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‡LE2I, Université de Bourgogne, BP 47 870, 21078 Dijon Cedex, France

Email: vvajnov@u-bourgogne.fr

Received 19 January 2014; revised 21 February 2015

A cross-bifix-free set of words is a set in which no prefix of any length of any word is the

suffix of any other word in the set. A construction of cross-bifix-free sets has recently been

proposed in Chee et al. (2013) within a constant factor of optimality. We propose a Gray

code for these cross-bifix-free sets and a CAT algorithm generating it. Our Gray code list is

trace partitioned, that is, words with zero in the same positions are consecutive in the list.

1. Introduction

A cross-bifix-free set of words is a set where, given any two words over an alphabet,

possibly the same, any prefix of the first one is not a suffix of the second one and vice

versa. Cross-bifix-free sets are involved in the study of distributed sequences for frame

synchronization (de Lind van Wijngaarden and Willink 2000). The problem of determining

such sets is also related to several other scientific applications, for instance in pattern

matching (Crochemore et al. 2007) and automata theory (Berstel et al. 2009).

For fixed cardinality q of the alphabet and length n of the words, an interesting problem

is the construction of a cross-bifix-free set with the cardinality as large as possible. An

interesting method has been proposed in Bajic (2007) for words over a binary alphabet.

In a recent paper (Chee et al. 2013), the authors revisit the construction of Bajic and

generalize it obtaining cross-bifix-free sets of words with greater cardinality over an

alphabet of arbitrary size. They also show that their cross-bifix-free sets have a cardinality

close to the maximum possible, and to our knowledge this is the best result in the literature

about the size of cross-bifix-free sets.

It is worth mentioning that an intermediate step between the original method (Bajic

2007) and its generalization (Chee et al. 2013) has been proposed by in Bilotta et al.

(2012): it consists of a different construction of binary cross-bifix-free sets, based on

lattice paths, which makes it possible to obtain greater cardinality if compared to the ones

in Bajic (2007).

Once a class of objects is defined, in our case words, often it could be useful to list

or generate them according to a particular criterion. A special way to do this is their

generation in a way such that any two consecutive words differ as little as possible, i.e.,

in Gray code order (Gray 1953). In the case where the objects are words, as in this

https://doi.org/10.1017/S0960129515000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000067


A gray code for cross-bifix-free sets 185

article, we can specialize the concept of Gray code saying that it is an infinite set of word-

lists with unbounded word-length such that the Hamming distance between any two adjacent

words is bounded independently of the word-length (Walsh 2003) (the Hamming distance

is the number of positions in which the two successive words differ (Hamming 1950)).

Gray codes find useful applications in circuit testing, signal encoding, data compression,

telegraphy, error correction in digital communication and others; see for instance (Chang

et al. 1992; Flajolet and Ramshaw 1980; Gardner 1972; Kobayashi and Sekiguchi 1981;

Losee 1992; Richards 1986; Tsuiki 1998) and the references therein. They are also widely

studied in the context of combinatorial objects such as: permutations (Johnson 1963),

Motzkin and Schröder words (Vajnovszki 2001b), derangements (Baril and Vajnovszki

2004), involutions (Walsh 2001), compositions, combinations, set-partitions (Ruskey 1993;

Sagan 2010), and so on.

In this work, we propose a Gray code for the cross-bifix-free set S (k)
n,q (Chee et al. 2013).

It is formed by length-n words over the q-ary alphabet A = {0, 1, . . . , q − 1} containing

a particular sub-word avoiding k consecutive 0’s (for more details see the next section).

First we present a Gray code for S
(k)
n,2 over the binary alphabet {0, 1}, then we expand

each binary word to the alphabet A. The expansion of a binary word α is the set of words

obtained by replacing in α all the 1’s with the symbols of A different from 0; and the trace

of a word is the binary word obtained by replacing each symbols different from 0 by 1.

The Gray code we get is trace partitioned in the sense that all the words with the same

trace are consecutive.

2. Definitions and tools

Let n � 3, q � 2 and 1 � k � n − 2. The cross-bifix-free set S (k)
n,q is the set of all length-n

words s1s2 · · · sn over the alphabet {0, . . . , q − 1} satisfying:

— s1 = · · · = sk = 0;

— sk+1 �= 0;

— sn �= 0;

— the subword sk+2 . . . sn−1 does not contain k consecutive 0’s.

Throughout this paper we are going to use several standard notations which are typical

in the framework of sets and lists of words. For the sake of clarity, we summarize the

ones used here.

For a set of words L over an alphabet A we denote by L an ordered list for L, and

— L denotes the list obtained by reversing L;

— if L′ is another list, then L ◦ L′ is the concatenation of the two lists, obtained by

appending the words of L′ after those of L;

— first(L) and last(L) are the first and the last word of L, respectively;

— if u is a word in A∗, then u · L (resp. L · u) is a new list where each word has the form

uω (resp. ωu) where ω is any word of L;

— if u is a word in A∗, then |u| is its length, and un = uuu . . . u︸ ︷︷ ︸
n

.
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For our purpose we need a Gray code list for the set of words of a certain length over

the (q − 1)-ary alphabet {1, 2, . . . , q − 1}, q � 3. An obvious generalization of the Binary

Reflected Gray Code (Gray 1953) to the alphabet {1, 2, . . . , q − 1} is the list Gn,q for the

set of words {1, 2, . . . , q − 1}n defined by Er and Williamson (Er 1984; Williamson 1985)

where it is also shown that it is a Gray code with Hamming distance 1. The authors

defined this list as follows:

Gn,q =

⎧⎨
⎩

λ if n = 0,

1 · Gn−1,q ◦ 2 · Gn−1,q ◦ · · · ◦ (q − 1) · G ′
n−1,q if n > 0,

(1)

where G ′
n−1,q is Gn−1,q or Gn−1,q according as q is even or odd. The reader can easily verify

(for instance by induction on n) the following proposition.

Proposition 2.1. For q � 3,

— first(Gn,q) = 1n;

— last(Gn,q) = (q − 1)1n−1 if q is odd, and (q − 1)n if q is even.

Now we are going to present another tool we need in the paper. If β is a binary word of

length n such that |β|1 = t (the number of 1’s in β), we define the expansion of β, denoted

by ε(β), as the list of (q − 1)t words, where the ith word is obtained by replacing the t

1’s of β by the t symbols (read from left to right) of the ith word in Gt,q . For example,

if q = 3 and β = 01011 (the trace), then G3,3 = (111, 112, 122, 121, 221, 222, 212, 211) and

ε(β) = (01011, 01012, 01022, 01021, 02021, 02022, 02012, 02011). Notice that in particular

first(ε(β)) = β and all the words of ε(β) have the same trace.

We observe that ε(β) is the list obtained by inserting some 0’s (in the same positions)

in each word in Gt,q . Since Gt,q is a Gray code and the insertions of the 0’s do not change

the Hamming distance between two subsequent words of ε(β) (which is 1), the following

proposition holds.

Proposition 2.2. For any q � 3 and binary word β, the list ε(β) is a Gray code.

3. Trace partitioned Gray code for S (k)
n,q

Our construction of a Gray code for the set S (k)
n,q of cross-bifix-free words is based on two

other lists:

— F (k)
n , a Gray code for the set of binary words of length n avoiding k consecutive 0’s,

and

— H(k)
n,q , a Gray code for the set of q-ary words of length n which begin and end with a

non-zero value and avoid k consecutive 0’s. In particular, H(k)
n,2 = 1 · F (k)

n−2 · 1.

Finally, we will define the Gray code list S (k)
n,q for the set S (k)

n,q as 0k · H(k)
n−k,q .
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3.1. The list F (k)
n

Let Cn be the list of binary words defined as follows:

Cn =

⎧⎨
⎩

λ if n = 0,

1 · Cn−1 ◦ 0 · Cn−1 if n � 1,

(2)

with λ the empty word. The list Cn is a Gray code for the set {0, 1}n and it is a slight

modification of the original Binary Reflected Gray Code list defined in Gray (1953).

By the definition of Cn given in relation (2), we have for n � 1,

— last(Cn) = 0 · last(Cn−1) = 0n;
— first(Cn) = 1 · first(Cn−1) = 1 · last(Cn−1) = 10n−1.

We now define the list F (k)
n of length-n binary words as follows:

F (k)
n =

⎧⎪⎨
⎪⎩

Cn if 0 � n < k,

1 · F (k)
n−1 ◦ 01 · F (k)

n−2 ◦ 001 · F (k)
n−3 ◦ · · · ◦ 0k−11 · F (k)

n−k if n � k.

(3)

For k � 2 and n � 0, F (k)
n is a list for the set of length-n binary words with no

k consecutive 0’s, and Proposition 3.2 says that it is a Gray code (actually, F (k)
n is a

adaptation of a similar list defined earlier (Vajnovszki 2001a)).

It is easy to see that the number of binary words in F (k)
n is given by f(k)

n , the well-known

k-Fibonacci integer sequence defined by:

f(k)
n =

⎧⎨
⎩

2n if 0 � n < k,

f
(k)
n−1 + f

(k)
n−2 + · · · + f

(k)
n−k, if n � k,

and the words in F (k)
n are said k-generalized Fibonacci words. For example, the list F (3)

3

for the length-3 binary words avoiding 3 consecutive 0’s is

F (3)
3 = (100, 101, 111, 110, 010, 011, 001).

Proposition 3.1.

— first(F (k)
n ) is the length-n prefix of the infinite periodic word (10k−11)(10k−11) . . .;

— last(F (k)
n ) is the length-n prefix of the infinite periodic word (0k−111)(0k−111) . . ..

Proof. For the first point, if 1 � n < k, then first(F (k)
n ) = first(Cn) = 10n−1; and if n = k,

then first(F (k)
n ) = 1 · first(F (k)

n−1) = 1 · last(Cn−1) = 10k−1, and the statement holds in both

cases.

Now, if n > k, by the definition of F (k)
n we have

first(F (k)
n ) = 1 · first(F (k)

n−1)

= 1 · last(F (k)
n−1)

= 10k−11 · last(F (k)
n−k−1)

= 10k−11 · first(F (k)
n−k−1),
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and induction on n completes the proof.

For the second point, if 1 � n < k, then last(F (k)
n ) = last(Cn) = 0n; and if n = k, then

last(F (k)
n ) = 0k−11, and the statement holds in both cases.

Now, if n > k, we have

last(F (k)
n ) = 0k−11 · last(F (k)

n−k)

= 0k−11 · first(F (k)
n−k),

and by the first point of the present proposition, induction on n completes the proof.

Proposition 3.2. The list F (k)
n is a Gray code where two consecutive words differ in a single

position.

Proof. We reason by induction on n. Then it is sufficient to prove that there is a ‘smooth’

transition between any two consecutive lists in the definition of F (k)
n given in relation (3),

that is, for any �, 1 � � � k − 1, the words

α = 0�−11 · last(F (k)
n−�) = 0�−11 · first(F (k)

n−�),

and

β = 0�1 · first(F (k)
n−�−1) = 0�1 · last(F (k)

n−�−1),

differ in a single position. Indeed, Proposition 3.1 implies first(F (k)
n ) = 1 · last(F (k)

n−1), and

then β = 0� · first(F (k)
n−�).

As a by-product of the proof of the previous proposition we have the following remark

which is critical in algorithm process used for the generating algorithm in Section 4.2.

Remark 1. If α = a1a2 . . . an and β = b1b2 . . . bn are two successive words in F (k)
n which

differ in position �, then either � = n or a�+1 = b�+1 = 1.

3.2. The list H(k)
n,q

Let H(k)
n,q be the list defined by the following:

H(k)
n,q = ε(α1) ◦ ε(α2) ◦ ε(α3) ◦ ε(α4) ◦ · · · ◦ ε′(α

f
(k)
n−2

), (4)

with αi = 1φi1 and φi is the ith binary word in the list F (k)
n−2, and ε′(α

f
(k)
n−2

) is ε(α
f

(k)
n−2

) or

ε(α
f

(k)
n−2

) according as f
(k)
n−2 is odd or even.

Clearly, H(k)
n,q is a list for the set of q-ary words of length n which begin and end with a

non-zero value, and which have no k consecutive 0’s. In particular, H(k)
n,2 = 1 · F (k)

n−2 · 1.

Proposition 3.3. The list H(k)
n,q is a Gray code.

Proof. From Proposition 2.2 it follows that consecutive words in each list ε(αi) and ε(αi)

differ in a single position (and by +1 or −1 in this position). To prove the statement it is

enough to show that, for two consecutive binary words φi and φi+1 in F (k)
n−2, both pair of

words
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— last(ε(1φi1)) and first(ε(1φi+11)) = last(ε(1φi+11)), and

— last(ε(1φi1)) = first(ε(1φi1)) and first(ε(1φi+11))

differ in a single position.

In the first case, by Proposition 2.1, the first symbols of last(ε(1φi1)) and of

last(ε(1φi+11)) are both (q − 1), and the other symbols are either 1 if q is odd, or

(q − 1) if q is even; and since φi and φi+1 differ in a single position, the result holds.

In the second case, first(ε(1φi1)) = 1φi1 and first(ε(1φi+11)) = 1φi+11, and again the

result holds.

3.3. The list S (k)
n,q

Now we define the list S (k)
n,q as

S (k)
n,q = 0k · H(k)

n−k,q,

and clearly, S (k)
n,q is a list for the set of cross-bifix-free words S (k)

n,q . In particular,

S (k)
n,2 = 0k1 · F (k)

n−k−2 · 1.

For example, the set S (3)
8,2 of length-8 binary cross-bifix-free words which begin with 000 is

S (3)
8,2 = 0001 · F (3)

3 · 1

= (00011001, 00011011, 00011111, 00011101, 00010101, 00010111, 00010011).

A consequence of Proposition 3.3 is the next proposition.

Proposition 3.4. The list S (k)
n,q is a Gray code.

For the sake of clarity, we illustrate the previous construction for the Gray code list

S (3)
8,3 on the alphabet A = {0, 1, 2}. We have

G3,3 = (111, 112, 122, 121, 221, 222, 212, 211);

G4,3 = (1111, 1112, 1122, 1121, 1221, 1222, 1212, 1211, 2211, 2212, 2222,

2221, 2121, 2122, 2112, 2111);

G5,3 = (11111, . . . , 12111, 22111, . . . , 21111);

and

S (3)
8,3 = (00011001, 00011002, 00012002, 00012001, 00022001, 00022002,

00021002, 00021001, 00021011, . . . , 00011011, 00011111, . . .

. . . , 00021111, 00021101, . . . , 00011101, 00010101, 00010102,

00010202, 00010201, 00020201, 00020202, 00020102, 00020101,

00020111, . . . , 00010111, 00010011, 00010012, 00010022,

00010021, 00020021, 00020022, 00020012, 00020011).
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4. Algorithmic considerations

In this section, we present a generating algorithm for binary words in the list F (k)
n and

an algorithm expanding binary words; then, combining them, we obtain a generating

algorithm for the list H(k)
n,q , and finally prepending 0k to each word in H(k)

n−k,q the list S (k)
n,q

is obtained. The given algorithms are shown to be efficient.

The list F (k)
n defined in Equation (3) does not have a straightforward algorithmic

implementation which is also efficient. Now we explain how F (k)
n can be defined recursively

as the concatenation of at most two lists, then we will give a generating algorithm for it.

Let F (k)
n (u), 0 � u � k − 1, be the sublist of F (k)

n formed by words beginning with at most

u 0’s. By the definition of F (k)
n , it follows that F (k)

n = F (k)
n (k − 1), and

F (k)
n (0) = 1 · F (k)

n−1

= 1 · F (k)
n−1(k − 1),

and for u > 0,

F (k)
n (u) = 1 · F (k)

n−1 ◦ 01 · F (k)
n−2 ◦ · · · ◦ 0u1 · F (k)

n−u−1

= 1 · F (k)
n−1 ◦ 0 · (1 · F (k)

n−2 ◦ · · · ◦ 0u−11 · F (k)
n−u−1)

= 1 · F (k)
n−1 ◦ 0 · F (k)

n−1(u − 1).

By the above considerations we have the following proposition.

Proposition 4.1. Let k � 2, 0 � u � k − 1, and F (k)
n (u) be the list defined as follows:

F (k)
n (u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ if n = 0,

1 · F (k)
n−1(k − 1) if n > 0 and u = 0,

1 · F (k)
n−1(k − 1) ◦ 0 · F (k)

n−1(u − 1) if n, u > 0.

(5)

Then F (k)
n (k − 1) is the list F (k)

n defined by relation (3).

Now we sketch how the relation (5) defining F (k)
n leads directly to an efficient generating

algorithm, in spite of which we will adopt later a slightly different version of this algorithm.

The execution tree of a recursive algorithm which directly implements relation (5) has the

following properties:

— the root corresponds to the list F (k)
n , and a node at level i corresponds to the list

F (k)
n−i(v) or F (k)

n−i(v), for some 0 � v � k − 1;

— a binary prefix is associated with each internal node;

— the height of the tree is n;

— each internal node has either two children, or one child and two grandchildren, or one

child which is a leaf;

— the leaves correspond to words in F (k)
n .
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These properties imply that the number of internal nodes is O(f(k)
n ), with f(k)

n the number

of words in F (k)
n , and so the generating algorithm has a constant average running time.

As we will see later, in order to generate the list S (k)
n,q we need the positions where two

consecutive words in F (k)
n differ, rather than the whole words, and below we explain the

desired algorithm. It is easy to check that F (k)
n = F (k)

n (k − 1) has the following properties:

for α = a1a2 . . . an and β = b1b2 . . . bn two consecutive binary words in F (k)
n , there is a p

such that

— ai = bi for all i, 1 � i � n, except that bp = 1 − ap,

— 0k−1 cannot be a suffix of a1a2 . . . ap−1 = b1b2 . . . bp−1,

— the sublist of F (k)
n formed by the words with the prefix b1b2 . . . bp is b1b2 . . . bp · L,

where L is F (k)
n−p(u − 1) or F (k)

n−p(u − 1) according as the prefix b1b2 . . . bp has an even

or odd number of 1’s, and u is equal to k minus the length of the maximal 0 suffix of

b1b2 . . . bp.

Now we consider procedure gen fib in Figure 1; as the previous sketched algorithm, its

execution tree is that induced by the recursive definition (5), and the call of

gen fib(pos,u,0) corresponds to the list F (k)
m−pos+1(u), and gen fib(pos,u,1) to

F (k)
m−pos+1(u). Thus, the parameter pos of procedure process is precisely the position

where the last and first words in successive sublists of F (k)
m differ, and eventually the

position where two consecutive words in this list differ. If process prints its parameter

pos, then the call of gen fib(1,k−1,0) simply lists the positions where consecutive words

in F (k)
m differ (and this without maintaining the list F (k)

m ). And when process switches

the value of b[pos] (that is, b[pos] := 1 − b[pos]) and prints the obtained binary word

b, the call of gen fib(1,k − 1,0) after initializing b by the first word in F (k)
m (given in

Proposition 3.1) and printing it out, generates the list F (k)
m . Moreover, as we will show

below, for m = n − 1 and after the appropriate initialization of b = b1b2 . . . bn the call of

gen fib(k + 2,k − 1,0) generates the list 0k1 · F (k)
n−k−2 · 1 = S (k)

n,2 .

Procedure gen fib is an efficient generating procedure. Indeed, each recursive call

induced by gen fib is either

— a terminal call (which does not produce other calls), or

— a call producing a new word b (and two recursive calls), or

— a call producing one recursive call, which in turn is in one of the previous two cases.

As above, it follows that the total number of recursive calls is O(f(k)
n ), with f(k)

n the number

of words in F (k)
n , and thus gen fib runs in constant amortized time (see also the ‘CAT’

principle in Ruskey (in preparation)).

4.1. Generating S (k)
n,2

Initializing b1b2 . . . bn by 0k1 · first(F (k)
n−k−2) · 1, with first(F (k)

n−k−2) given in Proposition 3.1,

and printing it out, the call of gen fib(k + 2,k − 1,0) where

— m = n − 1, and

— procedure process, as previously, switches the value of b[pos] and prints b
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Fig. 1. Algorithm producing the list F (k)
n or S (k)

n,q , according to the initial values of m, b and the

definition of process procedure.

produces, in constant amortized time, the list 0k1 · F (k)
n−k−2 · 1 = 0k · H(k)

n−k,2 which is, as

mentioned before, the list S (k)
n,2 .

4.2. Generating S (k)
n,q , q > 2

Before discussing the expansion algorithm expand needed to produce the list S (k)
n,q when

q > 2 we show that gen tuple procedure in Figure 2, on which expand is based, is an

efficient generating algorithm for the list Gn,q defined in relation (1). Procedure gen tuple

is a ‘naive’ odometer principle based algorithm, see again (Ruskey in preparation), and

we have the next proposition.

Proposition 4.2. After the initialization of v by 11 . . . 1, the first word in Gn,q , and di by 1,

for 1 � i � n, procedure gen tuple produces the list Gn,q in constant amortized time.

Proof. The total amount of computation of gen tuple is proportional to the number

of times the statement i := i − 1 is performed in the inner while loop; and for a given

q and n we denote by cn this number. Therefore the average complexity (per generated

word) of gen tuple is cn
qn

. Clearly, c1 = q − 1 and cn = (q − 1) · n + q · cn−1, and a simple

induction shows that cn = q · qn−1
q−1

− n and finally the average complexity of gen tuple is
cn
qn

� q
q−1

.

Now we adapt algorithm gen tuple in order to obtain procedure expand producing

the expansion of a word; and like gen tuple, procedure expand has a constant average

time complexity. More precisely, for a word b = b1b2 . . . bn in {0, 1, . . . , q}n with b�+1, bn �= 0

let b′ denote the trace of b�+1b�+2 . . . bn, that is, the word obtained from b�+1b�+2 . . . bn
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Fig. 2. Odometer algorithm producing the list Gn,q .

Fig. 3. Algorithm expanding a word b and mimicking procedure gen tuple.

by replacing each non-zero value by 1, and b′′ that obtained by erasing each 0 letter in

b�+1b�+2 . . . bn. Procedure expand produces the list as follows:

— b1b2 . . . b� · ε(b′) if the initial value of b is such that b′′ is the first word in G|b′′ |,q , or

— b1b2 . . . b� · ε(b′) if the initial value of b is such that b′′ is the last word in G|b′′ |,q .

The initial value of d�+1, d�+2, . . . , dn are given by: if bi = 1, then di = 1; and if bi = q − 1,

then di = −1; otherwise di is not defined. Let i be a position in the current word b with

bi �= 0; in order to access in constant time from i the previous position j in b, with bj �= 0,

additional data structures are used. The array prec is defined by: if bi �= 0, then preci = j,

where j is the rightmost position in b, at the left of i and with bj �= 0; and for convenience

preci = 0 if i is the leftmost non-zero position in b.

Now we explain procedure process; it calls expand and we will show that when

gen fib in turn calls procedure process in Figure 4, then it produces the list S (k)
n,q , with

q > 2. The parameter pos of process is given by the corresponding call of gen fib,

and it gives the position in the current word b1b2 . . . bn in S (k)
n,q where bpos changes from a

non-zero value to 0, or vice versa. By Remark 1 and the definition of the list S (k)
n,q from

H(k)
n−k,q , and so from F (k)

n−k−2,q , it follows that bpos+1 �= 0. Procedure process sets bpos to 0

if previously bpos �= 0; and sets bpos to bpos+1 if previously bpos = 0, which according to

https://doi.org/10.1017/S0960129515000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000067


A. Bernini, S. Bilotta, R. Pinzani and V. Vajnovszki 194

Fig. 4. Procedure process called by gen fib in order to generate the list S (k)
n,q .

Proposition 2.1, Remark 1 and the definition of the expansion operation is the new value

of bpos. In order to access in constant time from a non-zero position in the array b the

previous non-zero position, process uses array prec of procedure expand and array succ,

defined as: succi = j, with j the leftmost position in b, at the right of i and with bj �= 0,

and succi is not defined if i is the rightmost non-zero position. In addition, procedure

process updates both arrays prec and succ.

For given q > 2, k � 2 and n � k + 2, after the initialization of b1b2 . . . bn by

0k1 · first(F (k)
n−k−2) · 1, as for generating S (k)

n,2 , the call of gen fib(k + 2,k − 1,0) where

— m = n − 1, and

— procedure process is that in Figure 4, and

— procedure expand that in Figure 3, with � = k

produces, in constant amortized time, the list S (k)
n,q .

We conclude this section with some further algorithmic considerations. Our generating

algorithms run in constant time, in amortized sense, and the transition time between

two successive generated words can be arbitrary long for large enough word size. Since

successive generated words differ in exactly one position, a natural question is to design

algorithms having a constant transition time in the worst case, that is, loopless generating

algorithms. Here, without giving tedious implementation considerations, we explain how

procedures expand and gen fib can be implemented looplessly (notice that, neglecting

the complexity of expand, procedure process has a constant running time).

On the one hand, in Williamson (1985, p. 112) is presented a loopless generating

algorithm for a Gray code for the product sets, and in particular for the Gray code list

Gn,q , and it can easily be modified to obtain a loopless version of procedure expand. On the

other hand, in Walsh (2003) is presented a general method to derive loopless generating

algorithms for strictly prefix-partitioned Gray codes, that is, for prefix partitioned Gray

codes lists satisfying the property that any length-p proper prefix of any word in the list

can be extended in two different ways to length-(p + 1) prefixes. Walsh’s method is based

on ‘e’ array (Bitner et al. 1976) and using additional data structures it can be adapted to

generate looplessly our list F (k)
n . Indeed, F (k)

n is prefix partitioned and has the property
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that, given a proper length-p prefix α of a word in F (k)
n , either α does not end with 0k−1,

and in this case both α · 0 and α · 1 are prefixes of words in F (k)
n , or α ends with 0k−1, and

in this case when p < n − 1 both α · 10 and α · 11 are prefixes of words in F (k)
n . See also

Vajnovszki (2001a), where ad-hoc methods are used in order to generate looplessly binary

words with no k consecutive 1’s.

5. Conclusion and further work

The cross-bifix-free sets S (k)
n,q (Chee et al. 2013) have the cardinality close to the optimum.

They consist of particular words s1s2 . . . sn of length n over a q-ary alphabet. Each word

has the form 0ksk+1sk+2 . . . sn where sk+1 and sn are different from 0 and sk+1sk+2 . . . sn−1

does not contain k consecutive 0’s. We have provided a Gray code for S (k)
n,q by defining

a Gray code for the words sk+1sk+2 . . . sn and then prepending the prefix 0k to them.

Moreover, an efficient generating algorithm for the obtained Gray code is given. We note

that this Gray code is trace partitioned in the sense that all the words with the same trace

are consecutive. To this aim we used a Gray code for restricted binary words (Vajnovszki

2001a), opportunely replacing the bits 1 with the symbols of the alphabet different from

0. An alternative prefix partitioned Gray code (where words with the same prefix are

consecutive) for S (k)
n,q is recently presented in Bernini et al. (2014). Remark that, trace and

prefix partition are mutually exclusive.

An interesting question arising when one deals with a Gray code L on a set is the

possibility of defining it in such a way that the Hamming distance between last(L) and

first(L) is 1 (circular Gray code). Usually it is not so easy to have a circular Gray code,

unless the elements of the set are not subject to constraints; in our case it is worth

studying if the ground-set we are dealing with (which is a cross-bifix free set) makes it

possible to find a circular Gray code.

We thank the referees for careful reading of the paper and many comments, which

resulted in a significant improvement of the presentation.
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