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J O S E P D Í A Z,1 M A T H E W D. P E N R O S E,2

J O R D I P E T I T1 and M A R Í A S E R N A1†
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This work deals with convergence theorems and bounds on the cost of several layout

measures for lattice graphs, random lattice graphs and sparse random geometric graphs.

Specifically, we consider the following problems: Minimum Linear Arrangement, Cutwidth,

Sum Cut, Vertex Separation, Edge Bisection and Vertex Bisection. For full square lattices,

we give optimal layouts for the problems still open. For arbitrary lattice graphs, we present

best possible bounds disregarding a constant factor. We apply percolation theory to the

study of lattice graphs in a probabilistic setting. In particular, we deal with the subcritical

regime that this class of graphs exhibits and characterize the behaviour of several layout

measures in this space of probability. We extend the results on random lattice graphs to

random geometric graphs, which are graphs whose nodes are spread at random in the unit

square and whose edges connect pairs of points which are within a given distance. We also

characterize the behaviour of several layout measures on random geometric graphs in their

subcritical regime. Our main results are convergence theorems that can be viewed as an

analogue of the Beardwood, Halton and Hammersley theorem for the Euclidean TSP on

random points in the unit square.

1. Introduction

Several well-known optimization problems on graphs can be formulated as graph layout

problems. A (linear) layout of a graph with n vertices is a bijection between the vertex

set and the set of naturals from 1 to n. Graph layout problems, also referred to in the
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TIC97-1475-CE, and CIRIT project 1997SGR-00366.
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literature as linear ordering problems or linear arrangement problems, seek for a layout

that minimizes a cost associated with each problem. The particular layout problems

that we consider include Minimum Linear Arrangement, Cutwidth, Sum Cut and Vertex

Separation. We also consider the Edge Bisection and the Vertex Bisection problems, which

are partitioning problems, but can also be formulated as layout problems. The Sum Cut

problem is equivalent to the Profile problem and the Vertex Separation problem to the

Pathwidth problem. For general graphs, all these problems are NP-hard. Moreover, the

decisional version of Cutwidth and Vertex Separation problems are NP-complete even

when restricted to lattice graphs and unit disk graphs [10]. All of them have a long

history, owing to their practical relevance in different applications [35, 15, 1, 32, 24, 23, 2,

26, 7, 17, 19, 32, 18, 5, 22, 27, 33, 34].

Our layout problems are formally defined as follows. A layout ϕ of a graph G = (V , E)

is a one-to-one function ϕ : V → {1, . . . , n} with n = |V |. Given a graph G, a layout ϕ of

G and an integer i, let us define the sets

L(i, ϕ, G) = {u ∈ V (G) : ϕ(u) 6 i} and R(i, ϕ, G) = {u ∈ V (G) : ϕ(u) > i},
the measures

θ(i, ϕ, G) = |{uv ∈ E(G) : u ∈ L(i, ϕ, G) ∧ v ∈ R(i, ϕ, G)}|,
δ(i, ϕ, G) = |{u ∈ L(i, ϕ, G) : ∃v ∈ R(i, ϕ, G) : uv ∈ E(G)}|,
λ(uv, ϕ, G) = |ϕ(u)− ϕ(v)|, where uv ∈ E(G),

and the following graph layout problems:

• Minimum Linear Arrangement (MinLA). Given a graph G = (V , E), find

minla(G) = minϕ
∑

uv∈E λ(uv, ϕ, G) = minϕ
∑n

i=1 θ(i, ϕ, G).

• Cutwidth (CutWidth). Given a graph G = (V , E), find

mincw(G) = minϕ maxni=1 θ(i, ϕ, G).

• Vertex Separation (VertSep). Given a graph G = (V , E), find

minvs(G) = minϕ maxni=1 δ(i, ϕ, G).

• Sum Cut (SumCut). Given a graph G = (V , E), find

minsc(G) = minϕ
∑n

i=1 δ(i, ϕ, G).

• Edge Bisection (EdgeBis). Given a graph G = (V , E), find

mineb(G) = minϕ θ(bn/2c, ϕ, G).

• Vertex Bisection (VertBis). Given a graph G = (V , E), find

minvb(G) = minϕ δ(bn/2c, ϕ, G).

Graphs encoding circuits or grids are typical instances of linear arrangement problems.

We consider these instances as sparse graphs that have clustering and geometric properties.

In this paper, we are concerned with lattice graphs, random lattice graphs and random

geometric graphs. The study of these classes of graphs is an alternative to the standard

Gn,p model of random graphs, which does not provide an informative framework to

compare heuristics for layout problems [12]. In the rest of this section, we define these

classes of graphs and outline and comment on our main results.
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Lattice graphs

A graph is said to be a lattice graph if it is a finite node-induced subgraph of the infinite

lattice, that is, its vertex set is a finite subset of Z2 and two vertices are connected whenever

they are at distance one.

The most simple lattice graph is Lm with node set {0, . . . , m− 1}2. The optimal layouts

for the MinLA, CutWidth and EdgeBis problems on Lm are already known [25, 24, 22]:

mineb(Lm) = mincw(Lm) = m (or m+1 if m is odd) and minla(Lm) = 1
3
(4−√2)m3 +o(m3).

In the current paper we show that the diagonal layout (where x = (x, y) precedes

x′ = (x′, y′) whenever x+ y < x′+ y′, and whenever x+ y = x′+ y′ and x < x′) is optimal

for the VertSep, SumCut and VertBis problems on Lm.

Theorem 1.1. For all m, the diagonal layout is optimal for the VertSep, VertBis and

SumCut problems on Lm. Moreover,

minvs(Lm) = m,

minvb(Lm) = m,

minsc(Lm) = 2
3
m3 + 1

2
m2 − 7

6
m.

In the general case where the lattice graph is arbitrary, in this paper we provide the

upper bounds stated in the following theorem.

Theorem 1.2. For any lattice graph L with n vertices,

mineb(L) 6 2
√

2n+ 1, (1.1)

minvb(L) 6 2
√

2n+ 1, (1.2)

mincw(L) 6 14
√
n, (1.3)

minvs(L) 6 14
√
n, (1.4)

minla(L) 6 14n
√
n, (1.5)

minsc(L) 6 14n
√
n. (1.6)

These bounds can be achieved algorithmically. Observe that, in the case of Lm (where

n = m2), the above upper bounds are within a constant of their optimal costs (Theorem 1.1

and [25, 24, 22]). This shows that the bounds in Theorem 1.2 are best possible disregarding

a constant factor. The only previous known result for lattice graphs was an exact

polynomial time algorithm for the Edge Bisection problem on lattice graphs without

holes [28].

Random lattice graphs

We study lattice graphs in a probabilistic setting using percolation theory. We consider a

site percolation process, where nodes from the infinite lattice (Z2) are selected with some

probability p (selected nodes are called ‘open’). Let C0 be the connected component where

the origin belongs. A basic question in percolation theory is whether or not C0 can be

infinite. Let ϑ(p) denote the probability that |C0| = ∞, and set pc = inf{p : ϑ(p) > 0},
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the critical value of p. It is well known that pc ∈ (0.5, 1) [14]. In this paper, we consider

only subcritical limiting regimes p ∈ (0, pc) in which all components are almost surely

finite (results for supercritical regimes are derived in [9, 30]). In order to deal with finite

graphs, we introduce the class of random lattice graphs with parameters m and p, denoted

by Lm,p, the lattice graphs whose set of vertices is obtained through the random selection

of each element from {0, . . . , m− 1}2 chosen independently with probability p.

Regarding the Vertex Separation and the Cutwidth problem, in this paper we show

that, with high probability, their optima are Θ(
√

logm).

Theorem 1.3. Let p ∈ (0, pc); then there exist constants 0 < c1 < c2 such that

lim
m→∞Pr

[
c1 6

minvs(Lm,p)√
logm

6
mincw(Lm,p)√

logm
6 c2

]
= 1.

Recall (see for example [8]), that if (Xn)n>1 is a sequence of random variables and X is a

random variable, then Xn converges in probability to X (Xn
Pr−→X) if, for every ε > 0, it is

the case that limn→∞ Pr
[|Xn −X| > ε

]
= 0. We have the following convergence theorem

regarding the Minimum Linear Arrangement and Sum Cut problems.

Theorem 1.4. Let p ∈ (0, pc); then there exist two constants βla(p) > 0 and βsc(p) > 0

such that, as m→∞,

minla(Lm,p)

m2

Pr−→βla(p) and
minsc(Lm,p)

m2

Pr−→βsc(p).

In the proofs, we characterize βla(p) and βsc(p), but do not give their exact value.

Random geometric graphs

Instead of having nodes fixed at regular points in the plane, one can spread nodes in the

plane and connect nodes that are not too far away. To formalize this concept, let r be a

number such that 0 < r < 1, let ‖ · ‖ be a norm on R2 and let V be any set of n points in

the unit square ([0, 1]2). A geometric graph G(V ; r) with vertex set V and radius r is the

graph G = (V , E), where E = {uv | u, v ∈ V ∧ 0 < ‖u− v‖ 6 r}. Let (ri)i>1 be a sequence

of positive numbers and let X = (Xi)i>1 be a sequence of independently and uniformly

distributed (i.u.d.) random points in [0, 1]2. For any natural n, we write Xn = {X1, . . . , Xn}
and denote by G(Xn; rn) the random geometric graph of n nodes on Xn and radius rn.

Many empirical studies have used random geometric graphs as a basis for benchmarking

heuristics for layout or partitioning problems [16, 4, 21, 31]; however, their theoretical

study is still in its infancy (see [11] for a survey).

Like site percolation, continuum percolation and random geometric graphs exhibit a

phase transition [29]. Suppose limn→∞ nr2
n = λ; then there exists a critical parameter λc

such that, when λ < λc, graphs G(Xn; rn) are likely to have at most O(log n) points in each

connected component, while when λ > λc, there is likely to be a component with Θ(n)

vertices. In this paper, we consider only subcritical limiting regimes 0 < λ < λc (results

for supercritical regimes are derived in [10, 30]).

The behaviour of the bisection problems on subcritical random geometric graphs is
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characterized by the following result, where λ′c is a parameter that will be subsequently

defined.

Theorem 1.5. Suppose limn→∞ nr2
n = λ ∈ (0, λ′c). Then, as n→∞,

mineb(G(Xn; rn)) Pr−→ 0 and minvb(G(Xn; rn)) Pr−→ 0.

In the case of the Cutwidth and Vertex Separation problems for subcritical random

geometric graphs, this paper determines that, with high probability, their orders of

magnitude are Θ(log n/ log log n) and Θ((log n/ log log n)2) respectively.

Theorem 1.6. Suppose limn→∞ nr2
n = λ ∈ (0, λc). Then there exist constants 0 < c3 < c4

and 0 < c5 < c6 such that

lim
n→∞Pr

[
c3 6

minvs(G(Xn; rn))
log n/ log log n

6 c4

]
= 1 = lim

n→∞Pr

[
c5 6

mincw(G(Xn; rn))
(log n/ log log n)2

6 c6

]
.

In the case of the Minimum Linear Arrangement and Sum Cut problems, we prove in

this paper another convergence result, analogous to Theorem 1.4.

Theorem 1.7. Suppose limn→∞ nr2
n = λ ∈ (0, λc). Then there exist two constants β̃la(λ) > 0

and β̃sc(λ) > 0 such that, as n→∞,

minla(G(Xn; rn))
n

Pr−→ β̃la(λ) and
minsc(G(Xn; rn))

n

Pr−→ β̃sc(λ).

As in the discrete case, we are able to characterize β̃la(λ) and β̃sc(λ) as the expectation

of some related quantity, but do not give their exact value. This last theorem can be

viewed as analogous to the Beardwood, Halton and Hammersley theorem for the TSP.

The BHH Theorem [3]

Let X = (Xi)i>1 be a sequence of independent and uniformly distributed points in [0, 1]d.

Let mintsp(n) denote the length of the optimal solution of the TSP among the first n

points of X. Then there exists a constant βtsp(d) such that mintsp(n)/n(d−1)/d converges to

βtsp(d) almost surely as n→∞.

Indeed, the search for BHH-like results was one of the initial motivations for this

research (see [11]). A key property in proving BHH-like results is geometric sub-

additivity [36, Chapter 3]. It is important to stress that geometric sub-additivity does

not hold for our layout problems, and therefore we take a completely different approach

using percolation theory. In passing, we also remark that determining the exact value of

βtsp(2) is still an open problem.

Organization of the paper

In Section 2, we prove our results for lattice graphs. These are subsequently used in

Section 3, where we present results for random lattice graphs. In Section 4, we give
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Figure 1 Values of the vertex cut in the diagonal ordering ϕD

the proofs of our results for random geometric graphs, which built on the theorems for

random lattice graphs. We close the paper with a summary of our work and conclusions.

2. Lattice graphs

We begin this section by presenting a vertex isoperimetric inequality that will help us to

characterize the optimal layouts for some of the problems defined in the previous section

on square lattice graphs Lm. To attain this result, let ϕD denote the diagonal layout. The

next lemma is a special case of Corollary 9 of Bollobás and Leader [6], who in fact prove

the d-dimensional version for arbitrary d.

Lemma 2.1 (Vertex isoperimetric inequality). For any layout ϕ on Lm and any k ∈
{1, . . . , m2}, it is the case that δ(k, ϕ, Lm) > δ(k, ϕD, Lm).

We are now ready to prove our first theorem.

Proof of Theorem 1.1. The previous isoperimetric inequality yields the optimality of

ϕD for the costs of minvs, minsc and minvb on Lm. Thus we get that minvs(Lm) =

minvb(Lm) = m. To compute the sum of the cuts for ϕD , consider for each point in the

lattice the value of the vertex cut produced by the diagonal ordering (see Figure 1);

arranging the sum by points with the same vertex cut, we get

minsc(Lm) =

m2∑
i=1

δ(i, ϕD, Lm) =

m∑
i=1

m∑
j=i

j +

m∑
i=3

i(i− 2) +

m−1∑
i=2

i = 2
3
m3 + 1

2
m2 − 7

6
m.
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We move now to general lattice graphs with n nodes.

Lemma 2.2. For any lattice graph L with n vertices, and any k ∈ {1, . . . , n}, there is a

layout ϕ on L such that θ(k, ϕ, L) 6 23/2
√
n+ 1.

Proof. We are looking for a subset S of L consisting of k vertices, such that there are at

most 23/2
√
n+ 1 edges between S and L \ S . Figure 2 illustrates this proof.

Let α > 0 be a constant, to be chosen later. For x ∈ Z let Sx = {y ∈ Z : (x, y) ∈ L} and

let V = {x ∈ Z : |Sx| > α√n}. For i ∈ Z, let Hi denote the half-space (−∞, i]×R. Set

i0 = min{i ∈ Z : |L ∩Hi| > k}.
Consider the case i0 /∈ V . Then define S to be a set of the form

S = L ∩ (Hi0−1 ∪ ({i0} × (−∞, j]))
with j chosen so that S has precisely k elements.

With this definition of S for i0 /∈ V , the number of horizontal edges between S and

L\S is at most |Si0 |, and hence is at most α
√
n. There is at most one vertical edge between

S and L\S , so the number of edges from S to L\S is at most α
√
n+ 1 when i0 /∈ V .

Now consider the other case i0 ∈ V . Let I = [i1, i2] be the largest integer interval which

includes i0 and is contained in V . Then i1 − 1 /∈ V , and i2 + 1 /∈ V . Also, as |V | 6 α−1
√
n,

i2 − i1 + 1 6 α−1
√
n. We have

|L ∩Hi1−1| < k 6 |L ∩Hi2 |.
For j ∈ Z let Tj = [i1, i2]× (−∞, j]. Choose j0 so that

|L ∩ (Hi1−1 ∪ Tj0−1)| < k 6 |L ∩ (Hi1−1 ∪ Tj0 )|,
and let S be L ∩ (Hi1−1 ∪ Tj0−1 ∪ ([i1, i3] × {j0})), with i3 ∈ [i1, i2] chosen so that S has

precisely k elements.

We estimate the number of edges between S and L\S for the case i0 ∈ V . Since

i1 − 1 /∈ V , and i2 + 1 /∈ V , the number of horizontal edges between S and L\S is at

most 2α
√
n + 1. Also, since i2 − i1 + 1 6 α−1

√
n, the number of vertical edges between

S and L\S is at most α−1
√
n. Combining these estimates we find that there are at most

(2α+ α−1)
√
n+ 1 edges between S and L\S , whether or not i0 ∈ V .

The minimum value of 2α+ α−1 (achieved at α = 2−1/2) is 2
√

2. Setting α = 2−1/2 in the

above definition, we have the required partition.

The previous lemma gives the key to proving our second theorem.

Proof of Theorem 1.2. Using Lemma 2.2, taking k = bn/2c and the fact that minvb(L) 6
mineb(L), we immediately get equations (1.1) and (1.2).

In order to prove (1.3), first suppose we have n = 2k for an integer k. The proof is

based on recursive bisection, with the cut size guaranteed by Lemma 2.2. Let f(k) denote

the maximum mincw cost of all lattice graphs with 2k vertices. Then f(k) satisfies the
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Figure 2 Illustration of the proof of Theorem 2.2.

The thick line marks the potential nodes in the cut
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following recurrence:

f(k) 6

{
0, if k = 0,

23/22k/2 + 1 + f(k − 1), otherwise.

Then, solving the recurrence, we get

f(k) 6
k∑
j=1

(23/22j/2 + 1) = 4(21/2 + 1)(2k/2 − 1) + k.

We can drop the assumption that n = 2k , by taking k so that n 6 2k < 2n, and adding

extra points until one has a set of size 2k . By monotonicity this process does not reduce

the mincw cost, so

mincw(L) 6 25/2(21/2 + 1)
√
n+ (log2(n) + 1)− 4(21/2 + 1)

6 13.657
√
n+ log2(n)− 8.

But notice that for any x > 0 we have (log2(x) − 8)/
√
x < 0.067; therefore the above

bound for mincw(L) is at most 14
√
n for all n.

In order to prove equations (1.4), (1.5) and (1.6), observe that, for any graph G, it holds

that minla(G) 6 n · mincw(G), minsc(G) 6 n · minvs(G), and minvs(G) 6 mincw(G).

3. Random lattice graphs

Let us describe some basic concepts of site percolation for a lattice L with vertex set

Vm = {0, . . . , m−1}2. Given p ∈ (0, 1), site percolation with parameter p on L is obtained by

taking a random set of open vertices of Vm with each vertex being open with probability p

independently of the others. Let Lm,p be the subgraph of L obtained by taking all edges

between open vertices. We say that Lm,p is a random lattice graph. Denote by Prp and Ep

the probability and expectation with respect to the described process of site percolation

with parameter p. By a cluster we mean the set of vertices in any connected component

ofLm,p. Let C̃0 denote the cluster inLm,p that includes (0, 0) (possibly the empty set) and

let C̃x denote the cluster in Lm,p that includes the point x ∈ Vm.

A similar site percolation process can be generated analogously on the infinite lattice

with vertex set Z2 and edges between nearest neighbours. In the same way we can extend

Prp and Ep to this infinite process. Let C0 denote the cluster in Lm,p that includes (0, 0)

(possibly the empty set) and let Cx denote the cluster in Lm,p that includes the point x,

both for site percolation on Z2. Notice that we can view the random lattice graph Lm,p

as generated by a site percolation process on Z2 and taking the open vertices in Vm.

All through this section we consider random lattice graphs generated by subcritical

limiting regimes (p < pc), in which all clusters in the infinite process are almost surely

finite. We begin by proving that, with high probability, the optimal costs for the CutWidth

and VertSep problems on the subcritical percolation process lattice Lm,p are Θ(
√

logm).
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Proof of Theorem 1.3. Recall that, for any graph G, minvs(G) 6 mincw(G). The mincw

cost of a disconnected graph is the maximum of the mincw costs of its connected

components. Hence, for any positive constant c2,

Pr
[
mincw(Lm,p) > c2

√
logm

]
= Pr

[
∪x∈Vm

{
mincw(C̃x) > c2

√
logm

}]
.

By the site percolation version of equation 5.7 in [14], there exists a constant α > 0 such

that Pr
[|C0| > k] 6 e−αk . Therefore, by equation (1.3) in Theorem 1.2,

Pr
[
mincw(Lm,p) > c2

√
logm

]
6 Pr

[
∪x∈Vm{|C̃x| > (c2/14)2 logm}

]
6 m2 exp(−α(c2/14)2 logm).

Choosing c2 > 14
√

2/α we get Pr
[
mincw(Lm,p) > c2

√
logm

]→ 0.

To get a lower bound for minvs(Lm,p), let δ > 0 and let T1, . . . , Tj(m) be disjoint

lattice subsquares of Lm, each of side b(δ logm)1/2c, where j(m) = bm/b(δ logm)1/2cc2. Set

γ = log(1/p) so that p = e−γ . Let Aj be the event that all sites in Tj are open. Then

Pr
[
Aj
]

= exp(−γb(δ logm)1/2c2) > m−γδ .

Hence, Pr
[
∩j(m)
i=1 A

c
i

]
6 (1− m−γδ)j(m) 6 exp(−m−γδj(m)), which tends to zero provided δ is

chosen so that γδ < 2. As minvs(Lm) = m, by Theorem 1.1, we get

∪j(m)
i=1 Aj ⊂ {minvs(Lm,p) > (δ logm)1/2}.

Taking c1 =
√
δ we obtain the lower bound.

In the next lemma we prove that for subcritical site percolation with parameter p, the

expected ratio between minla(C0) and |C0| is finite. We also give a similar result for the

minsc cost. To cover the case C0 = ∅, we use the convention 0/0 = 0, throughout the

remainder of the paper.

Lemma 3.1. For any p ∈ (0, pc),

Ep

[
minla(C0)

|C0|
]
∈ (0,∞) and Ep

[
minsc(C0)

|C0|
]
∈ (0,∞).

Proof. Let R0 = min{k : C0 ⊂ [−k, k]2}; then, by considering the lexicographic ordering

of vertices one sees that minsc(Lm) 6 m3 and minla(Lm) 6 m3, which together with

monotonicity gives us that minsc(C0) 6 (2R0 + 1)3 and minla(C0) 6 (2R0 + 1)3. The

statement of the lemma follows from the fact that Prp[R0 > k] decays exponentially in k

(again, see [14, Chapter 5]).

We use the previous lemma to state one of our main results on random lattice graphs,

namely that the values of minla and minsc, divided by m2, converge in probability to a

constant.
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Proof of Theorem 1.4. Consider Lm,p as being embedded in a site percolation process

on the infinite lattice Z2. Then,

minla(Lm,p)

m2
= m−2

∑
x∈Vm

minla(C̃x)

|C̃x|

= m−2
∑
x∈Vm

minla(Cx)

|Cx| + m−2
∑
x∈Vm

(
minla(C̃x)

|C̃x|
− minla(Cx)

|Cx|
)
. (3.1)

Using the Ergodic Theorem [13, Theorem VII.6.9] and the Kolmogorov zero-one law,

m−2
∑
x∈Vm

minla(Cx)

|Cx|
Pr−→Ep

[
minla(C0)

|C0|
]
.

Writing ∂Vm for the set of x ∈ Vm with lattice neighbours in Z2\Vm, we get

m−2
∑
x∈Vm

∣∣∣∣∣minla(C̃x)

|C̃x|
− minla(Cx)

|Cx|

∣∣∣∣∣ 6 2m−2
∑

x∈Vm,Cx 6=C̃x

minla(Cx)

|C̃x|
6 2m−2

∑
y∈∂Vm

minla(Cy),

By the proof of Lemma 3.1, Ep[minla(Cy)] is finite and does not depend on y. Hence the

mean of the above expression tends to zero. The result for minla then follows from (3.1),

taking

βla(p) = Ep

[
minla(C0)

|C0|
]
.

The proof for minsc is just the same, taking

βsc(p) = Ep

[
minsc(C0)

|C0|
]
.

4. Random geometric graphs

Recall that, given a set of points V in the plane and a positive number r, G(V ; r) denotes

the geometric graph with vertex set V and radius r. In the following, (ri)i>1 is a sequence

of positive numbers and X = (Xi)i>1 is a sequence of independently and uniformly

distributed (i.u.d.) random points in [0, 1]2. Also, Xn is the set of the first n points of X.

For an infinite-volume analogue, let Pλ denote a homogeneous Poisson process on

R2 of intensity λ, and set Pλ,0 = Pλ ∪ {(0, 0)}. For large n, after appropriate scaling

and centring at a randomly chosen point of Xn, the graph G(Xn; rn) looks locally

like G(Pλ,0; 1). We consider a continuum site percolation process based on the Poisson

process; let ϑ̃(λ) be the probability that the added point at the origin lies in an infinite

component of G(Pλ,0; 1). Then define the critical intensities λc = inf{λ > 0 : ϑ̃(λ) > 0}
and λ′c = inf{λ > 0 : ϑ̃(λ) > 1

2
}. It is well known (see [14]) that λc ∈ (0,∞). In this section

we shall deal with random geometric graphs satisfying the condition limn→∞ nr2
n = λ, for

the subcritical regime λ < λc (or for bisection problems, λ < λ′c).
We first deal with the bisection problems EdgeBis and VertBis.
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Proof of Theorem 1.5. We need to show that, with high probability, there is a subset

W of Xn, of cardinality bn/2c, with no edges between W and Xn\W . By hypothesis,

ϑ̃(λ) < 1
2
.

For k ∈ N, set πk = Prλ[|C0| = k], and note πk > 0. Let Nn(k) denote the number of

points of G(Xn; rn) lying in clusters of size k.

Let pk(x) denote the probability that, when adding a point x to a set of n− 1 uniformly

distributed points, the new point will be in a cluster of size k. Then,

E[Nn(k)] = n

∫
[0,1]2

pk(x) dx.

For x not on the boundary of [0, 1]2, we claim that

pk(x)→ πk. (4.1)

This is because the question of whether x lies in a cluster of size k is determined by the

configuration of points within a distance krn of x, and, for any bounded set B ⊂ R2, the

restriction to B of the point process {r−1
n (Xi−x) : 1 6 i 6 n−1} converges in distribution

to the restriction to B of Pλ, as a consequence of the standard Poisson approximation to

the binomial distribution.

So, by the dominated convergence theorem, E[Nn(k)]/n→ πk . To look at the variance,

notice that, since Nn(k)(Nn(k)− 1) is twice the number of pairs of points both in clusters

of size k, if we denote by pk,k(x, y) the probability that when inserting points at x and y

into a set of n− 2 uniform points they will both be in a cluster of size k, then

E[Nn(k)(Nn(k)− 1)] = n(n− 1)

∫
[0,1]2

∫
[0,1]2

pk,k(x, y) dx dy.

For points x and y not on the boundary with x 6= y, by an argument similar to the proof

of (4.1), we have that pk,k(x, y) → (πk)
2, hence using again the dominated convergence

theorem E[(Nn(k)/n)
2] → π2

k . So Var
[
Nn(k)/n

] → 0, and by Chebyshev’s inequality we

can conclude

n−1Nn(k)
Pr−→ πk. (4.2)

As 1 −∑k πk = ϑ̃(λ) < 1/2, we can choose k1 such that
∑

k6k1
πk > 1/2. This inequality

together with (4.2) implies that, with probability tending to 1 as n tends to infinity,∑
k>k1

Nn(k) <
⌊n

2

⌋
,

and Nn(k) are non-zero for k = 1, 2, . . . , k1.

We generate a subset W of Xn as follows. First take the union of all clusters of size

greater than k1. Then add clusters of size k1 until there are none left. Then add clusters

of size k1 − 1 until there are none left. Continue in this way. At some point, having just

added a set of size i, we will have a set of size b n
2
c − m with 0 6 m < i. If m = 0, stop. If

m > 0, then add a cluster of size m and stop. This gives a set W ⊂ Xn, of size b n
2
c, with

no edges connecting W to Xn\W , as desired.
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Results analogous to those in Theorem 1.5 also hold for a percolation process in the

lattice with p < p′c, defined in the same way as λ′c.
We now present our results for the CutWidth and VertSep problems. In the following,

Bm denotes the box [0, m)2. The following lemma establishes lower bounds for the cost of

the optimal cutwidth and vertex separation of random geometric graphs in the subcritical

regime.

Lemma 4.1. Suppose λ < λc and that there exists a constant c > 0 such that mn = c/rn
for all n. Then,

lim
n→∞Pr

[
minvs(G(Pλ ∩ Bmn; 1)) > log n/ log log n

]
= 1

and

lim
n→∞Pr

[
mincw(G(Pλ ∩ Bmn)) > 1

5
(log n/ log log n)2

]
= 1.

Proof. Let us dissect Bmn into boxes of size ν×ν where ν is chosen to be as big as possible

so that all pairs of points in the same box are connected by an edge in G = G(Pλ∩Bmn; 1).

There are bn = bmn/νc2 boxes that completely fall in Bmn . For all 1 6 i 6 bn, let Ni be

the number of points of the process that fall in box i. By construction, we have that Ni

follows a Poisson distribution with mean µ = λν2, and that Ni is independent of Nj for

all i 6= j. Let Mn = maxi=1..bn Ni be the maximal number of points in some box. Then,

minvs(G) > Mn − 1 and mincw(G) > 1
2
Mn(

1
2
Mn − 1) > 1

5
Mn, because G contains at least

a clique with Mn points.

In the following, we show that some box contains at least f(n) = log n/ log log n points

with probability tending to one as n tends to infinity. Fix a box i. Then,

Pr [Ni > f(n)] =
∑
k>f(n)

µke−µ

k!
> e−µ

µf(n)+1

(f(n) + 1)!
.

Now consider all the boxes. We have

Pr

[ ⋂
i=1..bn

Ni 6 f(n)

]
=

∏
i=1..bn

Pr [Ni 6 f(n)]

6

(
1− e−µ µf(n)+1

(f(n) + 1)!

)bn
6

(
1− e−µ µf(n)+1

(f(n) + 1)!

)4c2n/µ

and thus the above probability goes to zero as n goes to infinity.

In order to determine upper bounds of the same order than the lower bounds, we

will need two auxiliary results, which may be useful in other situations. Let us define

cw(ϕ,G) = maxi=1..n θ(i, ϕ, G) and vs(ϕ,G) = maxi=1..n δ(i, ϕ, G) for a graph G and a layout

ϕ of G.

Definition 1. Given a graph G = (V , E) and an integer s, let us define the s-explosion of

G as the graph G′ = (V ′, E ′) where V ′ = {(u, i) | u ∈ V , 1 6 i 6 s} and E′ =
{

(u, i)(u, j) |
u ∈ V , 1 6 i < j 6 s

} ∪ {(u, i)(v, j) | uv ∈ E, 1 6 i 6 j 6 s
}

.
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Lemma 4.2. Let G′ = (V ′, E ′) be the s-explosion of an arbitrary graph G = (V , E). Then,

mincw(G′) 6 s2(mincw(G) + 1).

Proof. Let ϕ be a layout of G with minimal cutwidth. Let ϕ′ be a layout of G′ defined

by ϕ′((u, i)) = (ϕ(u)− 1)s+ i for all u ∈ V and all 1 6 i 6 s. In plain words, the exploded

nodes are placed in ϕ′ in the same relative order that their ‘parents’ are in ϕ.

Let i be an integer such that 1 6 i 6 |V |. Then we have θ(si, ϕ′, G′) = s2θ(i, ϕ, G) because

each original edge from E corresponds to s2 edges in E ′. Moreover, for all 1 6 j < s, we

have θ(si + j, ϕ′, G′) 6 θ(i + 1, ϕ, G) · s2 + s2 because we have to count s2 edges in E ′ for

each edge in E plus the edges inside a clique of size s. As a consequence,

mincw(G′) 6 cw(G′, ϕ′) 6 s2(cw(G,ϕ) + 1) = s2(mincw(G) + 1),

which proves the stated result.

Definition 2. Given two integers m and l, let us define an (m, l)-mesh as the graph G =

(V , E) with vertex set Vm = {0, . . . , m− 1}2 and edge set E = {uv | u, v ∈ V , ‖u− v‖∞ 6 l}.

Lemma 4.3. Given an integer l > 0, there exists a constant κl > 0 such that, for any

node-induced subgraph L of an (m, l)-mesh with n nodes, minvs(L) 6 mincw(L) 6 κl
√
n.

Proof. First assume that l = 1. An argument similar to the proof of equation (1.3) in

Theorem 1.2 shows that mincw(L) 6 κ1

√
n for some constant κ1 > 0. Since, for any graph,

its minimal vertex separation can never be greater than its minimal cutwidth, Lemma 4.3

is proved for the case l = 1.

Assume now that l > 1. Let m′ = dm/le and let H be a node-induced subgraph of the

(m′, 1)-mesh where a potential node u with coordinates xu and yu belongs to H if and only

if some node v from L with coordinates xv and yv satisfies bxv/lc = xu and byv/lc = yu.

As H is an (m′, 1)-mesh and |H | 6 |L| = n, we have mincw(H) 6 κ1

√
n. Construct a graph

G by s-exploding H with s = l2. By Lemma 4.2, mincw(G) 6 l4(κ1

√
n+ 1). Now observe

that, by construction, L is a subgraph of G! As a consequence,

minvs(L) 6 mincw(L) 6 mincw(G) 6 κl
√
n

where κl = l4(κ1 + 1).

We are now ready to find upper bounds for the Vertex Separation and the Cutwidth

problems.

Lemma 4.4. Suppose λ < λc and mn = c/rn for some constant c > 0 and all integer n.

Then there exist constants γ1 > 0 and γ2 > 0 such that

lim
n→∞Pr

[
minvs(G(Pλ ∩ Bmn; 1)) 6 γ1 log n/ log log n

]
= 1

and

lim
n→∞Pr

[
mincw(G(Pλ ∩ Bmn; 1)) 6 γ2(log n/ log log n)2

]
= 1.
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Proof. We only give the proof for the Vertex Separation problem, as the proof for the

Cutwidth result is similar.

Let us dissect Bmn in boxes of size ν × ν, where ν is a (small) constant that will be

determined later. There is a total number of bn = dmn/νe2 boxes, which we will consider.

Let H = H(Pλ) be the node-induced subgraph of the (dmn/νe), 1/ν)-mesh whose nodes

are present if and only if their corresponding box contains at least one point in Pλ. Let

us denote G(Pλ ∩ Bmn; 1) by G.

Our proof consists of three steps; let us first outline them. In Step 1, we prove that,

with high probability, H does not contain ‘too big’ connected components. Assuming that

H does not contain any big connected component, in Step 2, we upper-bound minvs(H)

by a certain function f(n), and show that, if ψ is a layout such that vs(ψ,H) 6 f(n),

then minvs(G) is bounded by Mn, a magnitude related to the number of points of Pλ in

f(n) boxes and to the layout ψ. Finally, in Step 3 we prove that, with high probability,

Mn 6 ν log n/ log log n. The combination of these steps will imply the proposed result.

Step 1. For all i = 1, . . . , bn, let Ni be the number of points of Pλ that fall in box i. By

construction, if box i completely falls in Bmn square, we have that Ni follows a Poisson

distribution with mean µ = λν2; otherwise Ni is bounded by a Poisson distribution with

mean µ2. Moreover, for all i 6= j, the variables Ni and Nj are independent.

We identify each box with a node of an infinite lattice with connections between boxes

whose centres lie at distance not greater than 1/ν. We define on this lattice a percolation

process where each node is deemed open if its corresponding box contains at least one

point from Pλ. Observe that our lattice is a ‘general lattice’ in the sense of Kesten [20,

pp. 10–12] and Grimmett [14, p. 349]. Therefore, this percolation process must exhibit a

phase transition at some critical probability, and a sufficiently small value of ν sets us in

the subcritical phase [29, Lemma 2]. As a consequence [14], there is an exponential decay

in the size of a connected component C: for some constant α and all integer m,

Pr
[|C| > m

]
6 exp (−αm) .

Let c1 = 3/α. The probability that some connected component of H has size bigger than

c1 log n is

Pr

 ⋃
x∈V (H)

{|Cx| > c1 log n}
 6 bn · exp (−αc1 log n) 6 4n−2/µ→ 0.

Step 2. We now suppose that no component of H has more than c1 log n points. By

Lemma 4.3, this implies that, for some constant κ > 0, minvs(H) 6 κ
√

log n.

Set f(n) = κ
√

log n and let ψ be a layout of H with vs(ψ,G) 6 f(n). We use the

layout ψ as the basis to build a layout ϕ of the points in Pλ ∩ B, taking the ordering of

points within multiply occupied boxes in an arbitrary way. As f(n) boxes separate any

two connected boxes of H in ψ, we have that vs(G,ϕ) 6 Mn, where Mn is defined as the

maximum number of points in Pλ that belong to the union of any f(n) consecutive boxes

according to the layout ψ.
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Step 3. In the following we show that, with high probability, f(n) consecutive boxes

contain at most g(n) = ν log n/ log log n points.

The number of points in an open box follows a Poisson distribution with parameter

µ, conditioned to be at least one. The reader can easily check that this is stochastically

dominated by an unconditioned Poisson distribution with parameter µ plus one unit.

Also, the number of points in f(n) boxes follows the sum of f(n) independent Poisson

distributions, each one with parameter µ and conditioned to be at least one. This is

stochastically dominated by f(n) plus the sum of f(n) unconditioned Poisson distributions

with parameter µ, which is the same as the variable

S = f(n) +P(f(n)µ) = κ
√

log n+P
(
µκ
√

log n
)
.

Since each connected component of H contains at most c1 log n boxes, and H contains

at most bn connected components, the probability that any f(n) consecutive boxes contain

more than g(n) points is at most

c1 log n · bn · Pr [S > g(n)] .

In order to prove that the previous probability goes to zero as n goes to infinity, let

X be some random variable following a Poisson distribution with mean µn to be defined

later, and let αn be a sequence to be given later such that µn = ω(αn) and that µn = ω(1).

Then, we claim that

Pr [X > αn] 6 e
−µnµαnn eαnα−αnn

and so

log Pr [X > αn] 6 −µn + αn log µn + αn − αn log αn. (4.3)

Take X as a Poisson distribution with mean µn = µκ
√

log n and take

αn = γ1 log n/ log log n− κ√log n

for some constant γ1. Let γ′1 = 3
4
γ1 so that

γ′1 log n/ log log n < αn < γ1 log n/ log log n.

Substituting in the right-hand side of (4.3) and taking exponentials, we find

Pr [X > αn] > n
−γ1/4

and thus

c1 log n · bn · Pr [X > αn]→ 0

provided that γ1 is chosen to be big enough.

We can now finally prove Theorem 1.6.

Proof of Theorem 1.6. We first coupleXn to a Poisson process with a slightly lower density

of points, as follows. Take λ1 ∈ (0, λ) and set mn = dr−1
n e. Let Mn be a Poisson variable

with mean λ1m
2
n. Then, limn→∞ Pr [Mn > n] = 0. Let us set mnXn = {mnXi : 1 6 i 6 n},

P = {mnXi : 1 6 i 6 Mn}. Notice that P is a Poisson process on Bmn with intensity λ1. If
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Mn 6 n then G(P; 1) is a subgraph of G(mnXn;mnrn), which is isomorphic to G(Xn; rn).
By monotonicity,

lim
n→∞Pr [vs(G(Xn; rn)) > vs(G(P; 1))] = 1.

As a consequence, by Lemma 4.1, we have

lim
n→∞Pr

[
vs(G(Xn; rn)) > log n/ log log n

]
= 1. (4.4)

We now couple Xn to a Poisson process with a slightly higher density of points.

Take λ2 ∈ (λ, λc) and set m′n = br−1
n c. Let M ′n be a Poisson variable with mean λ2(m′n)2.

Then, limn→∞ Pr
[
M ′n < n

]
= 0. Let P′ = {m′nXi : 1 6 i 6 M ′n}. Notice that P′ is a

Poisson process on Bm′n with intensity λ2. If M ′n 6 n then G(P; 1) is a super-graph of

G(mnXn;mnrn), which is isomorphic to G(Xn; rn). By monotonicity,

lim
n→∞Pr

[
vs(G(Xn; rn)) 6 vs(G(P′; 1))

]
= 1.

As a consequence, by Lemma 4.4, we have

lim
n→∞Pr

[
vs(G(Xn; rn)) 6 γ1 log n/ log log n

]
= 1. (4.5)

Combining equations (4.4) and (4.5) we obtain

lim
n→∞Pr

[
c3 6

minvs(G(Xn; rn))
log n/ log log n

6 c4

]
= 1

for the suitable constants c3 and c4.

The proof for the Cutwidth result is similar.

We now turn to the convergence results for the MinLA and SumCut problems. We

shall first prove that, in the subcritical case, the expected values of minla and minsc on

the induced graph on C0 are finite.

Proposition 4.5. Let λ < λc. Then

Eλ[minla(C0)] ∈ (0,∞) and Eλ[minsc(C0)] ∈ (0,∞).

Proof. Recall that, for any graph G with n nodes, minla(G) 6 n3 and minsc(G) 6 n3.

Hence, to prove the statement it is enough to show that Eλ[|C0|3] < ∞. To show this, let

B(r) be the ball of radius r centred at the origin and let

Pλ,0(B(r)) = |{x of Pλ,0 | x ∈ B(r)}|.
Then, for any m > 0, the event {|C0| > m1/3} is contained in the union of the events

{Pλ,0(B(m1/(6d)) > m1/3} and {diam(C0) > m1/(6d)}; therefore, using Boole’s inequality, we

get

Pr
[
|C0| > m1/3

]
6 Pr

[
Pλ,0(B(m1/(6d))) > m1/3

]
+ Pr

[
diam(C0) > m1/(6d)

]
.

The first term in the right-hand side is summable in m by standard estimates of the

https://doi.org/10.1017/S0963548300004454 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548300004454


506 J. D́ıaz, M. D. Penrose, J. Petit and M. Serna

Poisson distribution. The second term is summable in m by Lemma 2 in [29]. Hence∑
m>1

Pr
[|C0|3 > m] < ∞

and the statement follows.

Next we prove a technical lemma that will be needed later.

Lemma 4.6. The functions λ 7→ Eλ

[
minsc(C0)
|C0|

]
and λ 7→ Eλ

[
minla(C0)
|C0|

]
are continuous in λ

on (0, λc).

Proof. We give the proof for the minla case; the proof for the minsc is similar. Define

coupled versions of the Poisson process Pλ, λ > 0, in the following standard way. Let P
be a Poisson process on R2 × [0,∞) of rate 1, and let Pλ consist of the projections onto

the 2 coordinates of the points of P ∩ (R2 × [0, λ]). Using this coupling, write C0(λ) for

the component including the origin of C(Pλ ∪ {0}; 1).

Suppose (λn) is a sequence with λn → λ ∈ (0, λc). With this coupling, with probability

one it is the case that, for all sufficiently large n, the components C0(λn) and C0(λ) are

identical. Hence, by the dominated convergence theorem,

Eλn[minla(C0(λn))/|C0(λn)|]→ Eλ[minla(C0(λ))/|C0(λ)|].
We now give asymptotics for the minla and minsc costs of the graphs G(Pλ ∩ Bm; 1).

Proposition 4.7. Suppose λ < λc, and let Gm = G(Pλ ∩ Bm; 1). Then, as m→∞,

minla(Gm)

m2

Pr−→ λEλ

[
minla(C0)

|C0|
]

and
minsc(Gm)

m2

Pr−→ λEλ

[
minsc(C0)

|C0|
]
.

Proof. We sketch a proof for minla. For each point x of Pλ ∩ Bm, let Cx denote the

component of G(Pλ ∩ Bm; 1) that includes the point x, and let C̃x denote the component

of G(Pλ; 1) that includes the point x. By an argument similar to the proof of Theorem 1.5,

it suffices to prove that

Eλ

[
m−d

∑
x∈Pλ∩Bm

∣∣∣∣∣minla(C̃x)

|C̃x|
− minla(Cx)

|Cx|

∣∣∣∣∣
]
→ 0. (4.6)

For l > 0, let ∂lBm be the set of points z ∈ Bm with ‖z − y‖∞ 6 l for some y /∈ Bm.

The quantity inside the sum in (4.6) is at most minla(C̃x) · (Cx 6= C̃x), where, for any

statement S , (S) stands for 1 if S is true, 0 otherwise. Hence the random variable inside

the expectation in (4.6) is at most(
m−d

∑
x∈Pλ∩∂lBm

minla(C̃x)

)
+

(
m−d

∑
x∈Bm\∂lBm

minla(C̃x) · (diam(C̃x) > l)

)
.

The expectation of the first term tends to zero, while the expectation of the second term

equals λEλ[minla(C0)(|C0| > l)], which can be made arbitrarily small by the choice of l.

Then (4.6) follows.
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We can now finally prove Theorem 1.7.

Proof of Theorem 1.7. The same coupling that in the proof of Theorem 1.6 shows that

Pr
[
minla(G(Pn; 1)) 6 minla(G(Xn; rn)) 6 minla(G(P′n; 1))

]→ 1.

By Proposition 4.7,

minla(G(Pn; 1))

m2
n

Pr−→ λ1Eλ1

[
minla(C0)

|C0|
]
,

so that
minla(G(Pn; 1))

n

Pr−→
(
λ1

λ

)
Eλ1

[
minla(C0)

|C0|
]
.

Similarly,

minla(G(P′n; 1))

n

Pr−→
(
λ2

λ

)
Eλ2

[
minla(C0)

|C0|
]
.

Taking λ1 ↑ λ and λ2 ↓ λ and using Lemma 4.6,

minla(G(Xn; rn))
n

Pr−→ Eλ

[
minla(C0)

|C0|
]
.

The proof for the convergence of minsc is analogous.

5. Conclusions

In this paper we have considered several layout problems for specific classes of sparse

graphs: lattice graphs, random lattice graphs and random geometric graphs. We have first

identified the optimal solutions for the Vertex Separation, Sum Cut, and Vertex Bisection

problems for the complete square lattice, and presented several worst-case upper bounds

for arbitrary lattices for all the addressed problems. We have then determined the order

of magnitude of the Vertex Separation and Cutwidth of random lattice graphs generated

by selecting at random nodes of an m × m complete lattice with probability p < pc. For

the Minimum Linear Arrangement and the Sum Cut problems, we have even been able to

prove that their optimal cost divided by m2 converges to a particular constant. Finally, we

have considered random geometric graphs in the subcritical regime. We have shown that

the Minimum Linear Arrangement and the Sum Cut measures divided by the number of

nodes of the graph converge to another particular constant. For the Vertex Separation

and Cutwidth of random geometric graphs, we have identified their order of magnitude.

We also have shown that one may obtain an empty bisection of random geometric graphs

and random lattice graphs (both in the subcritical case). Table 1 summarizes the obtained

results.

For the sake of clarity, we have contented ourselves in this paper with demonstrating

convergence in probability; however, the convergence in our theorems actually holds

in the stronger sense of complete convergence, which implies convergence almost surely

(see [37]). In all the cases, our results are given for the bidimensional space; the extension

to higher dimensions remains open.

Our results show that the optimal costs for all problems are different in the supercritical
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and subcritical phases. Let us recall the order of magnitudes in the supercritical case [30].

For random lattice graphs Lm,p with p > pc,

Pr
[
minla(Lm,p) = Θ(m3)

]
= 1,

Pr
[
mincw(Lm,p) = Θ(m)

]
= 1,

Pr
[
minsc(Lm,p) = Θ(m3)

]
= 1,

Pr
[
minvs(Lm,p) = Θ(m)

]
= 1.

For random geometric graphs G(Xn; rn) with limn→∞ nrn = λ and λ > λc, it is the case

that

Pr
[
minla(Lm,p) = Θ(n3r3

n)
]

= 1,

Pr
[
mincw(Lm,p) = Θ(n2r3

n)
]

= 1,

Pr
[
minsc(Lm,p) = Θ(n2rn)

]
= 1,

Pr
[
minvs(Lm,p) = Θ(nrn)

]
= 1.

Definitively, there also exists a transition phase for the considered layout measures on

random geometric graphs and random lattice graphs.

As with many other optimization problems in the plane that exhibit convergence

phenomena, an interesting problem is to find good methods for evaluating numerically

the constants in Theorem 1.4 as functions of the open vertex density p and the analogous

constants in Theorem 1.7 as functions of λ. Preliminary estimates for βla(p) were given

in [9]; the method used was a raw simulation of the percolation process on the lattice

and computation of lower and upper bounds with several heuristics [31]. According

to [36, Section 2.4], in the case of the TSP, D. S. Johnson obtained empirically that

0.70 6 βtsp(2) 6 0.73 with high confidence. Our experimental results are not so tight: the

search for new empirical or analytical methods to estimate these constants is left as an

open problem.
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