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A New Axiomatics for Masures

Auguste Hébert

Abstract. Masures are generalizations of Bruhat-Tits buildings. They were introduced by Gaussent
and Rousseau to study Kac-Moody groups over ultrametric fields that generalize reductive groups.
Rousseau gave an axiomatic definition of these spaces. We propose an equivalent axiomatic definition,
which is shorter, more practical, and closer to the axiom of Bruhat-Tits buildings. Our main tool to
prove the equivalence of the axioms is the study of the convexity properties in masures.

1 Introduction

An important tool for studying a split reductive group G over a non-archimedean lo-
cal field is its Bruhat-Tits building [BT72, BT84]. Kac-Moody groups are interesting
infinite-dimensional (if not reductive) generalizations of reductive groups. In order
to study them over fields endowed with a discrete valuation, Gaussent and Rousseau
introduced masures (also known as hovels) [GR08] that are analogs of Bruhat-Tits
buildings. Charignon and Rousseau generalized this construction [Chal0, Roul7,
Roul6]: Charignon treated the almost split case and Rousseau suppressed restric-
tions on the base field and on the group. Rousseau also defined an axiomatics of
masures [Roull]. Recently, Freyn, Hartnick, Horn, and K6hl made an analog con-
struction in the archimedean case [FHHKI7]: with each split real Kac-Moody group,
they associate a space on which the group acts, generalizing the notion of riemannian
symmetric space.

Masures enable obtaining results on the arithmetic of (almost) split Kac-Moody
groups over non-archimedean local fields. Let us survey them briefly. Let G be such a
group and J its masure. Gaussent and Rousseau used J to prove a link between Little-
mann’s path model and some kind of Mirkovi¢-Vilonen cycle model of G [GR08].
Gaussent and Rousseau also associated a spherical Hecke algebra *J with G and
they obtained a Satake isomorphism in this setting [GR14]. These results general-
ized works of Braverman and Kazhdan obtained when G is supposedly affine [BK11].
Bardy-Panse, Gaussent, and Rousseau defined the Iwahori-Hecke algebra 3 of G
[BPGRI6]. Braverman, Kazhdan, and Patnaik had already done this construction
when G is affine [BKP16]. In [Héb17], we obtained finiteness results on G enabling
us to give a meaning to one side of the Gindikin-Karpelevich formula obtained by
Braverman, Garland, Kazhdan, and Patnaik in the affine case [BGKP14]. Together
with Abdellatif, we defined a completion of ' and generalized the construction of
the Iwahori-Hecke algebra of G: we associated Hecke algebras with subgroups of G
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more general than the Iwahori subgroup, the analogue of the parahoric subgroups
[AH17]. Bardy-Panse, Gaussent, and Rousseau proved Macdonald’s formula for G:
they gave an explicit formula for the image of some basis of *J{ by the Satake iso-
morphism [BPGRI17]. Their formula generalizes a well-known formula of Macdonald
[Mac71] for reductive groups, which had already been extended to affine Kac-Moody
groups [BKP16].

Despite these results, some very basic questions are still open in the theory of ma-
sures. In this paper we are interested in questions of enclosure maps and of convexity
in masures. Let us be more precise. The masure is an object similar to the Bruhat-
Tits building. This is a union of subsets called apartments. An apartment is a finite-
dimensional affine space equipped with a set of hyperplanes called walls. The group G
acts by permuting these apartments that are, therefore, all isomorphic to one of them
called the standard apartment A.

To define the masure J associated with G, Gaussent and Rousseau (following Bruhat
and Tits) first defined A. Let us describe it briefly. Suppose that the field of definition
is local. Let Q" be the co-root lattice of G and let @ be its set of real roots. One can
consider Q" as a lattice of some affine space A and ® as a set of linear forms on A.
Let Y be a lattice of A containing Q" (one can consider Y = QY in a first approxima-
tion). Then the set M of walls of A is the set of hyperplanes containing an element of
Y and whose direction is ker(«) for some « € @. The half-spaces delimited by walls
are called half-apartments. Suppose that G is reductive. Then O is finite and J is a
building. A well-known property of buildings is that if A is an apartment of J, then
A n Aisafinite intersection of half-apartments and there exists an isomorphism from
Ato A fixing A n A [BT72, §2.5.7 and Proposition 2.5.8]. Studying this question for
masures seems natural for two reasons: first, masures generalize Bruhat-Tits build-
ings and have properties similar to them and second, because three of the five axioms
of the axiomatic definition of Rousseau are weak forms of this property.

We study this question in the affine case and in the indefinite case. Let us begin
with the affine case, where we prove that this property is true.

Theorem 1.1 Let J be a masure associated with an affine Kac-Moody group. Let A
be an apartment. Then A n A is a finite intersection of half-apartments of A and there
exists an isomorphism from A to A fixing A n A.

We define a new axiomatics of masures and prove that it is equivalent to the one
given by Rousseau (we recall it in Section 2.2.2), using Theorem 1.1. Our axioms are
simpler and are closer to the usual geometric axioms of Euclidean buildings. To em-
phasize this analogy, we first recall one of their definitions in the case where the val-
uation is discrete (see [Bro89, SIV] or [Rou04, §6]; our definition is slightly modified
but equivalent).

Definition 1.2 A Euclidean building is a set J equipped with a set A of subsets called

apartments satisfying the following axioms.

(I0) Each apartment is a Euclidean apartment.

(1) For any two faces F and F’, there exists an apartment containing F and F'.

(I2) If Aand A’ are apartments, then A N A is a finite intersection of half-apartments
and there exists an isomorphism ¢: A - A’ fixing An A’
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In the statement of the next theorem, we use the notion of chimney. They are some
kind of thickened sector faces. The word splayed will be explained later. We prove the
following theorem.

Theorem 1.3  Suppose G is an affine Kac-Moody group. Let A be the apartment
associated with the root system of G. Let (J, A) be a couple such that J is a set and A is
a set of subsets of J called apartments. Then (J,.A) is a masure of type A in the sense of
[Roull] if and only if it satisfies the following axioms.

(MA af i) Each apartment is an apartment of type A.

(MA af ii) If A and A" are two apartments, then A n A’ is a finite intersection of
half-apartments and there exists an isomorphism ¢ : A -~ A’ fixing An A'.

(MA af iii) If PR is the germ of a splayed chimney and F is a face or a germ of a
chimney, then there exists an apartment containing R and F.

We now turn to the general (not necessarily affine) case. Similarly to buildings,
we can still define a fundamental chamber C¥ in the standard apartment A. This

enables one to define the Tits cone T = U, ey w.?}, where WY is the Weyl group of G.
An important difference between buildings and masures is that when G is reductive,
T = A and when G is not reductive, T # A is only a convex cone. This defines a
preorder on A by saying that x, y € A satisfy x < y if y € x + 7. This preorder extends
to a preorder on J, the Tits preorder, by using isomorphisms of apartments. Convexity
properties in J were known only on preordered pairs of points. If A, A’ are apartments
and contain two points x, y such that x < y, then A n A’ contains the segment in A
between x and y and there exists an isomorphism from A to A’ fixing this segment
[Roull, Proposition 5.4].

A ray (half-line) of J is said to be generic if its direction meets the interior T of 7.
A chimney is splayed if it contains a generic ray. The main result of this paper is the
following theorem.

Theorem 1.4  Let A be an apartment such that A n A contains a generic ray of A. Then
A n A is a finite intersection of half-apartments of A and there exists an isomorphism
from A to A fixing A n A.

Using this theorem, we prove that the axiomatic definition of Rousseau is equiva-
lent to a simpler one.

Theorem 1.5  Let A be the apartment associated with the root system of G. Let (J, A)
be a couple such that J is a set and A is a set of subsets of J called apartments. Then
(3, A) is a masure of type A in the sense of [Roull] if and only if it satisfies the following
axioms.

(MA i) Each apartment is an apartment of type A.

(MA ii) If two apartments A and A’ are such that A n A’ contains a generic ray,
then An A’ is a finite intersection of half-apartments and there exists an isomorphism
¢:A— A fixing An A'.

(MA iii) IfR is the germ of a splayed chimney and F is a face or a germ of a chimney,
then there exists an apartment containing R and F.

https://doi.org/10.4153/50008414X19000051 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000051

A New Axiomatics for Masures 735

The axiom (MA iii) (very close to the axiom (MA3) of Rousseau) corresponds to
the existence parts of Iwasawa, Bruhat and Birkhoff, decompositions in G, resp. for
F aface and A a sector-germ, F and R two sector-germs of the same sign, and F and
R two opposite sector-germs. The axiom (MA ii), which implies the axiom (MA4) of
Rousseau, corresponds to the uniqueness part of these decompositions.

The fact that if x, y € J are such that x < y, the segment between x and y does not
depend on the apartment containing {x, y} was an axiom of masures (axiom (MAO)).
A step of our proof of Theorem L5 is to show that (MAO) is actually a consequence
of the other axioms of masures (see Proposition 5.3).

To define faces and chimneys, Rousseau used enclosure maps (see Section 2.1.5 for
a precise definition). When G is a reductive group over a local field, the enclosure of a
set P of A is the intersection of the half-apartments of A containing P. When G is not
reductive, Ml can be dense in A. Consequently, Gaussent and Rousseau defined the
enclosure of a subset to be a filter and no more necessarily a set (which is already the
case for buildings when the valuation of the base field is not discrete). Moreover, there
are several natural choices of enclosure maps: one can use all the roots (real and imag-
inary) or only the real roots, one can allow arbitrary intersections of half-apartments
or only finite intersections of half-apartments, etc. This led to many definitions and
notations in [Roul7]. The theorem above proves that all these choices of enclosure
maps lead to the same definition of masure; therefore the “good” enclosure map is the
biggest one, which involves only real roots and finite intersections.

Actually we do not limit our study to masures associated with Kac-Moody groups:
for us a masure is a set satisfying the axioms of [Roull] and whose apartments are
associated with a root generating system (and thus to a Kac-Moody matrix). We do
not assume that there exists a group acting strongly transitively on it. Neither do we
any discreteness hypothesis for the standard apartment: if M is a wall, the set of walls
parallel to it is not necessarily discrete; this enables to handle masures associated with
split Kac-Moody groups over any ultrametric field.

The paper is organized as follows. In Section 2, we describe the general framework
and recall the definition of masures.

In Section 3 we study the intersection of two apartments A and B, without assum-
ing that A n B contains a generic ray. We prove that A n B can be written as a union
of enclosed subsets and that A n B is enclosed when it is convex. If P c A n B, we give
a sufficient condition of existence of an isomorphism from A to B fixing P.

In Section 4, we study the intersection of two apartments sharing a generic ray
and prove Theorem 1.4, which is stated as Theorem 4.22. The reader only interested
in masures associated with affine Kac-Moody groups can skip this Section and replace
Theorem 4.22 by Lemma 5.20, which is far easier to prove.

In Section 5, we deduce new axiomatics of masures: we show Theorem 1.5 and
Theorem 1.3, which correspond to Theorem 5.1 and Theorem 5.18.

2 General Framework, Masure

In this section, we define our framework and recall the definition of masures. Then
we recall some notions on masures. References for this section are [Roull, §1, §2] and
[GR14, §1].
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2.1 Standard Apartment
2.1.1 Root Generating System

Let A be a Kac-Moody matrix (also known as generalized Cartan matrix), i.e., a square
matrix A = (a;,j);,jer with integer coefficients, indexed by a finite set I, and satisfying
e g;;=2foralliel,

* a;; <0, forall (i, ) € I’i  j,

*a;j=0<a;,;=0forall (i,j) € I*.

A root generating system of type A is a 5-tuple
8 = (A3 X) Y) ((xi)iEI) (“;/)iEI)

made of a Kac-Moody matrix A indexed by I, of two dual free Z-modules X (of char-
acters) and Y (of co-characters) of finite rank rk(X), a family («; )1 (of simple roots)
in X and a family (&) );er (of simple co-roots) in Y. They must satisfy the following
compatibility condition: a; ; = a;(a;’) for all i, j € I. We also suppose that the family
(eti)jer is free in X and that the family (&} ) ;s is free in Y.

Let A = Y ® R. Every element of X induces a linear form on A. We will consider
X as a subset of the dual A* of A: the «a;’s, i € I, are viewed as linear forms on A. For
i € I, we define an involution r; of A by r;(v) = v —a;(v)a, forall v € A. Its space of
fixed points is ker «;. The subgroup of GL(A) generated by the «; for i € I is denoted
by W and is called the Weyl group of 8. The system (W",{r; | i € I}) is a Coxeter
system. For w € W”, we denote by £(w) the length of w with respect to {r; | i € I'}.

One defines an action of the group W" on A” in the following way: if x € A,
we WY, and a € A*, then (w.a)(x) =a(w™.x). Let ® = {w.a; | (w,i) e W’ x I};
@ is the set of real roots. Then ® c Q, where Q = @®;;Zw;. Let Q* = @ Na;,
O =Q*Nn®,and @ = (-Q*) N ®. Then ® = O L D~ Let A be the set of all
roots as defined in [Kac94] and A, = A\®. Then (A, WY, (&;)icr, (&) )ier, Aim ) is @
vectorial datum as in [Roull, §1].

2.1.2 Vectorial Faces and Tits Cone

Define C} = {v € A | a;(v) >0, Vi € I}. We call it the fundamental chamber. For
J c I, one sets

F'()={veAlai(v)=0Vie],a;(v)>0Vie]\I}.

Then the closure ?} of C} is the union of the FY(]) for J c I. The positive, resp.,
negative, vectorial faces are the sets w.F"(]), resp., —=w.F"(]), forw e W¥ and J c I.
A vectorial face is either a positive vectorial face or a negative vectorial face. We call a
positive chamber, resp., negative chamber, a cone of the form w. C} for some w ¢ W”,
resp., —W.C}. For all x « C; and for all w € WY, w.x = x implies that w = 1. In
particular the action of w on the positive chambers is simply transitive. The Tits cone
T is defined by T = Uyew» w Ciﬁ We also consider the negative cone —7. We define a
WY invariant preorder <, resp., <, on A, the Tits preorder, resp., the Tits open preorder,
by V(x,y) e AL, x<y < y—xeT,resp, x<y < y—x e TU{0}.
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2.1.3 Weyl Group of A

We now define the Weyl group W of A. If X is an affine subspace of A, one denotes by
X its direction. One equips A with a family M of affine hyperplanes called real walls
such that we have the following.

(1) Forall M € M, there exists ay; € ® such that M = ker(ay).

(2) For all & € O, there exists an infinite number of hyperplanes M € M such that
X =xp.

(3) If M e M, we denote by r) the reflexion of hyperplane M whose associated lin-
ear map is rq,,. We assume that the group W generated by the ry for M ¢ M
stabilizes M.

The group W is the Weyl group of A. A point x is said to be special if every real wall
is parallel to a real wall containing x. We suppose that 0 is special and thus W > W".

If « € A*and k € R, one sets M(a,k) = {v € A | a(v) + k = 0}. Then for all
M € M, there exists « € @ and kp; € R such that M = M(a, ky). If o« € @, one sets
Ag = {kpy | M eMand M = ker(«)}. Then A,, ., = A, forallw e W" and a € ®.

If « € @, one denotes by A, the subgroup of R generated by A,. By (3), Ay =
Ay +2A, forall a € @. In particular, A, = —A, and when A, is discrete, Ay = Ay is
isomorphic to Z.

One sets Q¥ = @yeq Aq”. This is a subgroup of A stable under the action of W”.
Then onehas W = W' x QY.

For a first reading, the reader can consider the situation where the walls are the
¢'({k})for ¢ € ®and k € Z. Wethenhave A, = Zforalla € ®,and Q" = @;; Za.

2.1.4 Filters

Definition 2.1 A filter in a set E is a nonempty set F of nonempty subsets of E such
that, for all subsets S, S’ of E, if S, S’ € F, then SN §’ € Fand, if S’ c S, with §" € F,
then S € F.

If F is afilter in a set E, and E' is a subset of E, one says that F contains E’ if every
element of F contains E'. If E’ is nonempty, the set Fgs of subsets of E containing E’
is a filter. By abuse of language, we will sometimes say that E’ is a filter by identifying
Fg and E'. If F is a filter in E, its closure F, resp., its convex envelope, is the filter of
subsets of E containing the closure, resp., the convex envelope, of some element of F.
A filter F is said to be contained in another filter F’: F ¢ F’ (resp., in a subset Z in E:
F c Z) if and only if any set in F’ (resp., if Z) is in F.

If x € A and Q) is a subset of A containing x in its closure, then the germ of ) in x
is the filter germ () of subsets of A containing a neighborhood of x in Q.

A sector in A is a set of the form § = x + C” with C” = +w.C} for some x € A
and w € W”. A point u such that s = u + C” is called a base point of s and C” is its
direction. The intersection of two sectors of the same direction is a sector of the same
direction.
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The sector-germ of a sector s = x + C” is the filter & of subsets of A containing an
A-translate of s. It only depends on the direction C*. We denote by +oo, resp., —co,
the sector-germ of C;, resp., of —C}.

A ray 6 with base point x and containing y # x (or the interval |x, y] = [x, y]\{x}
or [x, y] or the line containing x and y) is called preordered if x < y or y < x and
generic if y — x € £, the interior of +7.

2.1.5 Enclosure Maps

Let A = ® U A}, U A;, be the set of all roots. For @ € A, and k € RuU {+o0},
let D(a,k) = {v € A | a(v) + k > 0} (and D(a,+00) = A for all « € A) and
D°(a,k)={veA|a(v)+k>0}(fora e Aandk e Ru {+00}). If & € Aj, One sets
Ay =R Let [D, A] be the set of sets P satisfying @ c P c A.

If X is a set, one denotes by & (X) the set of subsets of X. Let £ be the set of
families (A%) € 2(R)” such that forall a € A, A, ¢ A, and A, = -A” .

Let .7 (A) be the set of filters of A. If P € [®, A] and A’ € £, one defines the map
% F(A) - F(A) as follows. If U € Z (A),

A5 (U)={VeU|3(ks) € TT (AL U{+00})| V> N D(a ky) o U}.
aeP aeP
IfA" € £, let Iy, Z (A) — .Z (A) defined as follows. If U c A,
i (U) = {VeU|3neN,(B;) e ®", (k) e [T A}, | V > D(Bir ki) > U}.
i=1 i=1

Let L™ = {cl}, | P € [®,A]and A’ € £}. An element of CL™ is called an
infinite enclosure map. Let CL* = {cI}, |A" € L}. An element of CL" is called a finite
enclosure map. Although C£* and C£” might not be disjoint (for example, if A is
associated with a reductive group over a local field), we define the set of enclosure
maps CL = CL™ U CL”. In Section 2.2.1 the definition of the set of faces associated
with an enclosure map cl depends on whether cl is finite.

Ifcl e @L, cl = oY, with P € [®,A] U {#} and A’ € £, then, for all a € A,
A = {k e R| d(D(a k)) = D(a, k)}. Therefore I’ := cl’, is well defined. We do
not use exactly the same notation as Rousseau [Roul7] where cl” means clf\.

If A" € £, one sets CL o = {clh, | P e [@,A]} u{cl}, ).

In order to simplify, the reader can consider the situation where A, = A/, = Z, for
all « € d, P = A, and c = cI}; see [GRI4, BPGRI6, Héb17].

An apartment is a root-generating system equipped with a Weyl group W, i.e,
with a set M of real walls, Section 2.1.3, and a family A" € £. Let A = (S, W, A”) be
an apartment. A set of the form M(a, k), with & € ® and k € A/, is called a wall of
A and a set of the form D(a, k), with a € ® and k € A/, is called a half-apartment
of A. A subset X of A is said to be enclosed if there exist k € N, ;,...,8; € D,
and (Ay,...,Ax) € [1E, A, such that X = NE, D(Bis Ai), e, X = ol (X). As we
shall see, if A" € £ is fixed, the definition of masure does not depend on the choice
of an enclosure map in €L 5. and thus it will be more convenient to choose cl’; see
Theorems 5.1 and 5.2.
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Remark 2.2 Here and in the following, we can replace A}, by any W"-stable subset
of @y Ria; such that Af, N Usco Ra is empty. We then set A;, = —Af,. This is
useful for including the case of almost-split Kac-Moody groups [Roul7, §6.11.3 ].

2.2 Masure

In this section, we define masures. They were introduced in [GRO08] for symmetriz-
able split Kac-Moody groups over ultrametric fields whose residue field contains C,
axiomatized in [Roull], then developed and generalized to almost-split Kac-Moody
groups over ultrametric fields in [Roul6, Roul7].

2.2.1 Definitions of Faces, Chimneys, and Related Notions

Let A = (8, W, A”) be an apartment. We choose an enclosure map cl € CL /.

A local-face is associated with a point x and a vectorial face F” in A; it is the filter
Ff(x,F") = germ_(x + F") intersection of x + F” and the filter of neighborhoods
of x in A. A face F in A is a filter associated with a point x € A and a vectorial face
F¥ c A. More precisely, if cl is infinite, resp., finite, cl = cly, with P € [®, A], resp.,
cl = cl’,, F(x, F") is the filter made of the subsets containing an intersection, resp.,
a finite intersection, of half-spaces D(a, 1) or D°(a, Ay ), with A € Al U {+00} for
all @ € P (at most one A, € A, for each a € P), resp., ©.

There is an order on the faces: if F c F’, one says that F is a face of F’ or F’ contains
F. The dimension of a face F is the smallest dimension of an affine space generated by
some S € F. Such an affine space is unique and is called its support. A face is said to
be spherical if the direction of its support meets the open Tits cone T or its opposite
—T; then its pointwise stabilizer Wy in W is finite.

A chamber (or alcove) is a face of the form F(x,C"), where x € A and C" is a
vectorial chamber of A.

A panel is a face of the form F(x, F"), where x € A and F" is a vectorial face of A
spanning a wall.

A chimney in A is associated with a face F = F(x, Fy ) and with a vectorial face F";
it is the filter v(F, F¥) = cl(F + F”). The face F is the basis of the chimney and the
vectorial face F” is its direction. A chimney is splayed if F” is spherical, and is solid if
its support (as a filter, i.e., the smallest affine subspace of A containing t) has a finite
pointwise stabilizer in W". A splayed chimney is therefore solid.

A shortening of a chimney v(F, F"), with F = F(x, F}) is a chimney of the form
t(F(x + & FY), F") for some £ € F*. The germ of a chimney t is the filter of subsets of
A containing a shortening of v (this definition of shortening is slightly different from
the one of [Roull, §1.12], but follows [Roul7, §3.6] and we obtain the same germs with
these two definitions).

2.2.2 Masure

An apartment of type A is a set A with a nonempty set Isom(A, A) of bijections (called
Weyl-isomorphisms) such that if fy € Isom(A, A), then f € Isom(A, A) if and only if
there exists w € W satistying f = fo o w. We will say isomorphism instead of Weyl-
isomorphism in the sequel. An isomorphism between two apartments ¢: A - A’ is
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a bijection such that f € Isom(A, A) if and only if ¢ o f € Isom(A, A”). We extend
all the notions that are preserved by W to each apartment. Thus sectors, enclosures,
faces and chimneys are well defined in any apartment of type A.

Definition 2.3 A masure of type (A, cl) is a set J endowed with a covering A of
subsets called apartments such that we have the following.

(MAL1) Any A € A admits a structure of apartment of type A.

(MAZ2, cl) is a point, a germof a preordered interval, a generic ray, or a solid chim-
ney in an apartment A and if A’ is another apartment containing F, then A n A’ con-
tains the enclosure cl4 (F) of F and there exists an isomorphism from A onto A’ fixing
cl A (F ) .

(MA3, cl) If R is the germ of a splayed chimney and if F is a face or a germ of a
solid chimney, then there exists an apartment containing R and F.

(MA4, cl) If two apartments A, A’ contain 2R and F as in (MA3), then there exists
an isomorphism from A to A’ fixing cl4, (PR U F).

(MAO) If x, y are two points contained in two apartments A and A’, and if x <, y
then the two segments [x, y]4 and [x, y] - are equal.

In this definition, one says that an apartment contains a germ of a filter if it contains
at least one element of this germ. One says that a map fixes a germ if it fixes at least
one element of this germ.

The main example of masure is the masure associated with an almost-split Kac-
Moody group over an ultrametric field [Roul7].

2.2.3 Example: A Masure Associated With a Split Kac-Moody Group Over an
Ultrametric Field

Let A be a Kac-Moody matrix and 8 be a root-generating system of type A. We con-
sider the group functor G associated with the root generating system 8 [Tit87] and
[Rém02, Chapter 8]. This functor is a functor from the category of rings to the cat-
egory of groups satisfying axioms (KMG 1)-(KMG 9) of [Tit87]. When R is a field,
G(R) is uniquely determined by these axioms [Tit87, Theorem 1']. This functor con-
tains a toric functor T, from the category of rings to the category of commutative
groups (denoted T [Rém02]) and two functors U™ and U~ from the category of rings
to the category of groups.

Let X be a field equipped with a non-trivial valuation w: X — R u {+o00}, O its
ring of integers, and G = G(X) (and U* = U*(X), etc.). Forall ¢ € {—,+} and all
a € O¢, we have an isomorphism x, from X to a group U,. For all k € R, one defines
a subgroup Uy  := x4 ({u € X | w(u) > k}). Let J be the masure associated with G
[Roul6]. Then for all @ € @, Ay = A’ = w(K)\{+00} and cl = cI}. If, moreover, X is
local, one has (up to renormalization, see [GR14, Lemma 1.3]) A, = Z for all a € O.
Moreover, we have the following.

¢ The fixer of A in G is H = T(O) [GR08, Remark 3.2].

* The fixer of {0} in G is K; = G(O) [GR08, Example 3.14].

* Forall « € ® and k € Z, the fixer of D(«, k) in G is H.U, x [GR08, §4.2 7].
* Foralle e {—,+}, HU® is the fixer of eco (by [GRO08, §4.2 4]).
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If, moreover, X is local with residue cardinal g, each panel is contained in 1+ g cham-
bers.

The group G is reductive if and only if W is finite. In this case, J is the usual
Bruhat-Tits building of G and one has T = A.

2.3 Preliminary Notions on Masures

In this subsection we recall notions on masures introduced in [GR08, Roull, Hébl17,
Héb16].

2.3.1 Tits Preorder and Tits Open Preorder on J

As the Tits preorder < and the Tits open preorder < on A are invariant under the ac-
tion of W, one can equip each apartment A with preorders <4 and 4. Let A be an
apartment of J and x, y € A such that x <4 y, resp., x<4y. Then by [Roull, Propo-
sition 5.4], if B is an apartment containing x and y, then x <g y, resp., x<gy. This
defines a relation <, resp., £, on J. By [Roull, Théoréme 5.9], this defines a preorder <,
resp., <, on J. It is invariant by isomorphisms of apartments: if A, B are apartments,
¢:A — B is an isomorphism of apartments and x, y € A are such that x < y. resp,,
x<y, then ¢(x) < ¢(), resp., ¢(x)<¢p(y). We call it the Tits preorder on J, resp., the
Tits open preorder on J.

2.3.2 Retractions Centered at Sector-germs

Let s be a sector-germ of J and A be an apartment containing it. Let x € J. By (MA3),
there exists an apartment A, of J containing x and s. By (MA4), there exists an iso-
morphism of apartments ¢: A, — A fixing s. By [Roull, §2.6], ¢(x) does not depend
on the choices we made and thus we can set p4 s(x) = ¢(x).

The map py,; is a retraction from J onto A. It only depends on s and A and we call
it the retraction onto A centered at s.

If A and B are two apartments, and ¢: A — B is an isomorphism of apartments

fixing some set X, one writes ¢: A %, B.If Aand B sharea sector-germ g, one denotes
by A 2% Bor by A % Bthe unique isomorphism of apartments from A to B fixing
q and also A n B. We denote by J % A the retraction onto A fixing . One denotes by
P+oo the retraction J X% Aand by p_oo the retraction I — A.

2.3.3 Parallelism in J and Building at Infinity

Let us explain briefly the notion of parallelism in J. This was done more completely
in [Roull, §3].

Let us begin with rays. Let § and ¢’ be two generic rays in J. By (MA3) and [Roull,
§2.2 3] there exists an apartment A containing sub-rays of § and &’ and we say that
0 and &’ are parallel if these sub-rays are parallel in A. Parallelism is an equivalence
relation and its equivalence classes are called directions. Let S be a sector of J and A an
apartment containing S. One fixes the origin of A in a base point of S. Let v € S and
0 =R, v. Then § is a generic ray in J. By [Héb17, Lemma 3.2], for all x € J, there exists
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a unique ray x + § of direction § and base point x. To obtain this ray, one can choose
an apartment A, containing x and a sub-ray &’ of §, which is possible by (MA3) and
[Roull, §2.2 3], and then we take the translate of 8’ in A, having x as a base point.

A sector-face f of A, is a set of the form x + F" for some vectorial face F” and some
x € A. Thegerm § = germ__ (f) of this sector-face is the filter containing the elements
of the form g + f, for some q € F". The sector-face f is said to be spherical if F* n F°
is nonempty. A sector-panel is a sector-face contained in a wall and spanning this one
as an affine space. A sector-panel is spherical [Roull, §1]. We extend these notions to
J thanks to the isomorphisms of apartments. Let us make a summary of the notion
of parallelism for sector-faces. This is also more complete in [Roull, §3.3.4].

If f and f” are two spherical sector-faces, there exists an apartment B containing
their germs § and §’. One says that f and f” are parallel if there exists a vectorial face
F" of B such that § = germ__(x + F") and §’ = germ__(y + F") for some x, y € B.
Parallelism is an equivalence relation. The parallelism class of a sector-face germ § is
denoted §°°. We denote by J>° the set of directions of spherical faces of J.

For all x € Jand all §* € J*, there exists a unique sector-face x + §° of direction
§° and with base point x [Roull, Proposition 4.71]. The existence can be obtained in
the same way as for rays.

2.3.4 Distance Between Apartments

Here we recall the notion of distance between apartments introduced in [Héb16]. It
will often enable us to make inductions and to restrict our study to apartments sharing
a sector. Let q and q’ be two sector germs of J of the same sign e. By (MA4), there
exists an apartment B containing q and q’. In B, there exists a minimal gallery between
q and q’, and the length of this gallery is called the distance between g and ¢’. This
does not depend on the choice of B. If A’ is an apartment of J, the distance d(A’, q)
between A’ and q is the minimal possible distance between a sector-germ of A’ of sign
eand q. If Aand A’ are apartments of J and € € {-1,1}, the distance of sign € between
Aand A’ is the minimal possible distance between a sector-germ of sign € of A and a
sector-germ of sign € of A’. We denote it d.(A, A”) or d(A, A") if the sign is fixed.

Let € € {—, +}. Then d, is not a distance on the apartments of J because, if A is an
apartment, all apartment A’ containing a sector of A of sign € (and there are many of
them by (MA3)) satisfies d.(A, A") = 0.

2.4 Notation

Let X be a finite-dimensional affine space. Let C c X be a convex set and A’ its sup-
port. The relative interior, resp., relative frontier, of C, denoted Int, (C), resp., Fr,(C),
is the interior, resp., frontier, of C seen as a subset of A’. A set is said to be relatively
open if it is open in its support.

If X is an affine space and U c X, one denotes by conv(X) the convex hull of X. If
x,y € A, we denote by [x, y] the segment of A joining x and y. If A is an apartment
and x, y € A, we denote by [x, y]4 the segment of A joining x and y.

If X is a topological space and a € X, one denotes by Vx(a) the set of open neigh-
borhoods of a.
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If X is a subset of A, one denotes by X or by Int(X) (depending on the readability)
its interior. One denotes by Fr(X) the boundary (or frontier) of X: Fr(X) = X\X.

If X is a topological space, x € X, and Q) is a subset of X containing x in its closure,
then the germ of Q) in x is denoted germ (Q2).

We use the same notation as in [Roull] for segments and segment-germs in an
affine space X. For exampleif X =Rand a,b e R=Ru {0}, [a,b] = {xeR |a<
x <b},[a,b]={xeR|a<x<b},[a,b)=germ ([a,b]),etc.

3 General Properties of the Intersection of Two Apartments

In this section, we study the intersection of two apartments, without assuming that
their intersection contains a generic ray. In Section 3.1, we extend results obtained for
masure on which a group acts strongly transitively to our framework. In Section 3.2,
we write the intersection of two apartments as a finite union of enclosed subsets. In
Section 3.3, we use the results of Section 3.2 to prove that if the intersection of two
apartments is convex, then it is enclosed. In Section 3.4, we study the existence of
isomorphisms fixing subsets of an intersection of two apartments.

Let us sketch the proof of Theorem 1.4. The most difficult part is to prove that if
A and B are apartments sharing a generic ray, then A n B is convex. We first reduce
our study to the case where A N B has nonempty interior. We then parametrize the
frontier of A and B by a map Fr: U — Fr(A n B), where U is an open and convex
set of A. The idea is then to prove that for almost all choices of x, y € U, some map
associated with Fry ,:t € [0,1] = Fr(tx + (1 - t)y) is convex. An important step in
this proof is the fact that Fr, , is piecewise affine and this relies on the decomposition
of Section 3.2. The convexity of A n B is obtained by using a density argument. We
then conclude, thanks to Sections 3.3 and 3.4.

3.1 Preliminaries

In this subsection, we extend some results obtained for a masure on which a group
acts strongly transitively to our framework [Héb17, Héb16].

3.1.1 Splitting of Apartments

The following lemma generalizes [Héb16, Lemma 3.2] to our frameworks.

Lemma 3.1 Let Ay and A, be two distinct apartments such that A, N A, contains a
half-apartment. Then Ay N A, is a half-apartment.

Proof Oneidentifies A; and A. By the proof of [Hébl6, Lemma3.2],D = A;nAisa
half-space of the form D(«, k) for some « € @ and k € R. (Note that our terminology
is not the same as in [Héb16] in which a half-apartment is a half-space of the form
D(f, ¢) with B € @ and ¢ € R, whereas now, we ask moreover that £ € A"B). Let F, F’
be opposed sector-panels of M(a, k). Let S be a sector of D dominating F, s its germ,
and §' the germ of F’. By (MA4), one has A; n A; > cl(F’,s). Butcl(F',s) o (D) o
D = A;n A, and thus k € Al: A; n A, is a half-apartment. [ |
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As a consequence, one can use [Hébl6, Lemma 3.6, Proposition 3.7] in our frame-
work. We thus have the following proposition.

Proposition 3.2  Let A be an apartment, q a sector-germ of J such that q ¢ A, and
n=d(q,A).

(i) One can write A = Dy U D, where Dy and D, are opposite half-apartments of A
such that for all i € {1,2}, there exists an apartment A; containing D; and such
thatd(A;,q) =n-1

(ii) Thereexistk € N, enclosed subsets Py, . . ., P of A such that for all i € [[1, k]), there

P;
exist an apartment A; containing q U P; and an isomorphism ¢;: A — A;.

Remark 3.3  The choice of the Weyl group W (and thus of Q") imposes restrictions
on the walls that can bound the intersection of two apartments. Let A be an apartment
and suppose that An A = D(a, k) for some « € ® and k € A},. Then k € 1a(Q").
Indeed, let D = A n A, D; be the half-apartment of A opposed to D and D, the

half-apartment of A opposed to D;. Then B = D, U D, is an apartment of J [Roull,

Proposition 2.9 (2)]. Let f: A LA A gA 22, B,and h: B D A; these isomorphisms
exist because two apartments sharing a half-apartment in particular share a sector;
see Section 2.3.2. Let s: A - A making the following diagram commute:

f

— s A

A
!
AT

The map s fixes M(«, k). Moreover, if x € D, then f(x) = x; thus g(f(x)) € D,
and hence h™'(g(f(x))) € D;. We deduce s # Id. The map s is an isomorphism of
apartments and thus s € W. As s fixes M («, k), the vectorial part s of s fixes M(«, 0).
As W = WY x QVY, one has s = t o §, where  is a translation of vector ¢¥ in Q. If
y € M(a,k),onehas a(s(y)) = k = a(q") - k and therefore k € 2a(Q"). This could
enable more precision in Proposition 3.2.

3.1.2 A Characterization of the Points of A

The aim of this subsubsection is to extend [Héb17, Corollary 4.4] to our framework.

Vectorial Distance on J We recall the definition of the vectorial distance [GR14,
§L7]. Let x, y € J be such that x < y. Then there exists an apartment A containing
x, y and an isomorphism ¢: A — A. One has ¢(y) — ¢(x) € T and thus there exists
we WY suchthat A = w.(¢(y) - ¢(x)) € Cijvf Then A does not depend on the choices
we made; it is called the vectorial distance between x and y and denoted d”(x, y).
The vectorial distance is invariant under isomorphisms of apartments: if x, y are two
points in an apartment A such that x < y, if B is an apartment, and if ¢: A — B is an
isomorphism of apartments, then d” (x, y) = d"(¢(x), ¢(»)).
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3.1.3 Image of a Preordered Segment by a Retraction

Gaussent and Rousseau gave a very precise description of the image of a preordered
segment by a retraction centered at a sector-germ [GR08, Theorem 6.2]. However,
they supposed that a group acts strongly transitively on J. Without this assumption,
they proved a simpler property of these images. We recall it here.

Let A € Ci‘]’, A A-path 7 in A is a map 7:[0,1] — A such that there exists n € N
and 0 < t; < --- < t, < 1such that for all i € [[1,n —1]], 7 is affine on [#;, t;+1] and
n'(t) e W Aforall t € ]t;, ;4]

Lemma 3.4 Let A be an apartment of J. Let x, y € Abesuchthatx < yand p:J - A
be a retraction of J onto A centered at a sector-germ q of A. Let 1:[0,1] — A defined by
(t) = (1-t)x+ty forallt € [0,1] and A = d"(x, y). Then p o T is a A-path between
p(x) and p(y).

Proof We rewrite the proof of the beginning of Section 6 of [GR08]. Let ¢: A - A
be an isomorphism such that ¢(y) —¢(x) = A, which exists by definition of d”. By the
same reasoning as in the paragraph of [GR08] before Remark 4.6, there exist n € N,
apartments Ay, ..., A, of J containing q,0 = #; < --- < t,, = 1 such that 7([¢;, t;1]) C
A;forallie[[1,n-1]].

Using [Roull, Proposition 5.4], for all i € [[1, # — 1]], one chooses an isomorphism

irbiv iNA
W,'IA M A,’. Let ¢i:Ai A—ﬁ> A.Forall t e [t,’, ti+1],

p(7(t)) = ¢ioyi(z(t)).

Moreover, ¢; oy;: A - A and by (MAL), there exists w; € W such that ¢, oy; = w; 0 ¢.
Therefore for all ¢ € |t;, t;11[, one has (p o 7)'(¢) = w;. A, which proves that po 7isa
A-path. ]

The projection y, Letv ¢ C}and § = R"v. By paragraph “Definition of y, and T,”
of [Héb17], for all x € J, there exists y,(x) € A such that x + §nA=y,(x)+0, where
x + 6 is the closure of x + § (defined in Section 2.3.3) in any apartment containing it.

The Qg-order in A Onesets Qg , = ¥ eco+ Ry’ = @iy Rya;. One has Qp ,
@icrRia. Ifx, y € A, one denotes x <qv yif y —x € Qg ..
The following lemma paraphrases [Kac94, Proposition 3.12 (d)] in our context.

Lemma 3.5 Let)e CT’[ andw e W". Then w.1 <qv A.

IfxeAandAe ?}, one defines 7§:[0,1] = A by 7{(t) = a + tA forall t € [0,1].
Lemma 3.6 Let)e CT‘L and a € A. Then the unique A-path from a to a + A is 7{.
Proof LetmbeaA-pathfrom atoa+A. Onechoosesasubdivision 0=t <--- < t,=1
of [0,1] such that for all i € [[1,n — 1]], there exists w; € W” such that [, . (¢) =

w;.A. By Lemma 3.5, w; .A <qv A forall i € [[1,n —1]]. Let h: @;c; Ray — R defined
by h( e uia)) = ¥iepu; for all (u;) € RY. Suppose that there exists i € [[1,n — 1]]
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such that w;.A # A. Then h(w;.A - 1) < Oand forall j € [[I,n—1]], h(w;.A - 1) <0.
By integrating, we get that #(0) < 0: a contradiction. Therefore 77(t) = a+tA = m{(t)
for all ¢ € [0,1], which is our assertion. ]

Proposition 3.7 ([Héb17, Corollary 4.4]) Let x € J be such that poo(X) = p-oo(x).
Then x € A.

Proof Letx € Jsuch that pioo(Xx) = p_oo(x). Suppose that x € J\A. One has x <
yy(x)and d¥ (x, yy(x)) = A, with A = y,(x)—p+eo(x) € RIv [Héb17, Lemma 3.5 (a)].
Let A be an apartment containing x and +oo, which exists by (MA3). Let 7: [0,1] - A
be defined by 7(¢) = (1-t)x + ty,(x) for all t € [0,1] (this does not depend on the
choice of A [Roull, Proposition 5.4]) and 7 = p_o, o 7. Then by Lemma 3.4, mis a
A-path from p_co (%) = proo (%) t0 ¥y, (x) = proo(x) + A.

By Lemma 3.6, 71(t) = pioo(x) + tA for all ¢ € [0,1], and 7([0,1]) c A [Héb17,
Lemma 3.6]. Thus x = 7(0) € A; this is absurd. Therefore x € A, which is our
assertion. |

3.1.4 Topological Considerations on Apartments

Proposition 3.8 ([Héble, Corollary 5.9 (ii)]) Let q be a sector-germ of J and A be an

apartment of J. Let p:J 5 A. Then plai A — A is continuous (for the affine topologies
on Aand A).

Proof Using Proposition 3.2 (i), one writes A = U, P; where the P;’s are closed
subsets of A such that for all i € [[1, n]], there exists an apartment A; containing P;
and q and an isomorphism y;: A % A Foralliec [[1, n]], one denotes by ¢; the
isomorphism A; — A. Then pip, = ¢i o yyp, forall i € [1, n]].

Let (x;) € AN be a converging sequence and x = lim x;. Then forall k € N, p(x;) €
{¢ioyi(xx) | i € [1,n]]} and thus (p(x,)) is bounded. Let (x,(x)) be a subsequence
of (xx) such that (p(x,(x))) converges. Maybe extracting a subsequence of (x4(x))
one can suppose that there exists i € [[1, n]] such x,(xy € P; for all k € N. One has

(p(xX5(k))) = (¢i o Yi(x4(x))) and thus p(x,(ky) = ¢i o i (x) = p(x) (because P; is
closed) and thus (p(xx)) converges towards p(x). Hence py, is continuous. |

Proposition 3.9 ([Héble, Corollary 5.10]) Let A be an apartment. Then A n A is
closed.

Proof By Proposition3.7, AN A ={x € A|pio(x) = p_oo(x)}, which is closed by
Proposition 3.8. n
3.2 Decomposition of the Intersection of Two Apartments into Enclosed Subsets

The aim of this subsection is to show that A N A is a finite union of enclosed subsets
of A.
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We first suppose that A and A share a sector. One can suppose that +oco ¢ An A.
By Proposition 3.2, one has A = X, P, for some k € N, where the P;’s are enclosed
and P;, —oo is contained in some apartment A; for all i € [[1, k]].

Lemma 3.10  Let X be a finite-dimensional affine space. Let U c X be a set such
that U c U and suppose that U = U, U;, where, for all i € [[1,n]], the set U; is the
intersection of U and of a finite number of half-spaces. Let ] = {j € [Ln]] | U; # @}.
Then U = UjEI U]

Proof Let j € [[1,n]]. Then Fr(U;) n U is contained in a finite number of hyper-
planes. Therefore, if one chooses a Lebesgue measure on X, the set Uje[1,]) UnFr(U;)
has measure 0 and thus U\ Usep,a Fr(U;) is dense in U and thus in U. Let x € U.
Let (x;) € (U\ Uieqi,n Fr(U;) )" be such that (x) converges towards x. Extracting
a sequence if necessary, one can suppose that there exists i € [[1, #]] such that x € U;
for all k € N. By definition of the frontier, x; € U, forall k € N. As U, is closed in U,
x € U; and the lemma follows. [ |

Lemma 3.11 Leti € [[1, k]] be such that A0 A N P; has nonempty interior in A. Then
AnA> Pi.

P;
Proof One chooses an apartment A; containing P;,—co and ¢;:A — A;. Let

Vit A, A0k A (v; exists and is unique by Subsection 2.3.2). Let x € P;. By defi-

nition of p_o., one has p_o, (x) = ¥;(x) and thus p_c, (x) = ¥; o ¢;(x).
Let f:A 404, A. One has P+oo(x) = f(x) for all x € A. By Proposition 3.7,

ANANP; = {x € Pi | proo(x) = pco(x)} = Pin (f = yi 0 6:) " ({0}).

As f -y, 0¢;isaffine, (f —y;0¢;)'({0}) is an affine subspace of A and as it has
nonempty interior, (f —y; o ¢;)7'({0}) = A. Therefore P; c A n A. ]

We recall the definition of x + oo, if x € J (Section 2.3.3). Let x € J and B be an
apartment containing x and +co. Let § be a sector of A, parallel to C¢ and such that
S c An A. Then x + oo is the sector of A based at x and parallel to S. This does not
depend on the choice of A.

Lemma 3.12 Onehas AnA=Int(AnA).

Proof By Proposition 3.9, A n A is closed and thus Int(An A) c An A. Letx ¢
AnA. By (MA4), one has x + 00 ¢ An A. The fact that there exists (x,,) € Int(x+00)N
such that x, — x proves the lemma. ]

Lemma 3.13 Let]={ie[[Lk]]|Inta(PinAnA)#@}. Then An A =Uje Pj.

Proof Let U = An A. Then by Lemma 3.12 and Lemma 3.10, U = Uje; U N P;j and
Lemma 3.11 completes the proof. ]
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We no longer suppose that A contains +oco. We say that U¥_, P; is a decomposition
of A n A into enclosed subsets if the following hold.

e keNandforallie€[[1,k]], P; is enclosed.
e AnA=U, p.

e Forall i € [[1, k]], there exists an isomorphism ¢;: A 2, A

Proposition 3.14  Let A be an apartment. Then there exists a decomposition %, P;
of An A into enclosed subsets. As a consequence, there exists a finite set M of walls such
that Fr(A n A) c Upen M. If, moreover, A 0 A is convex, one has An A = Ujes Pj,
where

J={je[[Lk]]|supp(P;) = supp(AnA)}.

Proof Letn € Nand P,: for all apartment B such that d(B,A) < n, there exists
a decomposition U’_; Q; of A n B into enclosed subsets. The property P, is true by
Lemma 3.13. Let n € N, and suppose that P, is true. Suppose that there exists an
apartment B such that d(B, A) = n+1. Using Proposition 3.2, one writes B = D; U D5,
where Dy, D, are opposite half-apartments such that for all i € {1, 2}, D; is contained
in an apartment B; satisfying d(B;, A) = n. If i € {1,2}, one writes B; N A = Uf;l ]’:,
. A Qi
where ¢; € N, the Q}’s are enclosed and there exists an isomorphism y/: B; — A,
Then Bn A = Ug‘zl(Dl nQj)u Ugil(Dz N Q7). If i € {1,2}, one denotes by f the

isomorphism B 2, B;. Then if j € [[1, ¢;]], the isomorphism 1//;. o f' fixes Q; N D;
and thus P,,,; is true.
Therefore, An A = U;‘zl P;, where the P;’s are enclosed. One has

k
Fr(AnA) c UFr(P),
i=1

which is contained in a finite union of walls.
Suppose that A n A is convex. Let X = supp(A n A). By Lemma 3.10 applied with

U=AnA,
AnA= U P,
ie[[1L,k]],
Intx(P,‘)$®
which completes the proof. ]

3.3 Encloseness of a Convex Intersection

In this subsection, we prove Proposition 3.22. If A is an apartment such that A n A is
convex, then A n A is enclosed. For this we study the gauge of A n A, which is a map
parameterizing the frontier of A n A.

Lemma 3.15 Let A be a finite-dimensional affine space, k € N*, and let Dy, ..., Dy
be half-spaces of A and My, ..., My be their hyperplanes. Then their exists J c [[1, k]]
(maybe empty) such that supp(N~_, D;) = Njes Mj.
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Proof Letd e N*and¢ e N. LetP, ,: for all affine spaces X such that dim X < d and
half-spaces Ey, . ..., E¢ of X, there exists ] ¢ [[1, £]] such that supp(N{_, E;) = Nje; Hj,
where for all j € J, H; is the hyperplane of E;.

It is clear that for all € € N, Py  is true and that forall d € N, P, o and P are true.
Let d € Ny, and £ € N, and suppose that (for all d’ < d —1and ¢’ € N, Py s is true)
and that (for all ¢’ € [[0, £]], P4, is true).

Let X be a d-dimensional affine space, Ej,..., Egy be half-spaces of X, and
Hy,...,Hp. be their hyperplanes. Let L = ﬂle Ejand S = suppL. Then E;;y N S
is either S or a half-space of S. In the first case, E,; o S o L, thus ﬂf:ll E; = Land
thus by Py.¢, supp(N{2] E;) = Njey H; for some J < [[1, €]].

Suppose that Eg; N S is a half-space of S. Then either EpnL+@orEpnlL=
@. In the first case, one chooses x € Egy; N L and a sequence (x,) € (Int,(L))N
converging towards x. Then for n > 0, x,, € Ee+1 N Int,(L). Consequently, L N E;y
has a nonempty interior in S. Thus supp(N‘*} E;) = S and by P, ¢, supp(NAL E;) =
Njes Hj for some J c [[1,€]].

Suppose now that EpoinLis empty. Then L N E¢yy € Hpyy, where Hpy is the
hyperplane of E,.;. Therefore, N E: = NYY(E; n Hyeyy) and thus by Pa_1e41>
supp(N{2} E;) = Njey H; for some J < [[1, € +1]]. ]

Lemma 3.16  Let A be an apartment such that A 0 A is convex. Then supp(A n A)
is enclosed.

Proof Using Proposition 3.14, one writes AN A = (U_, P;, where the P;’s are enclosed
and supp(P;) = supp(A n A) for all i € [[1,k]]. By Lemma 3.15, if i € [[1, k]], then
supp(P;) is a finite intersection of walls, which proves the lemma. ]

Gauge of a Convex Set  Let A be a finite-dimensional affine space. Let C be a closed
and convex subset of A with nonempty interior. One chooses x € C and one fixes the
origin of A in x. Let jc ,: A - R, U {+00} be defined by

jox(s) =inf{t e R} | s € tC}.
The map jc., is called the gauge of C based at x. In the sequel, we will fix some x € C
and we will denote j¢ instead of j¢ .. Then jc(A) c R, and j¢ is continuous [HULI2,

Theorem 1.2.5 and §1.2].
The following lemma is easy to prove.

Lemma 3.17  Let C be a convex closed set with nonempty interior. Fix the origin of A
in a point of C. Then

C={xeAljc(x) <1},

C={xeAl|jc(x)<1}.
Lemma 3.18 Let C be a convex closed set with nonempty interior. Fix the origin of

AinC. Let U = Uc = {s € A| jc(s) # 0}. Let Fr = Frc:U — Fr(C) defined by
Fr(s) = Jcﬁ forall s € U. Then Fr is well defined, continuous, and surjective.
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Proof Ifs e U, then jc(Fr(s)) = ;Z% = 1 and thus Fr takes its values in Fr(C) by

Lemma 3.17. The continuity of Fr is a consequence of the one of jc. Let f € Fr(C).
Then Fr(f) = f and thus Fr is surjective. |

Let A be an apartment such that A n A is convex and nonempty. Let X be the
supportof An Ain A. By Lemma3.16,if An A = X, then An A is enclosed. One now
supposes that A n A # X. One chooses x € Intx(A n A) and consider it as the origin
of A. One defines U = Ugnp and Fr: U — Fr,(A N A) as in Lemma 3.18. The set U is
open and nonempty. Using Proposition 3.14, one writes An A = UJ]_; P;, wherer € N,
the P;’s are enclosed, and supp(P;) = X for all i € [[1,r]]. Let M, ..., My be distinct
walls not containing X such that Fr,(An A) c Ule M;, which exists because the P;’s
are intersections of half-spaces of X and An A # X. Let M = {M; n X | i € [[L k]]}.
If M € M, one sets Uy, = Fr™'(M).

Lemma 3.19 LetU' = {x eU | (M, V) e M xVy(x),Fr(V)c M} Then U’ is
dense in U.

Proof Let M € M. By Lemma 3.18, Uy, is closed in U. Let V' c U be nonempty and
open. Then V' = Upene Un N V', As M is finite, we can apply Baire’s Theorem, and
there exists M € M such that V' n Uy, has a nonempty interior and hence U’ is dense
inU. |

Lemma 3.20 Letx € U and V € Vy(x) be such that Fr(V) ¢ M for some M € M.
The wall M is unique and does not depend on V.

Proof Suppose that Fr(V) ¢ M n M’, where M, M’ are hyperplanes of X. Let
a,a’ € @, k, k" € R besuch that M = a”'({k}) and M’ = a'}({k’}). By defini-
tion of U, forall y € V, Fr(y) = A(y)y for some A(y) € R}. Suppose that k = 0. Then
a(y) = 0forall y € V, which is absurd, because « # 0. By the same reasoning k’ # 0.

If y e V\(a'({0}) ua’™'({0})), Fr(y) = A(y)y for some A(y) € R} and thus

Fr(y) = ﬁy = ﬁ;)y. As V\(a7'({0}) U a'_l({O})) is dense in V, ka'(y) =
k'a(y) forall y € V and thus M and M’ are parallel. Therefore M = M’. It remains
to show that M does not depend on V. Let V; € Vy(x) be such that Fr(V;) ¢ M; for
some M; € M. By the uniqueness we just proved applied to V' n V;, one has M = M;,
which completes the proof. ]

If x € U’, one denotes by M, the wall defined by Lemma 3.20.

Lemma 3.21 Letx € U’ and D, D, be the two half-spaces of X defined by M. Then
either ANAcDyorAn A c D,.

Proof Let V € Vy(x) be such that Fr(V) c M,. Let us prove that Fr(V) =
R¥V n M,. AsFr(y) e Riyforall y € V, Fr(V) ¢ RIV n M,. Let f be a lin-
ear form on X such that M, = f~!({k}) for some k € R. If k = 0, then f(v) = 0 for
all v € V, and thus f = 0: this is absurd. Hence k # 0.

Leta € R7V n M,. One has a = AFr(v), for some A € RY and v € V. Moreover,
f(Fr(v)) =k = f(a) andas k # 0, a = Fr(v) € Fr(V). Thus Fr(V) = RiV n M,
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and Fr(V) is an open set of M,. Suppose there exists (x1,x;) € (D;n AN A) x
(D, n AnA). Then conv(xy, X5, Fr(V)) € A n A is an open neighborhood of Fr( V')
in X. This is absurd, because Fr takes its values in Fr,(A n A). Thus the lemma is
proved. ]

If x € U’, one denotes by D, the half-space delimited by M, and containing A n A.

Proposition 3.22  Let A be an apartment such that A n A is convex. Then An A is
enclosed.

Proof Ifue U’,then An A c D, and thus An A c N,y Da.

Let x € U' N Nyey Dy One has 0 € A n A and thus 0 € D,.. Moreover, Fr(x) €

M, n An A and thus x € [0,Fr(x)] c An A. Therefore,
Un N DycAnA.
xeU’

Let x € Intx(Nycyr Du). If x ¢ U, then x € An A. Suppose x € U. Then by
Lemma 3.19, there exists (x,,) € (U’ n Intx(Nyeyr Du))Y such that x,, — x. But then
forall n € N, x, € An A, and by Proposition 3.9, x € A n A. As a consequence,
An Ao Intx(Nyeyr Du)- As An A is closed,

AnAsnty( N D,) = N Dy
uelU’ ueU’

because N,y Dy, is closed, convex with nonempty interior in X. Thus we have proved
AnA =Ny Dy.

Let Mj, ..., M, be walls of A such that for all x € U’, there exists i(x) € [[1, k]]
such that Mj ) n X = M,. One sets M; = M, forall x ¢ U" and one denotes by D}
the half-apartment of A delimited by M}, and containing D,. Then X n Ny DY, =
An A. Lemma 3.16 completes the proof. ]

3.4 Existence of Isomorphisms of Apartments Fixing a Convex Set

Let A be an apartment and P ¢ A n A. In this section, we study the existence of
P
isomorphisms of apartments A - A. We give a sufficient condition of existence of

APA
such an isomorphism in Proposition 3.26. The existence of an isomorphism A o
A when A and A share a generic ray will be a particular case of this Proposition;
see Theorem 4.22. In the affine case, this will be a first step to prove that for every

AnA
apartment A, there exists an isomorphism A ShA

Lemma 3.23 Let A be an apartment of J and ¢: A — A an isomorphism of apart-
ments. Let P ¢ A n A be a nonempty, relatively open, convex set, Z = supp(P), and
suppose that ¢ fixes P. Then ¢ fixes P+ (T 0 Z) n A, where T is the Tits cone.

Proof Letx € P+(TNZ)NA. Writex = p+t, where p € Pand t € T. Assume ¢ # 0.
Let L = p + Rt. Then L is a preordered line in J and ¢ fixes L n P. Moreover, p < x

and thus, by [Roull, Proposition 5.4], there exists an isomorphism y: A LN A In

particular, ¢ o y: A — A fixes L N P. But then ¢ ™" o y; is an affine isomorphism
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fixing a nonempty open set of L; this is the identity. Therefore ¢ 'oy(x) = x = ¢~ (x),
which proves the lemma. ]

Lemma 3.24 Let A be an apartment of J. Let U c A n A be a nonempty relatively
open set and X = supp(U). Then there exists a nonempty open subset V of U (in X)

v
such that there exists an isomorphism ¢: A — A.

Proof Let X, P; be a decomposition into enclosed subsets of A n A. Let i € [[1, k]]

be such that P; n U has nonempty interior in X and ¢: A 2, A. Then ¢ fixes a
nonempty open set of U, which proves the lemma. ]

Lemma 3.25 Let A be an apartment of J and ¢: A — A an isomorphism. Let F =
{ze A| ¢(z) = z}. Then F is closed in A.

Proof By Proposition 3.8, pico © ¢: A - A and p_o © ¢: A — A are continuous. Let
(z,) € F" be such that (z,) converges in A and z = lim z,,. For all € N, one has

Proo(®(2n)) = 20 = p-oo(B(21)) = Proo($(2)) = 2 = P ($(2)).

By Proposition 3.7, z = ¢(z), which proves the lemma. ]

Proposition 3.26  Let A be an apartment of J and P ¢ A n A a convex set. Let
X = supp(P) and suppose that T n X has nonempty interior in X. Then there exists an

P
isomorphism of apartments ¢: A — A.

Proof (See Figurel.) Let V c P be a nonempty open set of X such that there exists

an isomorphism ¢: A LA (such a V exists by Lemma 3.24). Let us show that ¢ fixes
Int,(P).

Let x € V. One fixes the origin of A in x and thus X is a vector space. Let (e;) j;
be a basis of A such that for some subset J' c ], (e;) ey is a basis of X and (x +
T)NX>@jeyRiej. Forall ye X, y = ¥, yjej with y; € R forall j € J', one sets
|y| = maxjey ;. f a€ Aand r > 0, one sets B(a,r) = {y € X | |y —a| <r}.

Suppose that ¢ does not fix Int,(P). Let y € Int,(P) be such that ¢(y) # y. Let

s=sup{t€[0,1]| 3U € Vx([0,ty]) | ¢ fixes U}.

Set z = sy. Then by Lemma 3.25, ¢(z) = z.

By definition of z, for all r > 0, ¢ does not fix B(z,7). Let r > 0 be such that
B(z,5r) c Int, P. Let z; € B(z,r) n [0, z[ and r; > 0 be such that ¢ fixes B(z;, ;) and
z5 € B(z,r) such that ¢(z5) # 2}. Let 5 € 0, r[ be such that for all a € B(z},13),
$(z) # z. Let z, € B(z5,13) be such that for some r; € ]0,75[, B(z2,72) ¢ B(25,15)

B(z2,r
and such that there exists an isomorphism y: A Bara),

Lemma 3.24). Then |z; — 25| < 3r.
Let us prove that (z; + T n X) n (z; + T n X) n Int,(P) contains a nonempty
open set U ¢ X. One identifies X and R’ thanks to the basis (ej)jey- One has

A (such z; and r; exist by
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Figure I: Proof of Proposition 3.26

Z,— 721 € ]—3,3[]’ and thus

(z1+ NN (z+T)=(za+T)n(z1+z-z1+T) 0 7 +]3,4[]’.
As P > B(z;,4r), the set (z1 + T n X) n (2, + Tn X) n Int,(P) contains a nonempty
open set U c X.

By Lemma 3.23, ¢ and v fix U. Therefore, ¢! o y fixes U, and as it is an isomor-
phism of affine space of A, ¢~ o y fixes X. Therefore ¢! o y(z;) = ¢7(z2) = 2,
and thus ¢(z;) = z,; this is absurd. Hence, ¢ fixes Int,(P). By Lemma 3.25, ¢ fixes
Int,(P) = P and thus ¢ fixes P, which shows the proposition. ]

4 Intersection of Two Apartments Sharing a Generic Ray

The aim of this section is to prove Theorem 4.22. Let A and B be two apartments shar-

ing a generic ray. Then A n Bis enclosed and there exists an isomorphism ¢: A A% B,
We first reduce our study to the case where A n B has nonempty interior by the
following lemma.

Lemma 4.1 Suppose that for all apartments A, B such that A n B contains a generic
ray and has nonempty interior, the set A N B is convex. Then if Ay and A, are two

apartments containing a generic ray, the set Ay N A, is enclosed and there exists an

. . ANA;
isomorphism ¢: A, —— A,.

Proof Let us prove that A; N A, is convex. Let § be the direction of a generic
ray shared by A; and A,. Let x;,x, € A; n A, and §°° be the vectorial face di-
rection containing 8. Let ' be the vectorial face direction of A; opposite to F*°.
Let C; be a chamber of A; containing x; and C, be a chamber of A, containing x,.
Sett; = t(C,§'°) c A, v = t(Cy, F°) € Ay, Ry = germ(ry), and R, = germ(t,).
By (MA3) there exists an apartment A3 containing i; and fR,.
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Let us prove that A3 contains x; and x,. One identifies A; and A. Let F* =0+ §*°
and F"V = 0 + §'. As A3 > R, there exists f’ € F" such that A3 > x; + f' + F".
Moreover, A3 > §*°, and thus it contains x; + ' + §*°. By [Roull, Proposition 4.71]
x1+ f+F° =x1+ f +F, and thus A; 5 x;. As A3 > R, there exists f € F” such
that A3 o x, + f. As A3 0§,

A3 :>x2+f+$':x2+f+F'v

by [Roull, Proposition 4.7.1]. Thus A3z > x;.

Ifi € {1,2}, each element of R; has a nonempty interior in A;, and thus A; N A3 has
a nonempty interior. By hypothesis, A; n A; and A, n A; are convex. By

AinA AznA

Proposition 3.26, there exist ¢: A, 2%, Asand v Ay 22075, A, Therefore [x1,%2] 4,
[x1,%2]4; = [*%1,%2]4,, and thus A} N A, is convex.

The existence of an isomorphism A, Aot A, is a consequence of Proposition
3.26, because the direction X of A; N A, meets T and thus X n T spans 7.

The fact that A; n A; is enclosed is a consequence of Proposition 3.22. [ ]

4.1 Definition of the Frontier Maps

The aim of Sections 4.1-4.5 is to prove that if A and B are two apartments containing
a generic ray and such that A n B has nonempty interior, then A n B is convex. There
is no loss of generality in assuming that B = A and that the direction R, v of § is
contained in +CY. As the roles of C; and —C; are similar, one supposes that R, v c ?;
and that A # A. These hypotheses run until the end of Section 4.5.

In this subsection, we parametrize Fr(A n A) by a map and describe A n A using
the values of this map.

Lemma 4.2 Let V be a bounded subset of A. Then there exists a € R such that for all
uela,+oo[andveV,v<uw

Proof LetacR}andveV.Thenav—-v=a(v-=1v). Asve ¥ and V is bounded,
there exists b > 0 such that foralla > b, v - iv ¢ T, which proves the lemma, because
T is a cone. |

Lemma 4.3 Let ye An A. Then An A contains y + R, v.

Proof Letx € A such that An A o x + R,v. The ray x + R, v is generic and by

(MA4), if y € A, An A contains the convex hull of y and x + [a, +oo[ v, for some

a > 0. In particular, it contains y + R, v. n
LetU={yecA|y+RvnAzg}=(AnA)+Rv.

Lemma 4.4 The set U is convex.

Proof Letu,veU.Letu' € u+R,vn A. By Lemma4.2and Lemma 4.3, there exists
v' € v + R,v such that u’ < v'. By [Roull, Proposition 5.4(2)], [u/,v'] ¢ An A. By
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definition of U, [u’,v'] + Rv c U and in particular [u,v] c U, which is the desired
conclusion. n

There are two possibilities: either there exists y € A such that y + Rv c A or for all
y €A, y+ Ry ¢ A The first case is the easiest and we treat it in the next lemma.

Lemma 4.5 Suppose that for some y € A, y—-R,vc AnA Then AnA=U. In
particular, A n A is convex.

Proof ByLemma4.3, AnA = (AnA)+R,v. By symmetry and by hypothesis on
AnA,onehas (AnA)+R_v=AnA Therefore AnA=(AnA)+Rv=U. =

Definition of the frontier Let u € U. Then by Lemma 4.3, u + Rv n A is of the
form a + Riv or a + R,v for some a € A. As An A is closed (by Proposition 3.9),
the first case cannot occur. One sets Fr,, (1) = a € A n A. One fixes v until the end of
Section 4.5 and one writes Fr instead of Fr,.

Lemma 4.6  The map Fr takes its values in Fr(An A) and An A = Uy Fr(x) +R.v.

Proof Letu € U. Then Fr(u) + R,v = (u +Rv) n A. Thus Fr(u) ¢ Int(A n A). By
Proposition 3.9, Fr(u) € Fr(A n A) and hence Fr(U) c Fr(An A).

Letu € AnA. Onehasu € An (u + Rv) = Fr(u) + R, v, and we deduce that
A n A c Uyey Fr(x) + R,v. The reverse inclusion is a consequence of Lemma 4.3,
which finishes the proof. ]

Let us sketch the proof of the convexity of A n A (which is Lemma 4.21). If x, y € U,
one defines Fr ,:[0,1] = Fr(A n A) by Fry ,(¢) = Fr((1-t)x + ty) forall t € [0,1].
For all t € [0,1], there exists a unique fy ,(f) € R such that Fr, ,(t) = (1-t)x +
ty + fx,y(t)v. We prove that for almost all x, y € U, S,y is convex. Let x,y € U.
We first prove that f, , is continuous and piecewise affine. This enables us to reduce
the study of the convexity of f, , to the study of f, , at the points where the slope
changes. Let M be a finite set of walls such that Fr(U) ¢ Upen M, which exists
by Proposition 3.14. Using order-convexity, we prove that if {x, y} is such that for
each point u € ]0,1[ at which the slope changes, Fr, , (1) is contained in exactly two
walls of M, then f, , is convex. We then prove that there are “enough” such pairs and
conclude by an argument of density.

4.2 Continuity of the Frontier

In this subsection, we prove that Fr is continuous on U, using order-convexity.

Let A: U - R such that forall x € U, Fr(x) = x+A(x)v. We prove the continuity of
Fr|; by proving the continuity of A,;;. For this, we begin, for x, y € U, by dominating
A([x, y]) by a number depending on x and y (see Lemma 4.7). We use it to prove
thatif n e Nand ay,...,a, € U, then A(conv({ay,...,a,})) is dominated, and then
deduce that Fr‘f] is continuous (which is Lemma 4.12).

Lemma 4.7 Letx,y e U, M = max{A(x),A(y)}, and k € R, besuchthat x+kv > y.
Then, forallu € [x, y], AM(u) <k + M.
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Proof ByLemma 4.3, x + Mv and y + Mv are in A. By hypothesis, x + kv + Mv >
y+ Mv. Let t € [0,1] and u = tx + (1 — t)y. By order-convexity t(x + kv + Mv) +
(1-1t)(y + Mv) € A. Therefore A(u) < M + tk < M + k, which is our assertion. m

Lemma 4.8 Letd € N, X be a d-dimensional affine space and P c X. One sets
convg(P) = P and forall k € N,

convg (P) = {(1-t)p+tp' |t €[0,1] and (p,p") € convi(P)*}.
Then convy(P) = conv(P).

Proof By induction,

2k 2
convi(P) = { T Lipi | (4) € [0,1], 5 A; =1and (pi) € P*'}.
i=1 i=1
This is thus a consequence of Carathéodory’s Theorem. ]

Lemma 4.9 Let P be a bounded subset of U such that sup(A(P)) < +oo. Then
sup ( A(conv(P))) < +oo.

Proof LetM =sup, pA(x)andk € R, such thatforall x,x" € P, x" + kv > x, which
exists by Lemma 4.2. Let u € conv;(P) and x, x" € P such that u € [x, x']. By Lemma
4.7, A(u) < k + M and the lemma follows. ]

Lemma 410 Let x € U. Then there exists V € Vi (x) such that V is convex and
sup(A(V)) < +oo.

Proof Letn e Nanda,,...,a, € Usuchthat V = conv(ay,...,a,) contains x in
its interior. Let M € R, such that for all y,y" € V, one has y + Mv > y', which is
possible by Lemma 4.2. One sets P = {a;,...,a,} and for all k € N, P, = conv(P).
By induction using Lemma 4.9, sup(A(Py)) < +oo for all k € N and we conclude with
Lemma 4.8. |
Lemma 4.11 Let V c U be open, convex, bounded and such that
sup(A(V)) <M
for some M € R,. Let k € R, such that for all x,x" € V, x + kv > x". Let a € V and
ueAsuchthata+ueV. Thenforall t € [0,1], A(a + tu) < (1-t)A(a) + t(M + k).
Proof ByLemma4.3,a+u+ (M +k)ve A Moreover,
a+tu+(M+k)v>a+Mv,a+ Mv>a+A(a)v="Fr(a),

and thus a + u + (M + k)v > Fr(a).
Let t € [0,1]. Then by order-convexity,

(1-t)(a+A(a)v)+t(a+u+(M+k)v) = a+tu+((1—t)/1(a)+t(M+k))veA.
Therefore A(a + tu) < (1-t)A(a) + (M + k), which is our assertion. |

Lemma 4.12  The map Fr is continuous on U.
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Proof Let x € Uand V « Vi (x) be convex, open, bounded, and such that
sup(A(V)) < M for some M € R,, which exists by Lemma 4.10. Let k € R, such that
forallv,v' € V,v+ kv > v'. Let|-| be a norm on A and r > 0 such that B(x,r) c V,
where B(x,r) = {ueA||[x—u/<r}. Let S={ueA| |[u-x|=r}. Let N= M +k.

Let y € S and ¢ € [0,1]. By applying Lemma 4.11 with a = x and u = y — x, we get
that A((1-¢t)x+ty) < A(x) + tN. By applying Lemma 4.11 with a = (1-¢)x + ty and
u = x — y, we obtain that

Mx)=2((A-t)x+ty+t(x—y)) <A((1-t)x+1ty) +tN.
Therefore, for all £ € [0,1] and y € S,
AMx)—tN <A((1-t)x +ty) < A(x) + tN.

Let (x,) € B(x, r)N such that x,, - x. Let n € N. Onesets t,, = ‘x”—r_xl Ift, = 0,0ne
chooses y, € S. It t,, # 0, one sets y, = x + i(xn —x)eS. Thenx, = tyy,+ (1-ty)x
and thus [A(x,) - A(x)| < t,N — 0. Consequently, A,; is continuous, and we deduce
that Fr);; is continuous. u

4.3 Piecewise Affineness of Fr, ,

We now study the map Fr. We begin by proving that there exists a finite set H of
hyperplanes of A such that Fr is affine on each connected component of U\ Upes¢ H.

Let M be a finite set of walls such that Fr(A n A) is contained in U5 M, whose
existence is provided by Proposition 3.14. Let r = |M]. Let

{ﬁl,...,ﬁ,}ecbr and (€1,...,€,)ei]:[1A2;l_

be such that M = {M; | i € [1, ]|} where M; = B;'({¢;}) foralli € [[L,r]].

Let i,j € [[1,r]] be such that i # j. If 8;(v)B;(v) # 0 and M; and M; are not
ti—pi(x) _ ¢=Pi(x)
Bi(v) Bi(v)
naturally in the proof of the next lemma). Then H; ; is a hyperplane of A. Indeed,

. o Bix) _ Bi(x) _ & &
(;tile)rwwe(ljw = A. Hence OO ORNIOL for all x € A. Therefore,
i(x)  Bi(x

OO 0, for all x € A, and thus M; and M; are parallel: a contradiction. Let
j i
H = {Hi,j | i+ ],ﬁl(V)ﬁJ(V) + 0 and M,’ ‘H M]} U {M, | ﬁ,’(V) = 0}
Even if the elements of HH{ can be walls of A, we will only consider them as hyper-

planes of A. To avoid confusion between elements of M and elements of I, we will
try to use the letter M, resp., H, in the name of objects related to M, resp., .

parallel, one sets H; ; = {x € A | } (this definition will appear

Lemma 4.13 Let M, = Uppeprrent M 0 M. Then Fr' (M) © Upesc H.

Proof Let x € Fr''(M,). One has Fr(x) = x + Av, for some A € R. There exists
i,j € [[1,7]] such that

citj,

* Bi(Fr(x)) = ¢; and B;(Fr(x)) = ¢;,

* M; and M; are not parallel.
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Therefore, if B;(v)B;j(v) # 0, then A = e"[;ﬁ("v(;) = ej;;,-ﬁ(jj)X) and thus x € H; ;. If

Bi(v)B;(v) =0, then x € M; U M, which proves the lemma. |
Lemma 4.14 Onehas An A =Int(AnA).

Proof By Proposition 3.9, A n A is closed and thus Int(An A) c An A.

Let x € An A. Let V be an open bounded set contained in A N A. By Lemma
4.2 applied to x — V, there exists a > 0 such that for allv € V, one has v + av > x.
One has V+av c An A and by order convexity [Roull, Proposition 5.4(2)], conv(V +
av,x) c AnA. Asconv(V+av, x) isa convex set with nonempty interior, there exists
(x,) € Int(conv(V + av, x))N such that x, - x, and the lemma follows. |

Let fi, ..., f; be affine forms on A such that H = {f;1({0}) | i € [[1,s]]} for some
seN.LetR = (R;) € {<,2,<,>}*. One sets

Pr=Un{xeA|(fi(x)R0)Viel[Ls]]}.

If R = (R;) € {<,2}*, one defines R' = (R}) € {<,>}* by R} =<ifR; =<and R} = >
otherwise (one replaces large inequalities by strict inequalities). If R € {<, >}*, then
Il’lt(PR) = PRr.

Let X = {R € {<,>}* | Pg # @}. By Lemma 4.14 and Lemma 3.10, U = Ugcx Pr
and for all R € X, Py c A\ Upesc H.

Lemma 4.15 Let R € X. Then there exists M € M such that Fr(Pgr) c M.

Proof Letx € Pg. Let M € M be such that Fr(x) € M. Let us show that Fr(Pg) c M.
By continuity of Fr (by Lemma 4.12), it suffices to prove that Fr(Pz) ¢ M. By con-
nectedness of Py, it suffices to prove that Fr™'(M) n Py is open and closed. As Fr is
continuous, Fr ' (M) n Py is closed (in Pg).

Suppose that Fr ™' (M) n Py is not open. Then there exists y € Py such that Fr(y) ¢
M and a sequence (y,) € (Pg)" such that y, - y and such that Fr(y,) ¢ M for all
neN. Foralln e N, Fr(y,) € Uprene M', and thus, maybe extracting a subsequence,
one can suppose that for some M’ € M, y,, ¢ M’ forall n e N.

As Fr is continuous (by Lemma 4.12), Fr(y) € M’. Thus Fr(y) € M n M’ and by
Lemma 4.13, y € Ugesc H, which is absurd by choice of y. Therefore, Fr™'(M) n Py
is open, which completes the proof of the lemma. ]

Lemma 4.16 Let R € X and M € M be such that Fr(Pg) ¢ M. Then v ¢ M and
there exists a (unique) affine morphism y: A — M such that Frp, = yp,. Moreover, y
induces an isomorphism y: A/Rv - M.

Proof If y € U, then Fr(y) = y + k(y)v for some k(y) € R. Let « € ® be such
that M = a!({u}) for some u € —A/,. Forall y € Py, one has a(Fr(y)) = a(y) +
k(y)a(v) = uand a(v) # 0 because « is not constant on Pg. Consequently, v ¢ M

and Fr(y) =y + ”;?g)v. One defines y: A > Mbyy(y) = y+ u;‘zg)vforallyeA

and y has the desired properties. ]
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4.4 Local Convexity of Fr, ,

Let M € M and let M be its direction. Let Ty; = T n M and D, be the half-apartment
containing a shortening of R, v and whose wall is M.

Lemma 4.17 Let a € Fr(U) and suppose that there exists X € V(a) such that
Fr(K) c M for some M € M. Then Fr((a + Ty) 0 U) € Dyy.

Proof Letu e Un (a—Ty), u # a. Suppose Fr(u) ¢ Dy. Then Fr(u) = u — kv,
with k > 0. Then Fr(u) < uZa (which means that a — u € 7). Therefore for some
XK' € Vp(a) such that X' ¢ X, one has Fr(u)<u’ for all u’ € X'. As a consequence
An Ao conv(X',Fr(u)) and thus Fr(u") ¢ M for all ¥’ € K'. This is absurd and
hence Fr(u) € Dy.

Letv e Un (a+7Ty),v # a,and suppose that Fr(v) ¢ Dy. Then for v’ € [Fr(v),v|
near enough from v, one has a < v'. Therefore, [a,v'] c An A. Thus forall t € |a, v[,
Fr(t) ¢ Dy, a contradiction. Therefore Fr(v) € Dy, and the lemma follows. |

The following lemma is crucial to prove the local convexity of Fr, , for good choices
of x and y. This is here mainly so that we can use that A n A have nonempty interior.
Let Hy = Upgzpresc HN H'.

Lemma 4.18 Letx € U N (Ugesc H)\Hn and H € K be such that x € H. Let Cy and
C, be the half-spaces defined by H. Then there exists V € V;(x) satisfying the following
conditions.

(i) Forie{1,2},let V; =V n C;. Then V; c Py, for some R; € X.

(ii) Let M be a wall containing Fr(Pg,). Then Fr(V) c Dy,.

Proof (See Figure 2.) The set U\ Usese\(y H is open in U. Let V' € Vy(x) be
such that V' N Upreso\(uy H' = @ and such that V' is convex. Let i € {1,2} and
V! = V' n C;. Then V/ ¢ U\ Upesc H. Moreover, V; is connected. As the connected
components of U\ Ugeqc H are the Pg’s for R € X, we deduce that V' satisfies (i).

Let y: A - M be the affine morphism such that y|p, = Frp, and y:A/Rv > M
be the induced isomorphism, which exist by Lemma 4.16. Let : A — A/Rv be the
canonical projection. As C; is invariant under translation by v (by definition of the
elements of ), the set y(C;) = y(n(C,)) is a half-space D of M. Let V' = V' n C;.
Then

y(V") =9(C) ny(n(V')) € Vp(Fr(x)).

Let g: M — R be a linear form such that D = g7'([b, +oo]), for some b € R. Let
€ € {-1,1} be such that g(u) > 0 for some u € €Ty Let # > 0. Then Fr(x + yu) €
x + nu + Rv and thus Fr(x + qu) = Fr(x) + nu + kv for some k € R. If # is small
enough that x + yu € V", then kv = Fr(x + qu) — (Fr(x) + nu) € M and hence k = 0
(by Lemma 4.16). Let X = (V") + Rv and a = Fr(x) + nu. Then X € V(a) and,
forall v € X, Fr(v) € M. By Lemma 4.17,

Fr(Un (a-eTy)) =Fr(Un (a-eTy+Rv)) cDy.
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Fr(z) — T /]

¥ Fr(x - nu)

Fr(xz + qu) — €Ty

Figure 2: Proof of Lemma 4.18 when dim H = 2. (The illustration is made in M.)

Moreover, a — €Ty + Rv € V;(x) and thus if one sets V = V' n (a — €Ty + Rv), V
satisfies (i) and (ii). ]

4.5 Convexity of An A
Let H = Upesc H be the set of directions of the hyperplanes of .

Lemma 4.19 Letx,y € Un An A be such that y — x ¢ H and such that the line
spanned by [ x, y] does not meet any point of H,. Then [x,y] c Un An A.

Proof Letn:[0,1] > A definedby n(t) = tx+(1-t)y,forall ¢ € [0,1]. Set g = From.
Let fi,. .., f; be affine forms on A such that

3= {fi"({0}) i e [[1s]}-

As y—x ¢ H(, forall i € [[1,5]], the map f; o g is strictly monotonic and 7~ (Upes¢ H)
is finite. Therefore, there exist k € N and open intervals T; ..., Ty such that

 [0,1] = Uf:l Ti’

. Tl < e < Tk>

o foralli € [[1, k]], there exist R; € X such that 7(T;) c Pp,.
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Forall f € [0,1], one has g(t) = 7(t) + f(¢)v for some f(¢) € R. By Lemma 4.16, this
equation uniquely determines f(¢) for all t € [0,1]. By Lemma 4.12, f is continuous
and by Lemma 4.16, f is affine on each T;.

Let us prove that f is convex. Let i € [1, k —1]]. One writes T; = ]a, b[. Then for
€ > 0 small enough, one has f(b+¢) = f(b)+ec, and f(b—¢€) = f(b)—ec_. To prove
the convexity of f, it suffices to prove that c_ < c,. Let M be a wall containing Fr(Pg, ).
As 71(b) € U N Upese H\Hp, we can apply Lemma 4.18 and there exists V € V00,11 (b)
such that g(V') © Dy. Let h: A — R be a linear map such that Dy; = h™'([a, +00[).
For € > 0 small enough, one has h(g(b+¢€)) > aand h(g(b—¢€)) = a. For e > 0 small
enough, one has

h(g(b+e€)) = h(m(b) +e(y —x) + (f(b) +eci)v)
=h(g(b) +e(y —x+cyv))
=a+e(h(y—x)+cih(v)) > a,
and similarly, h(g(b-¢€)) =a—e(h(y - x) + c_h(v)) = a.
Therefore, h(y—x)+c,h(v) >0, h(y—x)+c_h(v)=0,and hence (c; —c_)h(v)>0.
As Dy contains a shortening of R, v, h(v) > 0 and, by Lemma 4.16, h(v) > 0. Con-

sequently, c_ < ¢, and, as i € [[1, k — 1]] was arbitrary, f is convex.
Forall t € [0,1], f(#) < (1-¢t)f(0) + tf(1). Therefore,

(1-1)g(0) +1g(1) = n(t) + (1= 1) f(0) + £ (1))v e m(¢) + f(£)v + Ryv
g(t) +Ryv.

By definition of Fr, if ¢ € [0,1], then (1-¢)g(0) + tg(1) € A n A. Moreover, there
exist A, y > 0 such that x = g(0) + Avand y = g(1) + uv. Then

a(t)=(1-t)x+ty=(1-1t)g(0)+tg(1) + ((1-t)A+tu)ve AnA
and hence [x, y] c An A, |

Lemma 4.20 Letx, y € Int(An A) and H = Upeqc H. Then there exists (x,,), (yn) €
Int(A n A)Y satisfying the following conditions.

(i) xy,—xandy, - y.

(i) ForallneN, y, —x, ¢ H.

(iii) The line spanned by [x,, y,| does not meet any point of Hp.

Proof Let (x,) € (Int(A n A)\Hn)" be such that x, — x. Let |-| be a norm on
A. Let n € N. Let F be the set of points z € A such that the line spanned by [x,, z]
meets Hn. Then F is a finite union of hyperplanes of A, because Hn, is a finite union
of spaces of dimension at most dim A — 2. Therefore A\(F U x,, + H) is dense in A
and one can choose y, € A\(F U x,, + ) such that |y, — y| < - Then (x,) and

+1°
(yn) satisfy the conditions of the lemma. " |

Lemma 4.21 'The set A N A is convex.

Proof Letx,yeInt(AnA). Let (x,),(y,) beasin Lemma 4.20. Let ¢ € [0,1]. As
Int(An A) c U, one has tx, + (1-t)y, € An A, for all n € N, by Lemma 4.19. As
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A n A is closed (by Proposition 3.9), tx + (1-t)y € An A. Therefore Int(An A) is
convex. Consequently, An A = Int(A n A) (by Lemma 4.14) is convex. ]

We thus have proved the following theorem.

Theorem 4.22  Let A and B be two apartments sharing a generic ray. Then A n B is

. . ) AnB
enclosed and there exists an isomorphism ¢: A 5B

Proof By Lemma 4.21 and Lemma 4.1, A n B is convex. By Proposition 3.22, An B

is enclosed and, by Proposition 3.26, there exists an isomorphism ¢: A A% B, ]
4.6 A Partial Reciprocal

One says that a group G of automorphisms of J acts strongly transitively on J if the
isomorphisms involved in (MA2) and (MA4) are induced by elements of G. For exam-
ple if G is a quasi-split Kac-Moody group over an ultrametric field X, it acts strongly
transitively on the associated masure J(G, X).

We now prove a kind of weak reciprocal of Theorem 4.22 when some group G
acts strongly transitively on J and when J is thick, which means that each panel is
contained in at least three chambers. This implies some restrictions on A’ by Lemma
4.24 and Remark 3.3.

Lemma 4.23  Let P be an enclosed subset of A and suppose that P # @. One fixes
the origin of A in some point of P. Let jp be the gauge of P defined in Section 3.3. Let
U={xeA|jp(x)#0}. One defines Fr: U — P as in Lemma 3.18. One writes P =
NX_, D;, where the D; s are half-apartments of A. Let j € [1, k]], M; be the wall of D},
and suppose that for all open subsets V of U, Fr(V') ¢ M. Then P = Niex\(j} Di-

Proof Suppose that P ¢ Nie[1x7\(j3 Di- Let V be a nonempty open and bounded
subset contained in Mjcqy,k\(j3 Di\P. Let n € N* be such that %V cP. LetveV.
Then [+v,v] n Fr(P) = {Fr(v)}. Moreover, for all i € [[1,k]\{j}, [+v,v] c D;.
As Fr(P) c Ujeqixy Mi> we deduce that Fr(v) € M;: this is absurd and thus P =
Nieemiy Di- u

Lemma 4.24  Suppose that J is thick. Let D be a half-apartment of A. Then there
exists an apartment A of A such that D = An A.

Proof Let F be a panel of the wall of D. As J is thick, there exists a chamber C
dominating F and such that C ¢ A. By [Roull, Proposition 2.9(1)], there exists an
apartment A containing D and C. The set A n A is a half-apartment by Lemma 3.1
and thus A n A = D, which proves the lemma. [ |

Proposition 4.25  Suppose that J is thick and that some group G acts strongly tran-

sitively on J. Let P be an enclosed subset of A containing a generic ray and having
nonempty interior. Then there exists an apartment A such that An A = P.
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Proof One writes P = Dy n---n Dy, where the D;’s are half-apartments of A. One
supposes that k is minimal for this writing, which means that for all i € [[1,n]], P #
Njeup\¢i D;j- For all i € [[1, n]], one chooses an apartment A; such that A n A; =

D;. Let ¢;: A LN A; and g; € G inducing ¢;.
Letg=g1---grand A= g.A. Then An A o> Din---nDy and g fixes D;N---NDy. Let

us show that An A = {x € A | g.x = x}. By Theorem 4.22, there exists ¢: A A08 A
Moreover, g‘_A1 o ¢: A — A fixes D; n--- N Dy, which has nonempty interior and thus
8 © ¢ =1ds, which proves that An A = {x e A | g.x = x}.

Suppose that AN A 2 Dyn---n Dy. Leti € [[L k]| be such that there exists
ae AnA\D;.

One fixes the origin of A in some point of P; one sets U = {x € A | jp(x) # 0}; and
one defines Fr: U — Fr(P) as in Lemma 3.18. By minimality of k and Lemma 4.23,
there exists a nonempty open set V of U such that Fr(V) c M;.

By the same reasoning as in the proof of Lemma 3.21, Fr(V) n M; is open in
M;. Consequently, there exists v € Fr(V) such that v ¢ Ujeqi,cp\(iy M. Let V' €
Vu(v) be such that V' 0 Ujeqia\iy Mj = @ and such that V' is convex. Then
V" e Njequr\(iy D°j. Let V"' = Fr(V) n V'. By Theorem 4.22, [a,v] ¢ An A and
hence g fixes [a,v]. Moreover, for u € [a,v] near v, one has u ¢ Njeruip\{it Dj-
Theng.u=g1---gi-(gis1- - gk-4) = g1+ g -u. Moreover, g;.u = g/, g7 u=u
Therefore u € D;, which is absurd by choice of u. ]

Remark 4.26 In the proof above, the fact that P contains a generic ray is only used

. . AnA
to prove that A n A is convex and that there exists an isomorphism ¢: A A

When G is an affine Kac-Moody group and J is its masure, we will see that these
properties are true without assuming that A N A contains a generic ray. Therefore,
for any enclosed subset P of A having nonempty interior, there exists an apartment A
suchthat AnA=P

Let T be a discrete homogeneous tree with valence 3 and x a vertex of T. Then
there exists no pair (A, A’) of apartments such that A n A" = {x}. Indeed, let A
be an apartment containing x and C;, C, be the alcoves of A dominating x. Let A’
be an apartment containing x. If A" does not contain Cj, it contains C, and thus
An A" # {x}. Therefore the hypothesis that “P has nonempty interior” is necessary
in Proposition 4.25.

5 Axioms of Masures

5.1 Axioms of Masures in the General Case

The aim of this section is to give an axiomatics of masures other than the one of [Roull,
Roul7]. For this, we mainly use Theorem 4.22.

We fix an apartment A = (8, W, A"). A construction of type A is a set endowed
with a covering of subsets called apartments and satisfying (MAL).

Letcl € CL /. Let (MA i)=(MAL).
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Let (MA ii) : if two apartments A, A’ contain a generic ray, then A n A’ is enclosed

and there exists an isomorphism ¢: A A4 A

Let (MA iii, cl): if PR is the germ of a splayed chimney and if F is a face or a germ
of a chimney, then there exists an apartment containing R and F.

It is easy to see that the axiom (MA ii) implies (MA4, cl) forall cl € CL /. If cl €
CL ps, then (MA i, cl) is equivalent to (MA3, cl) because each chimney is contained
in a solid chimney.

Let J be a construction of type A and cl € CL,,. One says that J is a masure of
type (1, cl) if it satisfies the axioms of [Roull]: (MA2, cl), (MA3, cl), (MA4, cl), and
(MAO). One says that J is a masure of type (2, cl) if it satisfies (MA ii) and (MA iii,
cl).

The aim of the next two subsections is to prove the following theorem.

Theorem 5.1 Let J be a construction of type A and cl € €L . Then J is a masure of
type (1,cl) ifand only if J is a masure of type (1,cl”), if and only if J is a masure of type
(2,dl), if and only if I is a masure of type (2, cI”).

Let us introduce some other axioms and definitions. An extended chimney of A is
associated with a local face F! = F ¢(x, F}) (its basis) and a vectorial face (its direction)
EY; this is the filter v, (F%, F") = F® + F". Similarly to classical chimneys, we define
shortenings and germs of extended chimneys. We use the same vocabulary for ex-
tended chimneys as for classical: splayed, solid, full, etc. We use the isomorphisms of
apartments to extend these notions in constructions. Actually each classical chimney
is of the form cl(t, ) for some extended chimney t,.

Let cl € CL s Let (MA2', cl): if F is a point, a germ of a preordered interval, or
a splayed chimney in an apartment A, and if A’ is another apartment containing F,
then A n A’ contains the enclosure cl4 (F) of F and there exists an isomorphism from
A onto A’ fixing cls (F).

Let (MA2", cl): if F is a solid chimney in an apartment A and if A’ is another
apartment containing F, then A n A’ contains the enclosure cl4(F) of F and there
exists an isomorphism from A onto A’ fixing cl4 (F).

The axiom (MA2, cl) is a consequence of (MA2', cl), (MA2", cl), and (MA ii).

Let (MA iii’): if R is the germ of a splayed extended chimney and if F is a local
face or a germ of an extended chimney, then there exists an apartment containing R
and F.

Let J be a construction. Then J is said to be a masure of type 3 if it satisfies (MA ii)
and (MA iii").

In order to prove Theorem 5.1, we will, in fact, prove the following stronger theo-
rem.

Theorem 5.2 Let cl € CL s and J be a construction of type A. Then J is a masure of
type (1, cl) if and only J is a masure of type (2, cl) if and only if J is a masure of type 3.

The proof of this theorem will be divided into two steps. In the first step, we prove

that (MAO) is a consequence of variants of (MA1), (MA2), (MA3), and (MA4) (see
Proposition 5.3 for a precise statement). This uses paths but not Theorem 4.22. In the
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second step, we prove the equivalence of the three definitions. One implication relies
on Theorem 4.22.

5.1.1 Dependency of (MAO)

The aim of this subsection is to prove the following proposition.

Proposition 5.3  Let J be a construction of type A satisfying (MA2'), (MA iii") and
(MA4). Then J satisfies (MAO).

We now fix a construction J of type A satisfying (MA2'), (MA iii’), and (MA4).
To prove Proposition 5.3, the key step is to prove that if B is an apartment and if
x,y € A n Bare such that x <, y, then the image by p_., of the segment of B joining
xto yisa (y—x)**-path, whereif u € T, u™™ is the unique element of W".u n C7;

Leta,b € A. An (a, b)-path of A is a continuous piecewise linear map [0,1] - A
such that forall t € [0,1[, 7' (¢)* € WY.(b - a). When a < b, the (a, b)-paths are the
(b — a)**-paths defined in Section 3.1.2.

Let A be an apartment and 7: [0,1] - A a map. Let a, b € A. One says that 7 is an
(a, b)-path of A if there exists Y: A — A such that Yomisa (Y(a), Y(b))-path of A.

Lemma 5.4  Let A be an apartment and a,b € A. Let m: [0,1] - A be an (a, b)-path
in Aand f: A — B an isomorphism of apartments. Then fomisan (f(a), f(b))-path.

Proof LetY:A — Abeanisomorphism suchthatYomisa (Y(a),Y(b))-pathin A.
Then Y’ = Yo f~": B - A is an isomorphism, Y’ o fomisa (Y'(f(a)),Y'(f(b)))-
path in A, and we get the lemma. ]

The following lemma slightly improves [Roull, Proposition 2.7(1)]. We recall that
if Aisan affine spaceand x, y € A, [x, y) means the germ germ _([x, y]), (x, y] means
germ ([x, y]), etc; see Section 2.4.

Lemma 5.5 Let R be the germ of a splayed extended chimney, A an apartment of J,
and x~,x% € Asuchthat x~ <4 x*. Then there exists a subdivisionz; = x~,...,z, = x*
of [x™,x" ] 4 such that for all i € [[1,n —1]] there exists an apartment A; containing

[2i,zi ]Ai
[2i> Zi41]a U R such that there exists an isomorphism ¢;: A AN A;.

Proof Letu € [x7,x*]. By (MA iii’), applied to (x~,u] and [u, x+), there exist
apartments A, and A7, containing 93U (x7, u] and R U [u, x*) and by (MA2'), there
exist isomorphisms

u,xt)

LI and ¢;:A—>[

P A——= A Al

u

Forall u € [x~,x"] and € € {—, +}, one chooses a convex set V¢ € [u, x¢) such that
Vi c An A and V isfixed by ¢, If u € [x™, x* ], onesets V, = Int[,— +7, (VS UV,).
By compactness of [x~, x*], there exists a finite set K and a map e: K — {—, +} such
that [x7, x*] = Ukex Vke(k) and the lemma follows. [
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Let q be a sector-germ. Then q is an extended chimney. Let A be an apartment con-
taining q. The axioms (MA2'), (MA iii’), and (MA4) enable one to define a retraction

p:J 3 Aasin [Roull, §2.6].

Lemma 5.6 Let A and B be two apartments, q a sector-germ of B, and p:J % B. Let
X,y € Abesuchthat x <4 y. Let 7:[0,1] > A mapping each t € [0,1] on (1—t)x +4 ty
and f: A — B be an isomorphism. Then p o tisa (f(x), f(y))-path of B.

Proof By Lemma 5.5, there exist k € Nand #; = 0 < --- < t; = 1 such that, for all

i € [[1, k—1]], there exists an apartment A; containing 7([¢;, t;+1]) Uq such that there

T([ti,t;
exists an isomorphism ¢;: A M A;.

If i € [[1, k —1]], one denotes by ; the isomorphism A; > B. Then for t € [t;, ti1],
one has p(7(t)) = y; 0 ¢;(7(t)). Let Y: B —> A be an isomorphism. By (MALl), for all
i € [[1, k]], there exists w; € W such that Yo y; 0 ¢; =w; 0 Y o f.

Letie[[1,k—1] and t € [¢;, t;41]. Then

Yopor(t)=Yoy;op;ot(t)=(1-t)w;oYo f(x)+tw;oYo f(y).
Therefore, p o tisa (f(x), f(y))-path in B. ]

Lemma 5.7 Let)de Cij’c and m:[0,1] — A be a A-path. Then
n(1) - 7(0) <qv A.

Proof By definition, there exists k € N, (¢;) € [0,1]%, and (w;) € (W")¥ such that
vk ti=1land 7(1)-7(0) = $¥_, t;.w; . A. Therefore (1) -(0)=A = X5 #;(w; . A-
A) and thus 7(1) —= 7(0) — A <qv 0 by Lemma 3.5. ]

Lemma 5.8 Letx,y € A be such that x <, y, and let B be an apartment containing
x,y. Let 15:[0,1] > B be defined by 15(t) = (1 t)x +p ty. Let s be a sector-germ of
Aand ps:J S A. Then x <g y and 7y, = ps o 1p is an (x, y)-path of A.

Proof Possibly changing the choice of C?, one can suppose that y — x € Cy. Letq be

a sector-germ of B, pp:J — B, and 74:[0,1] > A be defined by 74 () = (1 £)x + ty.
Let ¢: A — B. By Lemma 5.6, 7t := pg o 7a is a (¢(x), ¢(y))-path of B from x to y.
Therefore x <p y. Let ¥ = ¢"': B - A. Composing ¢ by some w € W" if necessary,
one can suppose that y(y) — y(x) € ?;

By Lemma 5.6, 7y is a (y(x), y(y))-path of A. By Lemma 5.7, we deduce that
y=x<quy(y) —y(x).

By Lemma 5.4, y o 7 is an (x, y)-path of A from y(x) to ¥(y). By Lemma 5.7,
we deduce that y(y) — w(x) <gv y — x. Therefore x — y = y(x) — y(y) and 74 is an
(x, y)-path of A. |

If x, y € J, one says that x < y if there exists an apartment A containing x, y and
such that x <4 y. By Lemma 5.8, this does not depend on the choice of A: if x < y,
then for all apartments B containing x, y one has x < y. However, one does not
know yet that < is a preorder: the proof of [Roull, Théoréme 5.9] uses (MAO).
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Lemma 5.9 ([Hébl7, Lemma 3.6]) Let 7:[0,1] > J be a segment such that 7(0) <
7(1) such that (1) € A and such that there exists v € C} such that (p-so0T) =v. Then
7([0,1]) c A and thus p_oo 0 T = 7.

Proof Let A be an apartment such that 7 is a segment of A. Then 7 is increasing
for <4 and thus 7 is increasing for <. Let x, y € A be such that 7(¢) = (1-t)x + ty
for all ¢ € [0,1]. Let us first prove that 7 is increasing for <. It suffices to prove that
x < y. By (MA iii’), there exists u € ]0,1[ such that there exists an apartment A
containing 7([0,u]) and —co. Let ¢: A —> A. One has ¢(7(u)) = p_oo(7(1)) =
P-oo(7(0)) +uv = ¢(7(0)) + uv. Thus ¢(7(u)) > ¢(7(0)) and hence 7(u) > 7(0).
As Tisa segment of 4, it suffices to prove that there exists u > 0 such that 7(u) > 7(0).
Therefore, 7 is increasing for <.

Suppose that 7([0,1]) ¢ A. Let u = sup{t € [0,1] | 7(¢) ¢ A}. Let us prove that
7(u) € A. If u = 1, this is our hypothesis. Suppose u < 1. Then by (MA2’) applied to
J7(u), 7(1)), A contains cl4(]J7(u), 7(1))) and thus A contains 7(u).

By (MA iii’), there exists an apartment B containing 7((0, u]) U—oc and by (MA4),

T(u —C7}

there exists an isomorphism ¢: B A. Forall t € [0, u] close enough to u, one
has ¢(7(t)) = p-oo(7(t)). By hypothesis, for all t € [0, u], p_o (7(2)) € T(u) — Cy.
Therefore, for ¢ close enough to u, ¢(7(t)) = 7(t) € A; this is absurd by choice of u,

and thus 7([0,1]) c A. [
We can now prove Proposition 5.3: J satisfies (MAO).

Proof Letx,y € A besuch thatx <, yandlet B be an apartment containing {x, y}.
We suppose that y — x € CT’[ Let 4:[0,1] - A mapping each t € [0,1] on p_oo ((1 -
f)x +p ty). By Lemma 5.8, 7 is an (x, y)-path from x to y. By Lemma 3.6, 75 (t) =
x+t(y—x) forall t € [0,1]. Then by Lemma 5.9, ma(t) = (1 - t)x +p ty for all
t € [0,1]. In particular [x, y] = [x, y]p and thus J satisfies (MAO). |

5.1.2 Equivalence of the Axioms

As each chimney or face contains an extended chimney or a local face of the same
type, if cl € CL 4/, (MA iii, cl) implies (MA iii’). Therefore a masure of type (2, cl) is
also a masure of type 3.

If A is an apartment and F is a filter of A, then cl4 (F) c cl; (F). Therefore, for all
cl e CL s, (MA2', ) implies (MA2/, cl) and (MA iii, cI*) implies (MA iii, cl).

Lemma 510 Let cl € CL and J be a masure of type (1,cl). Then J is a masure of
type (2, cl).

Proof By Theorem 4.22, J satisfies (MA ii). By [Roull, Conséquence 2.2(3)], J satis-
fies (MA iii, cl). [ |

By abuse of notation, if J is a masure of any type and if ¢, q’ are adjacent sectors of
J, we denote by q N q’ the maximal face of § n q’. By [Roull, §3], this has a meaning
for masures of type 1 and by (MA ii) for masures of type 2 and 3.
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Lemma 5.11 LetJ be a masure of type 3. Let A be an apartment. Let X be a filter of A
such that for all sector-germs s of J, there exists an apartment containing X and s. Then

if B is an apartment containing X, B contains cI* (X) and there exists an isomorphism

pa Lt p

Proof Letqand g’ be sector-germs of A and B of the same sign. By (MA iii’), there
exists an apartment C containing q and q’. Let q; = ¢,...,q, = q' be a gallery of
sector-germs from q to ¢’ in C. One sets A} = A and A,,4; = B. By hypothesis, for all
i € [[2, n]], there exists an apartment A; containing q; and X. For all i € [[1,n - 1]],
q; N qi41 is a splayed chimney and A; N A;41 O ¢; N q;41. Therefore A; N Ay is

AiNAin

enclosed and there exists ¢;: A; Aj.. Theset A, N A, is also enclosed and

. AnnAnH
there exists ¢p,: Ay ——— A,

Ifi e [[1,n+1]], one sets y; = p;—1 0+ o ¢. Then y; fixes A;n---NA;.

Let i € [[1,n]] and suppose that A; n--- N A; is enclosed in A. The isomorphism
y; fixes A; n--- N A; and thus we deduce that Ay n---nA; = y;(Ajn---NA;)is
enclosed in A;. Moreover, A; N A;,; is enclosed in A; and thus Ay n---n A;, is
enclosed in A;. Consequently Ajn---n Ay = ¥;' (A1 n--- N A;y) is enclosed in
A Let X = Ayn---n A,y By induction, X is enclosed in A and ¢ := v, fixes X. As
X 5 X, we deduce that X € cI*(X) and we get the lemma. [

Lemma 512  Let J be a masure of type 3. Then for all cl € CL a, J satisfies (MA iii,
cl).

Proof Each face is contained in the finite enclosure of a local face and each chim-
ney is contained in the finite enclosure of an extended chimney. Thus by Lemma 5.11,
applied when X is a local face and a germ of a chimney, J satisfies (MA iii, clI*). Con-
sequently for all cl € CL 5+, J satisfies (MA iii, cl), hence (MA3, cl) and the lemma is
proved. ]

Lemma 5.13  Let J be a masure of type 3 and cl € CL 5,. Then J satisfies (MA2’, cl).

Proof If A is an apartment and F is a filter of A, then cI(F) c cl*(F). Therefore
it suffices to prove that J satisfies (MA2’, cI*). We conclude the proof by applying
Lemma 5.11 applied when X is a point, a germ of a preordered segment. ]

Using Proposition 5.3, we deduce that a masure of type 2 or 3 satisfies (MAO), as
(MA4) is a consequence of (MA ii).

Lemma 5.14  LetJ be a masure of type 3. Let v be a chimney of A, v = t(F*, F"), where
F¥, resp., F', is a local face, resp., vectorial face, of A. Let R* = germ__(cl*(F%, F")).

Let A be an apartment containing v and R* and such that there exists ¢: A 2, A Then
$p:A S A
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Proof One cansuppose that F¥ c CT; Let U € 3% such that Uisenclosed, U c An A

and such that U is fixed by ¢. One writes U = N*_, D(B:, k;), with i, ..., Bx € ® and
(kis..osky) € TTioy A,

Let £ € F¥ be such that U € cl(F® + F* + &). Let ] = {i € [[Lk]] | Bi(§) # 0}.
For all i € [[1,7]], one has D(f;,k;) > n& for n > 0. Thus f;(£) > 0 for all i € J.
One has U - & = 0K, D(Bs, ki + Bi(&)). Let A € J1, +0o] be such that for all i € J,
there exists k; € A} such that k; + B; (£) < k; < ki + AB;(£). Let U = N, D(Bs k).
Then U - & ¢ U ¢ U — A&, Therefore, U € t. Let V' € v be such that V/ ¢ An A
and such that V/ + F* ¢ V/. Then V := Un V' € t. Letv € V and § c F” be the
ray based at 0 and containing . By the proof of of [Roull, Proposition 5.4] (which

uses only (MA1), (MA2'), (MA3), (MA4) and (MAO)), there exists g,: A BALN A. As
V c U - A&, there exists a shortening 8’ of v + § contained in U. Then g,' o ¢: A — A
fixes 8. Consequently, g;* o ¢ fixes the support of 8’ and thus ¢ fixes v: ¢ fixes V.
Therefore ¢ fixes t, and the lemma follows. ]

Lemma 5.15 Let J be a masure of type 3 and cl € CL ». Then T satisfies (MA2", cl).

Proof Lett = cl(F', F") be a solid chimney of an apartment A and A’ be an apart-
ment containing t. One supposes that A = A. Let t* = cI’(F', F*), resp., t, = F' + F",
and R7, resp., R,, be the germ of t*, resp., v.). By Lemma 5.11 applied with X = R,

there exists ¢: A LA By Lemma 5.14, ¢ fixes v and thus J satisfies (MA2% c]). m

We can now prove Theorem 5.2. Let cl € CL,/. By Lemma 5.10, a masure of type
(1, cl) is also a masure of type (2, cl) and thus it is a masure of type 3. By Lemma 5.12,
Lemma 5.13, and Lemma 5.15, a masure of type 3 is a masure of type (1, cl), which
concludes the proof of the theorem.

5.2 Friendly Pairs in J

Let A = (A, W, A’) be an apartment. Let J be a masure of type A. We now use
the finite enclosure cl = cl’,,, which makes sense by Theorem 5.1. A family (F i)je
of filters in J is said to be friendly if there exists an apartment containing Ujc; Fj.
In this section, we obtain friendliness results for pairs of faces, improving results of
[Roull, §5]. We will use it to give a very simple axiomatics of masures in the affine
case. These kinds of results also have interest in their own right: the definitions of the
Iwahori-Hecke algebra of [BPGRI16] and of the parahoric Hecke algebras of [AH17]
rely on the existence of apartments containing pairs of faces.

If x € J,e € {—,+}, and A is an apartment, one denotes by F,, resp., F¢, F¢(A),
Cy, ..., the set of faces of J based at x, resp., and of sign ¢, and contained in A, the
set of chambers of J based at x, .... If X is a filter, one denotes by A(X) the set of
apartments containing X.

Lemma 5.16  Let A be an apartment of J, a € A, and Cy, C, € C,(A). Let D, be the
set of half-apartments of A whose wall contains a. Suppose that C; + C,. Then there
exists D € D, such that D > Cy and D 3 C,.
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Proof Let C} and Cj; be vectorial chambers of A such that C; = F(a,C}) and C; =
F(a, C}). Suppose that for all D € D, such that D 5 C;, one has D 5 C,. Let X € C;.
There exist half-apartments Dy, ..., Dy and Q € V4(a) such that X o ﬂf.‘zl DS >
Qn(a+Cy).

Let ] = {j e [Lk]] | Dj ¢ D,}. Forall j € ], one chooses Q; € V4(a) such that
D;>Q;. If je [[Lk]\J, Dj 2 G, thus D; o C; and hence D 5 C;. Therefore, there
exists Q; € V4(a) such that D7 5 Q; n (x + C3). Hence

k o k v
XDJDle D(OQj) n(x+C}),

j=

—

thus X € C, and C; o C,.

Let D € D, such that D o C,. Suppose that D 2 C;. Let D’ be the half-apartment
opposite D. Then D’ 5 C; and therefore D’ 5 C,: this is absurd. Therefore for all
D e D, such that D o C,, one has D > C;. By the same reasoning as above, we
deduce that C, o C; and thus C; = C,. This is absurd, and the lemma is proved. =

The following proposition improves [Roull, Proposition 5.1]. It is the analogue of
axiom (I1) of buildings (see the Introduction).

Proposition 5.17 Let {x, y} be a friendly pair in J.

(i) Let A e A({x,y}) and & be a ray of A based at x and containing y (if y # x,
8 is unique) and F, € F,. Then (8, F,) is friendly. Moreover, there exists A’ €

A(8 U Fy) such that there exists an isomorphism ¢: A S
(ii) Let (Fx,F)) € J, xJ,. Then (Fy, F,) is friendly.

Proof We begin by proving (i). Let C, be a chamber of J containing F,. Let C be
a chamber of A based at x and having the same sign as C,. By [Roull, Proposition
5.1], there exists an apartment B containing C, and C. Let C; = C,...,C, = Cy
be a gallery in B from C to C,. If i € [[1,n]], one lets P; be the statement “there
exists an apartment A; containing C; and § such that there exists an isomorphism

¢ A 3 A;” The property Py is true by taking A; = A. Let i € [[1, n — 1]] be such that
P; is true. If C;4y = C;, then P, is true. Suppose C; # C;41. Let A; be an apartment
containing C; and §. By Lemma 5.16, there exists a half-apartment D of A whose wall
contains x and such that C; ¢ D and C;;; ¢ D. As C; and C;,; are adjacent, the wall
M of D is the wall separating C; and C;,;. By (MA2), there exists an isomorphism

¢:B N A;. Let M' = ¢(M) and D, D, be the half-apartments of A; delimited by
M'. Let j € {1,2} such that D; > §. By [Roull, Proposition 2.9(1)], there exists an

5 D,
apartment A;,; containing D; and Ci,;. Let y;:A - A; and y: A; — A, Then

Yoy A 5 Ajq. Therefore P, is true. Consequently, P, is true, which proves (i).
Let us prove (ii), which is very similar to (i). As a particular case of (i), there exists
an apartment A’ containing F, and y. Let C, be a chamber of J containing F,. Let C
be a chamber of A" based at y and of the same signas F,. Let C, = C, ..., C, = C, be
a gallery of chambers from C to C, (which exists by [Roull, Proposition 5.1]). By the
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same reasoning as above, for all i € [[1, n]], there exists an apartment containing F,
and C;, which proves (ii). [ |

5.3 Axioms of Masures in the Affine Case

In this section, we study the particular case of masures associated with the irreducible
affine Kac-Moody matrix A, which means that A satisfies condition (aff) of [Kac94,
Theorem 4.3].

Let § be a generating root system associated with an irreducible and affine Kac-
Moody matrix and A = (8, W, A’) be an apartment. By [Roull, §1.3], one has T =
{v e A|d() > 0} for some imaginary root § € Q*\{0} and T = T U A,,,, where
Ain = Nier ker(a;).

We fix an apartment A of affine type. Let (MA af i)=(MAL1).

Let (MA af ii): let A and B be two apartments. Then A N B is enclosed and there
exists ¢: A 25 B,

Let (MA af iii)= (MA iii).

The aim of this subsection is to prove the following theorem.

Theorem 5.18 Let J be a construction of type A and cl € CL s Then J is a masure
for cl if and only if J satisfies (MA af i), (MA af ii) and (MA af iii, cl) if and only if J
satisfies (MA af i), (MA af ii) and (MA af i, cI”).

Remark 5.19  Actually, we do not know if these axioms are true for masures asso-
ciated with indefinite Kac-Moody groups. We do not know if the intersection of two
apartments is always convex in a masure.

The fact that we can exchange (MA af iii, cl’) and (MA afiii, cl) for all cl € CL
follows from Theorem 5.2. The fact that a construction satisfying (MA af ii) and (MA
af iii, ) is a masure is clear and does not use the fact that A is associated with an
affine Kac-Moody matrix. It remains to prove that a masure of type A satisfies (MA
af ii), which is the aim of this subsection.

Lemma 5.20 Let A and B be two apartments such that there exist x, y € An B such
that x<y and x + y. Then A n B is convex.

Proof One identifies Aand A. Leta,b e AnB.1f8(a) # 6(b),thena<borb<a
and [a,b] c B by (MAO). Suppose §(a) = 8(b). As 8(x) # 8(y), one can suppose
that 8(a) # 8(x). Then [a, x] c B. Let (a,) € [a,x]" be such that §(a,) # 8(a) for
alln € Nand a, — a. Let t € [0,1]. Then ta, + (1-t)b € Bforall n € N and by
Proposition 3.9, ta + (1 - t)b € B: A n B is convex. n

Lemma 5.21 Let A and A" be two apartments of J. Then An A’ is convex. Moreover,

ifx,y e An A’ there exists an isomorphism ¢: A JESAIN Al

Proof Letx,y € An A’ besuch that x # y. Let C, be a chamber of A based at x
and C, be a chamber of A" based at y. Let B be an apartment containing C, and C,,
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which exists by Proposition 5.17. By Lemma 5.20, A n Band A’ n B are convex and by

Proposition 3.26, there exist isomorphisms y: A A0%, Band v":B 208 A’ Therefore
[%,¥]a = [x,¥]s = [%,y]a- Moreover, ¢ = y' o y fixes [x, y]4 and the lemma is
proved. ]

Theorem 5.22  Let A and B be two apartments. Then A n B is enclosed and there

. . . ANnB
exists an isomorphism ¢: A — B.

Proof The fact that A n B is enclosed is a consequence of Lemma 5.21 and Proposi-
tion 3.22. By Proposition 3.14, there exist £ € N, enclosed subsets P, . .., P, of A such

P.
that supp(A n B) = supp(P;) and isomorphisms ¢;: A —> B for all j € [[1,€]]. Let

x € Int,(P;) and y € An B. By Lemma 5.21, there exists ¢,: A EoIN B. Then ¢! o ¢,
fixes a neighborhood of x in [x, y] and thus ¢, fixes y, which proves the theorem. m
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