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We show that the number of unit distances determined by n points in R
3 is O(n3/2), slightly

improving the bound of Clarkson, Edelsbrunner, Guibas, Sharir and Welzl [5], established

in 1990. The new proof uses the recently introduced polynomial partitioning technique of

Guth and Katz [12]. While this paper was still in a draft stage, a similar proof of our main

result was posted to the arXiv by Joshua Zahl [28].
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1. Introduction

Let P be a set of n points in Euclidean d-dimensional space R
d. What is the maximum

possible number of pairs {p, q} of points in P such that the (Euclidean) distance of p to

q is exactly 1? A standard construction, attributed to Lenz [15], shows that this number

can be Θ(n2) in d � 4 dimensions, so the only interesting cases are d = 2, 3. The planar

version is the classical unit distances problem of Erdős [9], posed in 1946, for which we

refer to the literature (in particular, see [5, 22, 24, 26]). Here we focus on the case d = 3.

This was studied, back in 1990, by Clarkson, Edelsbrunner, Guibas, Sharir and Welzl

[5], who established the upper bound O(n3/22O(α2(n))), where α(·) is the inverse Ackermann

function (a function growing extremely slowly, much slower than log n, log log n, etc.)

In this paper we get rid of the small factor 2O(α2(n)), and obtain the upper bound O(n3/2).

Admittedly, the improvement is not large, and achieves only a slight narrowing of the gap

from the best known lower bound, which is Ω(n4/3 log log n) [10], but is nevertheless the

first improvement of the bound of [5], more than 20 years after its establishment.

The proof of the new bound is based on the recently introduced polynomial partitioning

technique of Guth and Katz [12] (see also Kaplan, Matoušek and Sharir [14] for an

expository introduction). An additional goal of the present paper is to highlight certain

technical issues (specifically, multi-level polynomial partitions) that might arise in the

application of the new approach. These issues are relatively simple to handle for the

problem at hand, but treating them in full generality is still an open issue.

Zahl’s work. After we finished a draft of this paper, in early 2011, we learned that Zahl

[28] had independently obtained the same bound on unit distances in R
3 (and, actually, a

more general result concerning incidences of points with suitable surfaces in R
3), using the

same general approach. Our subsequent correspondence then helped in clarifying some

issues in both of the papers.

The details of our arguments differ from those of Zahl at some points, and since the

general problem of the multi-level decomposition alluded to above remains unresolved

(both Zahl’s work and ours deal only with two-level decompositions), even slight

differences in the approaches may become important in attacking the general question.

Our treatment is also more pedestrian and assumes less background in algebraic geometry

than Zahl’s, and thus it may be more accessible for the community at large of researchers

in discrete geometry. So, while we respect the priority of Zahl’s arXiv preprint, and

acknowledge a substantial overlap in the main ideas, we have nonetheless decided to

publish our paper.

2. Analysis

Let P be a set of n points in R
3. For each p ∈ P , let σp denote the unit sphere centred at

p, and let Σ denote the collection of these spheres. Clearly, the number of unit distances

between pairs of points of P is half the number of incidences I(P ,Σ) of the points of P

with the spheres of Σ. Our main result is the following theorem.

Theorem 2.1. I(P ,Σ) = O(n3/2). In particular, the number of unit distances in any set of n

points in R
3 is O(n3/2).

https://doi.org/10.1017/S0963548312000144 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000144


Unit Distances in Three Dimensions 599

We first review the main algebraic ingredient of the analysis.

Polynomial partitions: A quick review. For the sake of completeness, and also for the

second partitioning step in our analysis, we provide a brief review of the polynomial

partitioning technique of Guth and Katz [12]; see also [14]. This technique is based on

the polynomial ham sandwich theorem of Stone and Tukey [23]. Its specialization to three

dimensions is stated in the following theorem.

Theorem 2.2 (Guth and Katz [12]). Let P be a set of n points in R
3 and let s � 1 be a

parameter. Then there exists a non-zero trivariate polynomial f of degree D = O(s1/3) and

a partition of P into pairwise disjoint subsets P0, P1, . . . , Pt, such that

(i) t = O(s),

(ii) |Pi| � n/s for each i = 1, . . . , t,

(iii) P0 = P ∩ Z(f), where Z(f) is the zero set of f, and

(iv) each Pi, for i = 1, . . . , t, is contained in a distinct connected component of R
3 \ Z(f).

A brief review of the proof. We first recall the construction of a polynomial ham

sandwich cut, as in [23], specialized to three dimensions.

We fix an integer D and put M =
(
D+3

3

)
− 1. Let U1, . . . , UM be M arbitrary finite point

sets in R
3. Let ϕ : R

3 �→ R
M be the Veronese map, which maps a point (x, y, z) ∈ R

3 to the

M-tuple of the values at (x, y, z) of all the M non-constant trivariate monomials of degree

at most D. We consider the images ϕ(U1), . . . , ϕ(UM) of our sets, and apply the standard

ham sandwich theorem (see [23] and [16, Chapter 3]) to these M sets in R
M . This yields

a hyperplane h that bisects each set Ui, in the sense that, for each i = 1, . . . ,M, at most

|Ui|/2 points of Ui lie on one side of h and at most |Ui|/2 points lie on the other side

(the remaining points of Ui lie on h; their number can be anything between 0 and |Ui|).
We now consider the composition f = h ◦ ϕ (here h = 0 is the linear equation of our

hyperplane). Then f is a trivariate polynomial (a linear combination of monomials) of

degree at most D that bisects each of the sets U1, . . . , UM , in the sense that, for each i,

|Ui ∩ {f > 0}|, |Ui ∩ {f < 0}| � |Ui|/2.

Note that the degree of f is at most O(M1/3), and that its actual value can be smaller.

To prove Theorem 2.2, we apply this polynomial ham sandwich cut repeatedly, starting

with the singleton set P and doubling the number of sets at each step. Specifically, we

first bisect the original point set P into two halves, using a polynomial f1. We then bisect

each of these two sets into two halves, using a second polynomial f2, bisect each of the

four resulting subsets using a third polynomial f3, and so on, until the size of all of the

current subsets is reduced to at most n/s. The product f = f1f2f3 · · · of these bisecting

polynomials is the desired partitioning polynomial, and, as is shown in [12, 14] (and easy

to verify), its degree is D = O(s1/3).

It remains to define the subsets P0, P1, . . . , Pt. We set P0 = P ∩ Z(f); we note that

we have no control over the size of P0 – it can be anything from 0 and n. Then

we let C1, . . . , Ct be the connected components of the complement R
3 \ Z(f), and we set

Pi = P ∩ Ci, i = 1, 2, . . . , t. It follows from well-known results mentioned later in Lemma 2.3
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that t = O((deg f)3) = O(s). Since each component Ci can meet at most one of the subsets

produced by the sequence of the polynomial ham sandwich cuts, we have |Pi| � n/s for

each i = 1, . . . , t. This completes the proof of the theorem.

The intended use of the theorem is mainly with s � n. However, for s > n we can,

following the technique used in [8, 11], find a polynomial f of degree O(n1/3) = O(s1/3)

that vanishes at all the points of P . In this case all the subsets in the resulting partition

of P are empty, except for P0 = P ∩ Z(f) = P .

First partition. For the proof of Theorem 2.1, we set s = n3/4, so the degree of the resulting

partitioning polynomial f, yielded by Theorem 2.2, is D = O(n1/4). Denote the resulting

subsets of the above partition of P by P1, . . . , Pt, t = O(s). Each of these subsets is of

size at most n/s and is contained in a distinct component of R
3 \ Z(f); we also have a

remainder subset P0, contained in the zero set Z = Z(f) of f.

We note that the degree D could conceivably be much smaller. For example, if P , or

most of it, lies on an algebraic surface of small degree (say, a plane or a quadric) then f

could be the polynomial defining that surface, resulting in a trivial partitioning in which

all or most of the points of P belong to P0 and the degree of f is very small. This potential

variability of D will enter the analysis later on.

We first bound the number of incidences between P \ P0 and Σ. For this, we need

to show that no sphere crosses too many cells of the partition (that is, components of

R
3 \ Z(f)). This can be argued as follows.

Let us fix a sphere σ = σa ∈ Σ. The number of cells Ci crossed by σ is bounded from

above by the number of components of σ \ Z(f).

For bounding the latter quantity, as well as for some arguments below, it is technically

convenient to use a rational parametrization of σ. Specifically, we let ψ : R
2 → R

3 be the

inverse stereographic projection given by ψ(u, v) = (ψx(u, v), ψy(u, v), ψz(u, v)), where

ψx(u, v) = x0 +
2u

u2 + v2 + 1
, ψy(u, v) = y0 +

2v

u2 + v2 + 1
, ψz(u, v) = z0 +

u2 + v2 − 1

u2 + v2 + 1
,

and (x0, y0, z0) is the centre of σ. Then ψ is a homeomorphism between the uv-plane and

the sphere σ ‘punctured’ at its north pole (recall that σ is a unit sphere). This missing

point will not affect our analysis if we choose a generic coordinate frame, in which no

pair of points of P are co-vertical. (Since the centre of each ball is a point in P , no point

will reside at the north pole of a ball in such a generic coordinate frame.)

Let us consider the composition f ◦ ψ (i.e., f ◦ ψ(u, v) = f(ψx(u, v), ψy(u, v), ψz(u, v)));

this is a rational function, which we can write as a quotient f∗(u,v)
q(u,v)

of two polynomials

(with no common factor). For analysing the zero set, it suffices to consider the numerator

f∗(u, v), which is a polynomial of degree O(D).

If f∗ vanishes identically then σ ⊂ Z(f) and thus σ does not cross any cell Ci of the

partition. Otherwise, the number of components of σ \ Z(f) is no larger than the number

of components of R
2 \ Z(f∗), and for these, we use the case d = 2 of the following result.

Lemma 2.3. Let f be a real polynomial of degree D in d variables. Then the number of

connected components of R
d \ Z(f) is at most 6(2D)d.
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This lemma follows, for example, from the work of Warren [27, Theorem 2], which in

turn is based on the well-known Oleinik–Petrovskii–Milnor–Thom theorem [17, 18, 25]

on the sum of Betti numbers of a real algebraic variety (also see [4] for an exposition,

and [1] for a neatly simplified proof of Warren’s result).

From Lemma 2.3 we get that the number of connected components of R
2 \ Z(f∗) is

O(deg(f∗)2) = O(D2).

We thus conclude that each sphere σ = σa ∈ Σ crosses at most O(D2) = O(n1/2) cells Ci
of the partition.

Hence the overall number of sphere–cell crossings is O(nD2) = O(n3/2). Now we can

estimate the number of incidences of the spheres with the points of P1, . . . , Pt in the

following standard manner. For i = 1, . . . , t, let Pi = P ∩ Ci be the set of points inside a

cell Ci, and let ni be the number of spheres crossing Ci. Then the spheres crossing Ci and

incident to at most two points of Pi contribute at most 2ni incidences, which, summed

over all Ci, amounts to at most O(n3/2) incidences. It remains to deal with spheres incident

to at least three points of Pi, and here we observe that for a fixed point p ∈ Pi, the

number of spheres that are incident to p and contain at least two other points of Pi is at

most 2
(|Pi|−1

2

)
� |Pi|2, because any pair of points q, r ∈ Pi \ {p} determine at most two unit

spheres that are incident to p, q, r. Hence the number of incidences of the points of Pi with

spheres that are incident to at least three points of Pi is at most |Pi|3 � (n/s)3 = O(n3/4).

Summing over all subsets Pi, we get a total of O(n3/2) such incidences.1

Remark. (Although the full significance of this remark will become clearer later on, we

nevertheless make it early in the game.) There are well-known papers in real algebraic

geometry estimating the number of components of algebraic varieties in R
d, or more

generally, the complexity of an arrangement of zero sets of polynomials in R
d (Oleinik

and Petrovskiı̌ [18], Milnor [17], Thom [25], and Warren [27]). In the arguments used so

far and also below, we need bounds in a somewhat different setting, namely, when the

arrangement is not in R
d, but within some algebraic variety. This setting was considered

by Basu, Pollack and Roy [3]. However, their bound is not sufficiently sharp for us either,

since it assumes the same upper bound both on the degree of the polynomials defining

the arrangement and those defining the variety. Prompted by our question, Barone and

Basu [2] recently proved a bound in this setting involving two degree parameters: they

consider a k-dimensional variety V in R
d defined by polynomials of degree at most D,

and an arrangement of n zero sets of polynomials of degree at most E within V , and they

bound the number of cells, of all dimensions, in the arrangement by O(1)dDd−k(nE)k . A

weaker bound of a similar kind was also derived independently by Solymosi and Tao [21,

Theorem A.2].

We could refer to the Barone–Basu result in the proof above, instead of using the

rational parametrization and Lemma 2.3. However, later on we will need three different

1 Alternatively, we can use the Kővári–Sós–Turán theorem (see [19]) on the maximum number of edges in a

bipartite graph with a forbidden Kr,s subgraph, as was done in many previous papers; this comment applies

to several similar arguments below.

https://doi.org/10.1017/S0963548312000144 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000144
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degree parameters (involving spheres intersecting a variety defined by two polynomials

of two potentially different degrees; in this case one of the degrees is 2, the degree of

the polynomial equation of a sphere), and thus we cannot refer to [2, 21] directly. We

provide elementary ad hoc arguments instead (aimed mainly at readers not familiar with

the techniques employed in [2, 21]). If the multi-level polynomial partition method should

be used in dimensions higher than 3, a more systematic approach will be needed to bound

the appropriate number of components. We believe that the approach of [2] should

generalize to an arbitrary number of different degree parameters, but there are several

other obstacles to be overcome along the way; see Section 3 for a discussion. This is the

end of the longish remark, and we come back to the proof.

Bounding I(P0, Σ). It therefore remains to bound I(P0,Σ). Here is an informal overview

of this second step of the analysis. We apply the polynomial partitioning procedure to

P0, using a second polynomial g (which again is the product of logarithmically many

bisecting polynomials). For a good choice of g, we will obtain various subsets of P0 of

roughly equal sizes, lying in distinct components of Z(f) \ Z(g), and a remainder subset

P00 ⊂ Z(f) ∩ Z(g). Again, for a good choice of g, Z(f) ∩ Z(g) will be a one-dimensional

curve, and it will be reasonably easy to bound I(P00,Σ). The situation that we want to

avoid is one in which f and g have a common factor, whose two-dimensional zero set

contains most of P0, in which case the dimension reduction that we are after (from a

two-dimensional surface to a one-dimensional curve) will not work.

To overcome this potential problem, we first factor f into irreducible factors f =

f1f2 · · · fr (recall that in the construction of [12], f is the product of logarithmically many

factors, some of which may themselves be reducible). Denote the degree of fi by Di, so∑
i Di = D. By removing repeated factors from f, if any exist, we may assume that f is

square-free; this does not affect the partition induced by f, nor its zero set. Put

P01 = P0 ∩ Z(f1)

P02 =
(
P0 \ P01

)
∩ Z(f2)

· · ·

P0i =

(
P0

∖⋃
j<i

P0j

)
∩ Z(fi)

· · ·

This is a partition of P0 into r pairwise disjoint subsets. Put mi = |P0i| for i = 1, . . . , r; thus,∑
i mi � n. We will bound I(P0i,Σ) for each i separately and then add up the resulting

bounds to get the desired bound on I(P0,Σ).

Second partition. We will bound the number of incidences between P0i and Σ using the

following lemma, which is the core of (this step of) our analysis.

Lemma 2.4. Let f be an irreducible trivariate polynomial of degree D, let Q be a set of m

points contained in Z(f), and let Σ be a set of n � m unit spheres in R
3. Then

I(Q,Σ) = O
(
m3/5n4/5D2/5 + nD2

)
.
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Remark. When D = 1 (all the points of Q are co-planar), the bound in the lemma

becomes O(m3/5n4/5 + n), a special case (when m � n) of the bound O(m3/5n4/5 + n+ m),

which is a well-known upper bound on the number of incidences between m points and

n circles in the plane (see, e.g., [5, 20]). In our case, the circles are the intersections

of the spheres of Σ with the plane (where each resulting circle has multiplicity at

most 2).

The main technical step in proving Lemma 2.4 is encapsulated in the following lemma.

Lemma 2.5. Given an irreducible trivariate polynomial f of degree D, a parameter E � D,

and a finite point set Q in R
3, there is a polynomial g of degree at most E, co-prime with

f, which partitions Q into subsets Q0 ⊆ Z(g) and Q1, . . . , Qt, for t = Θ(DE2), so that each

Qi, for i = 1, . . . , t, lies in a distinct component of R
3 \ Z(g), and |Qi| = O(|Q|/t).

Note the similarity of this lemma to the standard polynomial partitioning result

(Theorem 2.2). The difference is that, to ensure that g be co-prime with f, we pay

the price of having only Θ(DE2) parts in the resulting partition, instead of Θ(E3).

Proof of Lemma 2.5. As in the standard polynomial partitioning technique, we obtain g

as the product of logarithmically many bisecting polynomials, each obtained by applying

a variant of the polynomial ham sandwich theorem to a current collection of subsets

of Q. The difference, though, is that we want to ensure that each of the bisecting

polynomials is not divisible by f; since f is irreducible, this ensures co-primality of g

with f. Reviewing the construction of polynomial ham sandwich cuts, as outlined in

the proof of Theorem 2.2, we see that all that is needed is to come up with some

sufficiently large finite set of monomials, of an appropriate maximum degree, so that no

non-trivial linear combination of these monomials can be divisible by f. We then use a

restriction of the Veronese map defined by this subset of monomials, and the standard

ham sandwich theorem in the resulting high-dimensional space, to obtain the desired

polynomial.

Let xiyjzk be the leading term of f, in the sense that i+ j + k = D and (i, j, k) is largest

in the lexicographical order among all the triples of exponents of the monomials of f

(with non-zero coefficients) of degree D. Let q be the desired number of sets that we

want a single partitioning polynomial to bisect. For that we need a space of q monomials

whose degrees are not too large and which span only polynomials not divisible by f.

If, say, q <
(
D
3

)3
then we can use all monomials xi

′
yj

′
zk

′
such that i′, j ′, k′ � q1/3 < D/3.

Clearly, any non-trivial linear combination of these monomials cannot be divisible by f.

In this case the degree of the resulting partitioning polynomial is Θ(q1/3). If q �
(
D
3

)3

then we take the set of all monomials xi
′
yj

′
zk

′
that satisfy i′ < i or j ′ < j or k′ < k, and

max{i′, j ′, k′} � D̃ for a suitable integer D̃, which we specify below (the actual degree of

the bisecting polynomial under construction will then be at most 3D̃). Any non-trivial

polynomial h which is a linear combination of these monomials cannot be divisible by

f. Indeed, if h = fh1 for some polynomial h1 then the product of the leading terms of

f and of h1 cannot be cancelled out by the other monomials of the product, and, by
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construction, h cannot contain this monomial. The number of monomials in this set is

Θ(iD̃2 + jD̃2 + kD̃2) = Θ(DD̃2). We thus pick D̃ = Θ((q/D)1/2) so that we indeed get q

monomials. As noted above, the degree of the resulting bisecting polynomial in this case

is O((q/D)1/2).

We now proceed to construct the required partitioning of Q into t sets, by a sequence

of about log t polynomials g0, g1, . . . , where gj bisects 2j subsets of Q, each of size at most

|Q|/2j . For every j such that q = 2j <
(
D
3

)3
we construct, as shown above, a polynomial of

degree O(q1/3) = O(2j/3). For the indices j with q = 2j �
(
D
3

)3
, we construct a polynomial

of degree O(
(
q/D

)1/2
) = O(2j/2/D1/2). Since the upper bounds on the degrees of the

partitioning polynomials increase exponentially with j, and since the number of parts t

that we want is Ω(D3) (we want it to be Θ(DE2) and E � D), it follows that the degree of

the product of the sequence is O(
(
t/D

)1/2
). If we require this degree bound to be no larger

than E, then it follows that the size of the partition that we get is t = Θ(DE2). Clearly,

f does not divide the product g of the polynomials gj , so g satisfies all the properties

asserted in the lemma.

Remarks. (1) The analysis given above can be interpreted as being applied to the quotient

ring R[x, y, z]/I , where I = 〈f〉 is the ideal generated by f. General quotient rings are

described in detail in, e.g., [6, 7], but the special case where I is generated by a single

polynomial is much simpler, and can be handled in the simple manner described above,

bypassing (or rather simplifying considerably) the general machinery of quotient rings. As

a matter of fact, an appropriate extension of Lemma 2.5 to quotient rings defined by two

or more polynomials is still an open issue; see Section 3.

(2) The set Q is in fact contained in Z(f), and the subset Q0 is contained in Z(f) ∩ Z(g).

However, except for the effect of this property on the specific choice of monomials for g,

the construction considers Q as an arbitrary set of points in R
3, and does not exploit the

fact that Q ⊂ Z(f).

Back to the proof of Lemma 2.4. We apply Lemma 2.5 to Q, now assumed to be contained

in Z(f), and obtain the desired partitioning polynomial g. We now proceed, based on the

resulting partition of Q, to bound I(Q,Σ); we follow the notation used in Lemma 2.5.

We need the following technical lemma, a variant of which has been established and

exploited in [11] and in [8]. For the sake of completeness we include a brief sketch of its

proof, and refer the reader to the aforementioned papers for further details.

Lemma 2.6.

(a) Let f and g be two trivariate polynomials of respective degrees D and E. Let Π be an

infinite collection of parallel planes such that, for each π ∈ Π, the restrictions of f and

g to Π have more than DE common roots. Then f and g have a (non-constant) common

factor.

(b) Let f and g be as in (a). If the intersection Z(f) ∩ Z(g) of their zero sets contains a

two-dimensional surface patch then f and g have a (non-constant) common factor.

https://doi.org/10.1017/S0963548312000144 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000144


Unit Distances in Three Dimensions 605

Sketch of proof. (a) Assume without loss of generality that the planes in Π are horizontal

and that, if the number of common roots in a plane is finite then these roots have

different x-coordinates; both assumptions can be enforced by an appropriate rotation

of the coordinate frame. Consider the y-resultant r(x, z) = Resy(f(x, y, z), g(x, y, z)) of

f(x, y, z) and g(x, y, z). This is a polynomial in x and z of degree at most DE. If the plane

z = c contains more than DE common roots then r(x, c), which is a polynomial in x,

has more than DE roots, and therefore it must be identically zero. It follows that r(x, z)

is identically zero on infinitely many planes z = c, and therefore it must be identically

zero. (Its restriction to an arbitrary non-horizontal line � has infinitely many roots and

therefore it must be identically zero on �.) It follows that f(x, y, z) and g(x, y, z) have a

common factor (see [6, Proposition 1, page 163]).

(b) This follows from (a), since if Z(f) and Z(g) contain a two-dimensional surface patch,

then they must have infinitely many zeros on infinitely many parallel planes.

Incidences outside Z(g). To prove Lemma 2.4, we first bound the number of incidences of

the points of a fixed subset Qj , for j � 1, with Σ, using the same approach as in the first

partition. That is, let nj denote the number of spheres of Σ that cross the corresponding

cell Cj effectively, in the sense that σ ∩ Qj �= ∅. Then we have O(nj) incidences of the

points of Qj with spheres that are incident to at most two points of Qj , and O((m/t)3)

incidences with spheres that are incident to at least three points. Summing over all sets,

we get

t∑
j=1

I(Qj,Σ) = O

(
m3/t2 +

t∑
j=1

nj

)
. (2.1)

We estimate
∑

j nj by bounding the number of cells Cj that a single sphere σ ∈ Σ can

cross effectively, which we do as follows.

Take the same rational parametrization ψ of σ used in the analysis of the first

partitioning step. Let f∗(u, v) and g∗(u, v) be the polynomials obtained from f ◦ ψ and

g ◦ ψ by removing the common denominators of these rational functions. The degrees of

f∗ and g∗ are O(D) and O(E), respectively.

If f∗ vanishes identically on the uv-plane, then σ ⊆ Z(f); this is an easy situation that

we will handle later on. Otherwise, Z(f∗) = ψ−1(σ ∩ Z(f)) is a one-dimensional curve γ in

the uv-plane (possibly degenerate, e.g., empty or consisting of isolated points), and Q ∩ σ
is contained in ψ(γ).

By construction, the number of cells Cj that σ crosses effectively (so that it is incident

to points of Qj) is no larger than the number of components of Z(f∗) \ Z(g∗). This is

because each such cell Cj contains at least one connected component of ψ(Z(f∗) \ Z(g∗)).

Now each component of Z(f∗) \ Z(g∗) is either a full component of Z(f∗), or a relatively

open connected portion of Z(f∗) whose closure meets Z(g∗).

Since f∗ is a bivariate polynomial, Harnack’s theorem [13] asserts that the number of

(arcwise) connected components of Z(f∗) is at most 1 +
(
deg(f∗)−1

2

)
= O(D2).
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For the other kind of components, choose a generic sufficiently small value ε > 0, so

that f∗ and g∗ ± ε do not have a common factor.2 Then each component of Z(f∗) \ Z(g∗)

of the second kind must contain a point at which g∗ + ε = 0 or g∗ − ε = 0. Hence, the

number of such components is at most the number of such common roots, which, by

Bézout’s theorem (see, e.g., [7]) is3 O(deg(f∗)deg(g∗)) = O(DE).

Since E � D, we conclude that the number of cells Cj crossed effectively by σ is O(DE),

which in turn implies that
∑

j nj = O(nDE). Substituting this in (2.1) and recalling that

t = Θ(DE2), we get

r∑
j=1

I(Qj,Σ) = O

(
m3

D2E4
+ nDE

)
. (2.2)

We have left aside the case where σ ⊆ Z(f). Since f is irreducible, and so is σ, we

must have σ = Z(f) in this case (recall Lemma 2.6(b)). The analysis proceeds as above

for every sphere σ′ �= σ, and the number of incidences with σ itself is at most m, a bound

that is subsumed by the bound asserted in the lemma (recall that m � n).

We note that in the ongoing analysis D is the actual degree of the irreducible factor

of f under consideration, but E is only a chosen upper bound for deg(g), whose actual

value may be smaller (as may have been the case with f).

To optimize the bound in (2.2), we choose

E = max

{
m3/5

n1/5D3/5
, D

}
, (2.3)

and observe that the first term dominates when D � m3/8/n1/8. Assuming that this is

indeed the case, we get ∑
j

I(Qj,Σ) = O(m3/5n4/5D2/5). (2.4)

If D > m3/8/n1/8 then we have E = D, and the bound (2.2) becomes

∑
j

I(Qj,Σ) = O

(
m3

D6
+ nD2

)
= O(nD2). (2.5)

Thus, I(Q \ Q0,Σ) satisfies the bound asserted in the lemma, and it remains to bound

I(Q0,Σ).

Incidences within Z(f) ∩ Z(g). Recall that Q0 is contained in the curve δ = Z(f) ∩ Z(g),

which by Lemma 2.6(b) is (at most) one-dimensional.

Fix a sphere σ ∈ Σ that does not coincide with Z(f), let ψ be the corresponding rational

parametrization of σ, and let f∗
σ and g∗

σ be the numerators of f ◦ ψ and g ◦ ψ, as defined

in the preceding analysis.

2 Indeed, assuming that f∗ and g∗ + ε had a non-constant common factor for infinitely many values of ε, then

the same factor would occur for two distinct values ε1 and ε2 of ε, and thus it would have to divide ε1 − ε2,

which is impossible.
3 The O(DE) bound for the number of components of Z(f∗) \ Z(g∗) is also a direct consequence of the main

result of Barone and Basu [2].
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If g∗
σ is identically 0, then we have σ ⊆ Z(g), and the irreducible quadratic polynomial

defining σ is a factor of g by Lemma 2.6. Thus, the number of such σ is O(E), and

together they can contribute at most O(mE) incidences, which is bounded from above by

the right-hand side of (2.2). The case of f∗
σ ≡ 0 has been assumed not to occur.

We therefore assume that both f∗
σ and g∗

σ are not identically zero, we let h∗
σ denote

the greatest common divisor of f∗
σ and g∗

σ , and put f∗
σ = f∗

1σh
∗
σ and g∗

σ = g∗
1σh

∗
σ . Then

ψ−1(σ ∩ δ) is the union of Z(h∗
σ) and of Z(f∗

1σ) ∩ Z(g∗
1σ). Using Bézout’s theorem as

above, we have |Z(f∗
1σ) ∩ Z(g∗

1σ)| = O(DE); summing this bound over all spheres σ, we

get at most O(nDE) incidences, a bound already subsumed by (2.2).

It remains to account for incidences of the following kind (call them h∗-incidences):

a point q ∈ Q0 ∩ σ lying in ψ(Z(h∗
σ)). Let us call such a point q isolated in σ if it is an

isolated point of ψ(Z(h∗
σ)); i.e., there is a neighbourhood of q in σ intersecting ψ(Z(h∗

σ))

only at q.

The homeomorphism ψ−1 maps the isolated points q on σ to isolated zeros of h∗
σ

in the uv-plane, in a one-to-one fashion. Since deg(h∗
σ) = O(D), Z(h∗

σ) has at most O(D2)

components (Harnack’s theorem again), and thus the overall number of isolated incidences

is O(nD2).

Finally, to account for non-isolated h∗-incidences, let us fix a point q ∈ Q0, and consider

the collection Σ̃q consisting of all spheres σ ∈ Σ that contain q such that q forms a

non-isolated h∗-incidence with σ. We claim that |Σ̃q| = O(DE).

For σ ∈ Σ̃q , the set ψ(Z(h∗
σ)) contains a curve segment βq,σ ending at q. Let us call βq,σ

and βq,σ′ equivalent if they coincide in some neighbourhood of q. If βq,σ and βq,σ′ are not

equivalent, then in a sufficiently small neighbourhood of q they intersect only at q (since

they are arcs of algebraic curves).

We also note that a given βq,σ can be equivalent to βq,σ′ for at most one σ′ �= σ; this

is because the common portion βq,σ ∩ βq,σ′ of the considered curve segments has to be

contained in the intersection circle σ ∩ σ′, and that circle intersects any other sphere

σ′′ ∈ Σ in at most two points. Thus, |Σ̃q| is at most twice the number of equivalence

classes of the curve segments βq,σ .

Let us fix an auxiliary sphere S of a sufficiently small radius ρ around q, so that

each βq,σ intersects S at some point xσ . Let S ′ be a sphere around q of radius ερ, for

some sufficiently small constant parameter ε > 0. We choose a point y ∈ S ′ uniformly at

random, and let π be the plane tangent to S ′ at y. Then, for each σ ∈ Σ̃q , π separates xσ
from q with probability at least 1

3
, say (which can be guaranteed by choosing ε sufficiently

small), and thus, by continuity, it intersects βq,σ . Hence there is a specific y0 ∈ S ′ such

that the corresponding tangent plane π0 intersects βq,σ for at least a third of the spheres

σ ∈ Σ̃q .

Moreover, we can assume that such a π0 intersects each βq,σ in such a way that all

planes π parallel to π0 and sufficiently close to it intersect βq,σ as well. Then an application

of Lemma 2.6(a) allows us to assume that the restrictions of f and g to some π as above

(actually to most of these planes) are bivariate polynomials, with at most DE common

roots. Hence π intersects at most O(DE) of the curves βq,σ , and so |Σ̃q| = O(DE).

Altogether, we can bound the number of h∗-incidences by O(nD2 + mDE), which does

not exceed the earlier estimate O(nDE) (recalling that m � n). Hence, choosing E as
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in (2.3), the incidences within δ do not affect either of the asymptotic bounds (2.4)

and (2.5).

This completes the proof of Lemma 2.4.

Finishing the proof of Theorem 2.1. We recall that in the first partitioning step, the set

P0 = P ∩ Z(f) was partitioned into the subsets P01, . . . , P0r . Each P0i consists of mi points

and is contained in Z(fi), where fi is an irreducible factor of f, with deg(fi) = Di. By

Lemma 2.4 we have
r∑
i=1

I(P0i,Σ) = O

( r∑
i=1

m
3/5
i n4/5D

2/5
i +

r∑
i=1

nD2
i

)
.

For the first term on the right-hand side we use Hölder’s inequality4 and the inequalities

r∑
i=1

Di � D = O(n1/4) and

r∑
i=1

mi � n.

Thus,

n4/5
r∑
i=1

m
3/5
i D

2/5
i � n4/5

(∑
i

mi

)3/5(∑
i

Di

)2/5

� O(n4/5n3/5D2/5) = O(n3/2).

For the remaining term we have

r∑
i=1

nD2
i � nD ·

r∑
i=1

Di � nD2 = O(n3/2).

We thus get a total of O(n3/2) incidences, thereby completing the proof of the theorem.

3. Discussion

The main technical ingredient in the analysis, on top of the standard polynomial

partitioning technique of Guth and Katz, is the recursion on the dimension of the

ambient manifold containing the points of P . This required a more careful construction

of the second partitioning polynomial g to make sure that it is co-prime with the first

polynomial f. It is reasonably easy to perform the first such recursive step, as done

here and also independently by Zahl [28], but successive recursive steps become trickier.

In such cases we have several co-prime polynomials, and we need to construct, in the

quotient ring of their ideal, a polynomial ham sandwich cut of some specified maximum

degree with sufficiently many monomials. Such higher recursive steps will be needed when

we analyse incidences between points and surfaces in higher dimensions. At the moment

there does not seem to be an efficient procedure for this task. Another recent paper where

similar issues arise is by Solymosi and Tao [21].

We also note that Zahl’s study extends Theorem 2.1 to incidences between points and

more general surfaces in three dimensions. The analysis in our study can also be similarly

4 Hölder’s inequality asserts that
∑
xiyi � (

∑
|xi|p)1/p(

∑
|yi|q)1/q for positive p, q satisfying 1/p+ 1/q = 1.

Here we use it with p = 5/3, q = 5/2, xi = m
3/5
i , and yi = D

2/5
i .

https://doi.org/10.1017/S0963548312000144 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000144


Unit Distances in Three Dimensions 609

extended (at the price of making some of the arguments more complicated), but, since

our goal had been to improve the bound on unit distances, we have focused on the case

of unit spheres.
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