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We examine properties of residual-based tests for the null of no cointegration for
dynamic panels in which both the short-run dynamics and the long-run slope coef-
ficients are permitted to be heterogeneous across individual members of the panel+
The tests also allow for individual heterogeneous fixed effects and trend terms,
and we consider both pooled within dimension tests and group mean between
dimension tests+We derive limiting distributions for these and show that they are
normal and free of nuisance parameters+ We also provide Monte Carlo evidence
to demonstrate their small sample size and power performance, and we illustrate
their use in testing purchasing power parity for the post–Bretton Woods period+

1. INTRODUCTION

The use of cointegration techniques to test for the presence of long-run rela-
tionships among integrated variables has enjoyed growing popularity in the
empirical literature+ Unfortunately, a common dilemma for practitioners has been
the inherently low power of many of these tests when applied to time series
available for the length of the postwar period+ Research by Shiller and Perron
~1985!, Perron~1989, 1991!, and recently Pierse and Snell~1995! has gener-
ally confirmed that it is the span of the data, rather than the frequency, that

I thank Rich Clarida, Bob Cumby, Mahmoud El-Gamal, Heejoon Kang, Chiwha Kao, Andy Levin, Klaus Neusser,
Masao Ogaki, David Papell, Pierre Perron, Abdel Senhadji, Jean-Pierre Urbain, Alan Taylor, and three anony-
mous referees for helpful comments on various earlier versions of this paper+ The paper has also benefited from
presentations at the 1994 North American Econometric Society Summer Meetings in Quebec City, the 1994
European Econometric Society Summer Meetings in Maastricht, and workshop seminars at the Board of Gover-
nors of the Federal Reserve, INSEE-CREST Paris, IUPUI, Ohio State, Purdue, Queens University Belfast, Rice
University–University of Houston, and Southern Methodist University+ Finally, I thank the following students
who provided assistance in the earlier stages of the project: Younghan Kim, Rasmus Ruffer, and Lining Wan+
Address correspondence to: Peter Pedroni, Department of Economics,Williams College,Williamstown,MA 01267,
USA; e-mail: peter+pedroni@williams+edu+

Econometric Theory, 20, 2004, 597–625+ Printed in the United States of America+
DOI: 10+10170S0266466604203073

© 2004 Cambridge University Press 0266-4666004 $12+00 597

https://doi.org/10.1017/S0266466604203073 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604203073


matters for the power of these tests+ On the other hand, expanding the time
horizon to include prewar data can risk introducing unwanted changes in regime
for the data relationships+ In light of these data limitations, it is natural to ques-
tion whether a practical alternative might not be to bring additional data to bear
upon a particular cointegration hypothesis by drawing upon data from among
similar cross-sectional data in lieu of additional time periods+

For many important hypotheses to which cointegration methods have been
applied, data are in fact commonly available on a time series basis for multiple
countries, for example, and practitioners could stand to benefit significantly if
there existed a straightforward manner in which to perform cointegration tests
for pooled time series panels+ Many areas of research come to mind, such as
the growth and convergence literature and the purchasing power parity~PPP!
literature, for which it is natural to think about long-run properties of data that
are expected to hold for groups of countries+ Alternatively, time series panels
are also increasingly available for industry level data and stock market data+
For applications where the cross-sectional dimension grows reasonably large,
existing systems methods such as the Johansen~1988, 1991! procedure are likely
to become infeasible, and panel methods may be more appropriate+

On the other hand, pooling time series has traditionally involved a substan-
tial degree of sacrifice in terms of the permissible heterogeneity of the individ-
ual time series+1 To ensure broad applicability of any panel cointegration test, it
will be important to allow for as much heterogeneity as possible among the
individual members of the panel+ Therefore, one objective of this paper will be
to construct panel cointegration test statistics that allow one to vary the degree
of permissible heterogeneity among the members of the panel, and in the most
general case pool only the multivariate unit root information, leaving the form
of the time series dynamics and the potential cointegrating vectors entirely het-
erogeneous across individual members+

Initial work on nonstationary panels was done in the context of testing for
unit roots+ For example Quah~1994! derives asymptotically normal distribu-
tions for standard unit root tests in panels for which the time series and cross-
sectional dimensions grow large at the same rate+ Levin, Lin, and Chu~2002!
extend this work for the case in which both dimensions grow large indepen-
dently and derive asymptotic distributions for panel unit root tests that allow
for heterogeneous intercepts and trends across individual members+ Im, Pesa-
ran, and Shin~2003! develop a panel unit root estimator based on a group mean
approach+ Since the original versions of this paper, many other works have
extended the literature on nonstationary panels, and we refer readers to recent
surveys by Banerjee~1999!, Phillips and Moon~2000!, and Baltagi and Kao
~2000!+

In earlier working paper versions of this work, Pedroni~1995, 1997a, 2001a!,
we examined the properties of spurious regressions and residual-based tests for
the null of no cointegration for both homogeneous and heterogeneous panels
and studied special conditions under which tests for the null of no cointegra-
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tion with homogeneous slope coefficients are asymptotically equivalent to raw
panel unit root tests+ In the interest of space, in this version we focus on the
most general of these results, namely, the tests for the null of no cointegration
for panels with heterogeneous dynamics and heterogeneous slope coefficients+
In particular, we study both between dimension and within dimension residual-
based test statistics+ Each of these tests is able to accommodate individual spe-
cific short-run dynamics, individual specific fixed effects and deterministic
trends, as well as individual specific slope coefficients+We derive limiting dis-
tributions for these under the null and show that each is standard normal and
free of nuisance parameters+ We also provide Monte Carlo evidence to docu-
ment and compare their small sample performance and illustrate their use in
testing weak PPP for a panel of post–Bretton Woods exchange rate data+

The remainder of the paper is organized as follows+ Section 2 presents the
underlying theory and asymptotic results for each of the test statistics+ Sec-
tion 3 studies the small sample properties of these tests under a variety of dif-
ferent scenarios for the error processes, and Section 4 demonstrates a brief
empirical application of the tests to the hypothesis of PPP for a panel of post–
Bretton Woods exchange rate data+ Section 5 ends with a few concluding
remarks+ The derivations for each of the results in Section 2 are collected in the
Appendix+

2. ASYMPTOTIC PROPERTIES

In its most general form, we will consider the following type of regression:

yit 5 ai 1 di t 1 bi Xit 1 eit (1)

for a time series panel of observablesyit andXit for membersi 5 1, + + + ,N over
time periodst 5 1, + + + ,T, whereXit is anm-dimensional column vector for each
memberi andbi is anm-dimensional row vector for each memberi + The vari-
ablesyit and Xit are assumed to be integrated of order one, denotedI ~1!, for
each memberi of the panel, and under the null of no cointegration the residual
eit will also beI ~1!+ The parametersai anddi allow for the possibility of mem-
ber specific fixed effects and deterministic trends, respectively+ The slope coef-
ficients bi are also permitted to vary by individual, so that in general the
cointegrating vectors may be heterogeneous across members of the panel+

For regressions of the form given in~1!, we will be interested in studying
the properties of tests for the null hypothesisH0: “all of the individuals of the
panel are not cointegrated+” For the alternative hypothesis, it is worth noting
that if the underlying data generating process~DGP! is assumed to require that
all individuals of the panel be either uniformly cointegrated or uniformly not
cointegrated, then the natural interpretation for the alternative hypothesis is sim-
ply H1: “all of the individuals are cointegrated+” On the other hand, if the under-
lying DGP is assumed to permit individual members of the panel to differ in
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whether or not they are cointegrated, then the natural interpretation for the alter-
native hypothesis should beH1: “a significant portion of the individuals are
cointegrated+”

In earlier versions of this work we also studied the properties of tests for the
null of no cointegration in panels for which the slope coefficientsbi are con-
strained to be homogeneous across all individuals+ For such panels in which
the estimated slope coefficients are constrained to be homogeneous, we showed
that under the special case of strict exogeneity for the regressors, the distribu-
tion for residual-based tests of the null of no cointegration is asymptotically
equivalent to the distribution for raw panel unit root tests despite the fact that
the residuals are estimated+2 For the case in which the regressors are endog-
enous, the asymptotic equivalence result no longer holds for panels with homo-
geneous slope coefficients, and it is necessary to adjust for the asymptotic bias
induced by the estimated regressor effect+ In fact, the work in Kao~1999! has
since examined the properties of such a test for the null of no cointegration
that adjusts for the bias term due to the estimated regressors effect under endo-
geneity for the special case in which both the slope estimates and the short-run
dynamics are constrained to be homogeneous across members of the panel+ The
difficulty with this approach arises when we attempt to interpret the resulting
tests for the null of no cointegration in the case when the true DGP is such that
the slope coefficients are not common across individual members of the panel+
Specifically, in this case if we impose a common slope coefficient despite the
fact that the true slopes are heterogeneous, then the estimated residuals for any
member of the panel whose slope differs from the average long-run regression
correlation will be nonstationary, even if in truth they are cointegrated+ In many
situations the true slope coefficients are likely to vary across individuals of the
panel, and the implications for constraining the coefficients to be common are
unlikely to be acceptable for tests of the null of no cointegration+

For this reason, we present here a set of residual-based test statistics for the
null of no cointegration that do not pool the slope coefficients of the regression
and thus do not constrain the estimated slope coefficients to be the same across
members of the panel+ These statistics will be applicable as tests for the null of
no cointegration in the general case in which the regressors are fully endog-
enous and the slope coefficients are permitted to vary across individual mem-
bers of the panel+ Since both the dynamics and the cointegrating vector itself
are permitted to vary across individual members of the panel, one can think of
the test as effectively pooling only the information regarding the possible exis-
tence of the cointegrating relationship as indicated by the stationarity proper-
ties of the estimated residuals+

To study the distributional properties of such tests, we will describe the DGP
in terms of the partitioned vectorzit

' [ ~ yit ,Xit
' ! such that the true processzit

is generated aszit 5 zit21 1 jit , for jit
' [ ~jit

y,jit
X ' !+ We then assume that for

each memberi the following condition holds with regard to the time series
dimension+
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Assumption 1+1 ~Invariance Principle!+ The processjit
' [ ~jit

y,jit
x ' ! satisfies

1YMT (t51
@Tr# jit n Bi ~Vi !, for each memberi as T r `, wheren signifies

weak convergence andBi ~Vi ! is vector Brownian motion with asymptotic covari-
anceVi such that them 3 m lower diagonal blockV22i . 0 and where the
Bi ~Vi ! are taken to be defined on the same probability space for alli +

Assumption 1+1 states that the standard functional central limit theorem is
assumed to hold individually for each member series asT grows large+ The
conditions on the error process required for this convergence are relatively
weak and include the class of all stationary autoregressive moving average
~ARMA ! processes+3 The ~m 1 1! 3 ~m 1 1! asymptotic covariance matrix is
given byVi [ limTr` E @T21~(t51

T jit !~(t51
T jit

' !# and can be decomposed as
Vi [ V i

o 1 Gi 1 Gi
' , where V i

o and Gi represent the contemporaneous and
dynamic covariances, respectively, of jit for a given memberi + The matrix is
partitioned to conform with the dimensions of the vectorjit

' [ ~jit
y,jit

x ' ! so that
the V22i element is anm 3 m-dimensional matrix+ The off-diagonal termsV2li

capture the feedback between the regressors and the dependent variable, and in
keeping with the cointegration literature we do not require that the regressors
xit be exogenous+ The fact thatVi is permitted to vary across individual sec-
tions of the panel reflects the fact that we will permit all dynamics that are
absorbed in the asymptotic covariance matrix to be heterogeneous+ Finally, by
requiring thatV22i . 0, we are ruling out cases where the regressors are
themselves cointegrated with one another in the event that we have multiple
regressors+

In addition to the conditions for the invariance principle with regard to the
time series dimension, we will also assume the following condition in keeping
with a basic panel data approach+

Assumption 1+2 ~Cross-Sectional Independence!+ The individual processes
are assumed to be independent and identically distributed~i+i+d!+ cross-sectionally,
so thatE @jit jjs

' # 5 0 for all s, t, i Þ j+ More generally, the asymptotic long-run
variance matrix for a panel of sizeN 3 T is block diagonal positive definite
with the i th diagonal block given by the asymptotic covariances for memberi ,
such that diag~V1, + + + ,VN ! + The processjit is taken to be generated by a linear
processjit 5 Ci ~L!hit , whereVi 5 Ci ~1!Ci ~1!' and where the white noise inno-
vationshit and the random coefficientsCi ~L! are independent of one another
and each i+i+d+ over both thei and t dimensions+

This condition will allow us to apply standard central limit theorems in the
cross-sectional dimension in the presence of heterogeneous errors in a rela-
tively straightforward fashion+ As in Phillips and Moon~1999!, we take the
coefficientsCi ~L! as being drawn from a distribution that is i+i+d+ over thei
dimension and independent from thehit innovations+ In the empirical illustra-
tion of Section 4 we also discuss some possibilities for dealing with the case in
which such independence is violated in practice+ Finally, note that the condi-
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tion thatVi . 0 ensures that there is no cointegrating relationship betweenyit

and theXit , as will be the case under the null hypothesis that we consider
throughout this study+

Together, Assumptions 1+1 and 1+2 will provide us with the basic conditions
for investigating the asymptotic properties of the various statistics as the dimen-
sionsT and N grow large+ The first assumption will allow us to make use of
standard asymptotic convergence results over the time series dimension for
each of the individual members+ In particular, we will make use of the fact
that the following convergencies, developed in Phillips and Durlauf~1986! and
Park and Phillips~1988!, must also hold for each of the individual members
i 5 1, + + + ,N asT grows large, so that

T22 (
t51

T

zit21 zit21
' n Li

'E
0

1

Zi ~r !Zi ~r !'dr Li , (2)

T21 (
t51

T

zit21jit
' n Li

'E
0

1

Zi ~r ! dZi ~r !'dr Li 1 Gi , (3)

whereZi ~r ! [ ~Vi ~r !,Wi ~r !'!' is vector Brownian motion, such thatVi ~r ! and
Wi ~r ! are independent standard Wiener processes for alli , whereWi ~r ! is itself
an m 3 1 dimensioned vector, Gi is as previously defined, and Li is a lower
triangular decomposition ofVi such that

L11i 5 ~V11i 2 V21i
' V22i

21 V21i !
102, L12i 5 0,

L21i 5 V22i
2102V2li , L22i 5 V22i

102+ (4)

The convergence results in equations~2! and ~3! hold under standard assump-
tions regarding the initialization ofzio, and for convenience we will take these
to be common across the panel such thatzio 5 0 for all i +

The second key assumption, Assumption 1+2, will then allow us to apply sim-
ple averaging arguments over the cross-sectional sums of the corresponding
Brownian motion functionals that are used to construct the panel statistics+ In
particular, we will make use here of sequential limit arguments to investigate
the properties of the panel statistics as the time series and cross-sectional dimen-
sions grow large+ Specifically, this means that in computing the limiting prop-
erties for the panel statistics, we will first take the limit asT grows large,
followed sequentially by the limit asN grows large+ Thus, for the typical dou-
ble sum statisticPNT 5 (i51

N (t51
T Yit involved in constructing the panel statis-

tics, we write PNT 5 (i51
N SiT whereSiT 5 (t51

T Yit + Let Ri be the limit of the
standardized sum ofSiT asT r `+ For the sequential limit, we first compute
Ri asT r ` and then compute the limit of the standardized sum of(i51

N Ri as
N r `+ The sequential limit is a convenient method for computing the limit
distribution for a double index process+ However, it is not the most general
method+ Phillips and Moon~1999! formalize the notion of sequential limits for
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nonstationary double index processes and also compare it to the more general
method of joint limits+ In contrast to the sequential limit, the joint limit allows
both indexes to pass to infinity concurrently, rather than in sequence+ As Phil-
lips and Moon~1999! point out, this implies that the joint limit distribution
characterizes the limit distribution for any monotonic expansion rate ofT rela-
tive to N+ Phillips and Moon~1999! also provide a specific set of conditions
that are required for sequential convergence to imply joint convergence+ Fol-
lowing Phillips and Moon, we will denote sequential limits as~T,N r `!seq+

In our context, the sequential limit substantially simplifies the derivation of
the limit distribution for two important reasons+ One reason is that it allows
us to control the effect of nuisance parameters associated with the serial cor-
relation properties of the data in the first step asT r ` by virtue of the
standard multivariate invariance principle+ This substantially simplifies the com-
putation of the limit asN r ` for the panel statistics in the second step be-
cause it implies that we can typically characterize the heterogeneity of the
standardized sum of random variables(i51

N Ri in terms of a single nuisance
parameter associated with the conditional long-run variance of the differenced
data, L11i

2 + Another reason the sequential limit simplifies the derivation is that
applying the limit asT r ` in the first step allows one to focus only on the
first-order terms of the limit in the time series dimension, since the higher
order terms are eliminated prior to averaging over theN dimension+ This sec-
ond feature is particularly convenient for the purposes of computing the limit
for the panel+ However, this feature can also be deceptive in its simplicity
because it hides the need to control the relative expansion rate of the two dimen-
sions as is often the case for the more general joint limit+ In practical terms,
the relative expansion rate can also be an important indicator for the small
sample properties of the statistics for different dimensions ofN andT+ In Sec-
tion 3, we illustrate this in terms of a series of Monte Carlo experiments that
examine the size properties of the statistics asN andT grow large along var-
ious diagonal paths characterized by different monotonic rates of expansion of
T relative toN+

In particular, we consider two classes of statistics+ The first class of statistics
is based on pooling the residuals of the regression along the within dimension
of the panel, whereas the second class of statistics is based on pooling the resid-
uals of the regression along the between dimension of the panel+ The basic
approach in both cases is to first estimate the hypothesized cointegrating rela-
tionship separately for each member of the panel and then pool the resulting
residuals when constructing the panel tests for the null of no cointegration+ Spe-
cifically, in the first step, one can estimate the proposed cointegrating regres-
sion for each individual member of the panel in the form of~1!, including
idiosyncratic intercepts or trends as the particular model warrants, to obtain the
corresponding residuals[eit + In the second step, the way in which the estimated
residuals are pooled will differ among the various statistics, which are defined
as follows+
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DEFINITION 1 ~Panel and Group Mean Cointegration Statistics for Hetero-
geneous Panels!+ Let Ieit 5 ~D [eit , [eit21!',Ai 5 (t51

T Ieit Ieit
' where [eit is estimated

from a model based on the regression in (1). Then we can define the following
test statistics for the null of no cointegration in heterogeneous panels:

Z [vNT
[ ZL11

2 S(
i51

N

A22iD21

, Z [rNT21 [S(
i51

N

A22iD21

(
i51

N

~A21i 2 T Zl i !,

Z [tNT
[S IsNT

2 (
i51

N

A22iD2102

(
i51

N

~A21i 2 T Zl i !,

EZ [rNT21 [ (
i51

N

A22i
21 ~A21i 2 T Zl i !, EZ [tNT

[ (
i51

N

~ [si
2A22i !

2102~A21i 2 T Zl i !,

where [m it 5 [eit 2 [ri [eit21, Zl i 5 T21 (s51
K wsK (t5s11

T [m it [m i, t2s for some choice
of lag window wsK 5 1 2 s0~1 2 K !, [si

2 5 T21 (t52
T [m it

2 , [si
2 5 [si

2 1 2 Zl i , IsNT
2 [

N21 (i51
N [si

2, and ZL11
2 5 N21 (i51

N ZL11i
2 where ZL11i

2 5 ZV11i 2 ZV21i
' ZV22i

21 ZV21i such
that ZVi is a consistent estimator ofVi .

The first three statistics are based on pooling the data across the within di-
mension of the panel, which implies that the test statistics are constructed by
summing the numerator and denominator terms separately for the analogous con-
ventional time series statistics+4 Thus, for example, theZ [rNT21 “panel-rho” sta-
tistic is analogous to the semiparametric “rho” statistic studied in Phillips and
Perron~1988! and Phillips and Ouliaris~1990! for the conventional time series
case, and the panel statistics can be constructed by taking the ratio of the sum
of the numerators and the sum of the denominators of the analogous conven-
tional time series “rho” statistic across the individual members of the panel+ Like-
wise, the Z [tNT

“panel-t ” statistic, and theZ [vNT
“panel variance ratio” statistics

are analogous to the semiparametrict-statistic and the long-run variance ratio
statistic, each of which was also studied in Phillips and Ouliaris~1990! for the
conventional time series case+

The next two statistics are constructed by pooling the data along the between
dimension of the panel+ In practice this implies that the statistics can be con-
structed by first computing the ratio corresponding to the conventional time
series statistic and then computing the standardized sum of the entire ratio over
the N dimension of the panel+ Consequently, these statistics in effect compute
the group mean of the individual conventional time series statistics+ We have
presented here two group mean statistics, EZ [rNT21 and EZ [tNT

, that are analogous
to the rho-statistic andt-statistic studied in Phillips and Ouliaris~1990! for the
conventional time series case+ In principle it is also possible to construct a group
mean variance ratio statistic analogous to the one presented for the pooled panel
cointegration statistics in Definition 1+ We also experimented with such a
statistic and found it to be dominated by the other two in terms of the small
sample size properties+ Consequently we present here only the semiparametric
group-rho and group-t statistics+

604 PETER PEDRONI

https://doi.org/10.1017/S0266466604203073 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604203073


In the interest of space and simplicity, we have only presented here the
forms of the statistics that correspond to the nonparametric treatment of the
nuisance parameters+ However, it should be apparent that the nuisance param-
eters can also be treated parametrically for both the panel and group mean sta-
tistics, in which case the same limit distributions presented in the following
proposition still apply+ We refer readers to earlier versions of this work for a
discussion of the parametric treatment of these in the form of panel and group
mean augmented Dickey–Fuller~ADF! statistics+5 We discuss in more detail
the estimation of the various nuisance parametersZl i , [si

2, [si
2, ZL11i

2 in Section 3
in conjunction with the small sample properties of the statistics+

In the proposition that follows, we present the limiting distributions for these
test statistics under the null+ In particular, for the following proposition, we
posit Q, EQ and C, EC, respectively, to be finite means and covariances of the
appropriate vector Brownian motion functional+ As the following proposition
indicates, when the statistics are standardized by the appropriate values forN
andT, then the asymptotic distributions will depend only on known parameters
given byQ, EQ andC, EC+

PROPOSITION 1~Asymptotic Distributions of Residual-Based Tests for
the Null of No Cointegration in Heterogeneous Panels!+ Let Q,C signify
the mean and covariance for the vector Brownian motion functionalY ' [
~*Q2,*QdQ, Db Db ' ! , where Db [ *VW'~*WW' !21, Q [ V 2 DbW, and c~ j !,
j 5 1,2,3 refers to the j3 j upper submatrix ofc. Similarly, let EQ, EC signify
the mean and variance for the vector Brownian motion functionalEY ' [
~*QdQ~*Q2!21,*QdQ~~12 Db Db '!*Q2!2102!. Then under the null of no cointe-
gration the asymptotic distributions of the statistics presented in Definition 1
are given by

T 2N302Z [vNT
2 Q1

21MN n N~0,f~1!
' c~1! f~1! !,

TMN Z [rNT21 2 Q2Q1
21MN n N~0,f~2!

' c~2! f~2! !,

Z [tNT
2 Q2~Q1~11 Q3!!2102MN n N~0,f~3!

' c~3! f~3! !,

TN2102 EZ [rNT21 2 EQ1MN n N~0, Dc11!,

N2102 EZ [tNT
2 EQ2MN n N~0, Dc22!

as ~T,N r `!seq, where the values forf~ j ! are given asf~1!
' 5 2Q1

22, f~2!
' 5

~2Q2Q1
22,Q1

21!, and f~3!
' 5 ~2 1

2
_Q2Q1

2302~1 1 Q3!2102,Q1
2102~1 1 Q3!2102,

2 1
2
_Q2Q1

2102~1 1 Q3!2302!.

These results are fairly general and give the nuisance parameter free asymp-
totic distributions simply in terms of the corresponding moments of the under-
lying Brownian motion functionals, which can be computed by Monte Carlo
simulation, much as is done for the conventional single equation tests for the
null of no cointegration+ Note that we require only the assumption of finite
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second moments here provided that we apply sequential limit arguments such
that first T r ` so that this produces sums of i+i+d+ random variables charac-
terized as Brownian motion functionals to which standard Lindeberg–Levy cen-
tral limit arguments can be applied for largeN+

The result applies in general for any of the models associated with regres-
sion ~1! and for any number of regressors when the slope coefficients are esti-
mated separately for each member of the panel+ On the other hand, the specific
values for the momentsQ, EQ,C, EC depend on the particular form of the model,
such as whether heterogeneous intercepts or trends have been included in the
estimation, and on the number of integrated regressors, m+ Accordingly, Table 1
gives large finite sample moments for the leading bivariate cases of interest
based on the simulated Brownian motion functionals of Proposition 1 so that
we can evaluate the corresponding formulas under these conditions+

Let Q, EQ,C, EC signify the means and covariances for the vector Brownian
motion functionals defined in Proposition 1+ Then the approximations shown in
Table 1 are obtained on the basis of Monte Carlo simulations for 100,000 draws
from pairs of independent random walks withT 5 1,000, N 5 1, where cases 1,
2, and 3 refer, respectively, to the same functionals constructed from standard
Wiener processes, demeaned Wiener processes, and demeaned and detrended
Wiener processes, respectively+ We then use these simulations to approximate
the asymptotic distributions for the panel cointegration statistics asN grows
large on the basis of Proposition 1+ The results are summarized in the follow-
ing corollary+

COROLLARY 1 ~Empirical Distributions!+ Let x 5 ~T 2N302Z [vNT
,

TMN Z [rNT
21, Z [tNT

,TN2102 EZ [rNT21,N2102 EZ [tNT
!' so that based on Proposition1,

xk 2 mkMN n N~0, vk! as ~T,N r `!seq for each of the k5 1, + + + ,5 statistics
of x. Based on the empirical moments given in Table 1 for large T, the follow-
ing approximations obtain as Nr ` under the null of no cointegration:

case1: m 5 ~4+00,22+77,21+01,26+84,21+39!',

v5 ~27+81, 24+91, 1+50, 26+78, 0+78!',

case2: m 5 ~8+62,26+02,21+73,29+05,22+03!',

v5 ~60+75, 31+27, 0+93, 35+98, 0+66!',

case3: m 5 ~17+86,210+54,22+29,213+65,22+53!',

v5 ~101+68, 39+52, 0+66, 50+91, 0+56!',

Table 1. Large finite sample moments

u1 u2 u3 c11 c22 c33 c12 c13 c23 Du1 Du2 Dc1 Dc2

Case 1 0+250 20+693 0+889 0+110 0+788 3+174 20+011 0+243 21+326 26+836 21+389 26+782 0+781
Case 2 0+116 20+698 0+397 0+011 0+179 0+480 20+013 0+026 20+238 29+049 22+025 35+976 0+660
Case 3 0+056 20+590 0+182 0+001 0+034 0+085 20+001 0+003 20+042 213+649 22+528 50+907 0+561
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where cases 1, 2, and 3 refer, respectively, to statistics constructed from esti-
mated residuals[eit, from the standard case, the case with estimated fixed effects,
[ai , and the case with estimated fixed effects and estimated trends[ai , Zdi .

The usage for these statistics is the same as for the single series case+ For the
panel-v statistics, large positive values indicate rejections, whereas for the panel-
rho statistics and panel-t statistics, large negative values indicate rejection of
the null+ The computed moments in Table 1 and the corresponding distributions
in Corollary 1 are for the leading case in which a single regressor is included+
For the moments and empirical distributions corresponding to cases with vari-
ous numbers of additional regressors, we refer readers to Pedroni~1999!, which
reports these for cases ranging fromm5 2 throughm5 7 regressors+ The bias
correction terms given bym in the corollary are required to ensure that the
distribution does not diverge as theN dimension grows large+ The need for
these stems from the fact that functionals for the underlying Weiner processes
have nonzero means, which must be accommodated when averaging over theN
dimension to ensure convergence+ In comparing the distributions for the panel-
rho and panel-t statistics to the ones applicable for raw panel unit root tests
reported in Levin et al+ ~2002!, we see that the consequence of using estimated
residuals is to affect not only the asymptotic variance but also the rate at which
the mean of the unadjusted pooled statistics diverge asymptotically+ In these
cases, ignoring the consequences of the estimated regressors problem for the
asymptotic bias in panels would lead the raw panel unit root statistic to become
divergent when applied to estimated residuals+

3. MONTE CARLO EXPERIMENTS

In this section we study some of the small sample properties of the statistics
for variously dimensioned panels+We also study the empirical properties of the
statistics as the sample dimensions grow large at different relative expansion
rates+ In particular, to study the small sample size properties we will employ
the following DGP under the null hypothesis+

Data Generating Process 1+1+ Let zit 5 ~ yit , xit !
', t 5 1, + + + ,T, i 5 1, + + + ,N

be generated by

zit 5 zit21 1 jit ; jit 5 hit 1 ui hit21,

hit ; N~0, I2!; u11i ; U~0,0+5!; u21i ; U~0,0+5!; u12i 5 u22i 5 0,

wherexit is a scalar series so thatm 5 1+

This DGP is particularly convenient because it allows us to easily model and
observe the consequences of heterogeneity in the dynamics forDzit 5 jit under
the null hypothesis in terms of the long-run covariance matrixVi for jit +
Specifically, by drawingjit from a vector moving average process and setting
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u12i 5 u22i 5 0 while allowingu11i andu21i to vary across the individual mem-
bers of the panel we obtain a fairly simple mapping between these coefficients
and the long-run covariance matrixVi , while at the same time permitting sub-
stantial heterogeneity in the key features of the dynamics+ In particular, since
Vi 5 ~I 1 ui !E @hit hit

' # ~I 1 ui !
' , this implies that whenu12i 5 u22i 5 0, we can

characterize the conditional long-run variance of the spurious regression in terms
of the simple ratioL11i

2 5 ~1 1 u21i
2 !21~1 1 u11i !

2+ Thus, by varying the values
for u11i and u21i we control the values forVi and L11i

2 + For example, for the
special case in which the DGP is i+i+d+, so thatu11i andu21i are both zero, then
Vi 5 I andL11i

2 5 1+ The two extremes then occur as either one of the param-
etersu11i or u21i approaches its upper bound+ For example, when u21i is at its
minimum value of zero andu11i is at its maximum value of 0+5, then L11i

2 5
2+25+ At the other extreme, whenu11i is at its minimum value of zero andu21i is
at its maximum value of 0+5, thenL11i

2 5 0+80+
To implement each of the test statistics described in Section 2, we must obtain

the various nuisance parameter estimatesZl i , [si
2, [si

2, ZL11i
2 as presented in Defini-

tion 1+ Thus, to obtain these, we first estimate [m it by ordinary least squares
~OLS! separately for each member of the panel, and then we estimate[si

2 using
the Newey–West kernel estimator, which allows us to constructZl i 5 1

2
_~ [si

2 2 [si
2!

and IsNT
2 [ N21 (i51

N [si
2+6 In setting the lag length for the band width of the

kernel estimator, we followed the recommendation from Newey and West~1994!
and set the lag truncation as a function of the sample length to the nearest inte-
ger given byK 5 4~T0100!209+ The parameterL11i

2 is based on the triangular-
ization of the long-run covariance matrix for the vector error processjit 5
zit 2 zit21+Analogous to the way in which we obtain estimates for the first three
nuisance parameters, we first estimatejit by OLS separately for each member
of the panel based on the autoregression ofzit ,7 and then we estimate the long-
run variance for these estimated residuals using the Newey–West kernel esti-
mator using the same rule for determining the lag truncation for the band width+

In our analysis of the small sample properties of the statistics, we are inter-
ested in particular in comparing the behavior of the statistics for different dimen-
sions of the panel+We are also interested in observing the empirical consequences
for the statistics as the cross-section and time series dimensions grow large at
different relative rates+ To illustrate these features, we focus here on a few key
empirical properties, which we illustrate graphically+ For more extensive Monte
Carlo results presented in tabular form for the various other statistics, includ-
ing the ADF versions of thet-statistics, we refer the reader to an earlier work-
ing paper version of this study, Pedroni~1997a!+8

In the first two figures, we study the nominal sizes of the three different
constructions of the rho-statistics as the dimensions of the panel vary+ In Fig-
ure 1, we depict the empirical sizes for the nominal 5% tests as theT dimen-
sion grows large for a fixed value ofN+ Specifically, in this case we setN 5 20
and allowedT to vary in increments of 10, with 10,000 independent draws from
the DGP 1+1 described earlier+9 The figure shows that for this DGP, the two
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t-statistics converge from above, whereas the other statistics converge from
below+ In other words, at very small values forT, the twot-statistics are some-
what oversized in the range of 10% forT 5 40, whereas the other statistics are
somewhat undersized+ By the time theT dimension reaches aroundT 5 150, all
of the statistics have converged to a range of around 4% and 7+5% when theN
dimension is fixed atN 5 20+ Figure 2 examines the reverse case whenT is
fixed andN increases, which we varied by increments of 1 in our simulation+
In this case, the figure shows that whenT is fixed atT 5 250, the panel-v and
panel-rho statistics converge from above, whereas the others are already close
to nominal size whenN is small+ Specifically, at N 5 10 the nominal sizes range
from around 4+5% to 8+5%+ At N 5 50 they range from a little over 3% to
6%+ Notice that since one index is held fixed in both of the first two figures,
there is no anticipation that the series will fully converge to the nominal size
even as the other index becomes very large+ For example, if N is fixed at
N 5 20, then no matter how largeT becomes, the statistics are likely to retain
some minimal size distortion+

In the next set of figures, we study the empirical size properties as both the
N and T dimensions grow large at various relative rates of expansion+ These
experiments are particularly interesting, because they tell us something about
the behavior of the statistics for different rates of expansion, which the sequen-
tial limit analysis that we used to obtain the limit distributions of the previous
section does not address+ In the following diagrams we depict results for the
empirical sizes of the nominal 5% test using only a single statistic in each dia-
gram, but for different relative rates of expansion+ In particular, we illustrate

Figure 1. Empirical size asT varies for 5% tests, N 5 20+
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this for two different statistics, the panel-rho statistic in Figure 3 and the group-
rho statistic in Figure 4+ Thus, the figures illustrate what happens for the empir-
ical size of the particular statistic as the two dimensions grow large at different
relative rates ranging fromN 5 T 102 to N 5 T 506+ Specifically, in Figures 3

Figure 2. Empirical size asN varies for 5% tests, T 5 250+

Figure 3. Empirical size along various expansion paths for 5% panel-rho test+
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and 4 the horizontal axis reports the value forT, and the various curves then
report the empirical sizes for the statistic whenN is given by N 5 T 102,
N 5 T 203, N 5 T304, andN 5 T 506, respectively+ In each case, we allowedT to
increase by increments of 10 and then assignedN a value indicated by the cor-
responding expansion rate rounded to the nearest integer and constructed the
statistics based on 10,000 independent draws from DGP 1+1+

From Figure 3 we can see that among these expansion rates, convergence
appears to occur most quickly for the panel-rho statistic whenN 5 T 304 and
appears to occur most slowly whenN 5 T 102+ In each case, convergence is
from above+ Figure 4 depicts the same experiments done for the group-rho sta-
tistic+ Interestingly, the group-rho statistic appears to exhibit a hump-shaped
feature for each of these rates of expansion, in that the size first rises before
falling and appears to peak at aroundT 5 100+ Again, among these expansion
rates, convergence appears to be slowest for the case whenN 5 T 102+ However,
for the group-rho statistic, the case whenN 5 T 506 appears to do best and also
exhibits the least of the hump-shaped feature+ In comparison to the panel-rho
statistic, the empirical sizes for the group-rho statistic appear to be much closer
to nominal size for very short panels along any of the expansion paths+ For the
case whenN5 T 506, the empirical size begins at its lowest point at around 4+8%
whenT 5 60 and peaks at its highest point of around 5+8% whenT 5 100+

We also experimented with rates of expansion with powers ofT equal to and
in excess of 1+0+ In these cases theT dimension grows faster than theN dimen-
sion, and, as anticipated, the empirical sizes do not converge to nominal size
along these expansion paths+ This result is consistent with the fact that for more

Figure 4. Empirical size along various expansion paths for 5% group-rho test+
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general joint convergence results, it is often necessary to impose the condition
that the ratioN0T r 0 to eliminate bias terms that otherwise explode when
T0N r 0+ However, it is also interesting to note that in these cases we found
that both of the statistics remain undersized relative to nominal size and even-
tually go to zero as the sample dimensions go to infinity, with the speed increas-
ing as the exponent, a, for N 5 T a increases+ The fact that the statistics become
undersized in these cases is reassuring in that it tells us that in practice the tests
simply tend to become overly conservative in finite samples in which theN
dimension exceeds theT dimension+ Finally, as a separate issue, it is also worth
noting that for more extreme cases in which large negative moving average
components are present, modifications in the form of those studied by Ng and
Perron~1997! for the conventional single cointegration equation context may
also be helpful in further reducing small sample size distortions in the panel
context+

Next, we study the power properties of the statistics against various alterna-
tive hypotheses+ To simulate data under the alternative, we use the following
DGP+

Data Generating Process 1+2+ Let yit , xit , t 5 1, + + + ,T, i 5 1, + + + ,N be gener-
ated by

yit 5 xit 1 eit ; eit 5 feit21 1 hit ,

Dxit ; N~0,1!; hit ; N~0,1!; f 5 $0+9, 0+95, 0+99%,

wherexit is a scalar series so thatm 5 1 and where we vary the value forf
across experiments+

Note that we have imposed the alternative hypothesis in DGP 1+2 by ensur-
ing that the residualseit are stationary+ Furthermore, in this case, rather than
using a moving average process for the errors, instead we use an autoregres-
sive process+ The reason for this is because the power of the tests is primarily
sensitive to the autoregressive coefficientf of the residualseit + In conventional
time series tests, the small sample power tends to be weak against alternatives
that imply near unit root behavior for the residuals, and we are interested in
knowing the extent to which the small sample power improves against such
near unit root alternatives in the case of the panel tests+ Consequently, we exam-
ine the empirical power of the 5% tests against near unit root alternatives for
the residuals, ranging fromf 5 0+9 to f 5 0+99+

Again, we are interested in studying this for different combinations of the
panel dimensions, N andT+ As a general rule, we find that the power rises most
rapidly as theN dimension increases+ Accordingly, in the first set of figures, we
depict the power of each of the various tests as theT dimension increases for a
given value ofN when the autoregressive parameter for the regression residu-
als is 0+9 and 0+95+When we later consider the extreme case such that the auto-
regressive parameter for the regression residuals is 0+99, we depict both the
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case whenT increases for fixedN and the case whenN increases for fixedT+
Thus, in Figure 5 we depict the raw power of the 5% nominal tests for the null
of no cointegration against the alternative hypothesis that the members of the
panel are cointegrated when the AR~1! coefficient for the regression residuals
is f 5 0+9+ Specifically, for Figure 5 we setN 5 20 and allowedT to vary in
increments of 5, with 10,000 independent draws from the DGP 1+2 described
previously for the case whenf 5 0+9+ The results show that in this case the
empirical power for all of the tests rises rapidly asT increases, with the group-
rho test reaching 100% power at the slowest rate, by the timeT 5 70, and all of
the other tests achieving near 100% power by the timeT reaches aroundT 5
50+ In Figure 6, we examine the empirical power properties for the case in
which the alternative is closer to the null, such thatf 5 0+95+ In this case, we
allowedT to increase by increments of 10, with N fixed atN 5 20+ Each of the
statistics shows the same relative patterns as in Figure 5, except that they now
require larger values forT to achieve a given level of power+ The panel-v test
achieves 100% power the quickest, at aroundT 5 90+ The group-rho test is
again the slowest to obtain power as theT dimension increases, but it achieves
nearly 100% power by the timeT 5 130+ When comparing the raw power of
the statistics for very small values ofT, we should keep in mind however that
according to Figures 1 and 2, the group-rho statistic is also the most conserva-
tive in terms of empirical size so that the difference in power is likely to be
less extreme for size adjusted power+ Of course as the dimensionality of the
panel increases and the size distortion decreases, this plays less of a role+

Figure 5. Empirical power asT varies for 5% tests, rho 5 0+9, N 5 20+
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Finally, we are interested in considering the power properties of the statistics
for the extreme case in which the alternative is extremely close to the null and
the regression residuals exhibit near unit root properties withf 5 0+99+ In such
cases, conventional time series tests for the null of no cointegration have very
little power even in relatively sizable samples+ In Figure 7, we see that even in
panels, whenN 5 20 we still require a fairly long time dimension before the
tests achieve high power+ The panel-v test reaches 100% power most quickly,
at aroundT 5 350, whereas the panel-rho is the next quickest to reach 100%
power at aroundT 5 500+ However, Figure 8 illustrates how it is possible to
achieve near 100% empirical power even in the extreme case whenf 5 0+99
by considering increases in theN dimension in lieu of theT dimension+ Specif-
ically, for Figure 8 we setT 5 250 and variedN by increments of 1+ In this
case, we can see that the panel-v statistic reaches nearly 100% power already
by the timeN 5 45, and the two other panel statistics exceed 90% power by
the timeN 5 100, and the two group statistics exceed 90% power by the time
N 5 120+ These results are potentially very promising for empirical research+ In
terms of monthly data, they imply that with little more than 20 years of data it
may be possible to distinguish even the most extreme cases from the null of no
cointegration when the data are pooled across members of panels with these
dimensions+

Taken together, the Monte Carlo results from this section can also be helpful
in deciding among the best uses for the various statistics presented in the pre-
vious section+ For example, in very small panels, if the group-rho statistic rejects
the null of no cointegration, one can be relatively confident of the conclusion

Figure 6. Empirical power asT varies for 5% tests, rho 5 0+95, N 5 20+
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because it is slightly undersized and empirically the most conservative of the
tests+ On the other hand, if the panel is fairly large so that size distortion is less
of an issue, then the panel-v statistic tends to have the best power relative to
the other statistics and can be most useful when the alternative is potentially

Figure 7. Empirical power asT varies for 5% tests, rho 5 0+99, N 5 20+

Figure 8. Empirical power asN varies for 5% tests, rho 5 0+99, N 5 250+
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very close to the null+ The other statistics tend to lie somewhere in between
these two extremes, and they tend to have minor comparative advantages over
different ranges of the sample size+ Finally, it is worth noting that the simula-
tions here have been conducted for the case in which heterogeneous intercepts
are estimated+ An important avenue of further research will be to consider the
small sample properties of the test statistics in the presence of member specific
heterogeneous trends, which are likely to affect the power and size+

4. AN EMPIRICAL APPLICATION TO THE PURCHASING
POWER PARITY HYPOTHESIS

The PPP hypothesis has long been popular as an initial area of investigation for
new nonstationary time series techniques, and in keeping with this tradition we
illustrate here a fairly simple example of the application of the statistics pro-
posed in this paper to a version of the hypothesis known as weak long-run PPP+
This version of the PPP hypothesis posits that although nominal exchange rates
and aggregate price ratios may move together over long periods, there are rea-
sons to think that in practice the movements may not be directly proportional,
leading to cointegrating slopes different from 1+0+ For example, the presence of
such factors as international transportation costs, measurement errors, differ-
ences in price indices, and differential productivity shocks has been used to
explain why under the weak version of PPP the cointegrating slope may differ
from unity+10 Because these factors do not generally indicate a specific value
for the cointegrating slope, under this version of the theory, the cointegrating
slopes must be estimated, and a test of the weak form of PPP is interpreted as a
cointegration test among the nominal variables+ Furthermore, because factors
leading to a nonunit value for the cointegrating slope coefficient can be expected
to differ in magnitude for different countries, it is important to allow the slope
coefficients to varybi to vary by individual country+ Thus, the empirical spec-
ification becomes

sit 5 ai 1 bi pit 1 eit , (5)

wheresit is the log nominal bilateral U+S+ dollar exchange rate at timet for
country i and pit is the log price level differential between countryi and the
United States at timet, and a rejection of the null of no cointegration in this
equation is taken as evidence in favor of the weak PPP hypothesis+

Table 2 reports both the conventional individual country results for a test of
the null of no cointegration and the results of the panel and group mean statis-
tics for the null of no cointegration+ We employ both monthly and annual IFS
data on nominal exchange rates and CPI deflators for the post–Bretton Woods
period from June 1973 to December 1994 for between 20 and 25 countries
depending on availability and reliability of the data+ Results for both annual
data, T 5 20, and monthly data, T 5 246, are reported side by side for each
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Table 2. Individual, panel, and group tests for weak purchasing power parity

Country Intercept Slope v-stat rho-stat t-stat ADF-stat k-lag

Belgium 23+63 23.66 0+13 0.47 7+20 8.77 26+20 24.74 21+80 21.55 22+89 22.06 1 11
Denmark 21+98 22.01 1+23 1.42 11+17 10.50 26+31 25.73 21+82 21.70 22+58 22.14 1 11
France 21+89 21.92 1+64 1.71 5+73 15.03 27+32 27.51 21+99 21.95 22+68 21.94 1 6
Germany 20+67 20.70 0+72 0.70 12+95 12.33 26+95 26.14 21+92 21.76 22+65 22.17 1 11
Ireland 0+35 — 0+75 — 7+27 — 28+11 — 22+11 — 22+65 — 1 —
Italy 27+22 27.22 0+83 0.88 7+10 12.97 27+63 26.50 22+00 21.80 22+83 22.28 1 11
Netherlands 20+79 20.82 0+69 0.69 13+16 12.75 27+06 26.33 21+94 21.78 22+76 22.15 1 11
Sweden 21+81 21.80 1+23 1.25 11+59 10.44 26+25 24.92 21+82 21.56 22+24 21.85 1 9
Switzerland 20+51 20.54 1+01 1.17 14+93 16.10 28+21 28.09 22+11 22.01 22+76 22.34 1 11
UK 0+53 0.53 0+63 0.69 16+81 17.95 29+68 29.39 22+37 22.18 22+18 22.47 0 11
Canada 20+20 20.20 1+29 1.43 9+39 6.76 26+81 23.96 21+95 21.37 22+51 22.33 1 12
Japan 25+15 25.19 1+88 1.85 11+61 11.65 29+24 26.96 22+33 21.88 22+65 22.68 1 12
Greece 24+60 24.57 1+02 1.03 9+79 10.22 26+18 25.65 21+83 21.67 22+40 21.94 1 12
Iceland 23+50 — 0+99 — 8+19 — 27+22 — 22+01 — 21+86 — 0 —
Portugal 24+78 24.77 0+99 1.02 6+24 8.83 24+70 24.43 21+58 21.46 22+68 21.76 1 12
Spain 24+74 24.74 0+83 0.86 12+42 8.83 26+51 24.34 21+84 21.48 23+26* 21.79 1 7
Turkey 26+06 25.93 1+11 1.09 7+05 10.45 23+42 23.92 21+21 21.26 21+79 20.86 1 7
Australia 20+10 — 1+44 — 13+03 — 27+97 — 22+05 — 22+61 — 1 —
New Zealand 20+41 20.38 0+90 1.19 10+27 19.61 29+58 210.66 22+40 22.31 22+63 22.57 1 11
South Africa 20+41 — 1+16 — 13+88 — 29+29 — 22+32 — 22+55 — 1 —
Chile 24+93 24.84 1+04 1.18 7+29 31.22* 25+81 225.62* 21+92 24.04* 21+80 24.13* 0 0
Mexico 1+33 1.45 1+03 1.04 5+60 21.47 28+67 29.65 22+19 22.07 22+09 22.16 0 10
India 22+40 22.37 2+23 2.12 3+23 4.88 28+74 27.60 23+95* 22.05 23+68* 23.42* 0 11
Korea 26+57 26.56 0+94 0.97 9+15 8.30 27+83 24.88 22+24 21.64 22+11 21.77 1 6
Pakistan 22+63 — 2+89 — 3+21 — 26+80 — 22+02 — 21+85 — 0 —

Panel-stats
Standard: 0+26 3.27* 20+96 22.05* 21+42* 21.91* 23+21* 23.16*
Time demeaned: 1+42* 7.62* 21+90* 25.67* 22+30* 24.33* 22+94* 24.88*

Group-stats
Standard: — — 1+46 1.27 20+24 0.85 22+94* 21.15
Time demeaned: — — 20+35 22.79* 21+91* 22.15* 23+10* 22.41*

Notes: Based on annual and monthly IFS data from June 1973 through December 1994+ Results for monthly data are in italics+ All of the panel and group statistics have been
standardized by the means and variances given in Corollary 1 so that they are distributed asN~0,1! under the null hypothesis+ An asterisk indicates rejection at the 10% level or better+
See text for further discussion+
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statistic, with the results for the monthly data reported in italics+ For the semi-
parametric tests we have used the Newey and West~1994! recommendation for
truncating the lag length for the kernel bandwidth+ We also report the individ-
ual, panel, and group mean parametric ADF for comparison, where we have
used a standard step down procedure, starting fromK 5 12 for the monthly
data andK 5 2 for the annual data+ Because this results in a different trunca-
tion for each country, we report these in the last column+ For the panel and
group mean statistics we report results both for the raw data and for data that
have been demeaned with respect to common time effects to accommodate
some forms of cross-sectional dependency, so that in place ofsit , pit we use
Isit 5 sit 2 Sst , Ipit 5 pit 2 Tpi where Sst 5 N21 (i51

N sit and Tpt 5 N21 (i51
N pit +

A few results are worth noting in particular+ First, the point estimates for the
slopes and intercepts appear to vary greatly among different countries, and sec-
ond, as expected, the number of rejections based on the individual country tests
is relatively low, so that on this basis alone the evidence does not appear to
favor even weak PPP+ By comparison, we see that for the annual data the panel-
rho statistic and the two ADF statistics reject the null for the standard case,
whereas all but the group rho reject the null for the case when the time means
are subtracted+ For the monthly data, each of the panel statistics rejects the null
for the standard case, and the group statistics also reject the null for the case
when the time means are subtracted+ Thus, in contrast to the individual time
series tests, both the panel and group statistics appear to provide fairly strong
support in favor of the likelihood that weak PPP holds for at least a significant
portion of countries in the post–Bretton Woods period+

An important caveat worth noting is that not all forms of cross-sectional
dependency are necessarily accommodated by simple common time effects+ This
approach assumes that the disturbances for each member of the panel can be
decomposed into common disturbances that are shared among all members of
the panel and independent idiosyncratic disturbances that are specific to each
member+11 For many cases this may be appropriate, as, for example, when com-
mon business cycle shocks impact the data for all countries of the panel together+
In other cases, additional cross-sectional dependencies may exist in the form of
relatively persistent dynamic feedback effects that run from one country to
another and that are not common across countries, in which case common time
effects will not account for all of the dependency+ A general solution to the
issue of cross-sectional dependency is beyond the scope of this paper+ How-
ever, if the time series dimension is long enough relative to the cross-sectional
dimension, then one practical solution in such cases may be to employ a gen-
eralized least squares~GLS! approach based on the estimation of the panel-
wide asymptotic covariance for the weighting matrix+ This approach is examined
in Pedroni~1997b!, which finds that empirically cross-sectional dependency
does not appear to play a large role in panel-based exchange rate tests+ Another
promising approach based on a bootstrap for cases in which the time series
dimension is not as long is examined in Chang~2000! for panel unit root tests+
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Most recently, papers by Bai and Ng~2002!, Moon and Perron~2003!, and
Phillips and Sul~2003! have studied the possibility of using various factor model
approaches to modeling the cross-sectional dependence for the purpose of panel
unit root tests and could presumably also be adapted for the case of residual-
based tests for the null of no cointegration in this context+ These promising
approaches are also able to accommodate more general forms of long-run depen-
dency that may exist among members+

5. CONCLUDING REMARKS

We have studied in this paper properties of residual-based tests for the null of
no cointegration for panels in which the estimated slope coefficients are per-
mitted to vary across individual members of the panel+ These statistics allow
for heterogeneous fixed effects and deterministic trends and also for heteroge-
neous short-run dynamics+ The sequential limiting distributions under the null
are shown to be normal and free of nuisance parameters+ We have also studied
the small sample behavior of the proposed statistics under a variety of different
scenarios in a series of Monte Carlo experiments, and we have showed how
these statistics could be applied in an empirical application to the PPP hypoth-
esis+ Finally, we note that the study is intended as an initial investigation into
the properties of such statistics and that in so doing it raises many important
additional issues of both a practical and a technical nature that we hope will be
of interest for future research on the theory and application of nonstationary
panel data techniques+

NOTES

1+ See, for example, Holz-Eakon, Newey, and Rosen~1988! on the dynamic homogeneity restric-
tions required typically for the implementation of panel vector autoregression~VAR! techniques+

2+ See earlier versions, Pedroni~1995, 1997a, 2001a! and Pedroni~1993! for details+
3+ See standard references, for example, Phillips ~1986, 1987!, Phillips and Durlauf~1986!,

and Phillips and Solo~1992!, for further discussion of the conditions under which Assumption 1+1
holds more generally+

4+ In earlier versions of this study, we presented these panel statistics in a form in which each
of the component statistics of the numerator and denominator was weighted by the member spe-
cific long-run conditional variancesL11i

2 , whereas here we present versions of the statistics that are
not weighted byL11i

2 + The distinction between weighted and unweighted statistics is a fairly com-
mon occurrence in panels, and the limit distribution is the same for both types+ However, in Monte
Carlo simulations, we found that the unweighted statistics consistently outperformed the weighted
statistics in terms of the small sample size properties+ Consequently, we present here only the
unweighted statistics+We are thankful to an anonymous referee for suggesting the unweighted form
of the statistics+

5+ For example, the parametric analogue to theZtNT
-statistic would take the form of the stan-

dard ADF correction+ For more details on the parametric ADF version of the panel and group mean
statistics, we refer readers to an earlier version of the paper, Pedroni~1997a!, which examines the
small sample properties of the parametric ADF version of the statistics, and to Pedroni~1999!,
which discusses in more detail the construction of the ADF+
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6+ Note that it is also possible to construct these estimates by imposing the null valueri 5 1
and estimating the nuisance parameters directly fromm it 5 D [eit + However, Phillips and Ouliaris
~1990! recommend against this, and we follow the same recommendation here by first estimating
[m it in order to estimate the nuisance parameters+

7+ The same issue discussed in the previous note applies here in that we could also impose a
unit root on thezit data and estimate the nuisance parameters directly fromjit 5 Dzit + Instead,
however, we have followed the recommendation in Phillips and Ouliaris~1990! here by first esti-
mating Zjit +

8+ The DGP used in Pedroni~1997a! was based on various parameterizations of the one pro-
posed by Haug~1996! for the conventional time series case+ We have simplified the DGP in this
version, which enables us to more easily characterize the long-run variance ofjit in terms of the
DGP+

9+ In all figures, the curves representing the behavior of each of the statistics have been smoothed
slightly by means of a moving average of neighboring points+

10+ See earlier versions of this study, Pedroni~1995, 1997a!, for a more detailed discussion of
the PPP application of this section+ In separate work, Pedroni~1996, 2000!, a panel fully modified
ordinary least squares~FMOLS! method for testing hypotheses regarding cointegrating vectors in
such panels is developed and subsequently applied in Pedroni~2001b! to test the strong version of
PPP for a similar data set, which is strongly rejected+

11+ We should note that the estimation of common time effects potentially further complicates
the analysis of limiting distributions because the number of parameters to be estimated for the time
effects grows with the time dimension, T+ We report these estimates for our empirical illustration
here simply for the case of comparison+
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APPENDIX
Proof of Proposition 1. Let

R1, iT 5 T22 (
t51

T

[eit21
2 and R2, iT 5 T21 (

t51

T

~ [eit21 D [eit 2 Zl i !,

where now [eit 5 yit 2 Zbi xit , D [eit 5 j1it 2 Zbi j2it + By expandingR1, iT ,R2, iT in terms of
the convergencies given in~2! and~3!, it can be shown that asT r `

R1, iT n L1li
2 EQi

2, R2, iT n L1li
2 EQi dQi , (A.1)

whereQ is defined in terms ofV,W as in the statement of the proposition+ ~See the
appendix in Pedroni~1997a! for more details regarding this calculation+!

Similarly, we can evaluateIsNT
2 as follows+ First, note that [m it 5 D [eit 2 ~ [ri 2 1! [eit21+

Under the null, ~ [ri 2 1! is Op~T21! so that the second term will be eliminated asymp-
totically as T r ` and will not impact the sequential limit distribution+ For conve-
nience in notation, we drop these terms and write[si

2 as

[si
2 5 T21 (

t52

T

[m it
2 1 2T21 (

s51

K

wsK (
t5s11

T

[m it [m i, t2s

5 T21 (
t52

T

~j1it 2 Zbi j2it !
2 1 2T21 (

s51

K

wsK (
t5s11

T

~j1it 2 Zbi j2it !~j1i, t2s 2 Zbi j2i, t2s!

1 Op~T21! 5 F1 1 F2 2 F3 1 Op~T21!, (A.2)

where

F1 5 T21 (
t52

T

j1it
2 1 2T21 (

s51

K

wsK (
t5s11

T

j1it j1i, t2s,

F2 5 ZbiST21 (
t52

T

j2it j2it
' 1 2T21 (

s51

K

wsK (
t5s11

T

j2it j2i, t2s
' D Zbi

' ,

F3 5 ZbiST21 (
t52

T

j2it j1it 1 2T21 (
s51

K

wsK (
t5s11

T

j2it j1i, t2sD
1ST21 (

t52

T

j1it j2it
' 1 2T21 (

s51

K

wsK (
t5s11

T

j1it j2i, t2s
' D Zbi

' + (A.3)

Becausejit is strictly stationary we know that

T21 (
t52

T

jit jit
' 1 2T21 (

s51

K

wsK (
t5s11

T

jit ji, t2s
' r Vi asT r `+

Using the convergencies from~2! and~3! andVi 5 Li
' Li , following some algebra, we

see that asT r `,

F1 n V11i 5 L11i
2 1 L21i

' L21i , (A.4)
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F2 n L21i
' L21i 1 L11iEVi Wi

'SEWi Wi
'D21SEWi Wi

'D21'EWi Vi L11i

1 L11iEVi Wi
'SEWi Wi

'D21

L21i 1 L21i
' SEWi Wi

'D21'EWi Vi L11i , (A.5)

F3 n L11iEVi Wi
'SEWi Wi

'D21

L21i 1 L21i
' SEWi Wi

'D21'EWi Vi L11i 1 2L21i
' L21i +

(A.6)

Thus, letting Dbi [ *Vi Wi
'~*Wi Wi

'!21 andR3, iT 5 [si
2 givesR3, iT n L11i

2 ~1 1 Dbi Dbi
'! as

T r `+
Now, let RiT 5 ~R1iT ,R2iT ,R3iT !' and note that the first three statistics of the propo-

sition can be written as different combinations of the standardized sums of these ele-
ments over theN dimension+ Specifically,

T 2N302Z [vNT
5 MN ZL11

2 S 1

N (
i51

N

R1, iTD21

,

TMN Z [rNT21 5S 1

N (
i51

N

R1, iTD21 1

MN (
i51

N

R2, iT ,

Z [tNT
5 S 1

N (
i51

N

R3, iTD2102S 1

N (
i51

N

R1, iTD2102 1

MN (
i51

N

R2, iT , (A.7)

where the individual elements ofRiT , i 5 1, + + + ,N are i+i+d+ over thei dimension+ Next,
define the mean of the values forL11i

2 averaged over thei dimension to beE @L11i
2 # 5 p+

It should be apparent thatZL11
2 r p as ~T,N r `!seq becauseN21 (i51

N ZL11i
2 r

N21 (i51
N L11i

2 asT r ` andN21 (i51
N L11i

2 r E @L11i
2 # asN r ` in the second stage

limit + Next, to determine the limiting distribution of each of the panel statistics as~T,N r

`!seq, we use the delta method, which provides the limiting distribution for continu-
ously differential transformations of i+i+d+ vector sequences+ Toward this end, we first
expand each of the statistics as follows:

T 2N302Z [vNT
2 Q1

21MN 5 MNFSN21 (
i51

N

R1iTD21

2 ~ ZL11Q1!21G ZL11
2 , (A.8)

TMN Z [rNT21 2 Q2Q1
21MN 5 MNFN21 (

i51

N

R2iT 2 pQ2GSN21 (
i51

N

R1iTD21

1 pQ2MNFSN21 (
i51

N

R1iTD21

2 ~pQi !
21G , (A.9)
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Z [tNT
2 Q2Q1

2102~11 Q3!2102MN

5 MNFN21 (
i51

N

R2iT 2 pQ2GSN21 (
i51

N

R1iTD2102SN21 (
i51

N

R3iTD2102

1 pQ2MNFSN21 (
i51

N

R1iTD2102

2 ~pQ1!2102GSN21 (
i51

N

R3iTD2102

1 pQ2~pQ1!2102MNFSN21 (
i51

N

R3iTD2102

2 ~p~11 Q3!!2102G , (A.10)

where the elements ofQ correspond to the means of the vector functionalY [
~*Q2,*QdQ, Db Db '!' as defined in the proposition+ Thus, because we take the coefficients
generatingjit 5 Ci ~L!hit to be i+i+d+ over thei dimension and independent of the inno-
vations, we haveE @RiT # 5 p~Q1,Q2,1 1 Q3!' asT r ` for any i +

Now, for the next stage of the sequential limit, asN r `, the summations in paren-
theses converge to the means of the respective random variables by virtue of a law of
large numbers+ This leaves the expressions involving each of the standardized square
bracketed terms as a continuously differentiable transformation of a sum of i+i+d+ ran-
dom variables+ In general, for a continuously differential transformationZN of an i+i+d+
vector sequenceXi , with vector mean Im and covarianceS, the delta method tells us that

ZN 5 MNSgSN21 (
i51

N

XiD2 g~ Im!Dn N~0,a 'Sa! (A.11)

as N r `, where thej th element of the vectora is given by the partial derivative
aj 5 ~dg0dgj !~ Im j !+ Thus, in terms of our notation for the moments ofRiT , we set Im 5
p~Q1,Q2,1 1 Q3!', S 5 p2c~ j !, a 5 p21f~ j ! for each of the statistics, which produces
the limiting distributions stated in the proposition as~T,N r `!seq+

The cases with demeaned or demeaned and detrended data can be obtained in similar
fashion by defining [eit ,D [eit and the elements ofRiT conformably in terms of the demeaned
or demeaned and detrended data+ In this case, the elements of the vectorY [
~*Q2,*QdQ, Db Db '!' become defined analogously in terms of demeaned Brownian motion,
V *,W *, or demeaned and detrended Brownian motion, V **,W **, and the derivation in
terms of the corresponding moments proceeds accordingly+

To establish the limiting distribution for the two group mean statistics, let

R1iT 5 TS(
t51

T

[eit21
2 D21

(
t51

T

~ [eit21 D [eit 2 Zl i !

and

R2iT 5S(
t51

T

[si
2 [eit21D2102

(
t51

T

~ [eit21 D [eit 2 Zl i !+

Using similar notation it should be apparent then that

R1, iT n SEQi
2D21EQi dQi , R2, iT n S~12 Dbi Dbi

'!EQi
2D2102EQi dQi (A.12)
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asT r `+ Next, expand each of the statistics as

TN2102 EZ [rNT21 2 EQ1MN 5 MNFN21 (
i51

N

R1iT 2 EQ1G , (A.13)

N2102 EZ [tNT
2 EQ2MN 5 MNFN21 (

i51

N

R2iT 2 EQ2G , (A.14)

which converge toN~0, Dc11! andN~0, Dc22!, respectively, asN r ` by the same type of
arguments+ n

Proof of Corollary 1. Expanding the terms for the variances in Proposition 1 gives

T 2N302Z [vNT
2 Q1

21MN n N~0,Q1
24c11!, (A.15)

TMN Z [rNT21 2 Q2Q1
21MN n N~0,Q1

22c22 1 Q2
2Q1

24c11 2 2Q2Q1
23c12!,

(A.16)

TMN Z [tNT
2 Q2~Q1~11 Q3!!2102MN n N~0,z!, (A.17)

wherez 5 Q1
21~1 1 Q3!21c22 1 1

4
_Q2

2Q1
23~1 1 Q3!21c11 1 1

4
_Q2

2Q1
21~1 1 Q3!23c33 2

Q2Q1
22~1 1 Q3!21c12 2 Q2Q1

21~1 1 Q3!22c23 1 1
2
_Q2

2Q1
22~1 1 Q3!22c13+ Substituting

the empirical moments for largeT,N51 into these expressions gives the reported approx-
imations for the asymptotic distributions asN r `+ The results for the group mean
statistics follow immediately upon substituting the empirical moments for largeT,N 5 1
into the expressions of Proposition 1+ n
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