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Abstract

The coalescent was introduced by Kingman (1982a), (1982b) and Tajima (1983) as a
continuous-time Markov chain model describing the genealogical relationship among
sampled genes from a panmictic population of a species. The random mating in a
population is a strict condition and the genealogical structure of the population has a strong
influence on the genetic variability and the evolution of the species. In this paper, starting
from a discrete-time Markov chain model, we show the weak convergence to a continuous-
time Markov chain, called the structured coalescent model, describing the genealogy of
the sampled genes from whole population by means of passing the limit of the population
size. Herbots (1997) proved the weak convergence to the structured coalescent on the
condition of conservative migration and Wright–Fisher-type reproduction. We will give
the proof on the condition of general migration rates and exchangeable reproduction.
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weak convergence
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1. Introduction

The standard coalescent process describes the genealogical relationship among randomly
sampled genes from a panmictic population. The number of ancestors of sampled genes is
reduced one by one through coalescent events if we trace the ancestral lineage. In the limit as the
population size goes to ∞, Kingman (1982a), (1982b) proved the convergence to the ancestral
limit process for a broad class of reproduction model called the exchangeable model, including
the Wright–Fisher model and the Moran model, on some condition of the number of children
produced by each individual. The natural population is hardly panmictic, and the geographic
structure of the population affects the evolution and the genetic diversity of the population. The
coalescent process with geographical structure is called the structured coalescent process. The
structured coalescent model has been investigated by Takahata (1988), Notohara (1990), (1993),
(1997), (2001), (2010), Nath and Griffiths (1993), Herbots (1994), (1997), Wilkinson-Herbots
(1998), Bahlo and Griffiths (2000), Sampson (2006), and Wakeley (1998), (2009). Takahata
(1988) introduced the structured coalescent consisting of two subpopulations, and Notohara
(1990) formulated it in the general form. A rigorous mathematical derivation was given by
Herbots (1994), (1997) on the condition of conservative migration and Wright–Fisher-type
reproduction. Another mathematical proof of the weak convergence of the discrete-time model
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was given by Sampson (2006) on the condition of general migration rates, where he studied
the case with rapidly changing population sizes, finite subpopulations and the Wright–Fisher
reproduction. The proof is based on the convergence theorem proved by Möhle (1998) and
similar applications of the convergence theorem to structured population models can be found
in the literature dealing with the weak convergence of discrete-time Markov chains; see, for
example, Hössjer (2011), Kaj et al. (2001), Nordborg and Krone (2002), Pollak (2011), and
Sagitov and Jagers (2005). In these studies, the number of ancestors in the limiting process
follows Kingman’s coalescent.

In this paper we will show that the sequence of discrete-time Markov chain models with
countable subpopulations, whose migration steps are based on the condition including noncon-
servative migration and whose backward reproduction steps are deduced from Cannings’model
(Cannings (1974)), converges weakly to the structured coalescent, which is the continuous-
time Markov chain determined by the matrix Q stated below. The structured coalescent
model is described as follows. Let S be the countable set of subpopulation labels. We
denote by Ni(= 2ciN) the number of individuals after reproduction step in subpopulation
i ∈ S, where ci is a positive integer constant and the number of individuals after migration in
subpopulation i is denoted by N∗

i . In general, N∗
i does not equal Ni , which includes the case

of nonconservative migration. We focus on the genealogical relationship of sampled genes
from an entire population. We randomly sample αk genes from colony k ∈ S and denote the
set of all sampled genes by α = (αk : k ∈ S). We assume that the total number of sampled
genes |α| = ∑

k∈Sαk < ∞. Let E = {α = (αk : k ∈ S) ∈ Z+S : |α| ≤ n} for a fixed natural
number n, where Z+ = {0, 1, 2, . . .} denotes the set of nonnegative integers. We define binary
operations α ± β for α, β ∈ E by (α ± β)i = αi ± βi provided α ± β ∈ E. Let ei be a
unit vector such that (ei )j = δi,j (1 for i = j and 0 otherwise) for each i ∈ S. The structured
coalescent is the continuous-time Markov chain {α(t) : t ≥ 0} on the state space E generated
by the matrix Q whose entries are

Qα,β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∑
i∈S

{
αi

Mi

2
+ σ 2αi(αi − 1)

2ci

}
if β = α,

αi

Mi,j

2
if β = α − ei + ej (i �= j),

σ 2αi(αi − 1)

2ci

if β = α − ei ,

0 otherwise,

(1.1)

where Mi,j is the scaled migration rate (backward in time) from subpopulation i ∈ S to
j ∈ S, Mi = ∑

j �=iMi,j , and σ is a positive constant. The constants Mi,j , Mi, and σ 2

are discussed in the second section. The ancestral process α(t) = (αi(t) : i ∈ S) with
α(0) = α ∈ E represents the geographical configuration of ancestors of a sample α at time t

backward, αi(t) is the number of distinct ancestors locating at colony i ∈ S. In Shiga (1980a),
(1980b) the author investigated the structure of stationary states and the ergodic property of
the stepping stone model described by the infinite-dimensional diffusion process. The duality
relation between Shiga’s stepping stone model and the structured coalescent was discussed in
Notohara (1990). In the next section we will explain our model in detail. Section 3 is devoted
to the proof of the convergence of the transition probability, and this implies the convergence
of finite-dimensional distributions to the continuous-time Markov chain. In Section 4 we will
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prove the weak convergence to the structured coalescent on the condition of general migration
rates and exchangeable reproduction.

2. The discrete-time model

We consider a discrete-time Markov chain model, where each generation is made up of a
migration step and a reproduction step. At each generation, a fixed proportion qi,j of individuals
born in subpopulation i are assumed to migrate to subpopulation j . Here, it is assumed that
qi,j is constant for each (i, j) ∈ S × S, and

qi,j ≥ 0,
∑

j∈S, j �=k

qk,j ≤ 1.

First, we will discuss migration rates and backward migration rates. We assume the following
conditions on the constants ci, i ∈ S, and the migration rates {qk,j }.
(A.1) There exists a constant K such that 1 ≤ ci < K, i ∈ S.

(A.2) The migration rate qi,j , i �= j, can be written as

qi,j = q∗
i,j

4N
(i �= j),

where
sup
k∈S

∑
j∈S, j �=k

q∗
k,j < ∞ and sup

k∈S

∑
j∈S, j �=k

q∗
j,k < ∞ (2.1)

are satisfied.

The backward migration rate mi,j from subpopulation i to subpopulation j , defined as the
proportion of individuals in subpopulation i immediately after the migration step who were
born in subpopulation j , is given by mi,j = Nj qj,i/N

∗
i , and we define

mi =
∑
j �=i

mi,j =
∑
j �=i

Nj qj,i

N∗
i

.

The population size after migration step N∗
i is given by

N∗
i =

∑
k �=i

Nkqk,i + Ni

(
1 −

∑
j �=i

qi,j

)

=
∑
k �=i

2ckN
q∗
k,j

4N
+ 2ciN

(
1 −

∑
j �=i

q∗
i,j

4N

)

= 2ciN + 1

2

(∑
k �=i

ckq
∗
k,i − ci

∑
j �=i

q∗
i,j

)

= 2ciN + Qi

2
,

where
Qi =

∑
k �=i

ckq
∗
k,i − ci

∑
j �=i

q∗
i,j .
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If Qi = 0 holds for all i ∈ S then it is said to be conservative. The absolute value of Qi can be
evaluated as

|Qi | =
∣∣∣∣∑

k �=i

ckq
∗
k,i − ci

∑
j �=i

q∗
i,j

∣∣∣∣
≤ K

(∑
k �=i

q∗
k,i +

∑
j �=i

q∗
i,j

)

≤ K

(
sup
k

∑
j �=k

q∗
k,j + sup

k

∑
j �=k

q∗
j,k

)

≤ C, (2.2)

where C is a positive constant, and we have

mi,j = Nj qj,i

N∗
i

= 2cjNqj,i

2ciN + Qi/2
≤ K

2

q∗
j,i

2N − C/2
, lim

N→∞ 4Nmi,j = cj

ci

q∗
j,i ,

cj q
∗
j,i

ci + Qi/4N
≤ cj q

∗
j,i

1 − C/4N
≤ Kq∗

j,i

1 − C/4N
< ∞,

where the inequality ci ≥ 1, i ∈ S, in (A.1) is used. Thus, using Lebesgue’s convergence
theorem and (2.1), we have

lim
N→∞ 4Nmi = lim

N→∞
∑
j �=i

4Nmi,j = lim
N→∞

∑
j �=i

cj q
∗
j,i

ci + Qi/4N
=
∑
j �=i

cj

ci

q∗
j,i .

We denote the scaled migration rate Mi,j by

Mi,j = cj

ci

q∗
j,i and Mi =

∑
j �=i

cj

ci

q∗
j,i .

If N is sufficiently large, we have

4Nmi ≤
∑
j �=i

cj q
∗
j,i

ci − C/4N
≤ 2K

∑
j �=i

q∗
j,i = 2K

(
sup

i

∑
j �=i

q∗
j,i

)
:= M,

where M is a positive constant. Thus, we have

sup
i∈S

mi ≤ M

4N
and sup

i∈S

Mi ≤ K sup
i∈S

∑
j �=i

q∗
j,i ≤ M

2
. (2.3)

2.1. Cannings’ exchangeable reproduction

In what follows the generations are labeled backwards in time. The first generation means
the parent’s generation, the second generation is the grandparent’s generation, and so on. Let
ν

(l,r)
i be the number of offspring of the ith individual alive in the rth generation in subpopulation

l ∈ S. We assume that the following statements hold.

(A.3) (ν
(l,r)
1 , ν

(l,r)
2 , . . . , ν

(l,r)

N∗
l

) is exchangeable for fixed l ∈ S and r ∈ Z+, and∑
i=1,2,...,N∗

l

ν
(l,r)
i = Nl .
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(A.4) (ν
(l,r)
1 , ν

(l,r)
2 , . . . , ν

(l,r)

N∗
l

), r ∈ Z+, is independent and identically distributed for fixed l.

(A.5) {(ν(l,r)
1 , ν

(l,r)
2 , . . . , ν

(l,r)

N∗
l

), r ∈ Z+}, l ∈ S, are independent.

Also

(A.6) limN→∞ supl∈S |E[{ν(l,r)
1 }2] − (σ 2 + 1)| = 0 for a constant σ 2 > 0, and that

(A.7) K∗
p = supl∈S,N E[{ν(l,r)

1 }p] < ∞ for any positive integer p.

Now, cl
N is the probability that two individuals, chosen randomly without replacement in

subpopulation l at a generation, share a parent. This probability is given by

cl
N =

∑N∗
l

i=1 E[ν(l,r)
i (ν

(l,r)
i − 1)]

Nl (Nl − 1)
= 1

2N

{(
1 + Ql

4clN

)
E[{ν(l,r)

1 }2]
cl − 1/2N

− 1

cl − 1/2N

}
.

From the above, we have limN→∞ 2Ncl
N = σ 2/cl.

2.2. Backward migration matrix

We denote by R m
N (α) the probability that two or more individuals in α are migrant, and it

satisfies

R m
N (α) ≤

∑
k∈S

(
αk

2

)(
N∗

k − 2
mkN

∗
k − 2

)
(

N∗
k

mkN
∗
k

) +
∑
k∈S

(
αk

1

)(
N∗

k − 1
mkN

∗
k − 1

)
(

N∗
k

mkN
∗
k

) ∑
l �=k

(
αl

1

)(
N∗

l − 1
mlN

∗
l − 1

)
(

N∗
l

mlN
∗
l

)

≤
∑
k∈S

(αkmk)
2 +

∑
k∈S

αkmk

∑
l �=k

αlml

=
(∑

k∈S

αkmk

)2

.

From (2.3), it follows that

R m
N (α) ≤ M2|α|2

16N2 .

The probability that exactly one individual in α migrates backward in time from subpopulation i

to subpopulation j (�= i) is

(
αi

1

)(
N∗

i − αi

mi,jN
∗
i − 1

)
(

N∗
i

mi,jN
∗
i

)
(

N∗
i − mi,jN

∗
i − αi + 1

miN
∗
i − mi,jN

∗
i

)
(

N∗
i − mi,jN

∗
i

miN
∗
i − mi,jN

∗
i

) ∏
k �=i

(
N∗

k − αk

mkN
∗
k

)
(

N∗
k

mkN
∗
k

)

= αimi,j

N∗
i

N∗
i − miN

∗
i − αi + 1

∏
k∈S

∏
a=0,...,αk−1

N∗
k − mkN

∗
k − a

N∗
k − a

. (2.4)

Let R m
N (α, β) be the probability that the backward migration step changes the value of the

ancestral process from α to β and two or more individuals in α are migrants. By (2.4), we see
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that the transition probability in one backward migration step is given by

P m
N (β | α)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
∑
i∈S

αimi

N∗
i

N∗
i − miN

∗
i − αi + 1

×
∏
k∈S

∏
a=0,...,αk−1

N∗
k − mkN

∗
k − a

N∗
k − a

−
∑
γ �=α

R m
N (α, γ ) if β = α,

αimi,j

N∗
i

N∗
i − miN

∗
i − αi + 1

×
∏
k∈S

∏
a=0,...,αk−1

N∗
k − mkN

∗
k − a

N∗
k − a

+R m
N (α, α − ei + ej ) if β = α − ei + ej (j �= i),

R m
N (α, β) otherwise,

(2.5)

where ∑
β �=α

R m
N (α, β) ≤ R m

N (α) ≤
(∑

k∈S

αkmk

)2

.

2.3. Backward reproduction matrix

We denote by R r
N(α) the probability that two or more pairs of individuals belonging to α

each share a parent. This probability is given by

R r
N(α) =

∞∑
v=2

P r
N {exactly v pairs of individuals in α each share a parent}. (2.6)

We will discuss the probability R r
N(α). Suppose that al = N∗

l and bl = Nl . We have

al

bl

= 1 + 1

2N

Ql

2cl

≤ 2,
al − 1

bl − 1
≤ 2

al

bl

≤ 4,
1

bl − 1
≤ 1

bl − 2
≤ 1

bl − 3
≤ 1

N
,

and

|cl
N | ≤ alK

∗
2

bl(bl − 1)
≤ 2K∗

2

N
for N ≥ max

(
C

4
, 3

)
.

The event that two or more pairs of individuals belonging to α each share a parent is included
in the union of the event C(1) and C(2). Here, C(1) denotes the event that two or more pairs
of individuals which are drawn from at least two distinct subpopulations each share a parent
and C(2) stands for the event that two or more pairs of individuals which are drawn from one
subpopulation each share a parent. Thus, we see that

R r
N(α) ≤ P(C(1)) + P(C(2)). (2.7)

First, we will discuss P(C(1)). Since

al1∑
i=1

ν
(l1,r)
i (ν

(l1,r)
i − 1)

bl1(bl1 − 1)
and

al2∑
i=1

ν
(l2,r)
i (ν

(l2,r)
i − 1)

bl2(bl2 − 1)
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are mutually independent for l1 �= l2, we have

P(C(1)) ≤
(

V

2

)
(2K∗

2 )2

N2 ≤ n4(2K∗
2 )2

8N2 ≤ C1

N2 , (2.8)

where V = ∑
i∈S

(
αi

2

)
and C1 = n4(K∗

2 )2/2.

Next, we will discuss P(C(2)). We can evaluate P(C(2)) as

P(C(2)) ≤
∑
l∈S

(P
(1)
l + P

(2)
l ),

where

P
(1)
l =

(
αl

3

) al∑
i=1

E[ν(l,r)
i (ν

(l,r)
i − 1)(ν

(l,r)
i − 2)]

bl(bl − 1)(bl − 2)

and

P
(2)
l =

⎛
⎝
(

αl

2

)
2

⎞
⎠ ∑

i �=j, 1≤i,j≤al

E[ν(l,r)
i (ν

(l,r)
i − 1)ν

(l,r)
j (ν

(l,r)
j − 1)]

bl(bl − 1)(bl − 2)(bl − 3)
.

It follows that P
(1)
l satisfies

P
(1)
l ≤ αl

3

6

alE[ν(l,r)
1

3]
bl(bl − 1)(bl − 2)

≤ αl
3

6

2K∗
3

N2 .

From the above, we have ∑
l∈S

P
(1)
l ≤ n3K∗

3

3N2 .

Then P
(2)
l satisfies

P
(2)
l ≤

⎛
⎝
(

αl

2

)
2

⎞
⎠ al(al − 1)E[ν(l,r)

1
2
ν

(l,r)
2

2]
bl(bl − 1)(bl − 2)(bl − 3)

≤ αl
4K∗

4

(bl − 2)(bl − 3)
≤ αl

4K∗
4

N2 .

From the above, we have ∑
l∈S

P
(2)
l ≤ n4K∗

4

N2 .

By the above arguments, we obtain

P(C(2)) ≤
(

n3

3
K∗

3 + n4K∗
4

)
1

N2 = C2

N2 , (2.9)

where C2 = (n3/3)K∗
3 + n4K∗

4 . By (2.7)–(2.9), we have

R r
N(α) ≤ C1 + C2

N2 . (2.10)

We denote by R r
N(α, β) the probability that the backward reproduction step changes the

value of the ancestral process from α to β /∈ {α} ∪ {α − ei; i ∈ S}. Now, we have

R r
N(α) =

∑
β /∈{α}∪{α−ei , i∈S}

R r
N(α, β).
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It follows that R r
N(α, α − ei ) is defined by

P r
N(α − ei | α) =

(
αi

2

)
ci
N − R r

N(α, α − ei ),

where P r
N(α − ei | α) is the probability that the backward reproduction step changes the value

of the ancestral process from α to α − ei . We have∑
i∈S

P r
N(α − ei | α) = P r

N {exactly one pair of individuals in α each share a parent} (2.11)

and

∑
i∈S

(
αi

2

)
ci
N =

∞∑
v=1

vP r
N {exactly v pairs of individuals in α each share a parent}. (2.12)

From (2.11) and (2.12), it follows that

∑
i∈S

R r
N(α, α − ei ) =

∞∑
v=2

vP r
N {exactly v pairs of individuals in α each share a parent}.

(2.13)
By (2.6) and (2.13), we have

2R r
N(α) ≤

∑
i∈S

R r
N(α, α − ei ) ≤

(
n

2

)
R r

N(α). (2.14)

From the above, we have

∑
β �=α

R r
N(α, β) ≤

{(
n

2

)
+ 1

}
R r

N(α). (2.15)

Combining the above, the transition probability of the ancestral process in one backward
reproduction step is given by

P r
N(β | α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
∑
i∈S

(
αi

2

)
ci
N +

∑
i∈S

R r
N(α, α − ei )

−
∑

γ /∈{α}∪{α−ei , i∈S}
R r

N(α, γ ) if β = α,

(
αi

2

)
ci
N − R r

N(α, α − ei ) if β = α − ei ,

R r
N(α, β) otherwise.

(2.16)

3. Convergence of the finite-dimensional distribution

As migration and reproduction operate independently, the one-generation transition prob-
abilities of the ancestral process are found from the transition probabilities in one backward
migration step and one backward reproduction step as

PN(β | α) =
∑
γ

P r
N(γ | α)P m

N (β | γ ).

https://doi.org/10.1017/jpr.2016.16 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.16


510 R. KOZAKAI ET AL.

In matrix notation, the transition matrix PN in one generation is given by

PN = P r
NP m

N , (3.1)

where P m
N and P r

N are the transition matrices in one backward migration step and one
backward reproduction step given by (2.5) and (2.16), respectively. Let {α(N)(τ )}τ∈Z+ =
{(α(N)

i (τ ))i∈S}τ∈Z+ be the discrete-time Markov chain on E whose transition probability is PN

with the initial state α(N)(0) = α(∈ E). In this section we will show that the sequence of the
finite-dimensional distributions of {α(N)

i ([2Nt])} converges to that of the structured coalescent
process {α(t)}t≥0 with α(0) = α. Let I denote the identity matrix. Namely,

Iα,β = δα,β =
{

1 if β = α,

0 otherwise.

Then

P m
N = I + Qm

N

2N
+ R m

N , P r
N = I + Q r

N

2N
+ R r

N,

where

(R m
N )α,β =

⎧⎨
⎩

−
∑
γ �=α

R m
N (α, γ ) if β = α,

R m
N (α, β) otherwise,

(R r
N)α,β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i∈S

R r
N(α, α − ei ) −

∑
β /∈{α}∪{α−ei }

R r
N(α, β) if β = α,

−R r
N(α, α − ei ) if β = α − ei ,

R r
N(α, β) otherwise,

(Qm
N )α,β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∑
i∈S

αi(2Nmi)
N∗

i

N∗
i − miN

∗
i − αi + 1

×
∏
k∈S

∏
a=0,...,αk−1

N∗
k − mkN

∗
k − a

N∗
k − a

if β = α,

αi(2Nmi,j )
N∗

i

N∗
i − miN

∗
i − αi + 1

×
∏
k∈S

∏
a=0,...,αk−1

N∗
k − mkN

∗
k − a

N∗
k − a

if β = α − ei + ej , j �= i,

0 otherwise,

(3.2)

and Q r
N is given by

(Q r
N)α,β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∑
i∈S

(
αi

2

){(
1 + Qi

4ciN

)
E[{ν1

(i,r)}2]
ci − 1/2N

− 1

ci − 1/2N

}
if β = α,(

αi

2

){(
1 + Qi

4ciN

)
E[{ν(i,r)

1 }2]
ci − 1/2N

− 1

ci − 1/2N

}
if β = α − ei ,

0 otherwise.

(3.3)

Note that (3.2) and (3.3) follow from (2.5) and (2.16), respectively.
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Recall that the number of subpopulations is infinite and countable. We consider the following
norm of any matrix A:

||A|| = sup
α

∑
β

|Aα,β |.

By noting that∑
i∈S

αimi

N∗
i

N∗
i − miN

∗
i − αi + 1

∏
k∈S

∏
a=0,...,αk−1

N∗
k − mkN

∗
k − a

N∗
k − a

=
∑
i∈S

αimi

αi−2∏
l=0

N∗
i − miN

∗
i − 1

N∗
i − 1 − l

∏
k∈S, k �=i

αk−1∏
α=0

N∗
k − mkN

∗
k − a

N∗
k − a

≤ nM

4N
,

we can see that
||Qm

N || ≤ nM. (3.4)

By (2.2) and (3.3), we have

||Q r
N || ≤ 2

∑
i∈S

(
αi

2

){(
1 + Qi

4ciN

)
E[{ν(i,r)

1 }2]
ci − 1/2N

− 1

ci − 1/2N

}

≤ 2
∑
i∈S

(
αi

2

){(
1 + C

4N

)
E[{ν(i,r)

1 }2]
1 − 1/2N

}

≤ 4

(
n

2

)
(1 + C)K∗

2

< ∞, (3.5)

||R m
N || ≤ M2n2

8N2 and ||R r
N || ≤ n2(C1 + C2)

N2 , (3.6)

where the following two statements deduced from (2.10), (2.14), and (2.15) are used:∑
i∈S

R r
N(α, α − ei ) ≤

(
n

2

)
R r

N(α) ≤
(

n

2

)
(C1 + C2)

N2 ,

∑
β �=α

R r
N(α, β) ≤

{(
n

2

)
+ 1

}
R r

N(α) ≤
{(

n

2

)
+ 1

}
(C1 + C2)

N2 .

Below we will show the convergence of the finite-dimensional distributions. Next, we consider

PN = I + QN + πN

2N
, (3.7)

where QN = Qm
N + Q r

N and

πN = 2N

(
R r

N + R m
N + R r

NR m
N + Q r

NR m
N

2N
+ R r

NQm
N

2N
+ Q r

NQm
N

4N2

)
. (3.8)

Clearly, limN→∞ QN = Q; namely, limN→∞ (QN)α,β = Qα,β holds for any α, β ∈ E,

where the matrix Q is defined by (1.1).
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Employing the above results, we will discuss the rescaled process {α(N)([2Nt]) : t ≥ 0} in
what follows.

Theorem 3.1. Under conditions (A.1)–(A.6), the following equality holds:

lim
N→∞ P

[2Nt]
N = etQ.

Here PN and Q are defined by (3.1) and (1.1), respectively.

Proof. Since

||Q|| ≤ nM + 2σ 2
(

n

2

)
< ∞,

we have

|(etQ)α,β | ≤
∞∑

v=0

tv|(Qv)α,β |
v! ≤

∞∑
v=0

tv||Q||v
v! = et ||Q|| < ∞ for any α, β ∈ E.

Thus, we see that etQ = ∑∞
v=0 tvQv/v! exists. Obviously,

P
[2Nt]
N =

{
I + QN + πN

2N

}[2Nt]

=
[2Nt]∑
v=0

([2Nt]
v

)(
1

2N

)v

(QN + πN)v

=
[2Nt]∑
v=0

[2Nt]([2Nt] − 1) · · · ([2Nt] − v + 1)

(2N)v

(QN + πN)v

v!

holds. Thus, we have

(P
[2Nt]
N )

α,β
=

∞∑
v=0

av,N , (3.9)

where

av,N = 1{v≤[2Nt]}
[2Nt]([2Nt] − 1) · · · ([2Nt] − v + 1)

(2N)v

((QN + πN)v)α,β

v! (3.10)

and

1{v≤[2Nt]} =
{

1 if v ≤ [2Nt],
0 otherwise.

By (3.4) and (3.5), we have

||QN || ≤ ||Qm
N || + ||Q r

N || ≤ C∗ < ∞, (3.11)

where

C∗ := nM + 4

(
n

2

)
(1 + C)K∗

2 . (3.12)
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By (3.4)–(3.6) and (3.8), we obtain

||πN || ≤ k1

N
, ||AN || ≤ k2

N
, (3.13)

where AN is defined by (QN +πN)v = Qv
N +AN, and the constants k1 and k2 do not depend

on N . Now, a matrix V is defined by

(V )α,β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nK
∑
j �=i

q∗
i,j + 2

(
αi

2

)
{(1 + C)K∗

2 } if β = α,

nKq∗
i,j if β = α − ei + ej (i �= j),

2

(
αi

2

)
{(1 + C)K∗

2 } if β = α − ei ,

0 otherwise.

Then, it follows that

||V || ≤ 2nK sup
i∈S

∑
j �=i

q∗
i,j + 4

(
n

2

)
(1 + C)K∗

2 < ∞, |(QN)α,β | ≤ (V )α,β .

By the dominated convergence theorem, we have

lim
N→∞(Qv

N)α,β = lim
N→∞

∑
γ1,γ2,...,γv−1

(QN)α,γ1(QN)γ1,γ2 · · · (QN)γv−1,β

=
∑

γ1,γ2,...,γv−1

(Q)α,γ1(Q)γ1,γ2 · · · (Q)γv−1,β

= (Qv)α,β .

Thus, we have limN→∞(QN + πN)v = Qv and

lim
N→∞ av,N = tv(Qv)α,β

v! , α, β ∈ S (3.14)

for any v. By (3.10), (3.11), and (3.13), we have, for sufficiently large N,

|av,N | ≤ tv||QN + πN ||v
v! ≤ tv(C∗ + 1)v

v! , α, β ∈ S (3.15)

for any N ∈ N. By (3.9), (3.10), (3.14), (3.15), and the dominated convergence theorem, we
obtain

lim
N→∞ (P

[2Nt]
N )

α,β
=

∞∑
v=0

tv(Qv)α,β

v! = (etQ)α,β for any α, β ∈ E.

This completes the proof. �

This statement implies that the finite-dimensional distributions of the process {α(N)([2Nt]) :
t ≥ 0} converge to those of the structured coalescent {α(t) : t ≥ 0} as N → ∞, because E is
countable.
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4. Weak convergence to the structured coalescent process

We regard E as a subspace of RS (where R is the set of real numbers), endowed with the
norm

||X|| = sup
i∈S

|xi | (X = (xi)i∈S ∈ RS).

Note that E is a separable complete metric space with this norm.

Theorem 4.1. Suppose that conditions (A.1)–(A.6) hold. Then, the process {α(N)([2Nt]) :
t ≥ 0} converges weakly in DE[0, ∞) to the structured coalescent {α(t) : t ≥ 0}; namely,

{α(N)([2Nt]) : t ≥ 0} w−→ {α(t) : t ≥ 0}.

Proof. According to Ethier and Kurtz (1986, Chapter 3, Corollary 7.4), the relative com-
pactness of {α(N)([2Nt])} is guaranteed if we prove the following two conditions:

(i) for every η > 0 and t ≥ 0, there exists a compact set 
η,t ⊂ E such that

lim inf
N→∞ P {α(N)([2Nt]) ∈ 
η,t } ≥ 1 − η;

(ii) for every η > 0 and T ≥ 0, there exists δ > 0 such that

lim sup
N→∞

P {ω′(α(N)([2Nt]), δ, T ) ≥ η} ≤ η,

where ω′(α(N)([2Nt]), δ, T )= inf{ti } maxi sups,t∈[ti−1,ti )
||α(N)([2Ns])−α(N)([2Nt])||,

with the sequences {ti} satisfying 0 = t0 < t1 < · · · < tk−1 < T ≤ tk and mini (ti −
ti−1) > δ.

First, we will verify condition (i). Let t be fixed. We consider a sequence of finite subsets
{Sm}m∈Z+\{0} satisfying S1 ⊂ S2 ⊂ · · · ⊂ Sm ⊂ Sm+1 ⊂ · · · and

⋃∞
m=1 Sm = S. Define


m = {α ∈ E, αi = 0 if i /∈ Sm} for m ∈ Z+ \ {0} which is a finite subset of E. This implies
that 
1 ⊂ 
2 ⊂ · · · and

⋃∞
m=1 
m = E. Then, we have

lim
n→∞ P {α(t) ∈ 
n} = P

{
α(t) ∈

∞⋃
n=1


n

}
= P {α(t) ∈ E} = 1.

By the convergence of finite-dimensional distributions, we have

P {α(t) ∈ 
n} = lim
N→∞ P {α(N)([2Nt]) ∈ 
n}.

Hence, we see that condition (i) is satisfied.
We will prove (ii). We define pN by

pN = C∗ + 1

2N
, N ∈ Z+, (4.1)

where C∗ is defined by (3.12). If N is large enough, we have pN < 1. For each sufficiently
large N , we define (Z(N), ξ (N)) = {(Z(N)(τ ), ξ (N)(τ )), τ = 0, 1, 2, . . .} by the Markov chain
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with state space (Z+ \ {0}) × E and transition probabilities

P {(Z(N)(τ + 1), ξ (N)(τ + 1)) = (j, β) | (Z(N)(τ ), ξ (N)(τ )) = (i, α)}

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − pN if j = i and β = α,

pN −
∑

γ∈E, γ �=α

PN(γ | α) if j = i + 1 and β = α,

PN(β | α) if j = i + 1 and β �= α,

0 otherwise,

where PN(β | α) is the transition probability of the ancestral process {α(N)(τ )}τ∈Z+ from α

to β in one generation. Using (3.7), (3.11), (3.13), (4.1), and the restrictions made on N , we
have, for any α ∈ E,

∑
γ∈E, γ �=α

PN(γ | α) =
∑

γ �=α(QN + πN)α,γ

2N
≤ pN.

Since the distribution of ξ (N) is that of the process α(N), we have

P {ω′(α(N)([2N ·]), δ, T ) ≥ η} = P {ω′(ξ (N)([2N ·]), δ, T ) ≥ η}
for every η > 0 and T > 0. The process (Z(N), ξ (N)) jumps with probability pN at every
generation; at each jump, Z(N) increases by 1. The construction is such that every time ξ (N)

jumps, Z(N) jumps as well. We denote the ith jump time of Z(N) by ρi, i = 0, 1, 2, . . . .

Obviously, 0 = ρ0 < ρ1 < · · · . Let us denote τi(interjump times)= ρi −ρi−1, i ∈ Z+. Let τi

be mutually independent and each τi is geometrically distributed with mean 1/pN . Now, fix
η > 0 and T > 0. Here, we will prove that

{ρJ ≥ 2NT and τi > 2Nδ, i = 1, 2, . . . , J } ⊂ {ω′(ξ (N)([2N ·]), δ, T ) < η} (4.2)

for any J ∈ Z+ and δ > 0. To show (4.2), we will discuss the following argument for any
fixed element of the left-hand side of (4.2). Denoting kN = min{i : ρi ≥ 2NT }, we have
1 ≤ kN ≤ J and the partition

ti = ρi

2N
(i = 0, 1, . . . , kN)

satisfies 0 = t0 < t1 < · · · < tkN−1 < T ≤ tkN
and ti − ti−1 > δ (i = 1, . . . , kN). As the

process (Z(N)(τ ), ξ (N)(τ )) is constant for ρi−1 ≤ τ < ρi, i = 1, 2, . . . , J , we have

ω′(ξ (N)([2N ·]), δ, T ) = 0.

Thus, we obtain (4.2). Hence, for every J ∈ Z+ and δ > 0, we obtain

P {ω′(ξ (N)([2N ·]), δ, T ) < η} ≥ P {ρJ ≥ 2NT and τi > 2Nδ, i = 1, 2, . . . , J }.
Thus, in order to prove condition (ii) it is sufficient to find J ∈ Z+ and δ > 0 such that

lim inf
N→∞ P {ρJ ≥ 2NT and τi > 2Nδ, i = 1, 2, . . . , J } ≥ 1 − η.
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Now, we have

P {ρJ ≥ 2NT and τi > 2Nδ, i = 1, 2, . . . , J }
= P {ρJ ≥ 2NT | τi > 2Nδ, i = 1, 2, . . . , J }P {τi > 2Nδ, i = 1, 2, . . . , J }
= P {ρJ ≥ 2NT | τi > 2Nδ, i = 1, 2, . . . , J }(P {τ1 > 2Nδ})J .

Since τi, i = 1, 2, . . . , J are independent and identically distributed random variables such
that P {τi = k} = pN(1 − pN)k−1, k ≥ 1, and ρJ = ∑J

i=1τi , we have

P {ρJ ≥ 2NT | τi > 2Nδ, i = 1, 2, . . . , J } ≥ P {ρJ ≥ 2NT }.
Since we have

P {ρJ ≥ 2NT } = P {Z(N)([2NT ]) − Z(N)(0) < J },
we obtain

P {ω′(α(N)([2N ·]), δ, T ) ≤ η} ≥ P {Z(N)([2NT ]) − Z(N)(0) < J }
(

P

{
τ1

2N
> δ

})J

(4.3)

for every J ∈ Z+ and δ > 0. Because the distribution of τi is geometric and τ1/2N converges
in distribution as N → ∞ to an exponentially distributed random variable X with mean
1/(C∗ + 1) and the distribution of Z(N)([2NT ])−Z(N)(0) is binomial with parameters [2NT ]
and pN , it follows that as N → ∞, Z(N)([2NT ])−Z(N)(0) converges to a Poisson distributed
random variable Z with mean T (C∗ + 1). From (4.3), it follows that

lim inf
N→∞ P {ω′(α(N)([2N ·]), δ, T ) ≥ η} ≥ P {Z < J }(P {X > δ})J (4.4)

since the right-hand since of (4.4) can be made arbitrary close to 1 for sufficiently large J and
sufficiently small δ > 0 depending on J , we see that the proof of (ii) is complete.

Thus, by Ethier and Kurtz (1986, Chapter 3, Theorem 7.8), the process {α(N)([2Nt]), t ≥
0} converges weakly in DE[0, ∞) to the structured coalescent {α(t), t ≥ 0} defined in the
introduction. �
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