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PANEL COINTEGRATION:
ASYMPTOTIC AND FINITE SAMPLE
PROPERTIES OF POOLED TIME
SERIES TESTS WITH AN
APPLICATION TO THE
PPP HYPOTHESIS

PETER PEDRONI
Williams College

We examine properties of residual-based tests for the null of no cointegration for
dynamic panels in which both the short-run dynamics and the long-run slope coef-
ficients are permitted to be heterogeneous across individual members of the panel
The tests also allow for individual heterogeneous fixed effects and trend,terms
and we consider both pooled within dimension tests and group mean between
dimension testaVe derive limiting distributions for these and show that they are
normal and free of nuisance paramet&i& also provide Monte Carlo evidence

to demonstrate their small sample size and power performamcewe illustrate

their use in testing purchasing power parity for the post—Bretton Woods period

1. INTRODUCTION

The use of cointegration techniques to test for the presence of long-run rela-
tionships among integrated variables has enjoyed growing popularity in the
empirical literatureUnfortunatelya common dilemma for practitioners has been
the inherently low power of many of these tests when applied to time series
available for the length of the postwar perid®Riesearch by Shiller and Perron
(1985, Perron(1989 1991, and recently Pierse and Snéll995 has gener-

ally confirmed that it is the span of the datather than the frequencihat
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matters for the power of these tes@n the other handexpanding the time
horizon to include prewar data can risk introducing unwanted changes in regime
for the data relationship$n light of these data limitationst is natural to ques-
tion whether a practical alternative might not be to bring additional data to bear
upon a particular cointegration hypothesis by drawing upon data from among
similar cross-sectional data in lieu of additional time periods

For many important hypotheses to which cointegration methods have been
applied data are in fact commonly available on a time series basis for multiple
countries for example and practitioners could stand to benefit significantly if
there existed a straightforward manner in which to perform cointegration tests
for pooled time series panelslany areas of research come to mistdich as
the growth and convergence literature and the purchasing power pRFty
literature for which it is natural to think about long-run properties of data that
are expected to hold for groups of countriéternatively time series panels
are also increasingly available for industry level data and stock market data
For applications where the cross-sectional dimension grows reasonably large
existing systems methods such as the Joha{i888 1991) procedure are likely
to become infeasibleand panel methods may be more appropriate

On the other handpooling time series has traditionally involved a substan-
tial degree of sacrifice in terms of the permissible heterogeneity of the individ-
ual time serie$ To ensure broad applicability of any panel cointegration fest
will be important to allow for as much heterogeneity as possible among the
individual members of the panélherefore one objective of this paper will be
to construct panel cointegration test statistics that allow one to vary the degree
of permissible heterogeneity among the members of the panelin the most
general case pool only the multivariate unit root informatieaving the form
of the time series dynamics and the potential cointegrating vectors entirely het-
erogeneous across individual members

Initial work on nonstationary panels was done in the context of testing for
unit roots For example Quali1994 derives asymptotically normal distribu-
tions for standard unit root tests in panels for which the time series and cross-
sectional dimensions grow large at the same. ia¢win, Lin, and Chu(2002
extend this work for the case in which both dimensions grow large indepen-
dently and derive asymptotic distributions for panel unit root tests that allow
for heterogeneous intercepts and trends across individual mentimgrBesa-
ran and Shin(2003 develop a panel unit root estimator based on a group mean
approach Since the original versions of this papenany other works have
extended the literature on nonstationary parnehel we refer readers to recent
surveys by Banerje€1999, Phillips and Moon(2000, and Baltagi and Kao
(2000.

In earlier working paper versions of this woiRedroni(1995 1997320013,
we examined the properties of spurious regressions and residual-based tests for
the null of no cointegration for both homogeneous and heterogeneous panels
and studied special conditions under which tests for the null of no cointegra-
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tion with homogeneous slope coefficients are asymptotically equivalent to raw
panel unit root testsn the interest of spacen this version we focus on the
most general of these resyltsamely the tests for the null of no cointegration
for panels with heterogeneous dynamics and heterogeneous slope coefficients
In particular we study both between dimension and within dimension residual-
based test statisticEach of these tests is able to accommodate individual spe-
cific short-run dynamicsindividual specific fixed effects and deterministic
trends as well as individual specific slope coefficien®e derive limiting dis-
tributions for these under the null and show that each is standard normal and
free of nuisance parametei/e also provide Monte Carlo evidence to docu-
ment and compare their small sample performance and illustrate their use in
testing weak PPP for a panel of post—Bretton Woods exchange rate data

The remainder of the paper is organized as follofsction 2 presents the
underlying theory and asymptotic results for each of the test statiSes
tion 3 studies the small sample properties of these tests under a variety of dif-
ferent scenarios for the error processasd Section 4 demonstrates a brief
empirical application of the tests to the hypothesis of PPP for a panel of post—
Bretton Woods exchange rate dafection 5 ends with a few concluding
remarks The derivations for each of the results in Section 2 are collected in the
Appendix

2. ASYMPTOTIC PROPERTIES
In its most general forgrwe will consider the following type of regression
Yie = o + 6 U+ B Xip + € (1)

for a time series panel of observablgsand X;; for members =1,...,N over
time periods = 1,...,T, whereX;; is anm-dimensional column vector for each
membern andg; is anm-dimensional row vector for each membei he vari-
ablesy; and X;; are assumed to be integrated of order,aenoted! (1), for
each membeir of the paneland under the null of no cointegration the residual
e, will also bel (1). The parametera; and§; allow for the possibility of mem-
ber specific fixed effects and deterministic trenasspectivelyThe slope coef-
ficients B; are also permitted to vary by individyado that in general the
cointegrating vectors may be heterogeneous across members of the panel
For regressions of the form given i), we will be interested in studying
the properties of tests for the null hypothebig “all of the individuals of the
panel are not cointegratéd~or the alternative hypothesi# is worth noting
that if the underlying data generating procéB$sP) is assumed to require that
all individuals of the panel be either uniformly cointegrated or uniformly not
cointegratedthen the natural interpretation for the alternative hypothesis is sim-
ply H: “all of the individuals are cointegratédOn the other handf the under-
lying DGP is assumed to permit individual members of the panel to differ in
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whether or not they are cointegratelden the natural interpretation for the alter-
native hypothesis should bé;: “a significant portion of the individuals are
cointegrated

In earlier versions of this work we also studied the properties of tests for the
null of no cointegration in panels for which the slope coefficieBts@are con-
strained to be homogeneous across all individults such panels in which
the estimated slope coefficients are constrained to be homogenremshowed
that under the special case of strict exogeneity for the regregberslistribu-
tion for residual-based tests of the null of no cointegration is asymptotically
equivalent to the distribution for raw panel unit root tests despite the fact that
the residuals are estimatédror the case in which the regressors are endog-
enousthe asymptotic equivalence result no longer holds for panels with homo-
geneous slope coefficientand it is necessary to adjust for the asymptotic bias
induced by the estimated regressor efféctfact, the work in Kao(1999 has
since examined the properties of such a test for the null of no cointegration
that adjusts for the bias term due to the estimated regressors effect under endo-
geneity for the special case in which both the slope estimates and the short-run
dynamics are constrained to be homogeneous across members of thélpanel
difficulty with this approach arises when we attempt to interpret the resulting
tests for the null of no cointegration in the case when the true DGP is such that
the slope coefficients are not common across individual members of the panel
Specifically in this case if we impose a common slope coefficient despite the
fact that the true slopes are heterogenethen the estimated residuals for any
member of the panel whose slope differs from the average long-run regression
correlation will be nonstationaygven if in truth they are cointegratelth many
situations the true slope coefficients are likely to vary across individuals of the
pane] and the implications for constraining the coefficients to be common are
unlikely to be acceptable for tests of the null of no cointegration

For this reasonwe present here a set of residual-based test statistics for the
null of no cointegration that do not pool the slope coefficients of the regression
and thus do not constrain the estimated slope coefficients to be the same across
members of the paneThese statistics will be applicable as tests for the null of
no cointegration in the general case in which the regressors are fully endog-
enous and the slope coefficients are permitted to vary across individual mem-
bers of the panelSince both the dynamics and the cointegrating vector itself
are permitted to vary across individual members of the pamed can think of
the test as effectively pooling only the information regarding the possible exis-
tence of the cointegrating relationship as indicated by the stationarity proper-
ties of the estimated residuals

To study the distributional properties of such tests will describe the DGP
in terms of the partitioned vecta;, = (y;;, X;) such that the true procegs
is generated ag; = z;_1 + &, for &, = (&7,£X). We then assume that for
each member the following condition holds with regard to the time series
dimension
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Assumption 11 (Invariance Principle The process; = (&7, &) satisfies
1/NT 3 &, = Bi(Q), for each membet as T — oo, where = signifies
weak convergence arij(();) is vector Brownian motion with asymptotic covari-
ance(); such that them X m lower diagonal block,, > 0 and where the

Bi (Q;) are taken to be defined on the same probability space far all

Assumption 11 states that the standard functional central limit theorem is
assumed to hold individually for each member series agows large The
conditions on the error process required for this convergence are relatively
weak and include the class of all stationary autoregressive moving average
(ARMA) processed The (m + 1) X (m + 1) asymptotic covariance matrix is
given by = lim_,_ E[T (31 &) (31 &4)] and can be decomposed as
O = 0Q° + I + Iy, where Qf and I} represent the contemporaneous and
dynamic covariancesespectively of &; for a given member. The matrix is
partitioned to conform with the dimensions of the vedipe= (£, &X) so that
the O, element is artm X m-dimensional matrixThe off-diagonal terms),;
capture the feedback between the regressors and the dependent yaridhie
keeping with the cointegration literature we do not require that the regressors
Xi; be exogenousThe fact that(); is permitted to vary across individual sec-
tions of the panel reflects the fact that we will permit all dynamics that are
absorbed in the asymptotic covariance matrix to be heterogenemasly, by
requiring thatQ,, > 0, we are ruling out cases where the regressors are
themselves cointegrated with one another in the event that we have multiple
regressors

In addition to the conditions for the invariance principle with regard to the
time series dimensigrwe will also assume the following condition in keeping
with a basic panel data approach

Assumption 12 (Cross-Sectional Independencé&he individual processes
are assumed to be independent and identically distrifuted). cross-sectionally
so thatE[&; £/s] = O for all s, t,i # j. More generallythe asymptotic long-run
variance matrix for a panel of siZg¢ X T is block diagonal positive definite
with theith diagonal block given by the asymptotic covariances for memper
such that dia¢Q,...,Qy) . The processg;, is taken to be generated by a linear
processt = Ci(L)n;, whereQ; = C;(1)C;(1)' and where the white noise inno-
vationsm;; and the random coefficients;(L) are independent of one another
and each.i.d. over both theé andt dimensions

This condition will allow us to apply standard central limit theorems in the
cross-sectional dimension in the presence of heterogeneous errors in a rela-
tively straightforward fashianAs in Phillips and Moon(1999, we take the
coefficientsC;(L) as being drawn from a distribution that is.d. over thei
dimension and independent from thg innovations In the empirical illustra-
tion of Section 4 we also discuss some possibilities for dealing with the case in
which such independence is violated in practiEaally, note that the condi-
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tion thatQ); > 0 ensures that there is no cointegrating relationship betwgen
and theX;, as will be the case under the null hypothesis that we consider
throughout this study

TogetherAssumptions 11 and 12 will provide us with the basic conditions
for investigating the asymptotic properties of the various statistics as the dimen-
sionsT and N grow large The first assumption will allow us to make use of
standard asymptotic convergence results over the time series dimension for
each of the individual memberén particular we will make use of the fact
that the following convergencigdeveloped in Phillips and Durla@1986 and
Park and Phillipg1988, must also hold for each of the individual members
i=1,...,NasT grows large so that

T 1
T2 212> LEJ Z(r)Z,(r)'drL;, (2)

=1 0

T 1
TilEZit—lfi/t:L,if Z(r)dz(r)drL; + I, 3

=1 0

whereZ;(r) = (Vi(r),W(r)")" is vector Brownian motionsuch thatV,(r) and
W (r) are independent standard Wiener processes foy athereW (r) is itself
anm X 1 dimensioned vectoll; is as previously defingdandL; is a lower
triangular decomposition d®; such that

Lig = (Qq5 — 055055 Q)3 Ly =0,
Loy = Q5572 Loo = Q35 4)

The convergence results in equatig@s and (3) hold under standard assump-
tions regarding the initialization of,, and for convenience we will take these
to be common across the panel such that 0 for all i.

The second key assumptiokssumption 12, will then allow us to apply sim-
ple averaging arguments over the cross-sectional sums of the corresponding
Brownian motion functionals that are used to construct the panel statistics
particular we will make use here of sequential limit arguments to investigate
the properties of the panel statistics as the time series and cross-sectional dimen-
sions grow largeSpecifically this means that in computing the limiting prop-
erties for the panel statisticsve will first take the limit asT grows large
followed sequentially by the limit alsl grows large Thus for the typical dou-
ble sum statisti®r = S\ ; 3¢, Y, involved in constructing the panel statis-
tics, we write Pyr = 3, St whereSt = 3, Y,. Let R, be the limit of the
standardized sum &1 asT — oo. For the sequential limitwe first compute
R asT — oo and then compute the limit of the standardized sut,fif, R as
N — co. The sequential limit is a convenient method for computing the limit
distribution for a double index procesklowever it is not the most general
method Phillips and Moon(1999 formalize the notion of sequential limits for
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nonstationary double index processes and also compare it to the more general
method of joint limits In contrast to the sequential limiihe joint limit allows
both indexes to pass to infinity concurrentigther than in sequencas Phil-
lips and Moon(1999 point out this implies that the joint limit distribution
characterizes the limit distribution for any monotonic expansion raferefa-
tive to N. Phillips and Moon(1999 also provide a specific set of conditions
that are required for sequential convergence to imply joint convergéiude
lowing Phillips and Moonwe will denote sequential limits &3, N — 00)seq

In our contextthe sequential limit substantially simplifies the derivation of
the limit distribution for two important reason®ne reason is that it allows
us to control the effect of nuisance parameters associated with the serial cor-
relation properties of the data in the first step s> oo by virtue of the
standard multivariate invariance principlhis substantially simplifies the com-
putation of the limit adN — oo for the panel statistics in the second step be-
cause it implies that we can typically characterize the heterogeneity of the
standardized sum of random variabB$' ; R, in terms of a single nuisance
parameter associated with the conditional long-run variance of the differenced
datg L%;. Another reason the sequential limit simplifies the derivation is that
applying the limit asT — oo in the first step allows one to focus only on the
first-order terms of the limit in the time series dimensi@ince the higher
order terms are eliminated prior to averaging over thdimension This sec-
ond feature is particularly convenient for the purposes of computing the limit
for the panel However this feature can also be deceptive in its simplicity
because it hides the need to control the relative expansion rate of the two dimen-
sions as is often the case for the more general joint limitpractical terms
the relative expansion rate can also be an important indicator for the small
sample properties of the statistics for different dimensions ahdT. In Sec-
tion 3, we illustrate this in terms of a series of Monte Carlo experiments that
examine the size properties of the statisticdNaand T grow large along var-
ious diagonal paths characterized by different monotonic rates of expansion of
T relative toN.

In particular we consider two classes of statistidée first class of statistics
is based on pooling the residuals of the regression along the within dimension
of the panelwhereas the second class of statistics is based on pooling the resid-
uals of the regression along the between dimension of the p#@hel basic
approach in both cases is to first estimate the hypothesized cointegrating rela-
tionship separately for each member of the panel and then pool the resulting
residuals when constructing the panel tests for the null of no cointegr&tpen
cifically, in the first step one can estimate the proposed cointegrating regres-
sion for each individual member of the panel in the form(df, including
idiosyncratic intercepts or trends as the particular model warramtbtain the
corresponding residuaks. In the second stephe way in which the estimated
residuals are pooled will differ among the various statistidsich are defined
as follows
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DEFINITION 1 (Panel and Group Mean Cointegration Statistics for Hetero-
geneous PanelslLet &, = (A&, &, 1), A = Ef:let &. whereé, is estimated
from a model based on the regression in (1). Then we can define the following
test statistics for the null of no cointegration in heterogeneous panels:

N -1 -1 N
ZﬁNTEL211<ZA22i> ) Zsp-1= (2 A22|> .Zl(Azn_T)\i),
im
-1/2 N

ZtNT = < TZ A22|> Z(Azn - T;\i),

N N
Zs-1= 2 A5 (Agz — TA), Zi .= Z (6% Ag2) Y2 (Agy — TA),

whereii = & — pi é«t—l, = 12 1WSK2t s+1 it i 1—s fOr some choice
of lag window wx =1 — s/(l -K),&=T13" 2,&%, G2 =& + 2\, 005, =
N-13N .62 and[2, = N’lﬁi’\‘:lﬁﬁﬁ wherelizlﬁ Qg — Q55 052 O,y such
that {); is a consistent estimator &f;.

The first three statistics are based on pooling the data across the within di-
mension of the pangivhich implies that the test statistics are constructed by
summing the numerator and denominator terms separately for the analogous con-
ventional time series statistiésThus for example the Z, .—1 "panel-rho” sta-
tistic is analogous to the semiparametric “rho” statistic studied in Phillips and
Perron(1988 and Phillips and Ouliari§1990 for the conventional time series
case and the panel statistics can be constructed by taking the ratio of the sum
of the numerators and the sum of the denominators of the analogous conven-
tional time series “rho” statistic across the individual members of the phikel
wise, the Z; _ “panelt” statistic and theZ;  “panel variance ratio” statistics
are analogous to the semiparametrgtatistic and the long-run variance ratio
statistic each of which was also studied in Phillips and Ouli&ii®90 for the
conventional time series case

The next two statistics are constructed by pooling the data along the between
dimension of the paneln practice this implies that the statistics can be con-
structed by first computing the ratio corresponding to the conventional time
series statistic and then computing the standardized sum of the entire ratio over
the N dimension of the paneConsequentlythese statistics in effect compute
the group mean of the individual conventional time series statistieshave
presented here two group mean statistﬁ&w_l and ZfNT, that are analogous
to the rho-statistic anttstatistic studied in Phillips and Ouliar{2990 for the
conventional time series cada principle it is also possible to construct a group
mean variance ratio statistic analogous to the one presented for the pooled panel
cointegration statistics in Definition.We also experimented with such a
statistic and found it to be dominated by the other two in terms of the small
sample size propertie€onsequently we present here only the semiparametric
group-rho and group-statistics
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In the interest of space and simplicitwe have only presented here the
forms of the statistics that correspond to the nonparametric treatment of the
nuisance parameterslowever it should be apparent that the nuisance param-
eters can also be treated parametrically for both the panel and group mean sta-
tistics in which case the same limit distributions presented in the following
proposition still applyWe refer readers to earlier versions of this work for a
discussion of the parametric treatment of these in the form of panel and group
mean augmented Dickey—FulléADF) statistic® We discuss in more detail
the estimation of the various nuisance paramelers?, §?, (3, in Section 3
in conjunction with the small sample properties of the statistics

In the proposition that followsve present the limiting distributions for these
test statistics under the nulin particular for the following proposition we
posit ©,® and ¥, ¥, respectivelyto be finite means and covariances of the
appropriate vector Brownian motion functionals the following proposition
indicates when the statistics are standardized by the appropriate valué$ for
andT, then the asymptotic distributions will depend only on known parameters
given by©,® and ¥, .

PROPOSITION 1(Asymptotic Distributions of Residual-Based Tests for
the Null of No Cointegration in Heterogeneous Pahelset 0, ¥ signify
the mean and covariance for the vector Brownian motion functiofnak
(JQ%IQAQ BA"), where f = [VW (JWW)™%, Q = V — AW, anduyy;),
j = 1,2,3 refers to the jX j upper submatrix ofy. Similarly, let®, ¥ signify
the mean and variance for the vector Brownian motion functional=
(fQAQ(SQ?) % /QdQ((1— BB") fQ?)Y?). Then under the null of no cointe-
gration the asymptotic distributions of the statistics presented in Definition 1
are given by

T2N¥2Z, = 01N = N(0, d(1) b1y b1)),

TYNZ, 1 — 0,07 'VN = N(O, ¢ th2) b(2))»

Zi\, = 02(01(1+ 03)) 2VN = N(0, (3 th3 b(3))»
TNY2Z, 1~ 60,VN = N(0, ),
N-Y2Z; — 0,VN = N(0, ;)

as(T,N — o0)seq Where the vaILies foph ;) are given asp(;) = -072, Dz =
(-0,0;2%,0:1), and bz = (—30,07%2(1 + 05) V2301731 + 05) Y2
—30,0,V2(1 + 03)"¥?).

These results are fairly general and give the nuisance parameter free asymp-
totic distributions simply in terms of the corresponding moments of the under-
lying Brownian motion functionalswhich can be computed by Monte Carlo
simulation much as is done for the conventional single equation tests for the
null of no cointegrationNote that we require only the assumption of finite
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second moments here provided that we apply sequential limit arguments such
that first T — oo so that this produces sums of.d. random variables charac-
terized as Brownian motion functionals to which standard Lindeberg—Levy cen-
tral limit arguments can be applied for larfje

The result applies in general for any of the models associated with regres-
sion (1) and for any number of regressors when the slope coefficients are esti-
mated separately for each member of the pa@althe other handhe specific
values for the momen®, ®, ¥, ¥ depend on the particular form of the model
such as whether heterogeneous intercepts or trends have been included in the
estimation and on the number of integrated regressotsAccordingly Table 1
gives large finite sample moments for the leading bivariate cases of interest
based on the simulated Brownian motion functionals of Proposition 1 so that
we can evaluate the corresponding formulas under these conditions

Let ®,®, ¥, ¥ signify the means and covariances for the vector Brownian
motion functionals defined in Proposition Then the approximations shown in
Table 1 are obtained on the basis of Monte Carlo simulations fo0D0raws
from pairs of independent random walks with= 1,000, N = 1, where cases,1
2, and 3 referrespectivelyto the same functionals constructed from standard
Wiener processeslemeaned Wiener processesd demeaned and detrended
Wiener processesespectivelyWe then use these simulations to approximate
the asymptotic distributions for the panel cointegration statistichl @sows
large on the basis of Proposition The results are summarized in the follow-
ing corollary

COROLLARY 1 (Empirical Distributions. Let y = (T2N¥?Z, |,
TVYNZpnt, Zi,,,, TN"Y2Z, 1,N"¥2Z; )’ so that based on Propositiof,
X« — NN = N(0,v) as(T,N — o0)seqfOr each of the k=1,...,5 statistics
of x. Based on the empirical moments given in Table 1 for large T, the follow-
ing approximations obtain as N> co under the null of no cointegration:

casel: u = (4.00, —2.77, —1.01, —6.84, —1.39),
v = (2781, 24.91, 1.50, 26.78, 0.78)/,

case2: u = (8.62, —6.02, —1.73, —9.05, —2.03),
v = (60.75,31.27, 0.93, 35.98, 0.66)’,

case3: u = (17.86, —10.54, —2.29, —13.65, —2.53),
v = (10168, 39.52, 0.66, 50.91, 0.56)’,

TABLE 1. Large finite sample moments

01 0, O3 Y Y a3z P12 Yas g 01 0, U2 i

Case 1 50 —0.693 (0889 Q110 Q788 3174 —0.011 Q0243 —1.326 —6.836 —1.389 26782 Q781
Case 2 (116 —0.698 Q397 Q011 Q179 Q480 —0.013 Q026 —0.238 —9.049 —2.025 35976 Q660
Case 3 056 —0.590 Q182 Q001 Q034 Q085 —0.001 Q003 —0.042 —13.649 —2.528 50907 Q561
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where cases 1, 2, and 3 refer, respectively, to statistics constructed from esti-
mated residual&,, from the standard case, the case with estimated fixed effects,
a;, and the case with estimated fixed effects and estimated tinéls

The usage for these statistics is the same as for the single seriefFoatee
panely statisticslarge positive values indicate rejectiomghereas for the panel-
rho statistics and panelstatistics large negative values indicate rejection of
the null The computed moments in Table 1 and the corresponding distributions
in Corollary 1 are for the leading case in which a single regressor is included
For the moments and empirical distributions corresponding to cases with vari-
ous numbers of additional regressave refer readers to Pedroii999, which
reports these for cases ranging from= 2 throughm = 7 regressorsThe bias
correction terms given by in the corollary are required to ensure that the
distribution does not diverge as ti dimension grows largeThe need for
these stems from the fact that functionals for the underlying Weiner processes
have nonzero meanwhich must be accommodated when averaging oveNthe
dimension to ensure convergent® comparing the distributions for the panel-
rho and panet-statistics to the ones applicable for raw panel unit root tests
reported in Levin et al(2002, we see that the consequence of using estimated
residuals is to affect not only the asymptotic variance but also the rate at which
the mean of the unadjusted pooled statistics diverge asymptotitalthese
casesignoring the consequences of the estimated regressors problem for the
asymptotic bias in panels would lead the raw panel unit root statistic to become
divergent when applied to estimated residuals

3. MONTE CARLO EXPERIMENTS

In this section we study some of the small sample properties of the statistics
for variously dimensioned paneM/e also study the empirical properties of the
statistics as the sample dimensions grow large at different relative expansion
rates In particular to study the small sample size properties we will employ
the following DGP under the null hypothesis

Data Generating Processll Let z; = (v, %), t=1,...,T,i =1,...,N
be generated by

Zy = Zy 1t & Eit = Mt T 0 M1,
N ~ N(O,15); 615 ~U(0,0.5); 6,5 ~U(0,0.5); 0101 = 025 = 0,
wherex;; is a scalar series so that= 1.

This DGP is particularly convenient because it allows us to easily model and
observe the consequences of heterogeneity in the dynamiagfor &; under
the null hypothesis in terms of the long-run covariance ma€ixfor &;.
Specifically by drawingé&;; from a vector moving average process and setting
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015 = 0,5 = 0 while allowing#,, and#,,; to vary across the individual mem-
bers of the panel we obtain a fairly simple mapping between these coefficients
and the long-run covariance matiix, while at the same time permitting sub-
stantial heterogeneity in the key features of the dynaniicparticular since
Qi = (1 + 6,)E[nn]1(1 + 6,), this implies that whem,,5 = 6,5 = 0, we can
characterize the conditional long-run variance of the spurious regression in terms
of the simple ratid_2;; = (1 + 62;)"1(1 + 614). Thus by varying the values
for 6,4 and 6, we control the values fof); and L%,. For example for the
special case in which the DGP i$.d., so thatf,,; and6,,; are both zerpthen
Q; = | andLZ?; = 1. The two extremes then occur as either one of the param-
etersé,q; or 0,y approaches its upper bourior examplewhen 6,,; is at its
minimum value of zero and, is at its maximum value of .8, thenL?; =
2.25. At the other extremewhené,;; is at its minimum value of zero arti);; is
at its maximum value of 8, thenLZ,, = 0.80.
To implement each of the test statistics described in Sectiae 2nust obtain
the various nuisance parameter estimates:2, 82, [3,; as presented in Defini-
tion 1. Thus to obtain thesewe first estimatei;, by ordinary least squares
(OLS) separately for each member of the pameld then we estimai#? using
the Newey—West kernel estimatarhich allows us to construdt; = 2(5:2 — §?)
and &3 = N"1 3, 428 In setting the lag length for the band width of the
kernel estimatqmwe followed the recommendation from Newey and \W&9194)
and set the lag truncation as a function of the sample length to the nearest inte-
ger given byK = 4(T/100%°. The parametet?,; is based on the triangular-
ization of the long-run covariance matrix for the vector error proggss
Zi — Zy—1. Analogous to the way in which we obtain estimates for the first three
nuisance parameterwe first estimatet;, by OLS separately for each member
of the panel based on the autoregressior;¢f and then we estimate the long-
run variance for these estimated residuals using the Newey—\West kernel esti-
mator using the same rule for determining the lag truncation for the band.width
In our analysis of the small sample properties of the statistiesare inter-
ested in particular in comparing the behavior of the statistics for different dimen-
sions of the panelVe are also interested in observing the empirical consequences
for the statistics as the cross-section and time series dimensions grow large at
different relative ratesTo illustrate these featurgwe focus here on a few key
empirical propertieswhich we illustrate graphicallyror more extensive Monte
Carlo results presented in tabular form for the various other statisticisid-
ing the ADF versions of théstatistics we refer the reader to an earlier work-
ing paper version of this studPedroni(1997a.2
In the first two figures we study the nominal sizes of the three different
constructions of the rho-statistics as the dimensions of the panel IvaFyg-
ure 1, we depict the empirical sizes for the nominal 5% tests asTtd@nen-
sion grows large for a fixed value ®f. Specifically in this case we setl = 20
and allowedr to vary in increments of 1Qvith 10,000 independent draws from
the DGP 11 described earliér The figure shows that for this DGEhe two
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Ficure 1. Empirical size ad varies for 5% testdN = 20.

t-statistics converge from aboverhereas the other statistics converge from
below In other wordsat very small values for, the twot-statistics are some-
what oversized in the range of 10% for= 40, whereas the other statistics are
somewhat undersize8y the time thel dimension reaches aroufid= 150, all
of the statistics have converged to a range of around 4% &% When theN
dimension is fixed alN = 20. Figure 2 examines the reverse case wheis
fixed andN increaseswhich we varied by increments of 1 in our simulation
In this casethe figure shows that whehis fixed atT = 250 the panely and
panel-rho statistics converge from abpwéereas the others are already close
to nominal size whe is small Specifically atN = 10 the nominal sizes range
from around 4% to 85%. At N = 50 they range from a little over 3% to
6%. Notice that since one index is held fixed in both of the first two figures
there is no anticipation that the series will fully converge to the nominal size
even as the other index becomes very lafger exampleif N is fixed at
N = 20, then no matter how larg€é becomesthe statistics are likely to retain
some minimal size distortion

In the next set of figureswve study the empirical size properties as both the
N and T dimensions grow large at various relative rates of expansibese
experiments are particularly interestjfgecause they tell us something about
the behavior of the statistics for different rates of expansidrich the sequen-
tial limit analysis that we used to obtain the limit distributions of the previous
section does not addreds the following diagrams we depict results for the
empirical sizes of the nominal 5% test using only a single statistic in each dia-
gram but for different relative rates of expansiom particular we illustrate
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FiGURE 2. Empirical size asN varies for 5% testsT = 250

this for two different statisticghe panel-rho statistic in Figure 3 and the group-
rho statistic in Figure 4Thus the figures illustrate what happens for the empir-
ical size of the particular statistic as the two dimensions grow large at different
relative rates ranging froml = T¥2 to N = T*5. Specifically in Figures 3
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0.050 —
60 80 100 120 140 160

T T T T
180 200 220 240 260
T dimension

Ficure 3. Empirical size along various expansion paths for 5% panel-rho test
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Ficure 4. Empirical size along various expansion paths for 5% group-rho test

and 4 the horizontal axis reports the value Torand the various curves then
report the empirical sizes for the statistic whihis given byN = T2
N=T2%3 N=T¥4 andN = T, respectivelyln each casewe allowedT to
increase by increments of 10 and then assigdedvalue indicated by the cor-
responding expansion rate rounded to the nearest integer and constructed the
statistics based on 1@0 independent draws from DGPL1

From Figure 3 we can see that among these expansion rgergence
appears to occur most quickly for the panel-rho statistic WwRea T%4 and
appears to occur most slowly wheh= T%2, In each caseconvergence is
from above Figure 4 depicts the same experiments done for the group-rho sta-
tistic. Interestingly the group-rho statistic appears to exhibit a hump-shaped
feature for each of these rates of expansianthat the size first rises before
falling and appears to peak at aroufid= 100. Again, among these expansion
rates convergence appears to be slowest for the case WheT /2. However
for the group-rho statistiche case wheh = T appears to do best and also
exhibits the least of the hump-shaped featuinecomparison to the panel-rho
statistic the empirical sizes for the group-rho statistic appear to be much closer
to nominal size for very short panels along any of the expansion platinghe
case whemN = T %6, the empirical size begins at its lowest point at arourd¥s
whenT = 60 and peaks at its highest point of aroun8% whenT = 100

We also experimented with rates of expansion with powerk edual to and
in excess of D. In these cases tHEdimension grows faster than tiNedimen-
sion and as anticipatedthe empirical sizes do not converge to nhominal size
along these expansion patfidis result is consistent with the fact that for more
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general joint convergence resylilsis often necessary to impose the condition
that the ratioN/T — O to eliminate bias terms that otherwise explode when
T/N — 0. However it is also interesting to note that in these cases we found
that both of the statistics remain undersized relative to nominal size and even-
tually go to zero as the sample dimensions go to infjnitigh the speed increas-
ing as the exponend, for N = T 2 increasesThe fact that the statistics become
undersized in these cases is reassuring in that it tells us that in practice the tests
simply tend to become overly conservative in finite samples in whichNhe
dimension exceeds thiedimension Finally, as a separate issueis also worth
noting that for more extreme cases in which large negative moving average
components are presemodifications in the form of those studied by Ng and
Perron(1997 for the conventional single cointegration equation context may
also be helpful in further reducing small sample size distortions in the panel
context

Next, we study the power properties of the statistics against various alterna-
tive hypothesesTo simulate data under the alternatiwvee use the following
DGP

Data Generating Process2l Let y;, X, t = 1,...,T,i = 1,...,N be gener-
ated by

Yit = Xt T €3 &t = P& 1 T Mit»
Axi ~N(0,1); 7, ~N(©01); ¢=1{0.9,0.950.99,

wherex; is a scalar series so that = 1 and where we vary the value far
across experiments

Note that we have imposed the alternative hypothesis in D@P\L ensur-
ing that the residuals, are stationaryFurthermorgin this caserather than
using a moving average process for the errorstead we use an autoregres-
sive processThe reason for this is because the power of the tests is primarily
sensitive to the autoregressive coefficigndf the residual®; . In conventional
time series tesfghe small sample power tends to be weak against alternatives
that imply near unit root behavior for the residyadsd we are interested in
knowing the extent to which the small sample power improves against such
near unit root alternatives in the case of the panel t€iasequentlywe exam-
ine the empirical power of the 5% tests against near unit root alternatives for
the residualsranging from¢ = 0.9 to ¢ = 0.99.

Again, we are interested in studying this for different combinations of the
panel dimensionN andT. As a general rulewe find that the power rises most
rapidly as theN dimension increaseéccordingly, in the first set of figureswe
depict the power of each of the various tests asTtldémension increases for a
given value ofN when the autoregressive parameter for the regression residu-
als is Q9 and 095. When we later consider the extreme case such that the auto-
regressive parameter for the regression residuals98 e depict both the
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case wherT increases for fixedN and the case wheN increases for fixed.
Thus in Figure 5 we depict the raw power of the 5% nominal tests for the null
of no cointegration against the alternative hypothesis that the members of the
panel are cointegrated when the AR coefficient for the regression residuals
is ¢ = 0.9. Specifically for Figure 5 we selN = 20 and allowedr to vary in
increments of 5with 10,000 independent draws from the DGR Hescribed
previously for the case whe# = 0.9. The results show that in this case the
empirical power for all of the tests rises rapidly Bincreaseswith the group-
rho test reaching 100% power at the slowest,rayethe timeT = 70, and all of

the other tests achieving near 100% power by the fimeaches around =

50. In Figure 6 we examine the empirical power properties for the case in
which the alternative is closer to the nuluch thaip = 0.95. In this casewe
allowedT to increase by increments of 1With N fixed atN = 20. Each of the
statistics shows the same relative patterns as in Figuegcept that they now
require larger values fof to achieve a given level of poweFhe panek test
achieves 100% power the quickeat aroundT = 90. The group-rho test is
again the slowest to obtain power as thdimension increasebut it achieves
nearly 100% power by the tim& = 130. When comparing the raw power of
the statistics for very small values &f we should keep in mind however that
according to Figures 1 and the group-rho statistic is also the most conserva-
tive in terms of empirical size so that the difference in power is likely to be
less extreme for size adjusted pow@&rf course as the dimensionality of the
panel increases and the size distortion decredlissplays less of a role
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Ficure 5. Empirical power ad varies for 5% testsho = 0.9, N = 20.
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FiGcure 6. Empirical power ag varies for 5% testsho = 0.95 N = 20.

Finally, we are interested in considering the power properties of the statistics
for the extreme case in which the alternative is extremely close to the null and
the regression residuals exhibit near unit root properties gith0.99. In such
casesconventional time series tests for the null of no cointegration have very
little power even in relatively sizable samplés Figure 7 we see that even in
panels whenN = 20 we still require a fairly long time dimension before the
tests achieve high powerhe panel test reaches 100% power most quickly
at aroundT = 35Q whereas the panel-rho is the next quickest to reach 100%
power at around’ = 500 However Figure 8 illustrates how it is possible to
achieve near 100% empirical power even in the extreme case whei0.99
by considering increases in tiNedimension in lieu of th& dimension Specif-
ically, for Figure 8 we sefl = 250 and varied\ by increments of 1In this
case we can see that the panektatistic reaches nearly 100% power already
by the timeN = 45, and the two other panel statistics exceed 90% power by
the timeN = 100 and the two group statistics exceed 90% power by the time
N =120 These results are potentially very promising for empirical resednch
terms of monthly datathey imply that with little more than 20 years of data it
may be possible to distinguish even the most extreme cases from the null of no
cointegration when the data are pooled across members of panels with these
dimensions

Taken togetheithe Monte Carlo results from this section can also be helpful
in deciding among the best uses for the various statistics presented in the pre-
vious sectionFor examplein very small panelgf the group-rho statistic rejects
the null of no cointegratignone can be relatively confident of the conclusion
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FIGURE 7. Empirical power ad varies for 5% testsho = 0.99, N = 20.

because it is slightly undersized and empirically the most conservative of the
tests On the other handf the panel is fairly large so that size distortion is less
of an issuethen the panel- statistic tends to have the best power relative to
the other statistics and can be most useful when the alternative is potentially
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Ficure 8. Empirical power as\ varies for 5% testsho = 0.99, N = 250,
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very close to the nullThe other statistics tend to lie somewhere in between
these two extremesnd they tend to have minor comparative advantages over
different ranges of the sample siZ&nally, it is worth noting that the simula-

tions here have been conducted for the case in which heterogeneous intercepts
are estimatedAn important avenue of further research will be to consider the
small sample properties of the test statistics in the presence of member specific
heterogeneous trendshich are likely to affect the power and size

4. AN EMPIRICAL APPLICATION TO THE PURCHASING
POWER PARITY HYPOTHESIS

The PPP hypothesis has long been popular as an initial area of investigation for
new nonstationary time series techniguasd in keeping with this tradition we
illustrate here a fairly simple example of the application of the statistics pro-
posed in this paper to a version of the hypothesis known as weak long-run PPP
This version of the PPP hypothesis posits that although nominal exchange rates
and aggregate price ratios may move together over long petiogi® are rea-
sons to think that in practice the movements may not be directly proportional
leading to cointegrating slopes different fron®.1For examplethe presence of
such factors as international transportation costeasurement errarsliffer-
ences in price indicesand differential productivity shocks has been used to
explain why under the weak version of PPP the cointegrating slope may differ
from unity'® Because these factors do not generally indicate a specific value
for the cointegrating slopaunder this version of the theqrthe cointegrating
slopes must be estimateahd a test of the weak form of PPP is interpreted as a
cointegration test among the nominal variablearthermore because factors
leading to a nonunit value for the cointegrating slope coefficient can be expected
to differ in magnitude for different countrig is important to allow the slope
coefficients to varys; to vary by individual countryThus the empirical spec-
ification becomes

St = a; T Bipi + &, %)

wheres; is the log nominal bilateral |$. dollar exchange rate at timefor
countryi andp; is the log price level differential between couninand the
United States at timg and a rejection of the null of no cointegration in this
equation is taken as evidence in favor of the weak PPP hypothesis

Table 2 reports both the conventional individual country results for a test of
the null of no cointegration and the results of the panel and group mean statis-
tics for the null of no cointegrationNe employ both monthly and annual IFS
data on nominal exchange rates and CPI deflators for the post—Bretton Woods
period from June 1973 to December 1994 for between 20 and 25 countries
depending on availability and reliability of the dafesults for both annual
datg T = 20, and monthly dataT = 246, are reported side by side for each
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TaBLE 2. Individual, pane] and group tests for weak purchasing power parity

Country Intercept Slope v-stat rho-stat t-stat ADF-stat k-lag
Belgium —-3.63 —3.66 013 0.47 7.20 8.77 —6.20 —4.74 —1.80 —1.55 —2.89 —2.06 1 11
Denmark -198 —-2.01 123 142 1117 10.50 —6.31 -5.73 —-1.82 -1.70 —2.58 —2.14 1 11
France -189 -192 164 1.71 573 15.03 -7.32 -7.51 -1.99 -1.95 —2.68 -1.94 1 6
Germany -0.67 -0.70 0.72 0.70 1295 12.33 —6.95 —6.14 -1.92 -1.76 —2.65 -2.17 1 11
Ireland 035 — 0.75 — 7.27 — —8.11 — —-2.11 — —2.65 — 1 —
Italy -722 —-7.22 083 0.88 7.10 12.97 —7.63 —6.50 —2.00 -1.80 —2.83 —2.28 1 11
Netherlands —-0.79 -0.82 0.69 0.69 1316 12.75 —7.06 -6.33 -1.94 -1.78 —2.76 -2.15 1 11
Sweden -181 -1.80 123 125 1159 10.44 —6.25 -4.92 -1.82 —1.56 —2.24 -1.85 1 9
Switzerland -051 -054 101 117 1493 16.10 —8.21 —8.09 —-2.11 —2.01 —2.76 —2.34 1 11
UK 0.53 0.53 063 0.69 1681 17.95 —9.68 -9.39 —-2.37 —2.18 —2.18 —2.47 0o 11
Canada -020 -0.20 129 143 9.39 6.76 -6.81 —3.96 -1.95 -1.37 —251 -2.33 1 12
Japan -515 —-519 188 185 1161 11.65 -9.24 —6.96 -2.33 —1.88 —2.65 —2.68 1 12
Greece —-460 —-457 102 1.03 9.79 10.22 —6.18 —5.65 —1.83 —1.67 —2.40 —1.94 1 12
Iceland —3.50 — 0.99 — 8.19 — -7.22 — —2.01 — —1.86 — 0o —
Portugal -478 —477 099 1.02 6.24 8.83 —4.70 —4.43 —1.58 —1.46 —2.68 -1.76 1 12
Spain —-474 —-474 083 0.86 1242 8.83 —6.51 —4.34 -1.84 —1.48 -3.26* —1.79 1 7
Turkey —-6.06 —-593 111 1.09 7.05 10.45 —3.42 —3.92 -1.21 —1.26 —-1.79 —0.86 1 7
Australia —0.10 — 1.44 — 1303 — -7.97 — —2.05 — —2.61 — 1 —
New Zealand —-041 —-0.38 090 1.19 1027 19.61 —9.58 —10.66 —2.40 -2.31 —2.63 -2.57 1 11
South Africa —0.41 — 1.16 — 13388 — -9.29 — -2.32 — —255 — 1 —
Chile —-493 —-484 104 1.18 7.29 31.2% -5.81 —25.62 -1.92 —4.04 -1.80 -413% 0 0
Mexico 133 1.45 103 1.04 5.60 21.47 -8.67 —9.65 -2.19 —2.07 -2.09 —2.16 0 10
India -240 -237 223 212 3.23 4.88 -8.74 —7.60 —-395* —-2.05 —-368* 342 0 11
Korea -657 —-6.56 094 0.97 9.15 8.30 -7.83 —4.88 —2.24 -1.64 -211 -1.77 1 6
Pakistan —2.63 — 2.89 — 321 — —6.80 — —2.02 — -1.85 — 0o —
Panel-stats

Standard 0.26 3.2 —0.96 —2.05 —142* —191 -3.21* -3.16

Time demeaned 1.42* 7.62 —1.90* —5.67% —2.30* —4.33 —2.94* —4.88
Group-stats

Standard — — 1.46 1.27 -0.24 0.85 —-294* 115

Time demeaned — — —0.35 —2.7% —1.91* —2.15% —3.10* —24r

Notes Based on annual and monthly IFS data from June 1973 through DecemberR&894ts for monthly data are in italicAll of the panel and group statistics have been
standardized by the means and variances given in Corollary 1 so that they are distribNt@dLasinder the null hypothesién asterisk indicates rejection at the 10% level or better
See text for further discussion
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statistic with the results for the monthly data reported in italiEsr the semi-
parametric tests we have used the Newey and V€84 recommendation for
truncating the lag length for the kernel bandwiditte also report the individ-
ual, pane] and group mean parametric ADF for comparisamere we have
used a standard step down procedwtarting fromK = 12 for the monthly
data andK = 2 for the annual dateBecause this results in a different trunca-
tion for each countrywe report these in the last columRor the panel and
group mean statistics we report results both for the raw data and for data that
have been demeaned with respect to common time effects to accommodate
some forms of cross-sectional dependerszy that in place of, p; we use
$ =S — S P = Pe — P whereg = N"* 3, s andp, = N3, py.

A few results are worth noting in particuldtirst, the point estimates for the
slopes and intercepts appear to vary greatly among different coyrariésec-
ond as expectedhe number of rejections based on the individual country tests
is relatively low so that on this basis alone the evidence does not appear to
favor even weak PRBY comparisonwe see that for the annual data the panel-
rho statistic and the two ADF statistics reject the null for the standard, case
whereas all but the group rho reject the null for the case when the time means
are subtracted-or the monthly dataeach of the panel statistics rejects the null
for the standard caseand the group statistics also reject the null for the case
when the time means are subtract&tius in contrast to the individual time
series testshoth the panel and group statistics appear to provide fairly strong
support in favor of the likelihood that weak PPP holds for at least a significant
portion of countries in the post-Bretton Woods period

An important caveat worth noting is that not all forms of cross-sectional
dependency are necessarily accommodated by simple common time. 8ffeésts
approach assumes that the disturbances for each member of the panel can be
decomposed into common disturbances that are shared among all members of
the panel and independent idiosyncratic disturbances that are specific to each
member! For many cases this may be approprjais for example when com-
mon business cycle shocks impact the data for all countries of the panel together
In other casesadditional cross-sectional dependencies may exist in the form of
relatively persistent dynamic feedback effects that run from one country to
another and that are not common across countineshich case common time
effects will not account for all of the dependenéygeneral solution to the
issue of cross-sectional dependency is beyond the scope of this pver
ever if the time series dimension is long enough relative to the cross-sectional
dimension then one practical solution in such cases may be to employ a gen-
eralized least squard§&LS) approach based on the estimation of the panel-
wide asymptotic covariance for the weighting matiikis approach is examined
in Pedroni(1997h, which finds that empirically cross-sectional dependency
does not appear to play a large role in panel-based exchange ratétegter
promising approach based on a bootstrap for cases in which the time series
dimension is not as long is examined in Chd2§00 for panel unit root tests
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Most recently papers by Bai and Ng2002, Moon and Perror(2003, and
Phillips and Sul2003 have studied the possibility of using various factor model
approaches to modeling the cross-sectional dependence for the purpose of panel
unit root tests and could presumably also be adapted for the case of residual-
based tests for the null of no cointegration in this cont&ktese promising
approaches are also able to accommodate more general forms of long-run depen-
dency that may exist among memhers

5. CONCLUDING REMARKS

We have studied in this paper properties of residual-based tests for the null of
no cointegration for panels in which the estimated slope coefficients are per-
mitted to vary across individual members of the pafdlese statistics allow

for heterogeneous fixed effects and deterministic trends and also for heteroge
neous short-run dynamic¥he sequential limiting distributions under the null
are shown to be normal and free of nuisance paramatérhave also studied

the small sample behavior of the proposed statistics under a variety of different
scenarios in a series of Monte Carlo experimgatsd we have showed how
these statistics could be applied in an empirical application to the PPP hypoth-
esis Finally, we note that the study is intended as an initial investigation into
the properties of such statistics and that in so doing it raises many important
additional issues of both a practical and a technical nature that we hope will be
of interest for future research on the theory and application of nonstationary
panel data techniques

NOTES

1. Seefor example Holz-Eakon Newey and Roseri1988 on the dynamic homogeneity restric-
tions required typically for the implementation of panel vector autoregressiaR ) techniques

2. See earlier version$edroni(1995 19973 20013 and Pedron{1993 for details

3. See standard referencder example Phillips (1986 1987, Phillips and Durlauf(1986),
and Phillips and Sol§1992), for further discussion of the conditions under which Assumptidn 1
holds more generally

4. In earlier versions of this studwe presented these panel statistics in a form in which each
of the component statistics of the numerator and denominator was weighted by the member spe-
cific long-run conditional varianceis?,;, whereas here we present versions of the statistics that are
not weighted byL3,. The distinction between weighted and unweighted statistics is a fairly com-
mon occurrence in paneland the limit distribution is the same for both typemwever in Monte
Carlo simulationswe found that the unweighted statistics consistently outperformed the weighted
statistics in terms of the small sample size propertiésnsequentlywe present here only the
unweighted statistic&Ve are thankful to an anonymous referee for suggesting the unweighted form
of the statistics

5. For examplethe parametric analogue to tig _-statistic would take the form of the stan-
dard ADF correctionFor more details on the parametric ADF version of the panel and group mean
statistics we refer readers to an earlier version of the papPedroni(19973, which examines the
small sample properties of the parametric ADF version of the statistiod to Pedroni{1999,
which discusses in more detail the construction of the ADF
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6. Note that it is also possible to construct these estimates by imposing the nullpjatu
and estimating the nuisance parameters directly fpgm= Aé;. However Phillips and Ouliaris
(1990 recommend against thiand we follow the same recommendation here by first estimating
At in order to estimate the nuisance parameters

7. The same issue discussed in the previous note applies here in that we could also impose a
unit root on thez; data and estimate the nuisance parameters directly fipm Az;. Instead
howevey we have followed the recommendation in Phillips and Ouli&t@30 here by first esti-
mating &;.

8. The DGP used in Pedroi997a was based on various parameterizations of the one pro-
posed by Haudg1996 for the conventional time series cas®e have simplified the DGP in this
version which enables us to more easily characterize the long-run varianég iofterms of the
DGR

9. In all figures the curves representing the behavior of each of the statistics have been smoothed
slightly by means of a moving average of neighboring points

10. See earlier versions of this studyedroni(1995 19973, for a more detailed discussion of
the PPP application of this sectidm separate workPedroni(1996 2000, a panel fully modified
ordinary least squarg$MOLS) method for testing hypotheses regarding cointegrating vectors in
such panels is developed and subsequently applied in Pe@@ilh to test the strong version of
PPP for a similar data sewhich is strongly rejected

11 We should note that the estimation of common time effects potentially further complicates
the analysis of limiting distributions because the number of parameters to be estimated for the time
effects grows with the time dimensipi. We report these estimates for our empirical illustration
here simply for the case of comparison
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APPENDIX

Proof of Proposition 1. Let
T T R
Ryt :T7221A%—1 and RZ,iT:Tilzl(étflAet - A,
t= t=

where nowé; = yix — BiXit, A& = £x¢ — B €21 By expandingRy it, Ry, it in terms of
the convergencies given i2) and(3), it can be shown that a6 — oo

Ryir = L%IijQiz? Ryir= L:2LIiJQi dqQ, (A1)

whereQ is defined in terms ofV,W as in the statement of the propositiqitee the
appendix in Pedronil997a for more details regarding this calculatipn

Similarly, we can evaluaté2; as follows First, note thati; = A& — (p; — 1)&;_1.
Under the null (p; — 1) is Op(T %) so that the second term will be eliminated asymp-
totically asT — oo and will not impact the sequential limit distributiofror conve-
nience in notationwe drop these terms and write? as

K T
Az_ EMII+2T12WSK2 MltMlls
s=1 t=s+1

.
=71 ;(fm Biéy)? +2T 1 E Wei E (fm Bi éa) (é4i1-s = Bi€aivs)

+ O (T ) =F +F,—F3+0,(T™1), (A.2)

where

12§1|t+2T 1EWSK E glltfllt s’

F,=8 < Zfznfzn"‘z-r 12W5K121§2n§2|t )BA{,
F3 = < 2 §2It gllt +2T° . 2 WSKt 2 §2It gll t— S)
( ot E fllt §2|t +2T° 8 2 WSKt E 1érllt §2| t— >Bi" (AS)

Becauset;; is strictly stationary we know that

12§lt§n+2T 12W5K 2 ‘fltglt s—>{; asT — oo

t=s+1

Using the convergencies frof@) and(3) and(; = LjL;, following some algebrave
see that a§ — oo,

Fi= Qi = L5y + LoyLoy, (A.4)
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-1 -1
FFL;ﬁLzﬁwa\/ivvi/(fvvivw) UWW> Jwvia,
-1 -1
+L1ﬁf\4vvi'<fvvivvu) L2n+u2n-<fW.vvw> Jwvitas, (A5)
-1 -1
ngLlﬁfMW'<fWW/> L2n+u2n-<fvviw> vt + 2t

(A.6)

Thus letting B = [V\W/'(JWW')™* andRg it = ;% givesRy it = L35;(1 + B B{) as
T — co.

Now, let Rit = (Ry1, Raoit, Rsit)’ and note that the first three statistics of the propo-
sition can be written as different combinations of the standardized sums of these ele-
ments over thé\ dimension Specifically

N 1N -1
TZNS/ZZQNT = ml—?[l(ﬁ 2 R1,iT> ,
i=1
l N -1 1 N
T\/NZ,;NT—l = <N E R:L,iT) NN 2 R2,iT’

1 N —-1/2 1 N —1/2 1 N
i, = <NE R3,iT> (ﬁz Rl,i'r) W.Z Roits (A.7)

=1

where the individual elements &+,i = 1,...,N are ii.d. over thei dimension Next,
define the mean of the values fot,; averaged over thiedimension to b&E[L2 ;] = 7.

It should be apparent that?; — 7 as (T,N — o0)seq becauseN 13 (2 —
N 23N, L2, asT— cwandN 13N L2, — E[L2;] asN — oo in the second stage
limit. Next, to determine the limiting distribution of each of the panel statistidga¥ —
®)seq We use the delta methpavhich provides the limiting distribution for continu-
ously differential transformations ofiid. vector sequence§oward this endwe first
expand each of the statistics as follows

N -1
TEN¥2Z; .~ 01'VN = VN [(Nl > Rm> - (£n®1)1}£§1, (A.8)
=
N N -1
TUNZ;, 1~ 0,0, VN = \/N[Nl > Roir — 77'@2](’\'1 > RliT)
-1 -1

N ~1
+7T®2\/N[<N12 RliT) - (7T®i)1:|’ (A.9)
i=1
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Zi, ~ 0,0772(1+ 05) ¥2VN

—-1/2

= \/N[NIZN: Roir — 77@2}(’\‘1 i RliT>l/2 <N1 i R3iT>

—1/2

N —-1/2 N
+ 77@2\/N[<N_12 R1iT> - (7T®1)_1/2}<N_12 R3iT>
N ~1/2
+ 77@2(77'@1)1/2\/N[<N1 > R3iT> —(m(1+ (”)3))1/2}» (A.10)
i-1

where the elements of correspond to the means of the vector functioiyak=
(JQ2%/QdQ BB’) as defined in the propositioiThus because we take the coefficients
generatingt;y = Ci(L)mn; to be ii.d. over thei dimension and independent of the inno-
vations we haveE[Rit] = m(04,0,,1 + 03)’ asT — oo for anyi.

Now, for the next stage of the sequential limaisN — oo, the summations in paren-
theses converge to the means of the respective random variables by virtue of a law of
large numbersThis leaves the expressions involving each of the standardized square
bracketed terms as a continuously differentiable transformation of a surndofran-
dom variablesIn general for a continuously differential transformatiafy of an ii.d.
vector sequenck;, with vector meani and covariancg, the delta method tells us that

N
Zy = VN(Q (Nl > Xi> - g(ﬁ)) = N(0,a'2a) (A.11)
i=1

asN — oo, where thejth element of the vectow is given by the partial derivative
a; = (dg/dg)( ;). Thus in terms of our notation for the moments Bfy, we setji =
(01, 02,1+ 03), X = w2, « = 7 ¢, for each of the statisticsvhich produces
the limiting distributions stated in the proposition @SN — 0)seq

The cases with demeaned or demeaned and detrended data can be obtained in similar
fashion by definingg;, Aé; and the elements &+ conformably in terms of the demeaned
or demeaned and detrended daba this case the elements of the vectoy =
(JQ2% fQdQ BB’) become defined analogously in terms of demeaned Brownian motion
V*W*, or demeaned and detrended Brownian matidii, W**, and the derivation in
terms of the corresponding moments proceeds accordingly

To establish the limiting distribution for the two group mean statistiets

-1 T

T
Ryt = T(%é%l) Zl(én—lAé‘ut - ;\i)
and

T -1/2 T .
Roir = (ZlUA’iZAxl) Zl(é‘n—lAén —Ap).

Using similar notation it should be apparent then that

fur=(fa) fam  Rmi=(a-gs o) faw @
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asT — oo. Next expand each of the statistics as

N
TN*l/ZZ,aNTfl _ @1\/— = \/N[Nl Z Ryt — @1} (A.13)
i=1
~ ~ N ~
N_l/ZZfNT - ®2\/— = \/N|:N_l E R2iT - ®2:|’ (A14)
i=1

which converge tdN(0, ;) andN(0, /,,), respectivelyasN — oo by the same type of
arguments u

Proof of Corollary 1. Expanding the terms for the variances in Proposition 1 gives

T2N%¥2Z;  — 07*VN = N(0, 07 *y1,), (A.15)
TYNZ, 1 — 0,07 WN = N(0, 072y, + 020144y, — 20,07 34,),
(A.16)
TVNZ,, — 0,(0,(1+ 03)) 2N = N(0,¢), (A.17)

where/ = 071(1 + 03) Mo + 203073(1 + O3) My + 7030711 + O3) Pz —
0,072(1 + 03) Np — 0,071 + O3) ZUhps + 305072(1 + O3) %5, Substituting

the empirical moments for large N = 1 into these expressions gives the reported approx-
imations for the asymptotic distributions & — co. The results for the group mean
statistics follow immediately upon substituting the empirical moments for [arye= 1

into the expressions of Proposition 1 u

https://doi.org/10.1017/50266466604203073 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604203073

