction factor aRankine ≈ 1.36 aGaussian to
the core size to account for the different vortex models (Widnall 1972; Saffman
1992). As it can be seen on this figure, the agreement between the numerical results
and Velasco Fuentes (2018) is good and almost perfect for both Ω and W when the
correction term is included. This comparison is a strong validation of our numerical
approach.

For both rings and helices, there exist infinitely many other moving frames where
the vortex structure is steady. The displacement associated with this frame just has to
remain tangent to the structure. The condition of steadiness for the frame velocity VF
can then be written as

(VF(ξ
m
j )+Uind(ξm

j ))× τm
j = 0. (2.6)

In this frame, the vortex elements are moving along the vortex structure. For a ring,
any rotation around the ring axis can for instance be added. For an helix of pitch h,
any rotation and translation along the helix axis can also be added if the rotation rate
Ωa and axial speed Wa of this additional movement satisfy

Wa/Ωa =±h/2π, (2.7)

where the sign is + for right-handed helices, and − for left-handed helices.
An helical braid composed of N identical vortices of same axis, separated with each

other by an azimuthal angle 2π/N also forms a steady solution in an adequate frame.
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FIGURE 3. Non-dimensionalized rotation rate ΩR2/Γ (a) and axial speed WR/Γ (b) of
a right-handed helix of circulation Γ , radius R, pitch h and core size a as a function of
h/R for a/R= 0.03. The solid black curves correspond to the numerical results obtained
in this work. The solid grey curves correspond to the theoretical expressions (A 1a,b), the
dashed grey curves correspond to the results obtained by Velasco Fuentes (2018), that is
the same expressions without the 1/4 terms. Both theoretical results are for an equivalent
Rankine vortex of core size a/R= 0.0408.

When N 6= 1, a straight hub vortex placed on the central axis can be added without
introducing any deformation on the helices. This is not possible when N = 1. The
external helix indeed generates an horizontal velocity on the axis that induces a radial
displacement of any straight structure place at this position. In that case, we expect
the hub vortex to deform and to move out from the rotation axis. Our objective is to
describe such a structure, as well as the structures composed of N vortex pairs with
root vortices not on the rotation axis. We shall see that there still exist steady solutions
in those cases.

2.4. Non-interacting helical pairs
In order to understand the parameters defining the solutions, it is useful to consider
first a simple configuration composed of two co-axial helices of opposite circulation
and same core size a. The internal and external helices are defined by their radii Rint

and Rext and pitches hint and hext, as illustrated in figure 4. They also depend on their
relative orientation characterized by a parameter κ , which is +1 if both helices have
the same orientation, and −1 if they have opposite orientations.

If κ = −1 or if hext 6= hint, this pair of vortices is no longer helically invariant.
However, it exhibits a certain spatial periodicity. The periodicity is in the sense that
there exists an axial distance L > 0 and an angle 0 6 φ̃ < 2π such that the radial
locations of each vortex are invariant by the double operation of translation by L and
rotation by φ̃ (see figure 4). The parameters L and φ̃ are given by

1
L
=

∣∣∣∣ 1
hint
−

κ

hext

∣∣∣∣ , (2.8a)

φ̃ = 2π

[
L

min(hint, hext)
− E

(
L

min(hint, hext)

)]
, (2.8b)
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hext
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Rint

a

ƒ¡

L

FIGURE 4. (Colour online) Configuration of two undeformed co-axial helical vortices.
Here both helices have the same orientation: κ = 1.

where E(x) denotes the integer part of x. When κ = −1, L is smaller than hext and
hint; both helices have performed less than a complete rotation in one axial period
L. When κ = 1, L is always larger than the smaller pitch; the helix with the smaller
pitch has then performed more than a complete rotation in a period. The other helix
has performed just one complete revolution less.

When hext 6= hint, the undeformed helical pair corresponds to a steady solution only
if the mutual induction of one helix on the other is negligible. This occurs when
the core size becomes sufficiently small. In this limit, the locally induced velocity is
the dominant contribution to the induced velocity which then becomes constant and
oriented along the local binormal vector. Each helix then behaves as if the other helix
was not present. A priori, they rotate and translate at different speeds. But, owing to
the possibility to add any displacement along the helical line, it is possible to find a
frame where both helical structures become steady. The frame selection is graphically
explained in figure 5(b). In that figure, we plot each helix in the (φ, z) plane at
t = 0 (solid lines) and t = 1 (dashed lines) using two different colours. Each helix
corresponds to a straight line with a slope equal to the helix pitch. The self-induced
velocity of each helix, together with their decomposition in the axial and azimuthal
directions, is also indicated. Any vector that connects any two points from the lines
at the two distinct times provides a possible frame velocity vector that keeps the
considered helix steady. The vector that keeps both helices steady is the one that
connects the crossing points associated with each instant. Such a vector exists as soon
as the helix lines are not parallel in the (φ, z) plane, that is if hext 6= hint or κ =−1.

The angular velocity Ω (0)
F and axial velocity W (0)

F of the frame are given from the
self-induced velocity of each helix by

Ω
(0)
F =

2π(WSI
int −WSI

ext)+ (Ω
SI
exthext −Ω

SI
intκhint)

hext − κhint
, (2.9a)

W (0)
F =WSI

ext +
hext

2π
(Ω

(0)
F −Ω

SI
ext). (2.9b)

The second equation shows that condition (2.7) is satisfied by the external vortex. It
is immediate to obtain

W (0)
F =WSI

int +
κhint

2π
(Ω

(0)
F −Ω

SI
int), (2.10)

that guarantees that (2.7) is also satisfied by the internal vortex.
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FIGURE 5. (Colour online) (a) Self-induced velocities of a pair of coaxial vortices when
the mutual induction is negligible. (b) Schematic diagram showing how the moving frame
velocities Ω (0)

F and W (0)
F are obtained. Solid and dashed lines represent the two helices

at t= 0 and t= 1 respectively. The frame velocity is given by the vector connecting the
crossing points of solid lines with dashed lines. The axial and azimuthal components of
this vector provides W (0)

F and Ω (0)
F respectively.

Without restriction, we can assume the external helix to be right-handed with a
positive circulation Γ . The internal helix has then a negative circulation −Γ . It is
right-handed if κ = 1, left-handed if κ =−1.

2.5. Parameters defining the deformed helical structures
The two-helix structure obtained above is no longer a solution if the two helices
interact. Indeed, the velocity field of one helix on the other contains a radial
component that moves the structure radially. Each helix is therefore expected to
be deformed by the field induced by the other helices. Being inspired by the
non-interacting solutions, we shall search for steady solutions that still exhibit a
spatial periodicity. We consider solutions composed of N pairs of counter-rotating
vortices (the external vortex having a positive circulation Γ , the internal a negative
circulation −Γ ), with a 2π/N azimuthal symmetry. By construction, we then assume
that the solutions are invariant by the transform φ→ φ+ 2π/N. We also assume that
there exist an axial distance L> 0 and an angle φ̃ satisfying 06 φ̃ < 2π/N, such that
the solutions are invariant by the double operation z→ z + L and φ→ φ + φ̃. We
do not want the solution to repeat several times in a spatial period, so we further
assume that there is a single location in an axial period L where internal and external
vortices are at the same azimuth. We shall choose this particular azimuth to define,
from their radial positions, the radii Rint and Rext of the internal and external vortex
(Rint < Rext). We also define the mean pitch hint and hext for each vortex from the
azimuthal angle covered in an axial period. For the external vortex, if this angle
is φext, we have hext = 2πL/φext. If we add the vortex core size a that we assume
identical and constant for all the vortices, we obtain five spatial length scales from
which we can form four independent non-dimensional parameters:

R∗ =
Rint

Rext
, h∗ =

hext

Rext
, α =

hint

hext
, ε=

a
Rext

. (2.11a−d)

To these four real positive parameters, we should add the number N of vortex pairs
and the index κ = ±1 that defines the relative orientation of internal and external
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vortices. In most cases, we shall keep κ = 1 and N = 1. The parameter R∗ will be
varied between 0 and 0.75, h∗ between 0.1 and 2, α between 0.5 and 2. The parameter
ε will always be considered small, and typically equal to 0.03. Even for this small
value of ε, finite core size effects can become important if h and α are too small.
This provides a limitation on the values of the parameters that we can consider. Here,
only the extreme cases (h≈ 0.1 and α≈ 0.5) are expected to give rise to consequent
finite core size effects.

In the paper, the vortex core size is also assumed to be constant. This approximation
is discussed in § 4.

Note that both the normalized period L/Rext and the angle φ̃ can be obtained from
the above geometrical parameters:

L
Rext
=

h∗

N|1/α − κ|
, φ̃ =

2π

N

[
1

|1/α − κ|
− E

(
1

|1/α − κ|

)]
. (2.12a,b)

Each solution is associated with a moving frame where the solution is steady. From
the angular velocity ΩF and the axial velocity WF of the frame, we can construct two
other dimensionless parameters using the external radius Rext and the circulation Γ of
the vortices:

Ω =
R2

extΩF

NΓ
, W =

RextWF

NΓ
. (2.13a,b)

These two parameters characterizing the frame velocity are functions of the six
geometrical parameters R∗, h∗, α, ε, N and κ .

3. Deformed helical vortex pairs
In this section, we describe the deformed helical structures as the geometrical

parameters vary. After having introduced an approximated solution, we successively
study the geometrical characteristics, the frame velocity and the induced velocity.

3.1. First-order approximation
As already mentioned above, as soon as the mutual induction of one helix on the
others is taken into account, the vortex structure does not remain helical. For a given
vortex parametrized by its radial position r(z) and angular position φ(z) as a function
of the z coordinate, the condition of steadiness (2.6) reduces to

dr
dz
=

V ind
r

V ind
z −WF

,
dφ
dz
=
Ω ind
−ΩF

V ind
z −WF

. (3.1a,b)

Each induced velocity component is composed of two contributions, a self-induced
contribution VSI and a contribution induced by the other vortices VMI . The radial self-
induced velocity of an helix being null, we clearly see from the first equation that the
radial deformation will be associated with the mutual induction, and more precisely
with the radial component VMI

r of the mutually induced velocity.
A first-order correction to the undeformed solution can be obtained by solving these

two equations assuming that the velocity fields on the right-hand side are evaluated
at the undeformed location:

dr(1)

dz
=

VMI
r (r0, φ0(z), z)

VMI
z (r0, φ0(z), z)+ VSI

z −W (1)
F

, (3.2a)
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FIGURE 6. (Colour online) Radial position of the internal and external vortices for a
single counter-rotating helical pair for (a) R∗ = 0.5, κ = 1, h∗ = 1, α = 0.9 and ε = 0.03
(b) R∗ = 0.5, κ = 1, h∗ = 1, α = 1.4 and ε= 0.03. Solid line: numerical solution. Dashed
line: first-order approximation.

dφ(1)

dz
=
ΩMI(r0, φ0(z), z)+ΩSI

−Ω
(1)
F

VMI
z (r0, φ0(z), z)+ VSI

z −W (1)
F

. (3.2b)

For the mutual induction, we use the formula given by Hardin (1982) for a perfect
helix. The corrected frame velocities Ω

(1)
F and W (1)

F are obtained by using the
definition of L for the internal and external vortices:

φ
(1)
int (L)− φ

(1)
int (0)=

2πL
hint
=

∫ L

0

ΩMI
int (r

(0)
int , φ

(0)
int (z), z)+ΩSI

int −Ω
(1)
F

VMI
z,int(r

(0)
int , φ

(0)
int (z), z)+ VSI

z,int −W (1)
F

dz, (3.3a)

φ(1)ext (L)− φ
(1)
ext (0)=

2πL
hext
=

∫ L

0

ΩMI
ext (r

(0)
ext , φ

(0)
ext (z), z)+ΩSI

ext −Ω
(1)
F

VMI
z,ext(r

(0)
ext , φ

(0)
ext (z), z)+ VSI

z,ext −W (1)
F

dz. (3.3b)

Note that equations (3.3a,b) give (2.9b) if we neglect the mutual induction. The
condition of periodicity of the radial deformation does not give an additional
constraint because it is automatically satisfied for each vortex.

This simple first-order approximation for the helix deformation is compared to
numerical results for two typical examples in figure 6. We clearly see that the
agreement strongly depends on the pitch ratio α. This approximation tends to
underestimate the deformation of the external vortex but to overestimate that of
the internal vortex. The error is always larger for the internal vortex. The maximum
error can then be quantified using

E(1)r,int =
max(|rint − r(1)int |)

Rint
, (3.4)

which measures the maximum deviation between numerical and first-order solutions.
This quantity is plotted in figure 7 as a function of h∗ for N = κ = 1 and various
α, R∗ and ε. This figure shows that, except for very large R∗ (R∗ = 0.7), the error
increases with h∗. The error also increases with ε, R∗ and with the distance of α to 1.
It becomes particularly large (larger than 30 %) for large α and large h∗. Note however
that the error remains small for α ≈ 1, small R∗ and small ε.
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FIGURE 7. First-order approximation error E(1)r,int for a single vortex pair (N = κ = 1). (a):
R∗ = 0.5 and ε= 0.03; (b): α = 1.2 and ε= 0.03; (c): R∗ = 0.5 and α = 1.2.
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FIGURE 8. (Colour online) Representation of the deformed vortex structure for N = 1,
κ = 1, h∗ = 2, α = 1.5, ε= 0.06 and different values of R∗.

3.2. Characterization of the helix deformation
The first-order approximation clearly demonstrates that the radial deformation
increases when the radial velocity induced by the other vortices grows. This occurs
when internal and external vortices get closer to each other, that is when R∗ increases.
This is illustrated in figure 8 where a perspective view of a single pair is shown for
different values of R∗, the other parameters being fixed.

In order to quantify the level of deformation, we introduce two quantities

1rint
max =

max(|rint − Rint|)

Rint
, 1rext

max =
max(|rext − Rext|)

Rext
(3.5a,b)

that measure the maximum displacement of the internal and external vortices. The
growth of 1rint

max and 1rext
max with respect to R∗ is quantified in figure 9(c). The effect

of the number of vortices is clearly visible. The vortex deformation strongly decreases
with N. For R∗ = 0.7, the fluctuation of the internal vortex reaches 30 % for a single
vortex pair while it is less than 0.1 % for three vortex pairs. Note that when R∗ goes to
zero, the deformation of the external vortex vanishes whatever N. When N 6= 1, this is
the same for the internal vortex. In that case, we recover the Joukowski’s model with
a straight vortex hub on the helix axis. For N = 1, the limit R∗→ 0 is by contrast
singular.

The variations of 1rint
max and 1rext

max with respect to h∗ and α are shown in figure 10.
The increase of the vortex deformations with h∗ is associated with the decrease of
the axial component of the induced velocity. Indeed, for large h∗, the vortices become
aligned with respect to the z axis. They therefore mainly induce a velocity field in
the radial and azimuthal directions. The ratio Vr/Vz that defines the slope of the
deformation thus gets large, implying large 1rint

max and 1rext
max. In the opposite, when
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FIGURE 9. (Colour online) Representation of two vortex pairs (a) and three vortex pairs
(b) for h∗= 1, R∗= 0.4, ε= 0.05, α= 2, κ = 1. (c) Maximum deformation 1rint

max (red) and
1rext

max (black) versus R∗ for one vortex pair (solid lines), two vortex pairs (dashed lines),
three vortex pairs (dash-dot lines). h∗ = 1, α = 1.5, κ = 1 and ε= 0.05.
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FIGURE 10. (Colour online) Maximum deformation contours in the (α, h) plane for R∗=
0.5, ε= 0.03, κ = 1, N = 1. The thick solid line corresponds to the line 1rint

max =1rext
max.

h∗ goes to zero, Vr/Vz goes to zero as well: the helical vortices are thus no longer
deformed.

Concerning the effect of α, the increase of the deformation of the external helix
with α can be understood by the same argument. It is associated with a decrease of
hint, and therefore an increase of the ratio Vr/Vz. The variation of 1rint

max with respect
to α is less simple. For h∗ < 1, 1rint

max is maximum for α close to 1. This value
α = 1 is special for κ = 1 because the axial period L and the frame axial velocity
WF become infinite (see (2.12)). It therefore corresponds to a singular limit in our
description. However, the radial positions rint and rext of internal and external vortices
can still be plotted as a function of z/L and we obtain a well-defined curve as α→ 1.
Similarly, WF/L converges to a non-zero constant as α→ 1, which means that a finite
time T = L/WF is needed to advect a perturbation on the period L at the velocity
WF. The singular case α = 1 could therefore be described in an alternative way by
considering the solution in the frame moving at the velocity WF. In this frame the
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FIGURE 11. (Colour online) Characteristics close to α= 1 for R∗ = 0.5, h∗ = 1, ε= 0.01,
N = 1, κ = 1. (a) Comparison of the radial positions of the external vortex versus z/L for
α= 1.05 and α= 0.95 with the radial position of the external helix versus t/T for α= 1.
(b) Variation of the characteristic time scale L/WF versus α. The symbol represents the
period T of the temporal evolution of perfect helices for α = 1.

solution should correspond to the temporal dynamics of perfect helices with the same
R∗, h∗ and ε. This is indeed what we have checked in figure 11. In figure 11(a),
we show that the variation of rext as a function of z/L, for α close to one, is well
described by the variation of rext as a function of t/T in the temporal problem. We
also check in figure 11(b) that L/WF converges to the temporal period obtained in the
temporal problem as α→ 1.

3.3. Structure velocities
As explained above (§ 3.1), we can obtain different approximations of the frame
velocity ΩF and WF by neglecting the helix deformations and/or the mutual induction.
The leading-order approximation (Ω (0)

F , W (0)
F ) neglects both the mutual induction

and the deformation. The first-order approximation (Ω (1)
F , W (1)

F ) neglects the vortex
deformation but takes into account the mutual induction. This approximation is
obtained by solving (3.3a,b) for Ω (1)

F and W (1)
F . In figure 12, we have compared

both approximations to numerical results for a typical case. We clearly see that the
leading-order approximation does not capture the variations of ΩF and WF with h∗,
while the first-order approximation follows both qualitatively and quantitatively these
variations. By comparing other configurations, we have observed that the first-order
approximation provides a good approximation of ΩF and WF as soon as R∗ 6 0.5
and ε6 0.1. In practice, these approximations have been used as guess values for the
numerical calculation.

The variations of the frame velocities Ω and W with respect to h∗ and α are shown
in figure 13. Both contour plots exhibit similar features: a singularity line α= 1 and
a single contour where Ω and W vanish. These zero level contours are different for
Ω and W but both cross the singular line α= 1 at the same value (here h∗ ≈ 0.175).
This special point on the singular line α = 1 corresponds to the particular solution
obtained by Walther et al. (2007). For these parameters, the vortices are undeformed
helices of the same pitch. There therefore exist infinitely many frames where the
helices are stationary as any values of axial speed Wa and angular velocity Ωa can be
added provided (2.7) is satisfied. This explains the degeneracy observed at this point
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FIGURE 12. Frame velocity versus h∗ for R∗ = 0.5, ε = 0.03, α = 1.4, κ = 1, N = 1. (a)
Angular velocity Ω = R2

extΩF/Γ , (b) axial velocity W = RextWF/Γ . Solid line: numerical
result. Dashed line: first-order approximation (Ω (1)

F , W (1)
F ). Dash-dotted line: leading-order

approximation (Ω (0)
F , W (0)

F ).
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FIGURE 13. Contour values of the frame velocity in the (α,h) plane for R∗=0.5, ε=0.03,
N = 1 and κ = 1. (a) Angular velocity Ω =ΩFR2

ext/Γ . (b) Axial velocity W =WFRext/Γ .
The dashed line (α= 1) indicates a line where Ω and W are not defined. The thick solid
curve corresponds to the level zero.

in figure 13. These qualitative features do not depend on ε and R∗. It is interesting to
note that a contour of Ω may cross twice a contour of W (look at the saddle point
region close to (α, h) ≈ (1.7, 0.4)). The coordinates of the two crossing points then
correspond to couples of parameters (α, h) having the same frame velocities (Ω,W).

By construction, the vortex elements are advected along the stationary vortex
structure. This tangential velocity is different for the internal and the external vortices
and varies along the vortex structure, as illustrated in figure 14(a). This variation is
associated with the deformation of the helices. It is then important when the level of
deformation is high. For each vortex, we define a mean tangential velocity V̄tan and
a measure 1Vtan of the fluctuation around this mean using

V̄tan =
1
L

∫ z0+L

z0

Vtan(z) dz, 1Vtan =
max |Vtan − V̄tan|

|V̄tan|
. (3.6a,b)
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FIGURE 14. (a) Variation of the tangential velocity on a period in the internal vortex
(dashed line) and in the external vortex (solid line) for a typical case (R∗ = 0.6, h∗ =
1.5, α = 1.4 and ε = 0.03, N = 1, κ = 1). (b) Maximum tangential velocity fluctuation in
the internal vortex (dashed lines) and external vortex (solid lines) as a function of h∗ for
different values of R∗ and α = 1.4 , ε= 0.03, N = 1, κ = 1.
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FIGURE 15. Contour values of the mean tangential velocities in the (α, h) plane for R∗=
0.5, ε= 0.03, N= 1, κ = 1. (a) External vortex: V̄ext

tanRext/Γ . (b) Internal vortex: V̄ int
tanRext/Γ .

The dashed line (α = 1) indicates a line where V̄ext
tan and V̄ int

tan are not defined. The thick
solid curve corresponds to the level zero.

The measures 1Vext
tan and 1V int

tan for the external and internal vortices are plotted as
a function of h∗ in figure 14(b) for a few cases. We do observe an increase of the
tangential velocity fluctuation with h∗ and R∗, in agreement with the increase of the
vortex deformation (see figure 10).

The mean tangential velocity of each vortex is shown in the (α, h) plane in
figure 15. A positive value corresponds to an advection in the positive axial direction,
a negative value to an advection in the opposite direction. Not surprisingly, the mean
tangential velocity blows up as α→ 1 like ΩF and WF. It is also interesting to note
that the contour curves are similar (in shape) for both vortices and close to those
obtained for ΩFR2

ext/Γ in figure 13(a).
In figure 16(a), we have displayed on the same plot the parameters for which mean

tangential velocities and ΩF vanish. We clearly see that mean tangential velocities and
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FIGURE 16. (Colour online) (a) Value of h∗ versus α for which ΩF = 0 (black dashed
line), V̄ext

tan = 0 (blue line), V̄ int
tan = 0 (red line) for R∗ = 0.5, ε = 0.03, N = 1, κ = 1. (b)

Comparison of mean tangential velocity V̄tan (solid lines) and tangential frame velocity
VFtan (dashed lines) for external and internal vortices (normalized by Γ /Rext). Parameters
are R∗ = 0.5, α = 1.2, ε= 0.03, N = 1, κ = 1.

ΩF vanish for almost the same parameters. This means that there is a very small
region of parameters around the line ΩF = 0 where internal and external vortices
propagate in different directions. This region is delimited by the solid lines shown
in figure 16(a). Everywhere else, both vortices propagate in the same direction. We
shall see in § 5 that this condition on the direction of propagation of the vortices is
necessary for the solution to describe the flow generated by a rotor.

It is interesting to compare more precisely the mean tangential velocity with
the velocity associated with the moving frame. Assuming that each structure is
approximatively a helix, this tangential ‘frame’ velocity is given by

V int
Ftan =−

ΩFRextR∗ +WFh∗/(2παR∗)√
1+ h∗2/(2παR∗)2

, Vext
Ftan =−

ΩFRext +WFh∗/(2π)√
1+ h∗2/(2π)2

(3.7a,b)

for the internal and external vortices, respectively. The difference between VFtan and
V̄tan is associated with the vortex induction. In figure 16(b), we can observe the similar
values of V̄tan and VFtan in the whole range of h∗ between 0.6 and 1.4 for a typical
case. This means that the most important part of the tangential velocity is associated
with the frame velocity and the vortex induction contribution remains in general small.

3.4. Induced flow
From the point of view of applications, it is useful to know the velocity field induced
by the vortex structure. An illustration of the axial and angular components of such
a field in a plane perpendicular to the structure axis is shown in figure 17. In these
contour plots, the axial velocity WF and angular velocity ΩF have been subtracted
such that the velocity field vanishes far from the centre. The vortex cores where the
velocity field is smoothed have also been indicated. We clearly see that the induced
velocity field exhibits strong inhomogeneities.

In figure 18, we show the azimuthally averaged flow versus r at different axial
locations. In the core region of each vortex (at a distance smaller than a from the
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FIGURE 17. Induced velocity contours in a cross-section (z= 0 plane) for h∗= 1, R∗= 0.5,
α = 1.5, ε = 0.03, N = 1 and κ = 1. In (a) colours are for |V ind

z | with the same colour
map as in (b).
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FIGURE 18. Azimuthally averaged induced velocity profile for the same parameters as in
figure 17. Solid lines: numerical results at different axial locations. Dashed line: theoretical
prediction for perfect helices using the Hardin model. (a) Angular velocity Ω̄ indR2

ext/(NΓ ).
(b) Axial velocity V̄ ind

z hext/(NΓ ).

vortex centre), each velocity profile has been replaced by a linear fit. We do see small
fluctuations of the profiles between different locations but the profiles remain close to
the profiles generated by N pairs of perfect helices. These ideal profiles are given (for
infinitely thin vortices) by Hardin (1982)

V̄H
z =

NΓ
hext


1−

1
α

if r< Rint,

1 if Rint < r< Rext,

0 if r> Rext,

(3.8)

Ω̄H
=

NΓ
R2

ext

−
R2

ext

2πr2
if Rint < r< Rext,

0 elsewhere.
(3.9)
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FIGURE 19. (Colour online) Contours of mass axial flow rate M (normalized by ρNΓ Rext)
in the (α, h) plane for R∗ = 0.5, ε = 0.03, N = 1 and κ = 1. Contours correspond from
top to bottom to {1, 1.25, 1.5, 2, 2.5, 3, 4, 6, 10}. Solid lines: M; red dashed lines: MH .

The fluctuations are mainly associated with the radial displacement of the vortices.
When the helices are less deformed, the fluctuations are smaller. It is interesting to
note that the azimuthally averaged axial flow changes sign close to the axis when
hint < hext, that is α < 1.

For the applications, it is also useful to evaluate the mass flow rate induced by the
structure. The mass axial flow rate is defined by

M =
∫∫

ρV ind
z r dr dφ. (3.10)

For N undeformed helical pairs, we get using (3.8)

MH
= ρNΓπ

(
R2

ext

hext
−

R2
int

hint

)
, (3.11)

that is

MH

ρNΓ Rext
=

π

h∗

(
1−

(R∗)2

α

)
. (3.12)

This expression provides a good approximation of the mass flow rate of the deformed
structure, as observed in figure 19 for a typical example.

Note that MH changes sign when α<(R∗)2. In this regime, the induced axial flow is
sufficiently negative close to the axis to invert the positive mass flow rate occurring
between the internal and external vortices. For the parameters of figure 19, this is
expected for very small α (α < 0.25).

4. Analysis of the effect of a varying core size
We have seen that the tangential velocity varies along each vortex structure when

it is deformed. This implies that each vortex experiences a stretching field that in
principle induces a variation of its core size. In this section, our objective is to
quantify this effect.
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FIGURE 20. (Colour online) (a) Variation of the core size a/Rext for the external (solid
line) and internal (dashed line) vortices. The mean core size value in each vortex is
a/Rext = 0.03. (b) Radial position of the internal and external vortices for a constant
core size (dashed line) and for a variable core size obtained using (4.1) (solid line). The
parameters in both panels are R∗ = 0.8, h∗ = 1.4, α= 1.4, N = 1, κ = 1 and a mean core
size a/Rext = 0.03.

In a inviscid framework, the way the core size varies is simply given by the
conservation of the mass flux in the vortex core which imposes

a2Vtan =Cst. (4.1)

As soon as a changes, the self-induced velocity is modified and therefore a different
equilibrium solution is obtained.

In figure 20, we have analysed the effect of a varying core size in an extreme case
(R∗ = 0.8, h∗ = 1.4, ε = 0.03, α = 1.4, N = 1, κ = 1). As seen in figure 14(b), for
this value of R∗, the variations of Vtan are the largest: they reach 32 % for the internal
vortex, and 23 % for the external one. In figure 20(a), we have plotted the variation of
the core size in a period for the converged solution in both vortices. The variations of
the core size are weaker than those of the tangential velocity, as expected from (4.1).
They are approximately 10 % for the internal vortex, and 7 % for the external vortex,
with respect to the mean core size a= 0.03. In figure 20(b), the radial position of the
vortices is shown. The solution with a varying core size is compared to the solution
with a constant core size. We observe that the difference between both solutions is
very small. The largest gaps between both radial positions are 0.78 % and 0.66 % for
the internal and external vortex, respectively. In terms of moving frame velocities, the
differences are also extremely small: we obtain the values W = 1.826 and Ω = 3.697
for a varying core size, while we had W = 1.809 and Ω = 3.610 for a constant core
size.

This comparison guarantees that the effects of a varying core size is negligible
for all the cases that we have considered. It a posteriori justifies the use of the
approximation of a constant core size in our work.

5. Discussion in the context of rotors

In this section, we discuss our solutions in the context of rotor wakes. Our objective
is to identify, as a function of the geometrical parameters, which far wake situations
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h*

FIGURE 21. Diagram of the different rotor flow regimes. White regions: windmill brake
regime or wind turbine regime (both vortices are going upwards as the external wind).
Light grey regions: ascending regime (both vortices are going downwards as the external
wind). Dark grey regions: slow descending regime and vortex ring state (both vortices are
going downwards while the external wind is going upwards). Close to the line ΩF = 0,
there exists a small region where one vortex is going upwards while the other is going
downwards: such a solution cannot describe the (far) wake of a rotor.

the solutions could possibly describe. In other words, if a solution was able to
represent the flow generated by rotor, which rotor configuration it would be.

In the previous sections, we have obtained the frame where each solution is
stationary. If the flow was created by a rotor, this frame would necessarily be a
frame attached to a blade. In other words, the angular velocity −ΩF would be the
rotation rate of the rotor and −WF the external wind velocity. Moreover, in the far
field, the vortices which have been created by the rotor would have to move away
from it. From the direction of propagation of the vortices, which is given by the sign
of the mean tangential velocity, we can then deduce the side where the rotor should
be. For example, if V̄tan > 0, the vortices move in the positive direction, the rotor
should then be located on the negative side.

By analysing the directions of propagation of the vortices and of the external wind,
one can build the diagram shown in figure 21. The different domains are limited
by the curves WF = 0 and ΩF = 0 and the line α = 1, which correspond to changes
of the signs of the direction of propagation of the vortices or of the external wind.
In this figure, we have also indicated the typical azimuthally averaged axial flow
corresponding to each regime. For example, in the white region on the right of the
line α = 1, WF > 0, V̄ext

tan < 0, V̄ int
tan < 0 and M > 0: both vortices move in the same

negative direction as the external wind, which is opposite to the direction of the mass
flow rate. Assuming a positive axis downwards, this situation corresponds to the
so-called windmill brake regime of an helicopter: the helicopter is going downwards,
while the flow and the vortices are going upwards with respect to the helicopter rotor.
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This regime also corresponds to the wind turbine regime. The difference compared
to the other windmill brake regime obtained for α < 1 is in the azimuthally averaged
axial flow, which is stronger than the external wind close to the axis in that case.

In the light grey regions, the vortex velocities are positive while WF < 0. This
regime corresponds to a climbing regime: the vortices move downwards as do the
external flow and the mass flow rate. In the dark grey regions, WF and the vortex
velocities are positive as is the mass flow rate. This situation corresponds to a
slow descending regime: the vortices move downwards while the external flow goes
upwards. It does not tell us anything on the behaviour of the vortices close to the
rotor. It is not excluded that the vortices exhibit a complex pattern near the rotor, as
observed in the so-called vortex ring state (Drees & Hendal 1951; Quaranta 2017;
Durán Venegas & Le Dizès 2018).

Note that the curve ΩF = 0 is not exactly the limit between the windmill brake
regime and the slow descending regime. There is actually a small region close to
this curve where the solution cannot correspond to any helicopter flight regime. This
region has been displayed in figure 16(a) for a particular set of parameters. In this
region, internal and external vortices move in opposite directions. For this reason, they
cannot be created by a single rotor located far away.

6. Conclusion
We have obtained new numerical solutions that extend the uniform helices that

are usually used to describe the far wake generated by a rotor in axial wind. These
solutions are spatially periodic and steady in a rotating and translating frame. They
describe a situation where each blade creates two counter-rotating vortices emitted
at two different non-vanishing radii. We have shown that these solutions can be
considered as deformed helices. They exhibit radial variations that increase as the
internal vortex gets closer to the external vortex. We have provided simpler numerical
solutions that capture the main features of the solutions. We have also considered the
variation of the vortex core size associated with the deformation and shown that it
has a very weak effect on the main characteristics of the solutions. Finally, we have
addressed the relevance of these solutions for the far wake description of helicopters
in vertical displacement.

The stability of the solutions has not been considered. Long-wavelength instability
is known to affect single helices (Widnall 1972; Quaranta, Bolnot & Leweke 2015)
as well as multiple helices (Gupta & Loewy 1974; Okulov 2004; Selçuk, Delbende &
Rossi 2017a; Quaranta 2017). Similar instabilities are expected to exist in the present
solutions.

Note finally that we have not considered the inner structure of the vortices.
Fukumoto & Okulov (2005) and Blanco-Rodríguez et al. (2015) among others have
shown that the cores of helical vortices deform due to the effects of curvature, torsion
and strain. These deformations are responsible of short-wavelength instabilities that
develop in vortex cores. Local curvature induces the curvature instability (Hattori &
Fukumoto 2014; Blanco-Rodríguez & Le Dizès 2017) while strain causes the elliptic
instability (Blanco-Rodríguez & Le Dizès 2016). Both instabilities are expected to be
present in the inner core of our solutions.
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Appendix A. Asymptotic expressions of Ω and W for a single helix

The angular rotation Ω and the axial velocity W of a fluid element on a helix of
pitch h, radius R, core size a and circulation Γ are given by the expressions

ΩR2

Γ
=

ln(2/ε)+ 2(1+ p2)− ln(
√

1+ p2)− (1+ p2)3/2[2/p−W(p)] − 1/4
4π(1+ p2)3/2

, (A 1a)

WR
Γ
=

ln(2/ε)− ln(
√

1+ p2)+ (1+ p2)3/2W(p)− 1/4
4π(1+ p2)3/2

, (A 1b)

where p= h/(2πR), ε = a/[R(1+ p2)] and W(p) is the function defined in Boersma
& Wood (1999) by

W(p)=
∫
∞

0

{
sin2 t

(p2t2 + sin2 t)3/2
−

1
(p2 + 1)3/2

H(1/2− t)
t

}
dt. (A 2)

These expressions are (2.13) and (2.15) of Velasco Fuentes (2018) corrected by a 1/4
term to account for the vortex deformation induced by curvature. This term is obtained
by projecting in the azimuthal and axial directions a correction derived for the bi-
normal velocity component by Boersma & Wood (1999). The correction terms that
would come from the tangential velocity component have never been computed, but
we suspect that they are O(ε).

In formulas (A 1a,b), it is implicitly assumed that the vortex core model is a
Rankine vortex (uniform vortex). Using another vortex model amounts to change the
definition of the vortex core size a as explained by Widnall (1972) (see also Saffman
1992).
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