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SUMMARY

Human-robot interaction is an emerging area of research where a robot may need to be working
in human-populated environments. Human trajectories are generally not random and can belong to
gross patterns. Knowledge about these patterns can be learned through observation. In this paper, we
address the problem of a robot’s social awareness by learning human motion patterns and integrating
them in path planning. The gross motion patterns are learned using a novel Sampled Hidden Markov
Model, which allows the integration of partial observations in dynamic model building. This model
is used in the modified A path planning algorithm to achieve socially aware trajectories. Novelty
of the proposed method is that it can be used on a mobile robot for simultaneous online learning
and path planning. The experiments carried out in an office environment show that the paths can be
planned seamlessly, avoiding personal spaces of occupants.
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1. Introduction

Path planning is a fundamental yet crucial ability that a robot should posses to execute most mobile
robotic tasks. In the past, it has been extensively explored with great diversity of solutions.!:? Although
there was work undertaken to perform path planning in dynamic environments, non-static objects
(such as people) were often treated as purely random occurrences, sometimes using a model to predict
those occurrences, in an effort to reduce the problem to a static environment.>* However, one main
focus of current robotic research is the human interaction, where a robot carry out its intended tasks,
collaborating with humans. In these types of applications, robots should be equipped with more
sophisticated path planning algorithms to deal with all the complex dynamics that are inherent in
human-populated environments.

Human-populated spaces usually exhibit common motion patterns, which has been noted in
different areas of research.® These motion patterns can be a result of a complex combinations
of goals, tasks, physiological and social constraints. General observation of people is that they do not
always plan the shortest paths. Depending on the task at hand, environmental and social constraints,
they may choose to use a longer path. As an example, an office clerk may choose not to walk through
cubicals even if it is the shortest path, but opt to take a longer path through a corridor to avoid invading
occupants’ workspace. In a social context, these types of behaviors are very constructive. Therefore,
if a robot could learn these human behaviors and plan “human-like” paths, it can be considered as a
positive step toward a socially acceptable robotics. Being a robot, this knowledge could be exploited
by observing and learning dynamics in an environment and planning paths based on the learned
models.

Learning could be achieved through the information based on infrastructure-mounted sensors
overlooking the region of operation or based on sensors mounted on mobile robots or both. The
infrastructure-mounted sensors are mainly utilized in video surveillance applications.”® However,
there is a few literature available on learning models based on infrastructure-based sensors to be used
in mobile robots with limited success.
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(b)

Fig. 1. (a) LISA robot navigating in its environment. (b) The office environment.

Kruse et al.® and Govea et al.'” utilized stationary cameras to observe motion patterns in an office
space and car park respectively. In Kruse et al.,’ a statistical representation of motion patterns is
proposed. The trajectories are modeled as a Poisson process in consecutive locations with linearization
to minimize the complexity. Furthermore, it is proposed to combine similar trajectories, which
eventually lead to loss of information. Once the model is learned, it is utilized for pre-planning
to minimize the probability of collisions and improved reactive behavior. It results in the robot
preferring areas of low traffic density. It has also reported to have improved motion planning with
moving obstacles. In Govea et al.,'? a model of trajectories is learned incrementally by dividing the
space into Voronoi regions. These regions are used to define the states and state transitions in the
proposed Growing Hidden Markov Models to model motion of people or cars in a parking area. Even
though the method is promoted as being useful for mobile robotics, no experiments were presented
which would support this claim. These methods may not be suitable for most of the mobile robotic
applications due to the requirement of infrastructure modifications, higher cost, physical constraints
in observations due to large occlusions etc.

Data acquired through infrastructure-based sensor networks can also be found in literature.
Bennewitz et al.'' use Expectation Maximization (EM) to learn trajectories of individual persons
in an office environment. The learning procedure is carried out off-line based on sensor network
data, and then fed to a mobile robot to implement reactive behaviors. The algorithm specifically
requires complete trajectories between defined resting points, which may not be always available in
most human-populated environments. Kanda et al.'? propose to use a sensor network to track people
walking in a shopping mall. Local behaviors, such as fast-walk and idle-walk, of people are learned
to subsequently form a histogram of local behaviors in each grid cell of a discretized space. Global
behaviors of people are then analyzed using state chains of local behaviors. A number of global
behaviors are extracted from a large data set, which range from passing through the observed space
to window shopping. This model is then used to enable a robot to identify the pattern a person is
engaged in and approach to motivate entering the store. Use of sensor networks for data acquisition
may require careful positioning of sensors, and it may need infrastructure modifications.

Although these methods show appealing results, the approaches do not exploit the full potential
of learned information to be used in Human—Robot Interaction. These methods are in general
implemented off-line learning strategies, which have disadvantages of incorporating incomplete
data, chronological changes in motion patterns and sudden changes while used in online application.
Therefore, in this paper we propose the motion model learning based on Sampled Hidden Markov
Model (SHMM) and use it with the A* and probabilistic road maps (PRM) algorithms to solve the
above-mentioned limitations.

This work of socially aware path planning is based on our previous work.'* The observer travels
through an office-like environment as shown in Fig. 1(a). Although a 30-m laser range finder was used
in the experiments, the environmental conditions, such as cubical walls, lead to partial observations
(see Fig. 1(b)). Learning is based on sampling from the observation of trajectories, followed by
clustering. This model comprises rich knowledge of human motion patterns. It is then exploited in
a modified A"-based algorithm to realize socially aware path planning. The contributions of this
paper are: (1) Synthesis of an online motion pattern learning algorithm based on SHMM, which is

https://doi.org/10.1017/50263574714001611 Published online by Cambridge University Press


https://doi.org/10.1017/S0263574714001611

Social robotics 515

capable of utilizing sensory data as and when they arrive requiring no dedicated learning phase, (2)
the SHMM-based motion pattern algorithm is used with A* algorithm and probabilistic roadmaps to
achieve socially acceptable navigational paths and (3) experiments on a robotic platform are presented
to validate the results.

The remainder of this paper is organized as follows. In Section 2, learning motion patterns based
on SHMM are presented. Section 3 discusses the issues of path planning in populated environments.
Experiment results based on a robotic platform are presented in Section 4. Section 5 concludes the
paper with an indication for future work.

2. Representation and Learning of Motion Patterns
In this section, the proposed methodology for learning motion patterns based on SHMM is presented.

2.1. Learning motion patterns

In a 2-dimensional (2D) environment, a trajectory can be described as a succession of x—y positions
with heading 6 and linear speed v;. Consider a segmentation of a 2D space into a regular grid, where
the occurrence of motion could be counted in each grid cell. Extending the grid to include all four
dimensions, i.e. x, y, 6 and v;, would result in what is known as a flow field or motion histogram.'*
One could normalize values in the histogram to obtain probabilities resulting in a grid representation
of joint probability distribution,

P(x,y,0,v), (1

which expresses the probability of the simultaneous occurrence of x—y—6 and v;. Knowledge of this
distribution constitutes knowing all motion patterns in the environment independent of time. The
distribution is very complex and thus requires a significant amount of data to succeed.

Here a probabilistic method is developed to build an estimate of Eq. (1) considering it to be
a moving observer with limited field of view. The goal is to incrementally build the belief of D,
(approximation of Eq. (1)) using all sensor readings z..;, all robot poses ., and all observations of
moving people &y, up until time ¢,

BEI(DI):P(Df|élv{t7zta"'ﬁé:03 {OaZO)' (2)

From the above equation, an incremental update rule can be derived using the well-known Bayes
theorem as

Bel(DZ) = nP(Slth ;tazhé:tfla 7505 {0310)

(3)
P(Dt|{tv Zts Stfla ) %_07 50’ ZO)v

where, n = P&, 26, &1y - - -, &0, C0, 20) 1S a constant. Since Bel(D;) is the belief of D at time
t, given all past observations, sensor readings and observer poses, it is not an efficient solution
without further simplifications. Therefore, it is assumed that observations and poses are conditionally
independent of past observations and poses given ¢; and Dy, i.e. the system is Markov,

prior belief

Bel(D;) =nP&|Dy, &, z) P(Di&r, 2e, 61, - -+ 5 80, 0, 20) - 4

Finally, the last term of this equation is the belief at time # — 1, and thus the final update rule is
written as

Bel(Dy) = nP(&|Dy, &, z)Bel(D;—y). &)

This result allows the update Bel(D;) to use only the most recent observations of moving people.
Due to the intricacies of human spatial behaviors, Bel(D;) is complex, and is of unknown distribution.
Therefore, an adequate representation has to be chosen.
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2.2. Hidden Markov model

A Hidden Markov Model (HMM) is a statistical model that represents a system as a directed graphical
model. Here we briefly outline HMMs following the notation used by Rabiner.!> HMMs are defined by
N states of asystem S = s, s2, ..., sV, together with the observation symbols V = v', v2, ..., v¥,
with M being the number of symbols.

A state transition probability distribution A = a;; is given as

aij = P(g1 =sV)g =5, 1<ic<
. (6)
I<j=<N
Furthermore, the observation probabilities in state j, B = b;; are formulated as
bij = PVsY), 1<ix<
. (7)
I<j=<N
Finally, the initial state distribution 7 = 7; is defined as
;= P(g = s(i)), 1<i<N. ®)

A large number of variations of HMMs are proposed in literature, and generally HMMs are
reported to be working well in different areas of research.!%!!

2.3. Sampled hidden Markov model

While a grid-based approach is a possible representation of Bel(D,), there are a number
of shortcomings to this approach. First, it leads to high computational costs and inefficient
implementations due to the need of updating the whole grid whenever the belief is updated, irrespective
of the field of view of the observation. Moreover, as the grid is ignorant of the environment’s structure,
a grid representation of motion patterns would require maintaining a belief in regions where even no
motion would be possible (e.g. inside walls). Finally, the grid’s resolution has to be chosen carefully,
but even then it is difficult to guarantee a good resulting approximation.

Considering the inherent shortcomings of grid-based approaches, a sampling algorithm which
can predict, weigh and resample to incrementally learn an approximation of Eq. (1) is proposed.
The sample-based representation overcomes the grid-based approaches’ problems by only generating
samples in the areas of interest, i.e. where motion was observed and the number of samples can be
controlled by means of resampling or subsampling.

The belief Bel(D;), as defined in Eq. (5), can be represented as a set of weighted samples,

Xt = (x[(i)a a)gi)>a 1 S l E Na (9)
where
xP = [x(i)y(i)e(i’v;i)]r (10)
and o being the weight of the ith sample. The belief of D, is then defined as

People Tracking
—
Bel(D;) = X; = n P(&|Dy, &, z¢) Bel(D; 1), (11)

where a particle filter is implemented for people tracking.

Consider a person walking along a corridor in the direction of the arrow as shown in Fig. 2(a).
The particle filter-based tracker would produce a series of poses along the observed trajectory. Each
of these poses would be represented by a cluster of samples (see Fig. 2(b)) which approximates a
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Fig. 2. Learning example: (a) A person was moving in the direction of the arrow with samples from the tracker.
(b) The resulting SHMM. (c¢) After merging a new trajectory from the left. In (b) and (c), the states are represented
by means, “.,” covariances by ellipses and transition probabilities by the thickness of the straight lines joining
the states.

probability distribution over x, y, 6 and v;. The transitions between states are directly observable,

. (@)
s=s<’>=[§m} 1<i<N, (12)

where u® and =@ are the mean and the covariance of the ith sample cluster and N is the number of
states. Whenever another moving object is observed in a region where a model was previously learned,
the statistics of states are updated by combining the corresponding sample clusters. Therefore, the
time dependency needs to be incorporated into the definition of a state; however, it is omitted in the
formulation due to unworthy complexity.

2.3.1. Model adaptation and growth. By observing a moving object, the resulting cluster can be seen
as the jth state s~ in the path of the object. The superscript “—> means that it is either a new
state or may add new information to an already existing state in the model of motion patterns. The
decision can be made based on the symmetric Kullback-Leibler divergence (KLD)!® representing
s® and s~ as probability distributions,

KLD(s? || s“77) = KLDs(s® || s/)7) + KLD- (s~ || s©), 1<i<N
l<j=<K,

(13)

where K is the number of clusters from the tracked object’s path. The first and the second terms of
the equation are computed as

. . o0 Py
KLD,(s@ || s)7) = / Puo(x)log B0l e 1<i<nN
oo Pyi-(x) (14)

and

o0
. , P
KLD, (s~ || s©) = / P (x) log =2 (x)dx, l1<i<N

— Py (x) B (15)
l=j=K.

If the KLD between state s’ and cluster s/)~ is below a certain threshold, the sample clusters
can be combined and the state statistics can be updated accordingly. The threshold can be computed
based on the expected distance between consecutive states, or be chosen as a fixed threshold based
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Table 1. Personal space zones as defined in ref. [18].

Personal space zone Distance (m)
1. Intimate 0.0-0.45
2. Personal 0.45-1.2
3. Social — consultative 1.2-3.0

4. Public 3.0+

on experimentation. To avoid growing computational effort with a growing model, the KLD is only
computed for clusters which are closely located in the state space. It is to be noted that the robot
localization is assumed to be known. Figure 2(c) shows a situation where a new trajectory from the
left is joined based on the KLD criteria.

2.3.2. Reducing the dimensionality of the model. Higher dimensions demand higher computational
requirements. The dimensionality is proposed to be reduced by making use of the properties of
the HMM. When sampling with a fixed frequency is proposed, the distance between the means of
successive states encodes the average speed of the target in the area. Thus, a distance measure for
speeds or binning replaces the explicit use of v in the model, and hence the state can be represented
as (x, y, 0). Similarly, it is possible to use binning for heading 8, reducing the dimensions of a single
state to just two, (x, y).

3. Path Planning in Populated Environments

Path planning in dynamic environments has been studied before;*!” however, most of the time the
context of a human populated space has not been exploited. In psychology and other fields, use of
a space by multiple people is an active field of research, which yields many interesting results.% '3
It is a fact that the interaction between humans and robots in this context is not extensively studied
yet because of lack of existing real-world scenarios. However, with the fast growing field of human—
robot interaction, it is perceived that such robots operate in a socially acceptable manner for seamless
integration with humans.

The concept of personal space as described by Hall'® is central to human space sharing. There it is
stated that the space needed by a person is more than the body’s volume, but there are areas around
a person which should only be intruded for a particular interaction (see Table I). The innermost
area should only be entered if an intimate relationship exists between the involved persons, whereas
middle region is only for personal relationships. The outer circle defines an area which is used for
consultive interaction, such as between colleagues. Unexpected intrusion of the personal space may
result in discomfort, lower perceived privacy and lower work performance,'® which is enviable to
avoid if possible. From the perspective of robotics, it is desirable to develop path planning algorithms
giving due regards to such social issues.

3.1. The A* algorithm

The A* algorithm and its derivatives are a popular solution for the path planning problem.
It performs the best-first search on a grid which is pre-computed using a collision detector with
defined configuration values. More precisely, a configuration space C is computed that contains all
static obstacles in the d-dimensional space of the robot. There a Cy.. exists, which contains all
collision-free configurations. A path planning algorithm searches a path such that the path lies in
Cfree-

A* is defined by the functions g(x), which is the shortest path from start to goal by Euclidean
distance (often called the path-cost function), #(x), which is used as a heuristic estimate of the length
of the path, and f(x), which defines the sum of g(x) and h(x). The algorithm searches for a path
using a priority queue, where the priority of node x is higher, its f(x) being lower. Hence, it is called
the best-first search.

2,3,20
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This can be exploited to include prior information about dynamics in the environment. A cost
function is used to evaluate the cost of a path with respect to a model of motion patterns as

gn(x) ~ D(x), (16)

where D denotes the learned model of motion patterns; gp(x) returns a low value if node x is in an area
of high traffic density, and returns a high value if it is in an area of low traffic density. Consequently,
g(x) in the standard A* algorithm can be replaced by the below given function to calculate f(x),

G(x) = g(x) + gp(x). (17)

This cost function is suitable for a robot, which is supposed to prefer a commonly taken path by
people. However, in complex scenarios, it is appropriate to have more flexibility in choosing path
planning solutions. For example, in some cases it may be better for the robot to choose the shortest
path. This flexibility could be introduced by reformulating Eq. (17) as

Gx)=gx)+w=gpx), O0=w=l, (18)

where the factor w is chosen depending on the current requirements. Setting w to zero means the
paths are planned based purely on A*. If w is set to 1, the robot prefers common paths, whereas any
number between 0 and 1 denotes the combination of pure A* with gp(x).

3.2. Probabilistic roadmaps
The integration of PRM path planning with the proposed model of motion patterns is straightforward
and yields some interesting properties.

Probabilistic roadmap was introduced as a method to overcome the issue of growing complexity
in higher dimensions.>2! The basic algorithm first constructs an undirected graph G, the roadmap,
to solve the path planning problem. The nodes of G are generated by random sampling and collision
checking. Path planning is done by traversing between nodes which are sufficiently close to each
other. There are many publications presenting variations to the sampling step and collision checking
in order to improve the efficiency. Generally, PRM has been applied in many successful applications.

The main appeal to use PRM here is that once a graph is constructed, path planning can be done
with A™ as detailed above. Consequently, when using the model of motion patterns D, at least part
of the graph G can be considered known and sampling can be restricted to unexplored areas, thus
improving the efficiency. The more complete D is, the less sampling needs to be done. This highlights
the appeal of PRM when using with SHMM. If there is an already learned SHMM, the PRM graph
can be considered known or mostly known and planning can be directly done on the SHMM graph.

4. Experimental Results

4.1. Experimental setup

Experiments were carried using an in-house developed Lightweight Integrated Social Autobot (LISA),
which was realized using an iRobot Create platform (see Fig. 1(a)).The robot carried an Intel DS10MO
small-scale computer and a Hokuyo UTM-30LX laser range finder enabling it to localize and navigate
in the environment while detecting?? and tracking people using a simple particle filter. The software
development environment was Player/Stage®* and all the algorithms were implemented in C++ within
the Orca software framework.?* Figure 3 shows a Simultaneous Localization and Mapping (SLAM)-
generated map of the environment where desk areas and corridors are marked appropriately. The
LISA robot is shown as a red circle, and the red outline illustrates the observed laser reading. Being
a small robot, it has a significantly limited field of view due to the presence of furniture. The map
spans approximately 32 m x 20 m. It is important to note the complexity of the environment with a
large amount of clutter, semi-static objects such as trash cans and chairs and transparent objects such
as glass walls.
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Fig. 3. The map used in experiments. Desk areas, hallways and common areas are marked as “D”, “H” and “C”
respectively. LISA’s pose is shown by a red circle and the observed laser reading is shown as a red outline. Note
the limited observability LISA in the environment.

4.2. Learning motion patterns

In this section, SHMM learning is presented with the robot LISA in the aforementioned
office environment. Ten different subjects were included in this experiment and no environment
modifications were done. The limited observability at most times means that the robot has to
explore the environment to build a model of motion patterns. Furthermore, in order to observe
longer trajectories, the robot has to follow people, hence it has to be a mobile observer. For more
information about the implementation issues such as updating the transition probability matrix, the
readers are referred to Sehestedt et al.?>

A series of plots in Fig. 4 show the evolution of an SHMM. Figure 4(a) shows the robot following
a person, where the person is represented by a yellow cylinder and the trajectory is shown as an
orange line. The robot is shown as a red circle, whereas the red outline indicates the observed reading
of the forward looking laser sensor. The observed trajectory exhibits a typical human motion and
accordingly it is represented in the initial SHMM as shown in Fig. 4(b).

Figure 4(c) shows the model after more than 70 observed trajectories while the robot was on the
move. The trajectories were successfully joined and compactly represented. The final representation,
including more than 80 trajectories, is shown in Fig. 4(d) as a unimodal Gaussians distribution. It
could be noted that trajectories are positioned correctly on free spaces rather than through obstacles.
Further, compared with grid-based representations of motion patterns, a greater efficiency is achieved
as the belief has to be maintained only in the relevant areas (with human motion) of interest rather
than over the entire space.

4.3. Model adaptation

Another important aspect of the evolution of an SHMM is adaptation to changes in the environment.
Consider the situation in Fig. 5(a), where people usually walk along a hallway in an almost straight
line. The learned model after observing five similar trajectories is illustrated in Fig. 5(b). Then an
obstacle is placed on a commonly taken path to partially block it, which leads to a change in person’s
path as visible in Fig. 5(c). After five observations of changed trajectories, the SHMM’s states shifted
accordingly as in Fig. 5(d), thus effectively adapting to the change in behavior.

For the next experiment, consider the same situation as in Fig. 5(b), however, with a larger
obstacle blocking the common path as shown in Fig. 6(a). Naturally, person’s trajectory has to change
drastically to avoid an obstacle. As a result, it is not sufficient to merely shift the locations of the
existing states to accommodate the change, instead the model is extended with a new part as shown in
Fig. 6(b). Initially, the transition ac has a lower probability than the transition ab as indicated by the
thickness of the red state transition lines. However, with more observations the transition probability
of @c became larger than that of ab as can be seen in Fig. 6(d).

4.4. Socially aware path planning

In the previous section, the robot has learned human motion patterns through SHMM, which captures
the navigational behaviors of people in a particular environment. Having such a knowledge, the robot
can then behave in a similar manner obeying general human social rules. For example, the robot is
supposed to avoid office desk spaces of other people, i.e. a high value for w, in Eq. (18) in path
planning. Importance of avoiding the desk areas can be seen in Fig. 7, where the personal space area
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Fig. 4. Model learning with real-world data. (a) Robot follows a person; (b) initializes the SHMM with the
observed trajectory in (a); (c) SHMM after observing more than 70 trajectories; (d) learned model is represented
as a unimodal Gaussian distribution.

is overlaid on a part of the map. This shows that if a robot moves through one of the desk areas, it
may intrude the personal space of the occupier, which is not desirable.

Figure 8 shows the A*-cost map derived from the SHMM shown in Fig. 4(d). This cost map
illustrates the cost for traversal, which is calculated using the spatial distance of a grid cell to the
SHMM as well as the observed traffic density in the area. The spatial distance as a factor is useful to
incorporate closeness to previously seen trajectories to path planning without a need to stay exactly on
such a trajectory. Combination of two factors represents rich information about human path planning
and is used for socially aware path planning in the following experiments.

Figure 9 presents some path planning results. Figure 9(a) shows a more traditional planning result
based on the shortest path criterion, where among a set of equally long paths the planner has no
preference. Given equal probability for choosing any of these paths, in this example there is a 2/3
probability of the robot passing a desk area. Utilizing the proposed method, the planned path became
the one shown in Fig. 9(b). Hence, the robot was able to deliberately avoid desk areas, which could
have been someone’s personal space.

As illustrated in Fig. 9(c), the robot would even accept a longer path to avoid disturbing office
workers at their desks. However, if the detour for a socially aware path compared with the shortest
path is too long, the robot may choose the shortest path as shown in Fig. 9(d). This stems from the fact
that the accumulated cost, including the higher cost for traversal in some areas as illustrated in Fig. 8,
is lowest for the shortest path. This could be argued as mimicking human behavior for navigation.
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Fig. 5. An SHMM is adapting to a slightly changed environment. (a) The initial common trajectory. (b) The
SHMM representation of a common trajectory. (c) An obstacle causes a slight change in trajectory. (d) SHMM
adapting to a new situation.

These experiments prove that the experimental data include valuable information about human path
planning which can be successfully exploited for socially aware path planning.

4.5. Simultaneous path planning and model learning

The last experiment is designed to demonstrate the seamless integration of path planning and model
learning. In Fig. 10(a) LISA plans a path around a desk area based on the information at hand. Once
it reaches near the goal (Fig. 10(b)), it detects a walking person and starts tracking while moving
toward the goal (Fig. 10(c)). Once the person leaves robot’s field of view (i.e. the track is terminated),
new information is added to the model of motion patterns as shown in Fig. 10(d).

5. Conclusions and the Future work

In this paper, a method was presented to allow a robot to plan paths considering social behaviors.
This philosophy is important as it will lead robots to behave more like humans, reinforcing human—
robot interactions. For this purpose, we proposed a motion pattern learning algorithm to enhance
the robot path planning algorithm. The learning algorithm was performed online with data received
from on-board sensors without involving any infrastructure-mounted sensors. Further, there is no
dedicated learning phase utilized where all acquired information is immediately incorporated in the
model. Therefore, the robot can be deployed efficiently in many environments. The model is capable
of adapting to new information and thus it is suitable for lifelong learning in a changing world.
The representation of motion as an SHMM is more memory-efficient than grid-based approaches, as
the model only represents motion in the areas of interest. As the model is not fully connected, the
transition matrix can be replaced by more compact data structures.

Path planning was achieved using A* algorithm and PRMs, which integrate coherently with the
motion pattern models. A weight is set to control influence on path planning, leading to socially
acceptable paths. Experimental results show that the robot can plan paths with regard to a model of
motion patterns, avoiding certain areas where people prefer minimal interactions.
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Fig. 6. An SHMM adapting to a large change. The initial trajectory and SHMM are the same as in Fig. 5. (a)
A large obstacle causes a drastic change in trajectory. (b) Large change in trajectory leads to the learning of
a new branch of SHMM. Initially, the transition @c is estimated to be less likely than ab as indicated by the
thickness of the transition lines. (c) and (d) Observing the changed behavior repeatedly leads to an increase of
ab transition probability than that of ac.
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Fig. 7. Personal spaces overlaid on a part of the map.

Fig. 8. The A*-cost map for socially aware path planning, illustrating the cost for traversal in a 2D grid. This
cost map is also indicative for the cost of the PRM graph. Note that the cost map needs to be updated whenever
the SHMM is updated.
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Fig. 10. (a) A path generated using basic PRM. (b) The robot reaches the defined goal. (c) The robot detects a
walking person and starts tracking. (d) A newly observed track has been added to the model.
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In this study, it was assumed that there were no reactive actions taken by the people to regain their
personal spaces. This could be an interesting area for future research. Further, the future research
could also focus on the management of the states in SHMM, integration of the SHMM-based motion
prediction with other probabilistic data association methods, e.g. sample-based Joint Probabilistic
Data Association?® and learning of common locations of interest, e.g. kitchen, printer, which could
further improve the long-term prediction capabilities.
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