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A New Axiomatics for Masures

Auguste Hébert

Abstract. Masures are generalizations of Bruhat–Tits buildings. hey were introduced by Gaussent
and Rousseau to study Kac–Moody groups over ultrametric ûelds that generalize reductive groups.
Rousseau gave an axiomatic deûnition of these spaces. We propose an equivalent axiomatic deûnition,
which is shorter, more practical, and closer to the axiom of Bruhat–Tits buildings. Our main tool to
prove the equivalence of the axioms is the study of the convexity properties in masures.

1 Introduction

An important tool for studying a split reductive group G over a non-archimedean lo-
cal ûeld is its Bruhat–Tits building [BT72,BT84]. Kac–Moody groups are interesting
inûnite-dimensional (if not reductive) generalizations of reductive groups. In order
to study them over ûelds endowed with a discrete valuation, Gaussent and Rousseau
introduced masures (also known as hovels) [GR08] that are analogs of Bruhat–Tits
buildings. Charignon and Rousseau generalized this construction [Cha10, Rou17,
Rou16]: Charignon treated the almost split case and Rousseau suppressed restric-
tions on the base ûeld and on the group. Rousseau also deûned an axiomatics of
masures [Rou11]. Recently, Freyn, Hartnick, Horn, and Köhl made an analog con-
struction in the archimedean case [FHHK17]: with each split real Kac–Moody group,
they associate a space on which the group acts, generalizing the notion of riemannian
symmetric space.

Masures enable obtaining results on the arithmetic of (almost) split Kac–Moody
groups over non-archimedean local ûelds. Let us survey them brie�y. Let G be such a
group and I its masure. Gaussent and Rousseau used I to prove a link between Little-
mann’s path model and some kind of Mirković–Vilonen cycle model of G [GR08].
Gaussent and Rousseau also associated a spherical Hecke algebra sH with G and
they obtained a Satake isomorphism in this setting [GR14]. hese results general-
ized works of Braverman and Kazhdan obtained when G is supposedly aõne [BK11].
Bardy-Panse, Gaussent, and Rousseau deûned the Iwahori–Hecke algebra IH of G
[BPGR16]. Braverman, Kazhdan, and Patnaik had already done this construction
when G is aõne [BKP16]. In [Héb17], we obtained ûniteness results on G enabling
us to give a meaning to one side of the Gindikin–Karpelevich formula obtained by
Braverman, Garland, Kazhdan, and Patnaik in the aõne case [BGKP14]. Together
with Abdellatif, we deûned a completion of IH and generalized the construction of
the Iwahori–Hecke algebra of G: we associated Hecke algebras with subgroups of G
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more general than the Iwahori subgroup, the analogue of the parahoric subgroups
[AH17]. Bardy-Panse, Gaussent, and Rousseau proved Macdonald’s formula for G:
they gave an explicit formula for the image of some basis of sH by the Satake iso-
morphism [BPGR17]. heir formula generalizes a well-known formula ofMacdonald
[Mac71] for reductive groups, which had already been extended to aõne Kac–Moody
groups [BKP16].
Despite these results, some very basic questions are still open in the theory of ma-

sures. In this paper we are interested in questions of enclosure maps and of convexity
in masures. Let us be more precise. he masure is an object similar to the Bruhat–
Tits building. his is a union of subsets called apartments. An apartment is a ûnite-
dimensional aõne space equipped with a set of hyperplanes called walls. he groupG

acts by permuting these apartments that are, therefore, all isomorphic to one of them
called the standard apartment A.

To deûne themasure I associatedwithG, Gaussent andRousseau (followingBruhat
and Tits) ûrst deûnedA. Let us describe it brie�y. Suppose that the ûeld of deûnition
is local. Let Q∨ be the co-root lattice of G and let Φ be its set of real roots. One can
consider Q∨ as a lattice of some aõne space A and Φ as a set of linear forms on A.
Let Y be a lattice of A containing Q∨ (one can consider Y = Q∨ in a ûrst approxima-
tion). hen the set M of walls of A is the set of hyperplanes containing an element of
Y and whose direction is ker(α) for some α ∈ Φ. he half-spaces delimited by walls
are called half-apartments. Suppose that G is reductive. hen Φ is ûnite and I is a
building. A well-known property of buildings is that if A is an apartment of I, then
A∩A is a ûnite intersection of half-apartments and there exists an isomorphism from
A to A ûxing A ∩ A [BT72, §2.5.7 and Proposition 2.5.8]. Studying this question for
masures seems natural for two reasons: ûrst, masures generalize Bruhat–Tits build-
ings and have properties similar to them and second, because three of the ûve axioms
of the axiomatic deûnition of Rousseau are weak forms of this property.

We study this question in the aõne case and in the indeûnite case. Let us begin
with the aõne case, where we prove that this property is true.

heorem 1.1 Let I be a masure associated with an aõne Kac–Moody group. Let A

be an apartment. hen A ∩ A is a ûnite intersection of half-apartments of A and there

exists an isomorphism from A to A ûxing A ∩ A.

We deûne a new axiomatics of masures and prove that it is equivalent to the one
given by Rousseau (we recall it in Section 2.2.2), using heorem 1.1. Our axioms are
simpler and are closer to the usual geometric axioms of Euclidean buildings. To em-
phasize this analogy, we ûrst recall one of their deûnitions in the case where the val-
uation is discrete (see [Bro89, §IV] or [Rou04, §6]; our deûnition is slightly modiûed
but equivalent).

Deûnition 1.2 A Euclidean building is a set I equipped with a setA of subsets called
apartments satisfying the following axioms.
(I0) Each apartment is a Euclidean apartment.
(I1) For any two faces F and F′, there exists an apartment containing F and F′.
(I2) If A and A′ are apartments, then A∩ A′ is a ûnite intersection of half-apartments
and there exists an isomorphism ϕ∶A→ A′ ûxing A ∩ A′.
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In the statement of the next theorem, we use the notion of chimney. hey are some
kind of thickened sector faces. he word splayedwill be explained later. We prove the
following theorem.

heorem 1.3 Suppose G is an aõne Kac–Moody group. Let A be the apartment

associated with the root system of G. Let (I,A) be a couple such that I is a set andA is

a set of subsets of I called apartments. hen (I,A) is a masure of type A in the sense of

[Rou11] if and only if it satisûes the following axioms.

(MA af i) Each apartment is an apartment of type A.

(MA af ii) If A and A′ are two apartments, then A ∩ A′ is a ûnite intersection of

half-apartments and there exists an isomorphism ϕ ∶ A→ A′ ûxing A ∩ A′.
(MA af iii) If R is the germ of a splayed chimney and F is a face or a germ of a

chimney, then there exists an apartment containing R and F.

We now turn to the general (not necessarily aõne) case. Similarly to buildings,
we can still deûne a fundamental chamber Cv

f
in the standard apartment A. his

enables one to deûne theTits coneT = ⋃w∈Wv w .Cv

f
, whereWv is theWeyl group ofG.

An important diòerence between buildings and masures is that when G is reductive,
T = A and when G is not reductive, T ≠ A is only a convex cone. his deûnes a
preorder onA by saying that x , y ∈ A satisfy x ≤ y if y ∈ x +T. his preorder extends
to a preorder on I, the Tits preorder, by using isomorphisms of apartments. Convexity
properties in Iwere known only on preordered pairs of points. If A,A′ are apartments
and contain two points x , y such that x ≤ y, then A ∩ A′ contains the segment in A
between x and y and there exists an isomorphism from A to A′ ûxing this segment
[Rou11, Proposition 5.4].
A ray (half-line) of I is said to be generic if its direction meets the interior T̊ of T.

A chimney is splayed if it contains a generic ray. he main result of this paper is the
following theorem.

heorem 1.4 Let Abe an apartment such thatA∩ Acontains a generic ray ofA. hen

A ∩ A is a ûnite intersection of half-apartments of A and there exists an isomorphism

from A to A ûxing A ∩ A.

Using this theorem, we prove that the axiomatic deûnition of Rousseau is equiva-
lent to a simpler one.

heorem 1.5 LetA be the apartment associated with the root system of G. Let (I,A)
be a couple such that I is a set and A is a set of subsets of I called apartments. hen

(I,A) is a masure of typeA in the sense of [Rou11] if and only if it satisûes the following

axioms.

(MA i) Each apartment is an apartment of type A.

(MA ii) If two apartments A and A′ are such that A ∩ A′ contains a generic ray,

then A ∩ A′ is a ûnite intersection of half-apartments and there exists an isomorphism

ϕ∶A→ A′ ûxing A ∩ A′.
(MA iii) IfR is the germ of a splayed chimney and F is a face or a germ of a chimney,

then there exists an apartment containing R and F.
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he axiom (MA iii) (very close to the axiom (MA3) of Rousseau) corresponds to
the existence parts of Iwasawa, Bruhat and Birkhoò, decompositions in G, resp. for
F a face andR a sector-germ, F andR two sector-germs of the same sign, and F and
R two opposite sector-germs. he axiom (MA ii), which implies the axiom (MA4) of
Rousseau, corresponds to the uniqueness part of these decompositions.

he fact that if x , y ∈ I are such that x ≤ y, the segment between x and y does not
depend on the apartment containing {x , y}was an axiomofmasures (axiom (MAO)).
A step of our proof of heorem 1.5 is to show that (MAO) is actually a consequence
of the other axioms of masures (see Proposition 5.3).

To deûne faces and chimneys, Rousseau used enclosure maps (see Section 2.1.5 for
a precise deûnition). WhenG is a reductive group over a local ûeld, the enclosure of a
set P ofA is the intersection of the half-apartments ofA containing P. WhenG is not
reductive, M can be dense in A. Consequently, Gaussent and Rousseau deûned the
enclosure of a subset to be a ûlter and no more necessarily a set (which is already the
case for buildings when the valuation of the base ûeld is not discrete). Moreover, there
are several natural choices of enclosuremaps: one can use all the roots (real and imag-
inary) or only the real roots, one can allow arbitrary intersections of half-apartments
or only ûnite intersections of half-apartments, etc. his led to many deûnitions and
notations in [Rou17]. he theorem above proves that all these choices of enclosure
maps lead to the same deûnition of masure; therefore the “good” enclosure map is the
biggest one, which involves only real roots and ûnite intersections.
Actually we do not limit our study tomasures associated with Kac–Moody groups:

for us a masure is a set satisfying the axioms of [Rou11] and whose apartments are
associated with a root generating system (and thus to a Kac–Moody matrix). We do
not assume that there exists a group acting strongly transitively on it. Neither do we
any discreteness hypothesis for the standard apartment: ifM is a wall, the set of walls
parallel to it is not necessarily discrete; this enables to handle masures associated with
split Kac–Moody groups over any ultrametric ûeld.

he paper is organized as follows. In Section 2, we describe the general framework
and recall the deûnition of masures.

In Section 3 we study the intersection of two apartments A and B, without assum-
ing that A ∩ B contains a generic ray. We prove that A ∩ B can be written as a union
of enclosed subsets and that A∩ B is enclosed when it is convex. If P ⊂ A∩ B, we give
a suõcient condition of existence of an isomorphism from A to B ûxing P.

In Section 4, we study the intersection of two apartments sharing a generic ray
and prove heorem 1.4, which is stated as heorem 4.22. he reader only interested
inmasures associatedwith aõneKac–Moody groups can skip this Section and replace
heorem 4.22 by Lemma 5.20, which is far easier to prove.

In Section 5, we deduce new axiomatics of masures: we show heorem 1.5 and
heorem 1.3, which correspond to heorem 5.1 andheorem 5.18.

2 General Framework, Masure

In this section, we deûne our framework and recall the deûnition of masures. hen
we recall some notions on masures. References for this section are [Rou11, §1, §2] and
[GR14, §1].
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2.1 Standard Apartment

2.1.1 Root Generating System

LetAbe aKac–Moodymatrix (also known as generalizedCartanmatrix), i.e., a square
matrix A = (a i , j)i , j∈I with integer coeõcients, indexed by a ûnite set I, and satisfying
● a i , i = 2, for all i ∈ I,
● a i , j ≤ 0, for all (i , j) ∈ I2∣i ≠ j,
● a i , j = 0⇔ a j , i = 0, for all (i , j) ∈ I2.
A root generating system of type A is a 5-tuple

S = (A, X ,Y , (α i)i∈I , (α∨i )i∈I)

made of a Kac–Moody matrix A indexed by I, of two dual freeZ-modules X (of char-
acters) and Y (of co-characters) of ûnite rank rk(X), a family (α i)i∈I (of simple roots)
in X and a family (α∨i )i∈I (of simple co-roots) in Y . hey must satisfy the following
compatibility condition: a i , j = α j(α

∨
i ) for all i , j ∈ I. We also suppose that the family

(α i)i∈I is free in X and that the family (α∨i )i∈I is free in Y .
Let A = Y ⊗R. Every element of X induces a linear form on A. We will consider

X as a subset of the dual A∗ of A: the α i ’s, i ∈ I, are viewed as linear forms on A. For
i ∈ I, we deûne an involution r i ofA by r i(v) = v − α i(v)α

∨
i , for all v ∈ A. Its space of

ûxed points is ker α i . he subgroup of GL(A) generated by the α i for i ∈ I is denoted
by Wv and is called theWeyl group of S. he system (Wv , {r i ∣ i ∈ I}) is a Coxeter
system. For w ∈Wv , we denote by ℓ(w) the length of w with respect to {r i ∣ i ∈ I}.

One deûnes an action of the group Wv on A∗ in the following way: if x ∈ A,
w ∈Wv , and α ∈ A∗, then (w .α)(x) = α(w−1 .x). Let Φ = {w .α i ∣ (w , i) ∈Wv × I};
Φ is the set of real roots. hen Φ ⊂ Q, where Q = ⊕i∈I Zα i . Let Q+ = ⊕i∈I Nα i ,
Φ+ = Q+ ∩ Φ, and Φ− = (−Q+) ∩ Φ. hen Φ = Φ+ ⊔ Φ−. Let ∆ be the set of all
roots as deûned in [Kac94] and ∆im = ∆/Φ. hen (A,Wv , (α i)i∈I , (α∨i )i∈I , ∆im) is a
vectorial datum as in [Rou11, §1].

2.1.2 Vectorial Faces and Tits Cone

Deûne Cv

f
= {v ∈ A ∣ α i(v) > 0, ∀i ∈ I}. We call it the fundamental chamber. For

J ⊂ I, one sets

F
v(J) = {v ∈ A ∣ α i(v) = 0 ∀i ∈ J , α i(v) > 0 ∀i ∈ J/I}.

hen the closure Cv

f
of Cv

f
is the union of the Fv(J) for J ⊂ I. he positive, resp.,

negative, vectorial faces are the sets w .Fv(J), resp., −w .Fv(J), for w ∈ Wv and J ⊂ I.
A vectorial face is either a positive vectorial face or a negative vectorial face. We call a
positive chamber, resp., negative chamber, a cone of the form w .Cv

f
for some w ∈Wv ,

resp., −w .Cv

f
. For all x ∈ Cv

f
and for all w ∈ Wv , w .x = x implies that w = 1. In

particular the action of w on the positive chambers is simply transitive. he Tits cone
T is deûned by T = ⋃w∈Wv w .Cv

f
. We also consider the negative cone −T. We deûne a

Wv invariant preorder ≤, resp., ≤̊, onA, the Tits preorder, resp., the Tits open preorder,
by ∀(x , y) ∈ A2, x ≤ y⇔ y − x ∈ T, resp., x≤̊y⇔ y − x ∈ T̊ ∪ {0}.
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2.1.3 Weyl Group of A

We now deûne theWeyl groupW ofA. If X is an aõne subspace ofA, one denotes by
X⃗ its direction. One equips A with a familyM of aõne hyperplanes called real walls

such that we have the following.

(1) For all M ∈M, there exists αM ∈ Φ such that M⃗ = ker(αM).
(2) For all α ∈ Φ, there exists an inûnite number of hyperplanes M ∈ M such that

α = αM .
(3) If M ∈ M, we denote by rM the re�exion of hyperplane M whose associated lin-

ear map is rαM . We assume that the group W generated by the rM for M ∈ M
stabilizes M.

he groupW is theWeyl group ofA. A point x is said to be special if every real wall
is parallel to a real wall containing x. We suppose that 0 is special and thus W ⊃Wv .

If α ∈ A∗ and k ∈ R, one sets M(α, k) = {v ∈ A ∣ α(v) + k = 0}. hen for all
M ∈ M, there exists α ∈ Φ and kM ∈ R such that M = M(α, kM). If α ∈ Φ, one sets
Λα = {kM ∣ M ∈M and M⃗ = ker(α)}. hen Λw . α = Λα for all w ∈Wv and α ∈ Φ.

If α ∈ Φ, one denotes by Λ̃α the subgroup of R generated by Λα . By (3), Λα =

Λα + 2Λ̃α for all α ∈ Φ. In particular, Λα = −Λα and when Λα is discrete, Λ̃α = Λα is
isomorphic to Z.

One sets Q∨ = ⊕α∈Φ Λ̃αα
∨. his is a subgroup ofA stable under the action ofWv .

hen one has W =Wv ⋉ Q∨.
For a ûrst reading, the reader can consider the situation where the walls are the

ϕ−1({k}) for ϕ ∈ Φand k ∈ Z. We thenhave Λα = Z for all α ∈ Φ, andQ∨ = ⊕i∈I Zα∨i .

2.1.4 Filters

Deûnition 2.1 A ûlter in a set E is a nonempty set F of nonempty subsets of E such
that, for all subsets S, S′ of E, if S, S′ ∈ F, then S ∩ S′ ∈ F and, if S′ ⊂ S, with S′ ∈ F,
then S ∈ F.

If F is a ûlter in a set E, and E′ is a subset of E, one says that F contains E′ if every
element of F contains E′. If E′ is nonempty, the set FE′ of subsets of E containing E′

is a ûlter. By abuse of language, we will sometimes say that E′ is a ûlter by identifying
FE′ and E′. If F is a ûlter in E, its closure F, resp., its convex envelope, is the ûlter of
subsets of E containing the closure, resp., the convex envelope, of some element of F.
A ûlter F is said to be contained in another ûlter F′: F ⊂ F′ (resp., in a subset Z in E:
F ⊂ Z) if and only if any set in F′ (resp., if Z) is in F.

If x ∈ A and Ω is a subset of A containing x in its closure, then the germ of Ω in x

is the ûlter germ
x
(Ω) of subsets of A containing a neighborhood of x in Ω.

A sector in A is a set of the form s = x + Cv with Cv = ±w .Cv

f
for some x ∈ A

and w ∈ Wv . A point u such that s = u + Cv is called a base point of s and Cv is its
direction. he intersection of two sectors of the same direction is a sector of the same
direction.
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he sector-germ of a sector s = x + Cv is the ûlter S of subsets of A containing an
A-translate of s. It only depends on the direction Cv . We denote by +∞, resp., −∞,
the sector-germ of Cv

f
, resp., of −Cv

f
.

A ray δ with base point x and containing y ≠ x (or the interval ]x , y] = [x , y]/{x}
or [x , y] or the line containing x and y) is called preordered if x ≤ y or y ≤ x and
generic if y − x ∈ ±T̊, the interior of ±T.

2.1.5 Enclosure Maps

Let ∆ = Φ ∪ ∆+im ∪ ∆−im be the set of all roots. For α ∈ ∆, and k ∈ R ∪ {+∞},
let D(α, k) = {v ∈ A ∣ α(v) + k ≥ 0} (and D(α,+∞) = A for all α ∈ ∆) and
D○(α, k) = {v ∈ A ∣ α(v) + k > 0} (for α ∈ ∆ and k ∈ R∪ {+∞}). If α ∈ ∆im, one sets
Λα = R. Let [Φ, ∆] be the set of sets P satisfying Φ ⊂ P ⊂ ∆.

If X is a set, one denotes by P(X) the set of subsets of X. Let L be the set of
families (Λ′

α) ∈ P(R)∆ such that for all α ∈ ∆, Λα ⊂ Λ′
α and Λ′

α = −Λ
′
−α .

Let F (A) be the set of ûlters of A. If P ∈ [Φ, ∆] and Λ′ ∈ L, one deûnes the map
clPΛ′ ∶F (A) →F (A) as follows. If U ∈ F (A),

clPΛ′(U) = {V ∈ U ∣ ∃(kα) ∈ ∏
α∈P

(Λ′
α ∪ {+∞}) ∣ V ⊃ ⋂

α∈P
D(α, kα) ⊃ U} .

If Λ′ ∈ L, let cl#Λ′ ∶F (A) →F (A) deûned as follows. If U ⊂ A,

cl#Λ′(U) = {V ∈ U ∣ ∃n ∈ N, (β i) ∈ Φn , (k i) ∈
n

∏
i=1

Λ′
β i

∣ V ⊃
n

⋂
i=1
D(β i , k i) ⊃ U} .

Let CL∞ = {clPΛ′ ∣ P ∈ [Φ, ∆] and Λ′ ∈ L}. An element of CL∞ is called an
inûnite enclosure map. Let CL# = {cl#Λ′ ∣Λ

′ ∈ L}. An element of CL# is called a ûnite
enclosure map. Although CL

∞ and CL
# might not be disjoint (for example, if A is

associated with a reductive group over a local ûeld), we deûne the set of enclosure
maps CL = CL

∞ ⊔ CL
#. In Section 2.2.1 the deûnition of the set of faces associated

with an enclosure map cl depends on whether cl is ûnite.
If cl ∈ CL, cl = clPΛ′ with P ∈ [Φ, ∆] ∪ {#} and Λ′ ∈ L, then, for all α ∈ ∆,

Λ′
α = {k ∈ R ∣ cl(D(α, k)) = D(α, k)}. herefore cl# ∶= cl#Λ′ is well deûned. We do

not use exactly the same notation as Rousseau [Rou17] where cl# means cl#Λ .
If Λ′ ∈ L, one sets CLΛ′ = {clPΛ′ ∣ P ∈ [Φ, ∆]} ⊔ {cl#Λ′}.
In order to simplify, the reader can consider the situation where Λα = Λ′

α = Z, for
all α ∈ Φ, P = ∆, and cl = cl∆Λ ; see [GR14,BPGR16,Héb17].
An apartment is a root-generating system equipped with a Weyl group W , i.e.,

with a set M of real walls, Section 2.1.3, and a family Λ′ ∈ L. Let A = (S,W , Λ′) be
an apartment. A set of the form M(α, k), with α ∈ Φ and k ∈ Λ′

α is called a wall of
A and a set of the form D(α, k), with α ∈ Φ and k ∈ Λ′

α is called a half-apartment

of A. A subset X of A is said to be enclosed if there exist k ∈ N, β1 , . . . , βk ∈ Φ,
and (λ1 , . . . , λk) ∈ ∏

k

i=1 Λ
′
β i

such that X = ⋂k
i=1 D(β i , λ i), i.e., X = cl#Λ′(X). As we

shall see, if Λ′ ∈ L is ûxed, the deûnition of masure does not depend on the choice
of an enclosure map in CLΛ′ and thus it will be more convenient to choose cl#Λ′ ; see
heorems 5.1 and 5.2.
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Remark 2.2 Here and in the following, we can replace ∆+im by anyW
v-stable subset

of ⊕i∈I R+α i such that ∆+im ∩ ⋃α∈Φ Rα is empty. We then set ∆−im = −∆+im. his is
useful for including the case of almost-split Kac–Moody groups [Rou17, §6.11.3 ].

2.2 Masure

In this section, we deûne masures. hey were introduced in [GR08] for symmetriz-
able split Kac–Moody groups over ultrametric ûelds whose residue ûeld contains C,
axiomatized in [Rou11], then developed and generalized to almost-split Kac–Moody
groups over ultrametric ûelds in [Rou16,Rou17].

2.2.1 Definitions of Faces, Chimneys, and Related Notions

Let A = (S,W , Λ′) be an apartment. We choose an enclosure map cl ∈ CLΛ′ .
A local-face is associated with a point x and a vectorial face Fv in A; it is the ûlter

F ℓ(x , Fv) = germ
x
(x + Fv) intersection of x + Fv and the ûlter of neighborhoods

of x in A. A face F in A is a ûlter associated with a point x ∈ A and a vectorial face
Fv ⊂ A. More precisely, if cl is inûnite, resp., ûnite, cl = clPΛ′ with P ∈ [Φ, ∆], resp.,
cl = cl#Λ′ , F(x , F

v) is the ûlter made of the subsets containing an intersection, resp.,
a ûnite intersection, of half-spaces D(α, λα) or D○(α, λα), with λα ∈ Λ′

α ∪ {+∞} for
all α ∈ P (at most one λα ∈ Λα for each α ∈ P), resp., Φ.

here is an order on the faces: if F ⊂ F′, one says that F is a face of F′ or F′ contains
F. he dimension of a face F is the smallest dimension of an aõne space generated by
some S ∈ F. Such an aõne space is unique and is called its support. A face is said to
be spherical if the direction of its support meets the open Tits cone T̊ or its opposite
−T̊; then its pointwise stabilizer WF in Wv is ûnite.
A chamber (or alcove) is a face of the form F(x ,Cv), where x ∈ A and Cv is a

vectorial chamber of A.
A panel is a face of the form F(x , Fv), where x ∈ A and Fv is a vectorial face of A

spanning a wall.
A chimney inA is associated with a face F = F(x , Fv0 ) and with a vectorial face Fv ;

it is the ûlter r(F , Fv) = cl(F + Fv). he face F is the basis of the chimney and the
vectorial face Fv is its direction. A chimney is splayed if Fv is spherical, and is solid if
its support (as a ûlter, i.e., the smallest aõne subspace of A containing r) has a ûnite
pointwise stabilizer in Wv . A splayed chimney is therefore solid.
A shortening of a chimney r(F , Fv), with F = F(x , Fv0 ) is a chimney of the form

r(F(x + ξ, Fv0 ), F
v) for some ξ ∈ Fv . he germ of a chimney r is the ûlter of subsets of

A containing a shortening of r (this deûnition of shortening is slightly diòerent from
the one of [Rou11, §1.12], but follows [Rou17, §3.6] and we obtain the same germs with
these two deûnitions).

2.2.2 Masure

An apartment of typeA is a set Awith a nonempty set Isom(A,A) of bijections (called
Weyl-isomorphisms) such that if f0 ∈ Isom(A,A), then f ∈ Isom(A,A) if and only if
there exists w ∈ W satisfying f = f0 ○ w. We will say isomorphism instead of Weyl-
isomorphism in the sequel. An isomorphism between two apartments ϕ∶A → A′ is
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a bijection such that f ∈ Isom(A,A) if and only if ϕ ○ f ∈ Isom(A,A′). We extend
all the notions that are preserved by W to each apartment. hus sectors, enclosures,
faces and chimneys are well deûned in any apartment of type A.

Deûnition 2.3 A masure of type (A, cl) is a set I endowed with a covering A of
subsets called apartments such that we have the following.

(MA1) Any A ∈ A admits a structure of apartment of type A.
(MA2, cl) is a point, a germof a preordered interval, a generic ray, or a solid chim-

ney in an apartment A and if A′ is another apartment containing F, then A ∩ A′ con-
tains the enclosure clA(F) of F and there exists an isomorphism from Aonto A′ ûxing
clA(F).

(MA3, cl) If R is the germ of a splayed chimney and if F is a face or a germ of a
solid chimney, then there exists an apartment containing R and F.

(MA4, cl) If two apartments A, A′ contain R and F as in (MA3), then there exists
an isomorphism from A to A′ ûxing clA(R ∪ F).

(MAO) If x, y are two points contained in two apartments A and A′, and if x ≤A y

then the two segments [x , y]A and [x , y]A′ are equal.

In this deûnition, one says that an apartment contains a germof a ûlter if it contains
at least one element of this germ. One says that a map ûxes a germ if it ûxes at least
one element of this germ.

he main example of masure is the masure associated with an almost-split Kac–
Moody group over an ultrametric ûeld [Rou17].

2.2.3 Example: A Masure Associated With a Split Kac–Moody Group Over an
Ultrametric Field

Let A be a Kac–Moody matrix and S be a root-generating system of type A. We con-
sider the group functor G associated with the root generating system S [Tit87] and
[Rém02, Chapter 8]. his functor is a functor from the category of rings to the cat-
egory of groups satisfying axioms (KMG 1)–(KMG 9) of [Tit87]. When R is a ûeld,
G(R) is uniquely determined by these axioms [Tit87, heorem 1′]. his functor con-
tains a toric functor T, from the category of rings to the category of commutative
groups (denoted T [Rém02]) and two functorsU+ andU− from the category of rings
to the category of groups.

Let K be a ûeld equipped with a non-trivial valuation ω∶K → R ∪ {+∞}, O its
ring of integers, and G = G(K) (and U+ = U+(K), etc.). For all є ∈ {−,+} and all
α ∈ Φє , we have an isomorphism xα fromK to a group Uα . For all k ∈ R, one deûnes
a subgroup Uα ,k ∶= xα({u ∈ K ∣ ω(u) ≥ k}). Let I be the masure associated with G

[Rou16]. hen for all α ∈ Φ, Λα = Λ′
α = ω(K)/{+∞} and cl = cl∆Λ . If, moreover,K is

local, one has (up to renormalization, see [GR14, Lemma 1.3]) Λα = Z for all α ∈ Φ.
Moreover, we have the following.
● he ûxer of A in G is H = T(O) [GR08, Remark 3.2].
● he ûxer of {0} in G is Ks = G(O) [GR08, Example 3.14].
● For all α ∈ Φ and k ∈ Z, the ûxer of D(α, k) in G is H.Uα ,k [GR08, §4.2 7].
● For all є ∈ {−,+}, H.U є is the ûxer of є∞ (by [GR08, §4.2 4]).
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If, moreover,K is local with residue cardinal q, each panel is contained in 1+ q cham-
bers.

he group G is reductive if and only if Wv is ûnite. In this case, I is the usual
Bruhat–Tits building of G and one has T = A.

2.3 Preliminary Notions on Masures

In this subsection we recall notions on masures introduced in [GR08, Rou11, Héb17,
Héb16].

2.3.1 Tits Preorder and Tits Open Preorder on I

As the Tits preorder ≤ and the Tits open preorder ≤̊ on A are invariant under the ac-
tion ofWv , one can equip each apartment A with preorders ≤A and ≤̊A. Let A be an
apartment of I and x , y ∈ A such that x ≤A y, resp., x≤̊Ay. hen by [Rou11, Propo-
sition 5.4], if B is an apartment containing x and y, then x ≤B y, resp., x≤̊B y. his
deûnes a relation ≤, resp., ≤̊, on I. By [Rou11,héorème 5.9], this deûnes a preorder ≤,
resp., ≤̊, on I. It is invariant by isomorphisms of apartments: if A, B are apartments,
ϕ∶A → B is an isomorphism of apartments and x , y ∈ A are such that x ≤ y. resp.,
x≤̊y, then ϕ(x) ≤ ϕ(y), resp., ϕ(x)≤̊ϕ(y). We call it the Tits preorder on I, resp., the
Tits open preorder on I.

2.3.2 Retractions Centered at Sector-germs

Let s be a sector-germ of I and A be an apartment containing it. Let x ∈ I. By (MA3),
there exists an apartment Ax of I containing x and s. By (MA4), there exists an iso-
morphism of apartments ϕ∶Ax → A ûxing s. By [Rou11, §2.6], ϕ(x) does not depend
on the choices we made and thus we can set ρA,s(x) = ϕ(x).

he map ρA,s is a retraction from I onto A. It only depends on s and A and we call
it the retraction onto A centered at s.

If A and B are two apartments, and ϕ∶A → B is an isomorphism of apartments
ûxing some set X, one writes ϕ∶A

X
Ð→ B. If A and B share a sector-germ q, one denotes

by A
A∩B
ÐÐ→ B or by A

q
→ B the unique isomorphism of apartments from A to B ûxing

q and also A ∩ B. We denote by I
q
→ A the retraction onto A ûxing q. One denotes by

ρ+∞ the retraction I
+∞
ÐÐ→ A and by ρ−∞ the retraction I

−∞
ÐÐ→ A.

2.3.3 Parallelism in I and Building at Infinity

Let us explain brie�y the notion of parallelism in I. his was done more completely
in [Rou11, §3].

Let us begin with rays. Let δ and δ′ be two generic rays in I. By (MA3) and [Rou11,
§2.2 3] there exists an apartment A containing sub-rays of δ and δ′ and we say that
δ and δ′ are parallel if these sub-rays are parallel in A. Parallelism is an equivalence
relation and its equivalence classes are called directions. Let S be a sector of I and A an
apartment containing S. One ûxes the origin of A in a base point of S. Let ν ∈ S and
δ = R+ν. hen δ is a generic ray in I. By [Héb17, Lemma 3.2], for all x ∈ I, there exists
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a unique ray x + δ of direction δ and base point x. To obtain this ray, one can choose
an apartment Ax containing x and a sub-ray δ′ of δ, which is possible by (MA3) and
[Rou11, §2.2 3], and then we take the translate of δ′ in Ax having x as a base point.
A sector-face f ofA, is a set of the form x +Fv for some vectorial face Fv and some

x ∈ A. he germF = germ∞( f ) of this sector-face is the ûlter containing the elements
of the form q + f , for some q ∈ Fv . he sector-face f is said to be spherical if Fv ∩ T̊

is nonempty. A sector-panel is a sector-face contained in a wall and spanning this one
as an aõne space. A sector-panel is spherical [Rou11, §1]. We extend these notions to
I thanks to the isomorphisms of apartments. Let us make a summary of the notion
of parallelism for sector-faces. his is also more complete in [Rou11, §3.3.4].

If f and f ′ are two spherical sector-faces, there exists an apartment B containing
their germs F and F′. One says that f and f ′ are parallel if there exists a vectorial face
Fv of B such that F = germ∞(x + Fv) and F′ = germ∞(y + Fv) for some x , y ∈ B.
Parallelism is an equivalence relation. he parallelism class of a sector-face germ F is
denoted F∞. We denote by I∞ the set of directions of spherical faces of I.
For all x ∈ I and all F∞ ∈ I∞, there exists a unique sector-face x +F∞ of direction

F∞ and with base point x [Rou11, Proposition 4.7.1]. he existence can be obtained in
the same way as for rays.

2.3.4 Distance Between Apartments

Here we recall the notion of distance between apartments introduced in [Héb16]. It
will o�en enable us tomake inductions and to restrict our study to apartments sharing
a sector. Let q and q′ be two sector germs of I of the same sign є. By (MA4), there
exists an apartment B containing q and q′. In B, there exists aminimal gallery between
q and q′, and the length of this gallery is called the distance between q and q′. his
does not depend on the choice of B. If A′ is an apartment of I, the distance d(A′ , q)
between A′ and q is theminimal possible distance between a sector-germ of A′ of sign
є and q. If A and A′ are apartments of I and є ∈ {−1, 1}, the distance of sign є between
A and A′ is the minimal possible distance between a sector-germ of sign є of A and a
sector-germ of sign є of A′. We denote it dє(A,A′) or d(A,A′) if the sign is ûxed.

Let є ∈ {−,+}. hen dє is not a distance on the apartments of I because, if A is an
apartment, all apartment A′ containing a sector of A of sign є (and there are many of
them by (MA3)) satisûes dє(A,A′) = 0.

2.4 Notation

Let X be a ûnite-dimensional aõne space. Let C ⊂ X be a convex set and A′ its sup-
port. he relative interior, resp., relative frontier, of C, denoted Intr(C), resp., Frr(C),
is the interior, resp., frontier, of C seen as a subset of A′. A set is said to be relatively

open if it is open in its support.
If X is an aõne space andU ⊂ X, one denotes by conv(X) the convex hull of X. If

x , y ∈ A, we denote by [x , y] the segment of A joining x and y. If A is an apartment
and x , y ∈ A, we denote by [x , y]A the segment of A joining x and y.

If X is a topological space and a ∈ X, one denotes by VX(a) the set of open neigh-
borhoods of a.
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If X is a subset ofA, one denotes by X̊ or by Int(X) (depending on the readability)
its interior. One denotes by Fr(X) the boundary (or frontier) of X: Fr(X) = X/X̊.

If X is a topological space, x ∈ X, and Ω is a subset of X containing x in its closure,
then the germ of Ω in x is denoted germ

x
(Ω).

We use the same notation as in [Rou11] for segments and segment-germs in an
aõne space X. For example if X = R and a, b ∈ R = R ∪ {±∞}, [a, b] = {x ∈ R ∣ a ≤

x ≤ b}, [a, b] = {x ∈ R ∣ a ≤ x < b}, [a, b) = germ
a
([a, b]), etc.

3 General Properties of the Intersection of Two Apartments

In this section, we study the intersection of two apartments, without assuming that
their intersection contains a generic ray. In Section 3.1, we extend results obtained for
masure on which a group acts strongly transitively to our framework. In Section 3.2,
we write the intersection of two apartments as a ûnite union of enclosed subsets. In
Section 3.3, we use the results of Section 3.2 to prove that if the intersection of two
apartments is convex, then it is enclosed. In Section 3.4, we study the existence of
isomorphisms ûxing subsets of an intersection of two apartments.

Let us sketch the proof of heorem 1.4. he most diõcult part is to prove that if
A and B are apartments sharing a generic ray, then A ∩ B is convex. We ûrst reduce
our study to the case where A ∩ B has nonempty interior. We then parametrize the
frontier of A and B by a map Fr∶U → Fr(A ∩ B), where U is an open and convex
set of A. he idea is then to prove that for almost all choices of x , y ∈ U , some map
associated with Frx ,y ∶ t ∈ [0, 1] ↦ Fr(tx + (1 − t)y) is convex. An important step in
this proof is the fact that Frx ,y is piecewise aõne and this relies on the decomposition
of Section 3.2. he convexity of A ∩ B is obtained by using a density argument. We
then conclude, thanks to Sections 3.3 and 3.4.

3.1 Preliminaries

In this subsection, we extend some results obtained for a masure on which a group
acts strongly transitively to our framework [Héb17,Héb16].

3.1.1 Splitting of Apartments

he following lemma generalizes [Héb16, Lemma 3.2] to our frameworks.

Lemma 3.1 Let A1 and A2 be two distinct apartments such that A1 ∩ A2 contains a

half-apartment. hen A1 ∩ A2 is a half-apartment.

Proof One identiûesA1 andA. By the proof of [Héb16, Lemma 3.2],D = A1 ∩A2 is a
half-space of the form D(α, k) for some α ∈ Φ and k ∈ R. (Note that our terminology
is not the same as in [Héb16] in which a half-apartment is a half-space of the form
D(β, ℓ) with β ∈ Φ and ℓ ∈ R, whereas now, we ask moreover that ℓ ∈ Λ′

β
). Let F , F′

be opposed sector-panels ofM(α, k). Let S be a sector of D dominating F, s its germ,
and F′ the germ of F′. By (MA4), one has A1 ∩ A2 ⊃ cl(F′ , s). But cl(F′ , s) ⊃ cl(D) ⊃
D = A1 ∩ A2, and thus k ∈ Λ′

α : A1 ∩ A2 is a half-apartment. ∎
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As a consequence, one can use [Héb16, Lemma 3.6, Proposition 3.7] in our frame-
work. We thus have the following proposition.

Proposition 3.2 Let A be an apartment, q a sector-germ of I such that q ⊈ A, and
n = d(q,A).

(i) One can write A = D1 ∪ D2, where D1 and D2 are opposite half-apartments of A

such that for all i ∈ {1, 2}, there exists an apartment A i containing D i and such

that d(A i , q) = n − 1.
(ii) here exist k ∈ N, enclosed subsets P1 , . . . , Pk of A such that for all i ∈ [[1, k]], there

exist an apartment A i containing q ∪ Pi and an isomorphism ϕ i ∶A
Pi
Ð→ A i .

Remark 3.3 he choice of theWeyl groupW (and thus ofQ∨) imposes restrictions
on the walls that can bound the intersection of two apartments. LetAbe an apartment
and suppose that A ∩ A = D(α, k) for some α ∈ Φ and k ∈ Λ′

α . hen k ∈ 1
2α(Q

∨).
Indeed, let D = A ∩ A, D1 be the half-apartment of A opposed to D and D2 the
half-apartment of A opposed to D1. hen B = D1 ∪ D2 is an apartment of I [Rou11,
Proposition 2.9 (2)]. Let f ∶A D

Ð→ A, g∶A
D2
Ð→ B, and h∶B

D1
Ð→ A; these isomorphisms

exist because two apartments sharing a half-apartment in particular share a sector;
see Section 2.3.2. Let s∶A→ A making the following diagram commute:

A
f //

s

��

A

g

��
A h

−1
// B.

he map s ûxes M(α, k). Moreover, if x ∈ D̊, then f (x) = x; thus g( f (x)) ∈ D̊1

and hence h−1(g( f (x))) ∈ D̊1. We deduce s ≠ Id. he map s is an isomorphism of
apartments and thus s ∈W . As s ûxes M(α, k), the vectorial part s⃗ of s ûxes M(α, 0).
As W = Wv ⋉ Q∨, one has s = t ○ s⃗, where t is a translation of vector q∨ in Q∨. If
y ∈ M(α, k), one has α(s(y)) = k = α(q∨)− k and therefore k ∈ 1

2α(Q
∨). his could

enable more precision in Proposition 3.2.

3.1.2 A Characterization of the Points of A

he aim of this subsubsection is to extend [Héb17, Corollary 4.4] to our framework.

Vectorial Distance on I We recall the deûnition of the vectorial distance [GR14,
§1.7]. Let x , y ∈ I be such that x ≤ y. hen there exists an apartment A containing
x , y and an isomorphism ϕ∶A → A. One has ϕ(y) − ϕ(x) ∈ T and thus there exists
w ∈Wv such that λ = w .(ϕ(y)− ϕ(x)) ∈ Cv

f
. hen λ does not depend on the choices

we made; it is called the vectorial distance between x and y and denoted dv(x , y).
he vectorial distance is invariant under isomorphisms of apartments: if x , y are two
points in an apartment A such that x ≤ y, if B is an apartment, and if ϕ∶A → B is an
isomorphism of apartments, then dv(x , y) = dv(ϕ(x), ϕ(y)).
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3.1.3 Image of a Preordered Segment by a Retraction

Gaussent and Rousseau gave a very precise description of the image of a preordered
segment by a retraction centered at a sector-germ [GR08, heorem 6.2]. However,
they supposed that a group acts strongly transitively on I. Without this assumption,
they proved a simpler property of these images. We recall it here.

Let λ ∈ Cv

f
. A λ-path π in A is a map π∶ [0, 1] → A such that there exists n ∈ N

and 0 ≤ t1 < ⋅ ⋅ ⋅ < tn ≤ 1 such that for all i ∈ [[1, n − 1]], π is aõne on [t i , t i+1] and
π′(t) ∈Wv .λ for all t ∈ ]t i , t i+1[.

Lemma 3.4 Let A be an apartment of I. Let x , y ∈ Abe such that x ≤ y and ρ∶ I→ A
be a retraction of I ontoA centered at a sector-germ q ofA. Let τ∶ [0, 1] → A deûned by

τ(t) = (1 − t)x + ty for all t ∈ [0, 1] and λ = dv(x , y). hen ρ ○ τ is a λ-path between

ρ(x) and ρ(y).

Proof We rewrite the proof of the beginning of Section 6 of [GR08]. Let ϕ∶A → A
be an isomorphism such that ϕ(y)−ϕ(x) = λ, which exists by deûnition of dv . By the
same reasoning as in the paragraph of [GR08] before Remark 4.6, there exist n ∈ N,
apartments A1 , . . . ,An of I containing q, 0 = t1 < ⋅ ⋅ ⋅ < tn = 1 such that τ([t i , t i+1]) ⊂
A i for all i ∈ [[1, n − 1]].

Using [Rou11, Proposition 5.4], for all i ∈ [[1, n − 1]], one chooses an isomorphism

ψ i ∶A
τ([t i ,t i+1])
ÐÐÐÐÐ→ A i . Let ϕ i ∶A i

A i∩A
ÐÐÐ→ A. For all t ∈ [t i , t i+1],

ρ(τ(t)) = ϕ i ○ ψ i(τ(t)).

Moreover, ϕ i ○ψ i ∶A→ A and by (MA1), there existsw i ∈W such that ϕ i ○ψ i = w i ○ϕ.
herefore for all t ∈ ]t i , t i+1[, one has (ρ ○ τ)′(t) = w i . λ, which proves that ρ ○ τ is a
λ-path. ∎

The projection yν Let ν ∈ Cv

f
and δ = R+ν. By paragraph “Deûnition of yν and Tν”

of [Héb17], for all x ∈ I, there exists yν(x) ∈ A such that x + δ ∩A = yν(x)+ δ, where
x + δ is the closure of x + δ (deûned in Section 2.3.3) in any apartment containing it.

The Q∨
R-order in A One sets Q∨

R,+ = ∑α∈Φ+ R+α∨ = ⊕i∈I R+α i . One has Q∨
R,+ ⊂

⊕i∈I R+α∨i . If x , y ∈ A, one denotes x ≤Q∨ y if y − x ∈ Q∨
R,+.

he following lemma paraphrases [Kac94, Proposition 3.12 (d)] in our context.

Lemma 3.5 Let λ ∈ Cv

f
and w ∈Wv . hen w . λ ≤Q∨ λ.

If x ∈ A and λ ∈ Cv

f
, one deûnes πa

λ
∶ [0, 1] → A by πa

λ
(t) = a + tλ for all t ∈ [0, 1].

Lemma 3.6 Let λ ∈ Cv

f
and a ∈ A. hen the unique λ-path from a to a + λ is πa

λ
.

Proof Let π be a λ-path from a to a+λ. One chooses a subdivision 0= t1 < ⋅ ⋅ ⋅ < tn =1
of [0, 1] such that for all i ∈ [[1, n − 1]], there exists w i ∈ W

v such that π′∣[t i ,t i+1](t) =
w i . λ. By Lemma 3.5, w i . λ ≤Q∨ λ for all i ∈ [[1, n − 1]]. Let h∶⊕i∈I Rα∨i → R deûned
by h(∑i∈I u iα

∨
i ) = ∑i∈I u i for all (u i) ∈ RI . Suppose that there exists i ∈ [[1, n − 1]]
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such that w i . λ ≠ λ. hen h(w i . λ − λ) < 0 and for all j ∈ [[1, n − 1]], h(w j . λ − λ) ≤ 0.
By integrating, we get that h(0) < 0: a contradiction. herefore π(t) = a+ tλ = πa

λ
(t)

for all t ∈ [0, 1], which is our assertion. ∎

Proposition 3.7 ([Héb17, Corollary 4.4]) Let x ∈ I be such that ρ+∞(x) = ρ−∞(x).
hen x ∈ A.

Proof Let x ∈ I such that ρ+∞(x) = ρ−∞(x). Suppose that x ∈ I/A. One has x ≤
yν(x) and dv(x , yν(x)) = λ, with λ = yν(x)−ρ+∞(x) ∈ R∗

+ν [Héb17, Lemma 3.5 (a)].
Let A be an apartment containing x and +∞, which exists by (MA3). Let τ∶ [0, 1] → A

be deûned by τ(t) = (1 − t)x + tyν(x) for all t ∈ [0, 1] (this does not depend on the
choice of A [Rou11, Proposition 5.4]) and π = ρ−∞ ○ τ. hen by Lemma 3.4, π is a
λ-path from ρ−∞(x) = ρ+∞(x) to yν(x) = ρ+∞(x) + λ.
By Lemma 3.6, π(t) = ρ+∞(x) + tλ for all t ∈ [0, 1], and τ([0, 1]) ⊂ A [Héb17,

Lemma 3.6]. hus x = τ(0) ∈ A; this is absurd. herefore x ∈ A, which is our
assertion. ∎

3.1.4 Topological Considerations on Apartments

Proposition 3.8 ([Héb16, Corollary 5.9 (ii)]) Let q be a sector-germ of I and A be an

apartment of I. Let ρ∶ I
q
→ A. hen ρ∣A∶A → A is continuous (for the aõne topologies

on A and A).

Proof Using Proposition 3.2 (ii), one writes A = ⋃n
i=1 Pi where the Pi ’s are closed

subsets of A such that for all i ∈ [[1, n]], there exists an apartment A i containing Pi

and q and an isomorphism ψ i ∶A
Pi
→ A i . For all i ∈ [[1, n]], one denotes by ϕ i the

isomorphism A i

q
→ A. hen ρ∣Pi = ϕ i ○ ψ i∣Pi for all i ∈ [[1, n]].

Let (xk) ∈ A
N be a converging sequence and x = lim xk . hen for all k ∈ N, ρ(xk) ∈

{ϕ i ○ψ i(xk) ∣ i ∈ [[1, n]]} and thus (ρ(xn)) is bounded. Let (xσ(k)) be a subsequence
of (xk) such that (ρ(xσ(k))) converges. Maybe extracting a subsequence of (xσ(k)),
one can suppose that there exists i ∈ [[1, n]] such xσ(k) ∈ Pi for all k ∈ N. One has
(ρ(xσ(k))) = (ϕ i ○ψ i(xσ(k))) and thus ρ(xσ(k)) → ϕ i ○ψ i(x) = ρ(x) (because Pi is
closed) and thus (ρ(xk)) converges towards ρ(x). Hence ρ∣A is continuous. ∎

Proposition 3.9 ([Héb16, Corollary 5.10]) Let A be an apartment. hen A ∩ A is

closed.

Proof By Proposition 3.7, A ∩ A = {x ∈ A ∣ ρ+∞(x) = ρ−∞(x)}, which is closed by
Proposition 3.8. ∎

3.2 Decomposition of the Intersection of Two Apartments into Enclosed Subsets

he aim of this subsection is to show that A ∩ A is a ûnite union of enclosed subsets
of A.
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We ûrst suppose that A and A share a sector. One can suppose that +∞ ⊂ A ∩ A.
By Proposition 3.2, one has A = ⋃k

i=1 Pi , for some k ∈ N, where the Pi ’s are enclosed
and Pi ,−∞ is contained in some apartment A i for all i ∈ [[1, k]].

Lemma 3.10 Let X be a ûnite-dimensional aõne space. Let U ⊂ X be a set such

that U ⊂ Ů and suppose that U = ⋃n
i=1 U i , where, for all i ∈ [[1, n]], the set U i is the

intersection of U and of a ûnite number of half-spaces. Let J = { j ∈ [[1, n]] ∣ Ů j ≠ ∅}.
hen U = ⋃ j∈J U j .

Proof Let j ∈ [[1, n]]. hen Fr(U j) ∩ Ů is contained in a ûnite number of hyper-
planes. herefore, if one chooses a Lebesguemeasure on X, the set⋃i∈[[1,n]] Ů ∩Fr(U i)

has measure 0 and thus Ů/⋃i∈[[1,n]] Fr(U i) is dense in Ů and thus in U . Let x ∈ U .
Let (xk) ∈ (Ů/⋃i∈[[1,n]] Fr(U i))

N be such that (xk) converges towards x. Extracting
a sequence if necessary, one can suppose that there exists i ∈ [[1, n]] such that xk ∈ U i

for all k ∈ N. By deûnition of the frontier, xk ∈ Ů i for all k ∈ N. As U i is closed in U ,
x ∈ U i and the lemma follows. ∎

Lemma 3.11 Let i ∈ [[1, k]] be such that A∩A ∩ Pi has nonempty interior inA. hen

A ∩ A ⊃ Pi .

Proof One chooses an apartment A i containing Pi ,−∞ and ϕ i ∶A
Pi
→ A i . Let

ψ i ∶A i

A i∩A
ÐÐÐ→ A (ψ i exists and is unique by Subsection 2.3.2). Let x ∈ Pi . By deû-

nition of ρ−∞, one has ρ−∞(x) = ψ i(x) and thus ρ−∞(x) = ψ i ○ ϕ i(x).
Let f ∶A

A∩A
ÐÐ→ A. One has ρ+∞(x) = f (x) for all x ∈ A. By Proposition 3.7,

A∩A ∩ Pi = {x ∈ Pi ∣ ρ+∞(x) = ρ−∞(x)} = Pi ∩ ( f − ψ i ○ ϕ i)
−1({0}).

As f −ψ i ○ ϕ i is aõne, ( f −ψ i ○ ϕ i)
−1({0}) is an aõne subspace of A and as it has

nonempty interior, ( f − ψ i ○ ϕ i)
−1({0}) = A. herefore Pi ⊂ A ∩ A. ∎

We recall the deûnition of x + ∞, if x ∈ I (Section 2.3.3). Let x ∈ I and B be an
apartment containing x and +∞. Let S be a sector of A, parallel to Cv

f
and such that

S ⊂ A ∩ A. hen x +∞ is the sector of A based at x and parallel to S. his does not
depend on the choice of A.

Lemma 3.12 One has A ∩ A = Int(A ∩ A).

Proof By Proposition 3.9, A ∩ A is closed and thus Int(A ∩ A) ⊂ A ∩ A. Let x ∈
A∩A. By (MA4), one has x+∞ ⊂ A∩A. he fact that there exists (xn) ∈ Int(x+∞)N

such that xn → x proves the lemma. ∎

Lemma 3.13 Let J = {i ∈ [[1, k]] ∣ IntA(Pi ∩ A ∩ A) ≠ ∅}. hen A ∩ A = ⋃ j∈J Pj .

Proof Let U = A ∩ A. hen by Lemma 3.12 and Lemma 3.10, U = ⋃ j∈J U ∩ Pj and
Lemma 3.11 completes the proof. ∎
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We no longer suppose that A contains +∞. We say that ⋃k
i=1 Pi is a decomposition

of A ∩ A into enclosed subsets if the following hold.
● k ∈ N and for all i ∈ [[1, k]], Pi is enclosed.
● A ∩ A = ⋃k

i=1 Pi .
● For all i ∈ [[1, k]], there exists an isomorphism ϕ i ∶A

Pi
Ð→ A.

Proposition 3.14 Let A be an apartment. hen there exists a decomposition ⋃k
i=1 Pi

of A∩A into enclosed subsets. As a consequence, there exists a ûnite setM of walls such

that Fr(A ∩ A) ⊂ ⋃M∈M M. If, moreover, A ∩ A is convex, one has A ∩ A = ⋃ j∈J Pj ,

where

J = { j ∈ [[1, k]] ∣ supp(Pj) = supp(A ∩ A)}.

Proof Let n ∈ N and Pn : for all apartment B such that d(B,A) ≤ n, there exists
a decomposition ⋃ℓ

i=1 Q i of A ∩ B into enclosed subsets. he property P0 is true by
Lemma 3.13. Let n ∈ N, and suppose that Pn is true. Suppose that there exists an
apartment B such that d(B,A) = n+ 1. Using Proposition 3.2, one writes B = D1∪D2,
where D1, D2 are opposite half-apartments such that for all i ∈ {1, 2}, D i is contained
in an apartment B i satisfying d(B i ,A) = n. If i ∈ {1, 2}, one writes B i ∩ A = ⋃

ℓ i
j=1 Q

i
j
,

where ℓ i ∈ N, the Q i
j
’s are enclosed and there exists an isomorphism ψ i

j
∶B i

Q
i
j

Ð→ A.
hen B ∩ A = ⋃

ℓ1
j=1(D1 ∩ Q 1

j
) ∪ ⋃

ℓ2
j=1(D2 ∩ Q2

j
). If i ∈ {1, 2}, one denotes by f i the

isomorphism B
D i
Ð→ B i . hen if j ∈ [[1, ℓ i]], the isomorphism ψ i

j
○ f i ûxes Q i

j
∩ D i

and thus Pn+1 is true.
herefore, A ∩ A = ⋃k

i=1 Pi , where the Pi ’s are enclosed. One has

Fr(A ∩ A) ⊂
k

⋃
i=1
Fr(Pi),

which is contained in a ûnite union of walls.
Suppose that A ∩ A is convex. Let X = supp(A ∩ A). By Lemma 3.10 applied with

U = A ∩ A,
A ∩ A = ⋃

i∈[[1,k]],
IntX(Pi)≠∅

Pi ,

which completes the proof. ∎

3.3 Encloseness of a Convex Intersection

In this subsection, we prove Proposition 3.22. If A is an apartment such that A ∩ A is
convex, then A ∩ A is enclosed. For this we study the gauge of A ∩ A, which is a map
parameterizing the frontier of A ∩ A.

Lemma 3.15 Let A be a ûnite-dimensional aõne space, k ∈ N∗, and let D1 , . . . ,Dk

be half-spaces of A and M1 , . . . ,Mk be their hyperplanes. hen their exists J ⊂ [[1, k]]
(maybe empty) such that supp(⋂k

i=1 D i) = ⋂ j∈J M j .
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Proof Let d ∈ N∗ and ℓ ∈ N. LetPd ,ℓ : for all aõne spaces X such that dimX ≤ d and
half-spaces E1 , . . . , Eℓ of X, there exists J ⊂ [[1, ℓ]] such that supp(⋂ℓ

i=1 E i) = ⋂ j∈J H j ,
where for all j ∈ J, H j is the hyperplane of E j .

It is clear that for all ℓ ∈ N, P1,ℓ is true and that for all d ∈ N, Pd ,0 and Pd ,1 are true.
Let d ∈ N≥2 and ℓ ∈ N, and suppose that (for all d′ ≤ d − 1 and ℓ′ ∈ N, Pd′ ,ℓ′ is true)
and that (for all ℓ′ ∈ [[0, ℓ]], Pd ,ℓ′ is true).

Let X be a d-dimensional aõne space, E1 , . . . , Eℓ+1 be half-spaces of X, and
H1 , . . . ,Hℓ+1 be their hyperplanes. Let L = ⋂ℓ

j=1 E j and S = supp L. hen Eℓ+1 ∩ S

is either S or a half-space of S. In the ûrst case, Eℓ+1 ⊃ S ⊃ L, thus ⋂ℓ+1
i=1 E i = L and

thus by Pd ,ℓ , supp(⋂ℓ+1
i=1 E i) = ⋂ j∈J H j for some J ⊂ [[1, ℓ]].

Suppose that Eℓ+1 ∩ S is a half-space of S. hen either E̊ℓ+1 ∩ L ≠ ∅ or E̊ℓ+1 ∩ L =

∅. In the ûrst case, one chooses x ∈ E̊ℓ+1 ∩ L and a sequence (xn) ∈ (Intr(L))N

converging towards x. hen for n ≫ 0, xn ∈ E̊ℓ+1 ∩ Intr(L). Consequently, L ∩ Eℓ+1
has a nonempty interior in S. hus supp(⋂ℓ+1

i=1 E i) = S and by Pd ,ℓ , supp(⋂ℓ+1
i=1 E i) =

⋂ j∈J H j for some J ⊂ [[1, ℓ]].
Suppose now that E̊ℓ+1 ∩ L is empty. hen L ∩ Eℓ+1 ⊂ Hℓ+1, where Hℓ+1 is the

hyperplane of Eℓ+1. herefore, ⋂ℓ+1
i=1 E i = ⋂ℓ+1

i=1 (E i ∩ Hℓ+1) and thus by Pd−1,ℓ+1,
supp(⋂ℓ+1

i=1 E i) = ⋂ j∈J H j for some J ⊂ [[1, ℓ + 1]]. ∎

Lemma 3.16 Let A be an apartment such that A ∩ A is convex. hen supp(A ∩ A)
is enclosed.

Proof Using Proposition 3.14, onewritesA∩A = ⋃k
i=1 Pi , where the Pi ’s are enclosed

and supp(Pi) = supp(A ∩ A) for all i ∈ [[1, k]]. By Lemma 3.15, if i ∈ [[1, k]], then
supp(Pi) is a ûnite intersection of walls, which proves the lemma. ∎

Gauge of a Convex Set LetAbe a ûnite-dimensional aõne space. LetC be a closed
and convex subset of Awith nonempty interior. One chooses x ∈ C̊ and one ûxes the
origin of A in x. Let jC ,x ∶A→ R+ ∪ {+∞} be deûned by

jC ,x(s) = inf{t ∈ R∗
+ ∣ s ∈ tC}.

he map jC ,x is called the gauge of C based at x. In the sequel, we will ûx some x ∈ C̊
andwewill denote jC instead of jC ,x . hen jC(A) ⊂ R+ and jC is continuous [HUL12,
heorem 1.2.5 and §1.2].

he following lemma is easy to prove.

Lemma 3.17 Let C be a convex closed set with nonempty interior. Fix the origin of A

in a point of C̊. hen

C = {x ∈ A ∣ jC(x) ≤ 1},

C̊ = {x ∈ A ∣ jC(x) < 1}.

Lemma 3.18 Let C be a convex closed set with nonempty interior. Fix the origin of

A in C̊. Let U = UC = {s ∈ A ∣ jC(s) ≠ 0}. Let Fr = FrC ∶U → Fr(C) deûned by
Fr(s) = s

jC(s) for all s ∈ U. hen Fr is well deûned, continuous, and surjective.
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Proof If s ∈ U , then jC(Fr(s)) =
jC(s)
jC(s) = 1 and thus Fr takes its values in Fr(C) by

Lemma 3.17. he continuity of Fr is a consequence of the one of jC . Let f ∈ Fr(C).
hen Fr( f ) = f and thus Fr is surjective. ∎

Let A be an apartment such that A ∩ A is convex and nonempty. Let X be the
support of A∩A inA. By Lemma 3.16, if A∩A = X, then A∩A is enclosed. One now
supposes that A∩A ≠ X. One chooses x0 ∈ IntX(A∩A) and consider it as the origin
of A. One deûnes U = UA∩A and Fr∶U → Frr(A ∩ A) as in Lemma 3.18. he set U is
open and nonempty. Using Proposition 3.14, one writes A∩A = ⋃r

i=1 Pi , where r ∈ N,
the Pi ’s are enclosed, and supp(Pi) = X for all i ∈ [[1, r]]. Let M1 , . . . ,Mk be distinct
walls not containing X such that Frr(A ∩ A) ⊂ ⋃k

i=1 M i , which exists because the Pi ’s
are intersections of half-spaces of X and A ∩ A ≠ X. Let M = {M i ∩ X ∣ i ∈ [[1, k]]}.
If M ∈M, one sets UM = Fr−1(M).

Lemma 3.19 Let U ′ = {x ∈ U ∣ ∃(M ,V) ∈ M × VU(x), Fr(V) ⊂ M} . hen U ′ is
dense in U.

Proof Let M ∈M. By Lemma 3.18,UM is closed in U . Let V ′ ⊂ U be nonempty and
open. hen V ′ = ⋃M∈M UM ∩ V ′. As M is ûnite, we can apply Baire’s heorem, and
there exists M ∈M such that V ′ ∩UM has a nonempty interior and henceU ′ is dense
in U . ∎

Lemma 3.20 Let x ∈ U ′ and V ∈ VU(x) be such that Fr(V) ⊂ M for some M ∈M.

he wall M is unique and does not depend on V.

Proof Suppose that Fr(V) ⊂ M ∩ M′, where M ,M′ are hyperplanes of X. Let
α, α′ ∈ Φ, k, k′ ∈ R be such that M = α−1({k}) and M′ = α′−1({k′}). By deûni-
tion ofU , for all y ∈ V , Fr(y) = λ(y)y for some λ(y) ∈ R∗

+. Suppose that k = 0. hen
α(y) = 0 for all y ∈ V , which is absurd, because α ≠ 0. By the same reasoning k′ ≠ 0.

If y ∈ V/(α−1({0}) ∪ α′−1({0})) , Fr(y) = λ(y)y for some λ(y) ∈ R∗
+ and thus

Fr(y) = k

α(y) y = k
′

α′(y) y. As V/(α−1({0}) ∪ α′−1({0})) is dense in V , kα′(y) =

k′α(y) for all y ∈ V and thus M and M′ are parallel. herefore M = M′. It remains
to show that M does not depend on V . Let V1 ∈ VU(x) be such that Fr(V1) ⊂ M1 for
some M1 ∈M. By the uniqueness we just proved applied to V ∩ V1, one has M = M1,
which completes the proof. ∎

If x ∈ U ′, one denotes by Mx the wall deûned by Lemma 3.20.

Lemma 3.21 Let x ∈ U ′ and D1, D2 be the two half-spaces of X deûned by Mx . hen

either A ∩ A ⊂ D1 or A ∩ A ⊂ D2.

Proof Let V ∈ VU(x) be such that Fr(V) ⊂ Mx . Let us prove that Fr(V) =
R∗
+V ∩ Mx . As Fr(y) ∈ R∗

+y for all y ∈ V , Fr(V) ⊂ R∗
+V ∩ Mx . Let f be a lin-

ear form on X such that Mx = f
−1({k}) for some k ∈ R. If k = 0, then f (v) = 0 for

all v ∈ V , and thus f = 0: this is absurd. Hence k ≠ 0.
Let a ∈ R∗

+V ∩ Mx . One has a = λFr(v), for some λ ∈ R∗
+ and v ∈ V . Moreover,

f (Fr(v)) = k = f (a) and as k ≠ 0, a = Fr(v) ∈ Fr(V). hus Fr(V) = R∗
+V ∩ Mx
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and Fr(V) is an open set of Mx . Suppose there exists (x1 , x2) ∈ (D̊1 ∩ A ∩ A) ×

(D̊2 ∩ A ∩A). hen conv(x1 , x2 , Fr(V)) ⊂ A ∩A is an open neighborhood of Fr(V)
in X. his is absurd, because Fr takes its values in Frr(A ∩ A). hus the lemma is
proved. ∎

If x ∈ U ′, one denotes by Dx the half-space delimited byMx and containing A∩A.

Proposition 3.22 Let A be an apartment such that A ∩ A is convex. hen A ∩ A is

enclosed.

Proof If u ∈ U ′, then A ∩ A ⊂ Du and thus A ∩ A ⊂ ⋂u∈U ′ Du .
Let x ∈ U ′ ∩ ⋂u∈U ′ Du . One has 0 ∈ A ∩ A and thus 0 ∈ Dx . Moreover, Fr(x) ∈

Mx ∩ A ∩ A and thus x ∈ [0, Fr(x)] ⊂ A ∩ A. herefore,

U
′ ∩ ⋂

x∈U ′

Dx ⊂ A ∩ A.

Let x ∈ IntX(⋂u∈U ′ Du). If x ∉ U , then x ∈ A ∩ A. Suppose x ∈ U . hen by
Lemma 3.19, there exists (xn) ∈ (U ′ ∩ IntX(⋂u∈U ′ Du))

N such that xn → x. But then
for all n ∈ N, xn ∈ A ∩ A, and by Proposition 3.9, x ∈ A ∩ A. As a consequence,
A ∩ A ⊃ IntX(⋂u∈U ′ Du). As A ∩ A is closed,

A ∩ A ⊃ IntX( ⋂
u∈U ′

Du) = ⋂
u∈U ′

Du

because⋂u∈U ′ Du is closed, convexwith nonempty interior in X. huswe have proved
A ∩ A = ⋂u∈U ′ Du .

Let M′
1 , . . . ,M

′
k
be walls of A such that for all x ∈ U ′, there exists i(x) ∈ [[1, k]]

such that M′
i(x) ∩ X = Mx . One sets M′

x = M′
i(x) for all x ∈ U ′ and one denotes by D′x

the half-apartment of A delimited by M′
x and containing Dx . hen X ∩ ⋂x∈U ′ D′x =

A ∩ A. Lemma 3.16 completes the proof. ∎

3.4 Existence of Isomorphisms of Apartments Fixing a Convex Set

Let A be an apartment and P ⊂ A ∩ A. In this section, we study the existence of
isomorphisms of apartments A P

→ A. We give a suõcient condition of existence of
such an isomorphism in Proposition 3.26. he existence of an isomorphism A

A∩A
ÐÐ→

A when A and A share a generic ray will be a particular case of this Proposition;
see heorem 4.22. In the aõne case, this will be a ûrst step to prove that for every
apartment A, there exists an isomorphism A

A ∩ A
→ A.

Lemma 3.23 Let A be an apartment of I and ϕ∶A → A an isomorphism of apart-

ments. Let P ⊂ A ∩ A be a nonempty, relatively open, convex set, Z = supp(P), and
suppose that ϕ ûxes P. hen ϕ ûxes P + (T ∩ Z⃗) ∩ A, where T is the Tits cone.

Proof Let x ∈ P+(T ∩ Z⃗) ∩ A. Write x = p+ t, where p ∈ P and t ∈ T. Assume t ≠ 0.
Let L = p + Rt. hen L is a preordered line in I and ϕ ûxes L ∩ P. Moreover, p ≤ x

and thus, by [Rou11, Proposition 5.4], there exists an isomorphism ψ∶A
[p ,x]
ÐÐ→ A. In

particular, ϕ−1 ○ ψ∶A → A ûxes L ∩ P. But then ϕ−1 ○ ψ∣L is an aõne isomorphism
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ûxing a nonempty open set of L; this is the identity. herefore ϕ−1○ψ(x) = x = ϕ−1(x),
which proves the lemma. ∎

Lemma 3.24 Let A be an apartment of I. Let U ⊂ A ∩ A be a nonempty relatively

open set and X = supp(U). hen there exists a nonempty open subset V of U (in X)

such that there exists an isomorphism ϕ∶A V
→ A.

Proof Let⋃k
i=1 Pi be a decomposition into enclosed subsets of A ∩A. Let i ∈ [[1, k]]

be such that Pi ∩ U has nonempty interior in X and ϕ∶A Pi
Ð→ A. hen ϕ ûxes a

nonempty open set of U , which proves the lemma. ∎

Lemma 3.25 Let A be an apartment of I and ϕ∶A → A an isomorphism. Let F =
{z ∈ A ∣ ϕ(z) = z}. hen F is closed in A.

Proof By Proposition 3.8, ρ+∞ ○ ϕ∶A→ A and ρ−∞ ○ ϕ∶A→ A are continuous. Let
(zn) ∈ F

N be such that (zn) converges in A and z = lim zn . For all n ∈ N, one has

ρ+∞(ϕ(zn)) = zn = ρ−∞(ϕ(zn)) → ρ+∞(ϕ(z)) = z = ρ−∞(ϕ(z)).

By Proposition 3.7, z = ϕ(z), which proves the lemma. ∎

Proposition 3.26 Let A be an apartment of I and P ⊂ A ∩ A a convex set. Let

X = supp(P) and suppose that T ∩ X⃗ has nonempty interior in X⃗. hen there exists an

isomorphism of apartments ϕ∶A P
→ A.

Proof (See Figure 1.) Let V ⊂ P be a nonempty open set of X such that there exists
an isomorphism ϕ∶A V

→ A (such a V exists by Lemma 3.24). Let us show that ϕ ûxes
Intr(P).

Let x ∈ V . One ûxes the origin of A in x and thus X is a vector space. Let (e j) j∈J
be a basis of A such that for some subset J′ ⊂ J, (e j) j∈J′ is a basis of X and (x +
T) ∩ X ⊃ ⊕ j∈J′ R∗

+e j . For all y ∈ X, y = ∑ j∈J′ y je j with y j ∈ R for all j ∈ J′, one sets
∣y∣ = max j∈J′ ∣y j ∣. If a ∈ A and r > 0, one sets B(a, r) = {y ∈ X ∣ ∣y − a∣ < r}.

Suppose that ϕ does not ûx Intr(P). Let y ∈ Intr(P) be such that ϕ(y) ≠ y. Let

s = sup{t ∈ [0, 1] ∣ ∃U ∈ VX([0, ty]) ∣ ϕ ûxes U}.

Set z = sy. hen by Lemma 3.25, ϕ(z) = z.
By deûnition of z, for all r > 0, ϕ does not ûx B(z, r). Let r > 0 be such that

B(z, 5r) ⊂ Intr P. Let z1 ∈ B(z, r) ∩ [0, z[ and r1 > 0 be such that ϕ ûxes B(z1 , r1) and
z′2 ∈ B(z, r) such that ϕ(z′2) ≠ z′2. Let r′2 ∈ ]0, r[ be such that for all a ∈ B(z′2 , r

′
2),

ϕ(z) ≠ z. Let z2 ∈ B(z
′
2 , r

′
2) be such that for some r2 ∈ ]0, r′2[, B(z2 , r2) ⊂ B(z′2 , r

′
2)

and such that there exists an isomorphism ψ∶A
B(z2 ,r2)
ÐÐÐÐ→ A (such z2 and r2 exist by

Lemma 3.24). hen ∣z1 − z2∣ < 3r.
Let us prove that (z1 + T ∩ X) ∩ (z2 + T ∩ X) ∩ Intr(P) contains a nonempty

open set U ⊂ X. One identiûes X and RJ
′

thanks to the basis (e j) j∈J′ . One has
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Figure 1: Proof of Proposition 3.26

z2 − z1 ∈ ]−3, 3[J
′

and thus

(z1 + T) ∩ (z2 + T) = (z1 + T) ∩ (z1 + z2 − z1 + T) ⊃ z1 + ]3, 4[J
′

.

As P ⊃ B(z1 , 4r), the set (z1 +T ∩ X) ∩ (z2 +T ∩ X) ∩ Intr(P) contains a nonempty
open set U ⊂ X.
By Lemma 3.23, ϕ and ψ ûx U . herefore, ϕ−1 ○ ψ ûxes U , and as it is an isomor-

phism of aõne space of A, ϕ−1 ○ ψ ûxes X. herefore ϕ−1 ○ ψ(z2) = ϕ−1(z2) = z2
and thus ϕ(z2) = z2; this is absurd. Hence, ϕ ûxes Intr(P). By Lemma 3.25, ϕ ûxes
Intr(P) = P and thus ϕ ûxes P, which shows the proposition. ∎

4 Intersection of Two Apartments Sharing a Generic Ray

he aim of this section is to proveheorem 4.22. Let A and B be two apartments shar-
ing a generic ray. henA∩ B is enclosed and there exists an isomorphism ϕ∶A

A∩B
ÐÐ→ B.

We ûrst reduce our study to the case where A ∩ B has nonempty interior by the
following lemma.

Lemma 4.1 Suppose that for all apartments A, B such that A ∩ B contains a generic

ray and has nonempty interior, the set A ∩ B is convex. hen if A1 and A2 are two

apartments containing a generic ray, the set A1 ∩ A2 is enclosed and there exists an

isomorphism ϕ∶A1
A1∩A2
ÐÐÐ→ A2.

Proof Let us prove that A1 ∩ A2 is convex. Let δ be the direction of a generic
ray shared by A1 and A2. Let x1 , x2 ∈ A1 ∩ A2 and F∞ be the vectorial face di-
rection containing δ. Let F′∞ be the vectorial face direction of A1 opposite to F∞.
Let C1 be a chamber of A1 containing x1 and C2 be a chamber of A2 containing x2.
Set r1 = r(C1 ,F′∞) ⊂ A1, r2 = r(C2 ,F∞) ⊂ A2, R1 = germ(r1), andR2 = germ(r2).
By (MA3) there exists an apartment A3 containing R1 andR2.
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Let us prove that A3 contains x1 and x2. One identiûes A1 and A. Let Fv = 0+F∞

and F′v = 0 + F′∞. As A3 ⊃ R1, there exists f ′ ∈ F′v such that A3 ⊃ x1 + f
′ + F′v .

Moreover, A3 ⊃ F∞, and thus it contains x1 + f
′ + F∞. By [Rou11, Proposition 4.7.1]

x1 + f
′ + F∞ = x1 + f

′ + Fv , and thus A3 ∋ x1. As A3 ⊃ R2, there exists f ∈ Fv such
that A3 ⊃ x2 + f . As A3 ⊃ F′∞,

A3 ⊃ x2 + f + F′ = x2 + f + F
′v

by [Rou11, Proposition 4.7.1]. hus A3 ∋ x2.
If i ∈ {1, 2}, each element ofRi has a nonempty interior inA i , and thusA i ∩A3 has

a nonempty interior. By hypothesis, A1 ∩ A3 and A2 ∩ A3 are convex. By
Proposition 3.26, there exist ϕ∶A1

A1∩A3
ÐÐÐ→ A3 andψ∶A2

A2∩A3
ÐÐÐ→ A3. herefore [x1 , x2]A1 =

[x1 , x2]A3 = [x1 , x2]A2 , and thus A1 ∩ A2 is convex.
he existence of an isomorphism A1

A1∩A2
ÐÐÐ→ A2 is a consequence of Proposition

3.26, because the direction X of A1 ∩ A2 meets T̊ and thus X⃗ ∩ T spans T.
he fact that A1 ∩ A2 is enclosed is a consequence of Proposition 3.22. ∎

4.1 Definition of the Frontier Maps

he aim of Sections 4.1–4.5 is to prove that if A and B are two apartments containing
a generic ray and such that A ∩ B has nonempty interior, then A ∩ B is convex. here
is no loss of generality in assuming that B = A and that the direction R+ν of δ is
contained in±Cv

f
. As the roles ofCv

f
and−Cv

f
are similar, one supposes thatR+ν ⊂ Cv

f

and that A ≠ A. hese hypotheses run until the end of Section 4.5.
In this subsection, we parametrize Fr(A ∩ A) by a map and describe A ∩ A using

the values of this map.

Lemma 4.2 Let V be a bounded subset ofA. hen there exists a ∈ R such that for all

u ∈ [a,+∞[ and v ∈ V, v ≤ uν.

Proof Let a ∈ R∗
+ and v ∈ V . hen aν − v = a(ν − 1

a
v). As ν ∈ T̊ and V is bounded,

there exists b > 0 such that for all a > b, ν− 1
a
v ∈ T̊, which proves the lemma, because

T̊ is a cone. ∎

Lemma 4.3 Let y ∈ A ∩ A. hen A ∩ A contains y +R+ν.

Proof Let x ∈ A such that A ∩ A ⊃ x + R+ν. he ray x + R+ν is generic and by
(MA4), if y ∈ A, A ∩ A contains the convex hull of y and x + [a,+∞[ ν, for some
a ≫ 0. In particular, it contains y +R+ν. ∎

Let U = {y ∈ A ∣ y +Rν ∩ A ≠ ∅} = (A ∩ A) +Rν.

Lemma 4.4 he set U is convex.

Proof Let u, v ∈ U . Let u′ ∈ u+R+ν ∩ A. By Lemma 4.2 and Lemma 4.3, there exists
v′ ∈ v + R+ν such that u′ ≤ v′. By [Rou11, Proposition 5.4(2)], [u′ , v′] ⊂ A ∩ A. By
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deûnition of U , [u′ , v′] + Rν ⊂ U and in particular [u, v] ⊂ U , which is the desired
conclusion. ∎

here are two possibilities: either there exists y ∈ A such that y +Rν ⊂ A or for all
y ∈ A, y +Rν ⊈ A. he ûrst case is the easiest and we treat it in the next lemma.

Lemma 4.5 Suppose that for some y ∈ A, y − R+ν ⊂ A ∩ A. hen A ∩ A = U. In

particular, A ∩ A is convex.

Proof By Lemma 4.3, A ∩ A = (A ∩ A) +R+ν. By symmetry and by hypothesis on
A ∩ A, one has (A ∩ A) +R−ν = A ∩ A. herefore A ∩ A = (A ∩ A) +Rν = U . ∎

Definition of the frontier Let u ∈ U . hen by Lemma 4.3, u + Rν ∩ A is of the
form a + R∗

+ν or a + R+ν for some a ∈ A. As A ∩ A is closed (by Proposition 3.9),
the ûrst case cannot occur. One sets Frν(u) = a ∈ A ∩ A. One ûxes ν until the end of
Section 4.5 and one writes Fr instead of Frν .

Lemma 4.6 hemap Fr takes its values in Fr(A∩A) andA∩A = ⋃x∈U Fr(x)+R+ν.

Proof Let u ∈ U . hen Fr(u) +R+ν = (u +Rν) ∩ A. hus Fr(u) ∉ Int(A ∩ A). By
Proposition 3.9, Fr(u) ∈ Fr(A ∩ A) and hence Fr(U) ⊂ Fr(A ∩ A).

Let u ∈ A ∩ A. One has u ∈ A ∩ (u + Rν) = Fr(u) + R+ν, and we deduce that
A ∩ A ⊂ ⋃x∈U Fr(x) + R+ν. he reverse inclusion is a consequence of Lemma 4.3,
which ûnishes the proof. ∎

Let us sketch the proof of the convexity ofA∩A (which is Lemma 4.21). If x , y ∈ Ů ,
one deûnes Frx ,y ∶ [0, 1] → Fr(A ∩ A) by Frx ,y(t) = Fr((1 − t)x + ty) for all t ∈ [0, 1].
For all t ∈ [0, 1], there exists a unique fx ,y(t) ∈ R such that Frx ,y(t) = (1 − t)x +

ty + fx ,y(t)ν. We prove that for almost all x , y ∈ Ů , fx ,y is convex. Let x , y ∈ Ů .
We ûrst prove that fx ,y is continuous and piecewise aõne. his enables us to reduce
the study of the convexity of fx ,y to the study of fx ,y at the points where the slope
changes. Let M be a ûnite set of walls such that Fr(Ů) ⊂ ⋃M∈M M, which exists
by Proposition 3.14. Using order-convexity, we prove that if {x , y} is such that for
each point u ∈ ]0, 1[ at which the slope changes, Frx ,y(u) is contained in exactly two
walls ofM, then fx ,y is convex. We then prove that there are “enough” such pairs and
conclude by an argument of density.

4.2 Continuity of the Frontier

In this subsection, we prove that Fr is continuous on Ů , using order-convexity.
Let λ∶U → R such that for all x ∈ U , Fr(x) = x+λ(x)ν. We prove the continuity of

Fr∣Ů by proving the continuity of λ∣Ů . For this, we begin, for x , y ∈ Ů , by dominating
λ([x , y]) by a number depending on x and y (see Lemma 4.7). We use it to prove
that if n ∈ N and a1 , . . . , an ∈ Ů , then λ(conv({a1 , . . . , an})) is dominated, and then
deduce that Fr∣Ů is continuous (which is Lemma 4.12).

Lemma 4.7 Let x , y ∈ U, M = max{λ(x), λ(y)}, and k ∈ R+ be such that x+kν ≥ y.

hen, for all u ∈ [x , y], λ(u) ≤ k +M.
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Proof By Lemma 4.3, x + Mν and y + Mν are in A. By hypothesis, x + kν + Mν ≥
y + Mν. Let t ∈ [0, 1] and u = tx + (1 − t)y. By order-convexity t(x + kν + Mν) +
(1 − t)(y +Mν) ∈ A. herefore λ(u) ≤ M + tk ≤ M + k, which is our assertion. ∎

Lemma 4.8 Let d ∈ N, X be a d-dimensional aõne space and P ⊂ X. One sets

conv0(P) = P and for all k ∈ N,

convk+1(P) = {(1 − t)p + tp
′ ∣ t ∈ [0, 1] and (p, p′) ∈ convk(P)

2}.

hen convd(P) = conv(P).

Proof By induction,

convk(P) = {
2k

∑
i=1

λ i p i ∣ (λ i) ∈ [0, 1]2
k
,

2k

∑
i=1

λ i = 1 and (p i) ∈ P
2k
} .

his is thus a consequence of Carathéodory’s heorem. ∎

Lemma 4.9 Let P be a bounded subset of Ů such that sup(λ(P)) < +∞. hen

sup ( λ(conv1(P))) < +∞.

Proof Let M = sup
x∈P λ(x) and k ∈ R+ such that for all x , x′ ∈ P, x′+ kν ≥ x, which

exists by Lemma 4.2. Let u ∈ conv1(P) and x , x′ ∈ P such that u ∈ [x , x′]. By Lemma
4.7, λ(u) ≤ k +M and the lemma follows. ∎

Lemma 4.10 Let x ∈ Ů. hen there exists V ∈ V
Ů
(x) such that V is convex and

sup(λ(V)) < +∞.

Proof Let n ∈ N and a1 , . . . , an ∈ Ů such that V = conv(a1 , . . . , an) contains x in
its interior. Let M ∈ R+ such that for all y, y′ ∈ V , one has y + Mν ≥ y′, which is
possible by Lemma 4.2. One sets P = {a1 , . . . , an} and for all k ∈ N, Pk = convk(P).
By induction using Lemma 4.9, sup(λ(Pk)) < +∞ for all k ∈ N and we conclude with
Lemma 4.8. ∎

Lemma 4.11 Let V ⊂ Ů be open, convex, bounded and such that

sup(λ(V)) ≤ M

for some M ∈ R+. Let k ∈ R+ such that for all x , x′ ∈ V, x + kν ≥ x′. Let a ∈ V and

u ∈ A such that a + u ∈ V. hen for all t ∈ [0, 1], λ(a + tu) ≤ (1 − t)λ(a) + t(M + k).

Proof By Lemma 4.3, a + u + (M + k)ν ∈ A. Moreover,

a + u + (M + k)ν ≥ a +Mν, a +Mν ≥ a + λ(a)ν = Fr(a),

and thus a + u + (M + k)ν ≥ Fr(a).
Let t ∈ [0, 1]. hen by order-convexity,

(1− t)(a + λ(a)ν) + t(a + u + (M + k)ν) = a + tu + ((1− t)λ(a) + t(M + k))ν ∈ A.

herefore λ(a + tu) ≤ (1 − t)λ(a) + t(M + k), which is our assertion. ∎

Lemma 4.12 he map Fr is continuous on Ů.
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Proof Let x ∈ Ů and V ∈ V
Ů
(x) be convex, open, bounded, and such that

sup(λ(V)) ≤ M for someM ∈ R+, which exists by Lemma 4.10. Let k ∈ R+ such that
for all v , v′ ∈ V , v + kν ≥ v′. Let ∣ ⋅ ∣ be a norm on A and r > 0 such that B(x , r) ⊂ V ,
where B(x , r) = {u ∈ A ∣ ∣x − u∣ ≤ r}. Let S = {u ∈ A ∣ ∣u − x∣ = r}. Let N = M + k.

Let y ∈ S and t ∈ [0, 1]. By applying Lemma 4.11 with a = x and u = y − x, we get
that λ((1− t)x + ty) ≤ λ(x)+ tN . By applying Lemma 4.11 with a = (1− t)x + ty and
u = x − y, we obtain that

λ(x) = λ((1 − t)x + ty + t(x − y)) ≤ λ((1 − t)x + ty) + tN .

herefore, for all t ∈ [0, 1] and y ∈ S,

λ(x) − tN ≤ λ((1 − t)x + ty) ≤ λ(x) + tN .

Let (xn) ∈ B(x , r)N such that xn → x. Let n ∈ N. One sets tn =
∣xn−x ∣

r
. If tn = 0, one

chooses yn ∈ S. It tn ≠ 0, one sets yn = x + 1
tn
(xn − x) ∈ S. hen xn = tn yn +(1− tn)x

and thus ∣λ(xn) − λ(x)∣ ≤ tnN → 0. Consequently, λ∣Ů is continuous, and we deduce
that Fr∣Ů is continuous. ∎

4.3 Piecewise Affineness of Frx ,y

We now study the map Fr. We begin by proving that there exists a ûnite set H of
hyperplanes ofA such that Fr is aõne on each connected component of Ů/⋃H∈H H.

LetM be a ûnite set of walls such that Fr(A ∩A) is contained in⋃M∈M M, whose
existence is provided by Proposition 3.14. Let r = ∣M∣. Let

{β1 , . . . , βr} ∈ Φr and (ℓ1 , . . . , ℓr) ∈
r

∏
i=1

Λ′
β i

be such that M = {M i ∣ i ∈ [[1, r]]} where M i = β
−1
i ({ℓ i}) for all i ∈ [[1, r]].

Let i , j ∈ [[1, r]] be such that i ≠ j. If β i(ν)β j(ν) ≠ 0 and M i and M j are not
parallel, one sets H i , j = {x ∈ A ∣

ℓ i−β i(x)
β i(ν) =

ℓ j−β j(x)
β j(ν) } (this deûnition will appear

naturally in the proof of the next lemma). hen H i , j is a hyperplane of A. Indeed,
otherwise H i , j = A. Hence β j(x)

β j(ν) −
β i(x)
β i(ν) =

ℓ j

β j(ν) −
ℓ i

β i(ν) , for all x ∈ A. herefore,
β j(x)
β j(ν) −

β i(x)
β i(ν) = 0, for all x ∈ A, and thus M i and M j are parallel: a contradiction. Let

H = {H i , j ∣ i ≠ j, β i(ν)β j(ν) ≠ 0 and M i ∦ M j} ∪ {M i ∣ β i(ν) = 0}.

Even if the elements ofH can be walls of A, we will only consider them as hyper-
planes of A. To avoid confusion between elements ofM and elements ofH, we will
try to use the letter M, resp., H, in the name of objects related to M, resp.,H.

Lemma 4.13 Let M∩ = ⋃M≠M′∈M M ∩ M′. hen Fr−1(M∩) ⊂ ⋃H∈H H.

Proof Let x ∈ Fr−1(M∩). One has Fr(x) = x + λν, for some λ ∈ R. here exists
i , j ∈ [[1, r]] such that
● i ≠ j,
● β i(Fr(x)) = ℓ i and β j(Fr(x)) = ℓ j ,
● M i and M j are not parallel.
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herefore, if β i(ν)β j(ν) ≠ 0, then λ =
ℓ i−β i(x)
β i(ν) =

ℓ j−β j(x)
β j(ν) and thus x ∈ H i , j . If

β i(ν)β j(ν) = 0, then x ∈ M i ∪M j , which proves the lemma. ∎

Lemma 4.14 One has A ∩ A = Int(A ∩ A).

Proof By Proposition 3.9, A ∩ A is closed and thus Int(A ∩ A) ⊂ A ∩ A.
Let x ∈ A ∩ A. Let V be an open bounded set contained in A ∩ A. By Lemma

4.2 applied to x − V , there exists a > 0 such that for all v ∈ V , one has v + aν ≥ x.
One hasV+aν ⊂ A∩A and by order convexity [Rou11, Proposition 5.4(2)], conv(V+
aν, x) ⊂ A∩A. As conv(V+aν, x) is a convex set with nonempty interior, there exists
(xn) ∈ Int(conv(V + aν, x))N such that xn → x, and the lemma follows. ∎

Let f1 , . . . , fs be aõne forms on A such that H = { f −1
i ({0}) ∣ i ∈ [[1, s]]} for some

s ∈ N. Let R = (R i) ∈ {≤, ≥, <, >}s . One sets

PR = Ů ∩ {x ∈ A ∣ ( f i(x)R i0)∀i ∈ [[1, s]]}.

If R = (R i) ∈ {≤, ≥}s , one deûnes R′ = (R′i) ∈ {<, >}s by R′i = < if R i = ≤ and R′i = >
otherwise (one replaces large inequalities by strict inequalities). If R ∈ {≤, ≥}s , then
Int(PR) = PR′ .

Let X = {R ∈ {≤, ≥}s ∣ P̊R ≠ ∅}. By Lemma 4.14 and Lemma 3.10, Ů = ⋃R∈X PR

and for all R ∈ X, P̊R ⊂ A/⋃H∈H H.

Lemma 4.15 Let R ∈ X. hen there exists M ∈M such that Fr(PR) ⊂ M.

Proof Let x ∈ P̊R . Let M ∈M be such that Fr(x) ∈ M. Let us show that Fr(PR) ⊂ M.
By continuity of Fr (by Lemma 4.12), it suõces to prove that Fr(P̊R) ⊂ M. By con-
nectedness of P̊R , it suõces to prove that Fr−1(M) ∩ P̊R is open and closed. As Fr is
continuous, Fr−1(M) ∩ P̊R is closed (in P̊R).

Suppose that Fr−1(M) ∩ P̊R is not open. hen there exists y ∈ P̊R such that Fr(y) ∈
M and a sequence (yn) ∈ (P̊R)

N such that yn → y and such that Fr(yn) ∉ M for all
n ∈ N. For all n ∈ N, Fr(yn) ∈ ⋃M′∈M M′, and thus, maybe extracting a subsequence,
one can suppose that for some M′ ∈M, yn ∈ M′ for all n ∈ N.
As Fr is continuous (by Lemma 4.12), Fr(y) ∈ M′. hus Fr(y) ∈ M ∩ M′ and by

Lemma 4.13, y ∈ ⋃H∈H H, which is absurd by choice of y. herefore, Fr−1(M) ∩ P̊R

is open, which completes the proof of the lemma. ∎

Lemma 4.16 Let R ∈ X and M ∈ M be such that Fr(PR) ⊂ M. hen ν ∉ M⃗ and

there exists a (unique) aõne morphism ψ∶A → M such that Fr∣PR = ψ∣PR . Moreover, ψ

induces an isomorphism ψ∶A/Rν → M.

Proof If y ∈ Ů , then Fr(y) = y + k(y)ν for some k(y) ∈ R. Let α ∈ Φ be such
that M = α−1({u}) for some u ∈ −Λ′

α . For all y ∈ PR , one has α(Fr(y)) = α(y) +

k(y)α(ν) = u and α(ν) ≠ 0 because α is not constant on PR . Consequently, ν ∉ M⃗

and Fr(y) = y +
u−α(y)
α(ν) ν. One deûnes ψ ∶ A→ M by ψ(y) = y +

u−α(y)
α(ν) ν for all y ∈ A

and ψ has the desired properties. ∎
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4.4 Local Convexity of Frx ,y

Let M ∈M and let M⃗ be its direction. Let TM = T̊ ∩ M⃗ and DM be the half-apartment
containing a shortening of R+ν and whose wall is M.

Lemma 4.17 Let a ∈ Fr(Ů) and suppose that there exists K ∈ V
Ů
(a) such that

Fr(K) ⊂ M for some M ∈M. hen Fr((a ± T̊M) ∩ Ů) ⊂ DM .

Proof Let u ∈ Ů ∩ (a − T̊M), u ≠ a. Suppose Fr(u) ∉ DM . hen Fr(u) = u − kν,
with k ≥ 0. hen Fr(u) ≤ u≤̊a (which means that a − u ∈ T̊). herefore for some
K′ ∈ VM(a) such that K′ ⊂ K, one has Fr(u)≤̊u′ for all u′ ∈ K′. As a consequence
A ∩ A ⊃ conv(K′ , Fr(u)) and thus Fr(u′) ∉ M for all u′ ∈ K′. his is absurd and
hence Fr(u) ∈ DM .

Let v ∈ Ů ∩ (a+ T̊M), v ≠ a, and suppose that Fr(v) ∉ DM . hen for v′ ∈ [Fr(v), v[
near enough from v, one has a ≤ v′. herefore, [a, v′] ⊂ A ∩ A. hus for all t ∈ ]a, v[,
Fr(t) ∉ DM , a contradiction. herefore Fr(v) ∈ DM and the lemma follows. ∎

hefollowing lemma is crucial to prove the local convexity of Frx ,y for good choices
of x and y. his is here mainly so that we can use that A ∩A have nonempty interior.

Let H∩ = ⋃H≠H′∈H H ∩ H′.

Lemma 4.18 Let x ∈ Ů ∩ (⋃H∈H H)/H∩ and H ∈H be such that x ∈ H. Let C1 and

C2 be the half-spaces deûned by H. hen there exists V ∈ V
Ů
(x) satisfying the following

conditions.

(i) For i ∈ {1, 2}, let Vi = V ∩ C̊ i . hen Vi ⊂ P̊R i for some R i ∈ X.

(ii) Let M be a wall containing Fr(PR1). hen Fr(V) ⊂ DM .

Proof (See Figure 2.) he set Ů/⋃H∈H/{H} H is open in Ů . Let V ′ ∈ V
Ů
(x) be

such that V ′ ∩ ⋃H′∈H/{H} H′ = ∅ and such that V ′ is convex. Let i ∈ {1, 2} and
V ′

i = V ′ ∩ C̊ i . hen V ′
i ⊂ Ů/⋃H∈H H. Moreover, V ′

i is connected. As the connected
components of Ů/⋃H∈H H are the P̊R ’s for R ∈ X, we deduce that V ′ satisûes (i).

Let ψ∶A → M be the aõne morphism such that ψ∣PR1
= Fr∣PR1

and ψ∶A/Rν → M

be the induced isomorphism, which exist by Lemma 4.16. Let π∶A → A/Rν be the
canonical projection. As C1 is invariant under translation by ν (by deûnition of the
elements ofH), the set ψ(C1) = ψ(π(C1)) is a half-space D of M. Let V ′′ = V ′ ∩ C1.
hen

ψ(V ′′) = ψ(C1) ∩ ψ(π(V ′)) ∈ VD(Fr(x)).

Let g∶ M⃗ → R be a linear form such that D = g−1([b,+∞[), for some b ∈ R. Let
є ∈ {−1, 1} be such that g(u) > 0 for some u ∈ єTM . Let η > 0. hen Fr(x + ηu) ∈
x + ηu + Rν and thus Fr(x + ηu) = Fr(x) + ηu + kν for some k ∈ R. If η is small
enough that x + ηu ∈ V ′′, then kν = Fr(x + ηu) − (Fr(x) + ηu) ∈ M⃗ and hence k = 0
(by Lemma 4.16). Let K = ψ(V ′′) + Rν and a = Fr(x) + ηu. hen K ∈ V

Ů
(a) and,

for all v ∈K, Fr(v) ∈ M. By Lemma 4.17,

Fr(Ů ∩ (a − єTM)) = Fr(Ů ∩ (a − єTM +Rν)) ⊂ DM .
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Figure 2: Proof of Lemma 4.18 when dimH = 2. (he illustration is made in M.)

Moreover, a − єTM +Rν ∈ V
Ů
(x) and thus if one sets V = V ′ ∩ (a − єTM +Rν), V

satisûes (i) and (ii). ∎

4.5 Convexity of A ∩ A

Let H⃗ = ⋃H∈H H⃗ be the set of directions of the hyperplanes ofH.

Lemma 4.19 Let x , y ∈ Ů ∩ A ∩ A be such that y − x ∉ H⃗ and such that the line

spanned by [x , y] does not meet any point of H∩. hen [x , y] ⊂ Ů ∩ A ∩ A.

Proof Let π∶ [0, 1] → A deûned by π(t) = tx+(1−t)y, for all t ∈ [0, 1]. Set g = Fr○π.
Let f1 , . . . , fs be aõne forms on A such that

H = { f −1
i ({0}) ∣ i ∈ [[1, s]]}.

As y− x ∉ H⃗, for all i ∈ [[1, s]], the map f i ○ g is strictly monotonic and π−1(⋃H∈H H)
is ûnite. herefore, there exist k ∈ N and open intervals T1 . . . , Tk such that

● [0, 1] = ⋃k
i=1 Ti ,

● T1 < ⋅ ⋅ ⋅ < Tk ,
● for all i ∈ [[1, k]], there exist R i ∈ X such that π(Ti) ⊂ P̊R i .
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For all t ∈ [0, 1], one has g(t) = π(t) + f (t)ν for some f (t) ∈ R. By Lemma 4.16, this
equation uniquely determines f (t) for all t ∈ [0, 1]. By Lemma 4.12, f is continuous
and by Lemma 4.16, f is aõne on each Ti .

Let us prove that f is convex. Let i ∈ [[1, k − 1]]. One writes Ti = ]a, b[. hen for
є > 0 small enough, one has f (b+є) = f (b)+єc+ and f (b−є) = f (b)−єc−. To prove
the convexity of f , it suõces to prove that c− < c+. Let M be a wall containing Fr(PR i ).
As π(b) ∈ Ů ∩ ⋃H∈H H/H∩, we can apply Lemma 4.18 and there exists V ∈ V[0,1](b)
such that g(V) ⊂ DM . Let h∶A → R be a linear map such that DM = h−1([a,+∞[).
For є > 0 small enough, one has h(g(b+ є)) ≥ a and h(g(b− є)) = a. For є > 0 small
enough, one has

h(g(b + є)) = h(π(b) + є(y − x) + ( f (b) + єc+)ν)

= h(g(b) + є(y − x + c+ν))

= a + є(h(y − x) + c+h(ν)) ≥ a,

and similarly, h(g(b − є)) = a − є(h(y − x) + c−h(ν)) = a.
herefore, h(y−x)+c+h(ν)≥0, h(y−x)+c−h(ν)=0, and hence (c+−c−)h(ν)≥0.

As DM contains a shortening of R+ν, h(ν) ≥ 0 and, by Lemma 4.16, h(ν) > 0. Con-
sequently, c− ≤ c+ and, as i ∈ [[1, k − 1]] was arbitrary, f is convex.
For all t ∈ [0, 1], f (t) ≤ (1 − t) f (0) + t f (1). herefore,

(1 − t)g(0) + tg(1) = π(t) + ((1 − t) f (0) + t f (1))ν ∈ π(t) + f (t)ν +R+ν

= g(t) +R+ν.

By deûnition of Fr, if t ∈ [0, 1], then (1 − t)g(0) + tg(1) ∈ A ∩ A. Moreover, there
exist λ, µ ≥ 0 such that x = g(0) + λν and y = g(1) + µν. hen

π(t) = (1 − t)x + ty = (1 − t)g(0) + tg(1) + ((1 − t)λ + tµ)ν ∈ A∩A

and hence [x , y] ⊂ A ∩ A. ∎

Lemma 4.20 Let x , y ∈ Int(A∩A) and H⃗ = ⋃H∈H H⃗. hen there exists (xn), (yn) ∈
Int(A ∩ A)N satisfying the following conditions.

(i) xn → x and yn → y.

(ii) For all n ∈ N, yn − xn ∉ H⃗.

(iii) he line spanned by [xn , yn] does not meet any point of H∩.

Proof Let (xn) ∈ (Int(A ∩ A)/H∩)N be such that xn → x. Let ∣ ⋅ ∣ be a norm on
A. Let n ∈ N. Let F be the set of points z ∈ A such that the line spanned by [xn , z]
meets H∩. hen F is a ûnite union of hyperplanes of A, because H∩ is a ûnite union
of spaces of dimension at most dimA − 2. herefore A/(F ∪ xn + H⃗) is dense in A
and one can choose yn ∈ A/(F ∪ xn + H⃗) such that ∣yn − y∣ ≤ 1

n+1 . hen (xn) and
(yn) satisfy the conditions of the lemma. ∎

Lemma 4.21 he set A ∩ A is convex.

Proof Let x , y ∈ Int(A ∩ A). Let (xn), (yn) be as in Lemma 4.20. Let t ∈ [0, 1]. As
Int(A ∩ A) ⊂ Ů , one has txn + (1 − t)yn ∈ A ∩ A, for all n ∈ N, by Lemma 4.19. As
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A ∩ A is closed (by Proposition 3.9), tx + (1 − t)y ∈ A ∩ A. herefore Int(A ∩ A) is
convex. Consequently, A ∩ A = Int(A ∩ A) (by Lemma 4.14) is convex. ∎

We thus have proved the following theorem.

heorem 4.22 Let A and B be two apartments sharing a generic ray. hen A ∩ B is

enclosed and there exists an isomorphism ϕ∶A
A∩B
ÐÐ→ B.

Proof By Lemma 4.21 and Lemma 4.1, A ∩ B is convex. By Proposition 3.22, A ∩ B
is enclosed and, by Proposition 3.26, there exists an isomorphism ϕ∶A

A∩B
ÐÐ→ B. ∎

4.6 A Partial Reciprocal

One says that a group G of automorphisms of I acts strongly transitively on I if the
isomorphisms involved in (MA2) and (MA4) are induced by elements ofG. For exam-
ple if G is a quasi-split Kac–Moody group over an ultrametric ûeldK, it acts strongly
transitively on the associated masure I(G ,K).

We now prove a kind of weak reciprocal of heorem 4.22 when some group G

acts strongly transitively on I and when I is thick, which means that each panel is
contained in at least three chambers. his implies some restrictions on Λ′ by Lemma
4.24 and Remark 3.3.

Lemma 4.23 Let P be an enclosed subset of A and suppose that P̊ ≠ ∅. One ûxes

the origin of A in some point of P̊. Let jP be the gauge of P deûned in Section 3.3. Let
U = {x ∈ A ∣ jP(x) ≠ 0}. One deûnes Fr∶U → P as in Lemma 3.18. One writes P =

⋂k
i=1 D i , where the D i ’s are half-apartments of A. Let j ∈ [[1, k]], M j be the wall of D j ,

and suppose that for all open subsets V of U, Fr(V) ⊈ M j . hen P = ⋂i∈[[1,k]]/{ j} D i .

Proof Suppose that P ⊈ ⋂i∈[[1,k]]/{ j} D i . Let V be a nonempty open and bounded
subset contained in ⋂i∈[[1,k]]/{ j} D i/P. Let n ∈ N∗ be such that 1

n
V ⊂ P. Let v ∈ V .

hen [ 1
n
v , v] ∩ Fr(P) = {Fr(v)}. Moreover, for all i ∈ [[1, k]]/{ j}, [ 1

n
v , v] ⊂ D̊ i .

As Fr(P) ⊂ ⋃i∈[[1,k]] M i , we deduce that Fr(v) ∈ M j : this is absurd and thus P =

⋂i∈[[1,k]]/{ j} D i . ∎

Lemma 4.24 Suppose that I is thick. Let D be a half-apartment of A. hen there

exists an apartment A of A such that D = A ∩ A.

Proof Let F be a panel of the wall of D. As I is thick, there exists a chamber C
dominating F and such that C ⊈ A. By [Rou11, Proposition 2.9(1)], there exists an
apartment A containing D and C. he set A ∩ A is a half-apartment by Lemma 3.1
and thus A ∩ A = D, which proves the lemma. ∎

Proposition 4.25 Suppose that I is thick and that some group G acts strongly tran-

sitively on I. Let P be an enclosed subset of A containing a generic ray and having

nonempty interior. hen there exists an apartment A such that A ∩ A = P.
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Proof One writes P = D1 ∩ ⋅ ⋅ ⋅ ∩ Dk , where the D i ’s are half-apartments of A. One
supposes that k is minimal for this writing, which means that for all i ∈ [[1, n]], P ≠

⋂ j∈[[1,k]]/{i} D j . For all i ∈ [[1, n]], one chooses an apartment A i such that A ∩ A i =

D i . Let ϕ i ∶A
D i
Ð→ A i and g i ∈ G inducing ϕ i .

Let g = g1 ⋅ ⋅ ⋅ gk andA = g .A. henA∩A ⊃ D1∩⋅ ⋅ ⋅∩Dk and g ûxesD1∩⋅ ⋅ ⋅∩Dk . Let
us show that A ∩ A = {x ∈ A ∣ g .x = x}. By heorem 4.22, there exists ϕ∶A A∩A

ÐÐ→ A.
Moreover, g−1

∣A ○ ϕ∶A → A ûxes D1 ∩ ⋅ ⋅ ⋅ ∩ Dk , which has nonempty interior and thus
g−1
∣A ○ ϕ = IdA, which proves that A ∩ A = {x ∈ A ∣ g .x = x}.
Suppose that A ∩ A ⊋ D1 ∩ ⋅ ⋅ ⋅ ∩ Dk . Let i ∈ [[1, k]] be such that there exists

a ∈ A ∩ A/D i .
One ûxes the origin ofA in some point of P̊; one setsU = {x ∈ A ∣ jP(x) ≠ 0}; and

one deûnes Fr∶U → Fr(P) as in Lemma 3.18. By minimality of k and Lemma 4.23,
there exists a nonempty open set V of U such that Fr(V) ⊂ M i .
By the same reasoning as in the proof of Lemma 3.21, Fr(V) ∩ M i is open in

M i . Consequently, there exists v ∈ Fr(V) such that v ∉ ⋃ j∈[[1,k]]/{i} M j . Let V ′ ∈
VU(v) be such that V ′ ∩ ⋃ j∈[[1,k]]/{i} M j = ∅ and such that V ′ is convex. hen
V ′ ⊂ ⋂ j∈[[1,k]]/{i} D̊ j . Let V ′′ = Fr(V) ∩ V ′. By heorem 4.22, [a, v] ⊂ A ∩ A and
hence g ûxes [a, v]. Moreover, for u ∈ [a, v] near v, one has u ∈ ⋂ j∈[[1,k]]/{i} D j .
hen g .u = g1 ⋅ ⋅ ⋅ g i .(g i+1 ⋅ ⋅ ⋅ gk .u) = g1 ⋅ ⋅ ⋅ g i .u. Moreover, g i .u = g−1

i−1 ⋅ ⋅ ⋅ g
−1
1 .u = u.

herefore u ∈ D i , which is absurd by choice of u. ∎

Remark 4.26 In the proof above, the fact that P contains a generic ray is only used
to prove that A ∩ A is convex and that there exists an isomorphism ϕ∶A

A∩A
ÐÐ→ A.

When G is an aõne Kac–Moody group and I is its masure, we will see that these
properties are true without assuming that A ∩ A contains a generic ray. herefore,
for any enclosed subset P ofA having nonempty interior, there exists an apartment A
such that A ∩ A = P

Let T be a discrete homogeneous tree with valence 3 and x a vertex of T. hen
there exists no pair (A,A′) of apartments such that A ∩ A′ = {x}. Indeed, let A
be an apartment containing x and C1 ,C2 be the alcoves of A dominating x. Let A′

be an apartment containing x. If A′ does not contain C1, it contains C2 and thus
A ∩ A′ ≠ {x}. herefore the hypothesis that “P has nonempty interior” is necessary
in Proposition 4.25.

5 Axioms of Masures

5.1 Axioms of Masures in the General Case

heaimof this section is to give an axiomatics ofmasures other than the one of [Rou11,
Rou17]. For this, we mainly use heorem 4.22.

We ûx an apartment A = (S,W , Λ′). A construction of type A is a set endowed
with a covering of subsets called apartments and satisfying (MA1).

Let cl ∈ CLΛ′ . Let (MA i)=(MA1).
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Let (MA ii) : if two apartments A,A′ contain a generic ray, then A∩ A′ is enclosed

and there exists an isomorphism ϕ∶A
A∩A′
ÐÐ→ A′.

Let (MA iii, cl): ifR is the germ of a splayed chimney and if F is a face or a germ
of a chimney, then there exists an apartment containing R and F.

It is easy to see that the axiom (MA ii) implies (MA4, cl) for all cl ∈ CLΛ′ . If cl ∈
CLΛ′ , then (MA iii, cl) is equivalent to (MA3, cl) because each chimney is contained
in a solid chimney.

Let I be a construction of type A and cl ∈ CLΛ′ . One says that I is a masure of

type (1, cl) if it satisûes the axioms of [Rou11]: (MA2, cl), (MA3, cl), (MA4, cl), and
(MAO). One says that I is a masure of type (2, cl) if it satisûes (MA ii) and (MA iii,
cl).

he aim of the next two subsections is to prove the following theorem.

heorem 5.1 Let I be a construction of type A and cl ∈ CLΛ′ . hen I is a masure of

type (1, cl) if and only if I is a masure of type (1, cl#), if and only if I is a masure of type

(2, cl), if and only if I is a masure of type (2, cl#).

Let us introduce some other axioms and deûnitions. An extended chimney of A is
associated with a local face F l = F ℓ(x , Fv0 ) (its basis) and a vectorial face (its direction)
Fv ; this is the ûlter re(F ℓ , Fv) = F ℓ + Fv . Similarly to classical chimneys, we deûne
shortenings and germs of extended chimneys. We use the same vocabulary for ex-
tended chimneys as for classical: splayed, solid, full, etc. We use the isomorphisms of
apartments to extend these notions in constructions. Actually each classical chimney
is of the form cl(re) for some extended chimney re .

Let cl ∈ CLΛ′ . Let (MA2′, cl): if F is a point, a germ of a preordered interval, or
a splayed chimney in an apartment A, and if A′ is another apartment containing F,
then A∩ A′ contains the enclosure clA(F) of F and there exists an isomorphism from
A onto A′ ûxing clA(F).

Let (MA2′′, cl): if F is a solid chimney in an apartment A and if A′ is another
apartment containing F, then A ∩ A′ contains the enclosure clA(F) of F and there
exists an isomorphism from A onto A′ ûxing clA(F).

he axiom (MA2, cl) is a consequence of (MA2′, cl), (MA2′′, cl), and (MA ii).
Let (MA iii′): if R is the germ of a splayed extended chimney and if F is a local

face or a germ of an extended chimney, then there exists an apartment containing R
and F.

Let I be a construction. hen I is said to be amasure of type 3 if it satisûes (MA ii)
and (MA iii′).

In order to prove heorem 5.1, we will, in fact, prove the following stronger theo-
rem.

heorem 5.2 Let cl ∈ CLΛ′ and I be a construction of type A. hen I is a masure of

type (1, cl) if and only I is a masure of type (2, cl) if and only if I is a masure of type 3.

he proof of this theorem will be divided into two steps. In the ûrst step, we prove
that (MAO) is a consequence of variants of (MA1), (MA2), (MA3), and (MA4) (see
Proposition 5.3 for a precise statement). his uses paths but not heorem 4.22. In the
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second step, we prove the equivalence of the three deûnitions. One implication relies
on heorem 4.22.

5.1.1 Dependency of (MAO)

he aim of this subsection is to prove the following proposition.

Proposition 5.3 Let I be a construction of type A satisfying (MA2′), (MA iii′) and
(MA4). hen I satisûes (MAO).

We now ûx a construction I of type A satisfying (MA2′), (MA iii′), and (MA4).
To prove Proposition 5.3, the key step is to prove that if B is an apartment and if
x , y ∈ A ∩ B are such that x ≤A y, then the image by ρ−∞ of the segment of B joining
x to y is a (y − x)++-path, where if u ∈ T, u++ is the unique element ofWv .u ∩ Cv

f
.

Let a, b ∈ A. An (a, b)-path of A is a continuous piecewise linear map [0, 1] → A
such that for all t ∈ [0, 1[, π′(t)+ ∈Wv .(b − a). When a ≤ b, the (a, b)-paths are the
(b − a)++-paths deûned in Section 3.1.2.

Let A be an apartment and π∶ [0, 1] → A a map. Let a, b ∈ A. One says that π is an
(a, b)-path of A if there exists Υ∶A→ A such that Υ ○ π is a (Υ(a), Υ(b))-path ofA.

Lemma 5.4 Let A be an apartment and a, b ∈ A. Let π∶ [0, 1] → A be an (a, b)-path
in A and f ∶A→ B an isomorphism of apartments. hen f ○π is an ( f (a), f (b))-path.

Proof Let Υ∶A→ A be an isomorphism such that Υ○π is a (Υ(a), Υ(b))-path inA.
hen Υ′ = Υ ○ f −1∶B → A is an isomorphism, Υ′ ○ f ○ π is a (Υ′( f (a)), Υ′( f (b))) -
path in A, and we get the lemma. ∎

he following lemma slightly improves [Rou11, Proposition 2.7(1)]. We recall that
ifA is an aõne space and x , y ∈ A, [x , y)means the germ germ

x
([x , y]), (x , y]means

germ
y
([x , y]), etc.; see Section 2.4.

Lemma 5.5 Let R be the germ of a splayed extended chimney, A an apartment of I,

and x− , x+ ∈ Asuch that x− ≤A x+. hen there exists a subdivision z1 = x− , . . . , zn = x+

of [x− , x+]A such that for all i ∈ [[1, n − 1]] there exists an apartment A i containing

[z i , z i+1]A ∪R such that there exists an isomorphism ϕ i ∶A
[z i ,z i+1]Ai
ÐÐÐÐÐ→ A i .

Proof Let u ∈ [x− , x+]. By (MA iii′), applied to (x− , u] and [u, x+), there exist
apartments A−u and A

+
u containingR∪ (x− , u] andR∪ [u, x+) and by (MA2′), there

exist isomorphisms

ϕ
+
u ∶A

(x− ,u]
ÐÐÐ→ A

−
u and ϕ

−
u ∶A

[u ,x+)
ÐÐÐ→ A

+
u .

For all u ∈ [x− , x+] and є ∈ {−,+}, one chooses a convex set V є
u ∈ [u, xє) such that

V є
u ⊂ A∩Aє

u andV
є
u is ûxed by ϕє

u . If u ∈ [x− , x+], one setsVu = Int[x− ,x+]A(V
+
u ∪V

−
u ).

By compactness of [x− , x+], there exists a ûnite set K and a map є∶K → {−,+} such
that [x− , x+] = ⋃k∈K V

є(k)
k

and the lemma follows. ∎
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Let q be a sector-germ. hen q is an extended chimney. Let Abe an apartment con-
taining q. he axioms (MA2′), (MA iii′), and (MA4) enable one to deûne a retraction
ρ∶ I

q
→ A as in [Rou11, §2.6].

Lemma 5.6 Let A and B be two apartments, q a sector-germ of B, and ρ∶ I
q
→ B. Let

x , y ∈ A be such that x ≤A y. Let τ∶ [0, 1] → Amapping each t ∈ [0, 1] on (1− t)x +A ty

and f ∶A→ B be an isomorphism. hen ρ ○ τ is a ( f (x), f (y))-path of B.

Proof By Lemma 5.5, there exist k ∈ N and t1 = 0 < ⋅ ⋅ ⋅ < tk = 1 such that, for all
i ∈ [[1, k− 1]], there exists an apartment A i containing τ([t i , t i+1])∪q such that there

exists an isomorphism ϕ i ∶A
τ([t i ,t i+1])
ÐÐÐÐÐ→ A i .

If i ∈ [[1, k− 1]], one denotes by ψ i the isomorphism A i

q
→ B. hen for t ∈ [t i , t i+1],

one has ρ(τ(t)) = ψ i ○ ϕ i(τ(t)). Let Υ∶B → A be an isomorphism. By (MA1), for all
i ∈ [[1, k]], there exists w i ∈W such that Υ ○ ψ i ○ ϕ i = w i ○ Υ ○ f .

Let i ∈ [[1, k − 1]] and t ∈ [t i , t i+1]. hen

Υ ○ ρ ○ τ(t) = Υ ○ ψ i ○ ϕ i ○ τ(t) = (1 − t)w i ○ Υ ○ f (x) + tw i ○ Υ ○ f (y).

herefore, ρ ○ τ is a ( f (x), f (y))-path in B. ∎

Lemma 5.7 Let λ ∈ Cv

f
and π∶ [0, 1] → A be a λ-path. hen

π(1) − π(0) ≤Q∨ λ.

Proof By deûnition, there exists k ∈ N, (t i) ∈ [0, 1]k , and (w i) ∈ (Wv)k such that
∑

k

i=1 t i = 1 and π(1)−π(0) = ∑k

i=1 t i .w i . λ. herefore π(1)−π(0)−λ = ∑
k

i=1 t i(w i . λ−
λ) and thus π(1) − π(0) − λ ≤Q∨ 0 by Lemma 3.5. ∎

Lemma 5.8 Let x , y ∈ A be such that x ≤A y, and let B be an apartment containing

x , y. Let τB ∶ [0, 1] → B be deûned by τB(t) = (1 − t)x +B ty. Let s be a sector-germ of

A and ρs∶ I
s
→ A. hen x ≤B y and πA ∶= ρs ○ τB is an (x , y)-path of A.

Proof Possibly changing the choice of Cv

f
, one can suppose that y− x ∈ Cv

f
. Let q be

a sector-germ of B, ρB ∶ I
q
→ B, and τA∶ [0, 1] → A be deûned by τA(t) = (1 − t)x + ty.

Let ϕ∶A → B. By Lemma 5.6, πB ∶= ρB ○ τA is a (ϕ(x), ϕ(y))-path of B from x to y.
herefore x ≤B y. Let ψ = ϕ−1∶B → A. Composing ϕ by some w ∈ Wv if necessary,
one can suppose that ψ(y) − ψ(x) ∈ Cv

f
.

By Lemma 5.6, πA is a (ψ(x),ψ(y))-path of A. By Lemma 5.7, we deduce that
y − x ≤Q∨ ψ(y) − ψ(x).
By Lemma 5.4, ψ ○ πB is an (x , y)-path of A from ψ(x) to ψ(y). By Lemma 5.7,

we deduce that ψ(y) − ψ(x) ≤Q∨ y − x. herefore x − y = ψ(x) − ψ(y) and πA is an
(x , y)-path of A. ∎

If x , y ∈ I, one says that x ≤ y if there exists an apartment A containing x , y and
such that x ≤A y. By Lemma 5.8, this does not depend on the choice of A: if x ≤ y,
then for all apartments B containing x , y one has x ≤B y. However, one does not
know yet that ≤ is a preorder: the proof of [Rou11, héorème 5.9] uses (MAO).
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Lemma 5.9 ([Héb17, Lemma 3.6]) Let τ∶ [0, 1] → I be a segment such that τ(0) ≤
τ(1) such that τ(1) ∈ A and such that there exists ν ∈ Cv

f
such that (ρ−∞ ○τ)′ = ν. hen

τ([0, 1]) ⊂ A and thus ρ−∞ ○ τ = τ.

Proof Let A be an apartment such that τ is a segment of A. hen τ is increasing
for ≤A and thus τ is increasing for ≤. Let x , y ∈ A be such that τ(t) = (1 − t)x + ty

for all t ∈ [0, 1]. Let us ûrst prove that τ is increasing for ≤. It suõces to prove that
x ≤ y. By (MA iii′), there exists u ∈ ]0, 1[ such that there exists an apartment A
containing τ([0, u]) and −∞. Let ϕ∶A

−∞
ÐÐ→ A. One has ϕ(τ(u)) = ρ−∞(τ(u)) =

ρ−∞(τ(0)) + uν = ϕ(τ(0)) + uν. hus ϕ(τ(u)) ≥ ϕ(τ(0)) and hence τ(u) ≥ τ(0).
As τ is a segment of A, it suõces to prove that there exists u > 0 such that τ(u) ≥ τ(0).
herefore, τ is increasing for ≤.

Suppose that τ([0, 1]) ⊈ A. Let u = sup{t ∈ [0, 1] ∣ τ(t) ∉ A}. Let us prove that
τ(u) ∈ A. If u = 1, this is our hypothesis. Suppose u < 1. hen by (MA2′) applied to
]τ(u), τ(1)), A contains clA(]τ(u), τ(1))) and thus A contains τ(u).
By (MA iii′), there exists an apartment B containing τ((0, u])∪−∞ and by (MA4),

there exists an isomorphism ϕ∶B
τ(u)−Cv

f
ÐÐÐÐ→ A. For all t ∈ [0, u] close enough to u, one

has ϕ(τ(t)) = ρ−∞(τ(t)). By hypothesis, for all t ∈ [0, u], ρ−∞(τ(t)) ∈ τ(u) − Cv

f
.

herefore, for t close enough to u, ϕ(τ(t)) = τ(t) ∈ A; this is absurd by choice of u,
and thus τ([0, 1]) ⊂ A. ∎

We can now prove Proposition 5.3: I satisûes (MAO).

Proof Let x , y ∈ A be such that x ≤A y and let B be an apartment containing {x , y}.
We suppose that y − x ∈ Cv

f
. Let πA∶ [0, 1] → A mapping each t ∈ [0, 1] on ρ−∞((1 −

t)x +B ty). By Lemma 5.8, πA is an (x , y)-path from x to y. By Lemma 3.6, πA(t) =
x + t(y − x) for all t ∈ [0, 1]. hen by Lemma 5.9, πA(t) = (1 − t)x +B ty for all
t ∈ [0, 1]. In particular [x , y] = [x , y]B and thus I satisûes (MAO). ∎

5.1.2 Equivalence of the Axioms

As each chimney or face contains an extended chimney or a local face of the same
type, if cl ∈ CLΛ′ , (MA iii, cl) implies (MA iii′). herefore a masure of type (2, cl) is
also a masure of type 3.

If A is an apartment and F is a ûlter of A, then clA(F) ⊂ cl#A(F). herefore, for all
cl ∈ CLΛ′ , (MA2′, cl#) implies (MA2′, cl) and (MA iii, cl#) implies (MA iii, cl).

Lemma 5.10 Let cl ∈ CLΛ′ and I be a masure of type (1, cl). hen I is a masure of

type (2, cl).

Proof Byheorem 4.22, I satisûes (MA ii). By [Rou11, Conséquence 2.2(3)], I satis-
ûes (MA iii, cl). ∎

By abuse of notation, if I is a masure of any type and if q, q′ are adjacent sectors of
I, we denote by q ∩ q′ the maximal face of q ∩ q′. By [Rou11, §3], this has a meaning
for masures of type 1 and by (MA ii) for masures of type 2 and 3.
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Lemma 5.11 Let I be a masure of type 3. Let A be an apartment. LetX be a ûlter of A
such that for all sector-germs s of I, there exists an apartment containingX and s. hen

if B is an apartment containing X, B contains cl#(X) and there exists an isomorphism

ϕ∶A
cl#(X)
ÐÐÐ→ B.

Proof Let q and q′ be sector-germs of A and B of the same sign. By (MA iii′), there
exists an apartment C containing q and q′. Let q1 = q, . . . , qn = q′ be a gallery of
sector-germs from q to q′ in C. One sets A1 = A and An+1 = B. By hypothesis, for all
i ∈ [[2, n]], there exists an apartment A i containing qi and X. For all i ∈ [[1, n − 1]],
qi ∩ qi+1 is a splayed chimney and A i ∩ A i+1 ⊃ qi ∩ qi+1. herefore A i ∩ A i+1 is
enclosed and there exists ϕ i ∶A i

A i∩A i+1
ÐÐÐÐ→ A i+1. he set An ∩ An+1 is also enclosed and

there exists ϕn ∶An

An∩An+1
ÐÐÐÐ→ An+1.

If i ∈ [[1, n + 1]], one sets ψ i = ϕ i−1 ○ ⋅ ⋅ ⋅ ○ ϕ1. hen ψ i ûxes A1 ∩ ⋅ ⋅ ⋅ ∩ A i .
Let i ∈ [[1, n]] and suppose that A1 ∩ ⋅ ⋅ ⋅ ∩ A i is enclosed in A. he isomorphism

ψ i ûxes A1 ∩ ⋅ ⋅ ⋅ ∩ A i and thus we deduce that A1 ∩ ⋅ ⋅ ⋅ ∩ A i = ψ i(A1 ∩ ⋅ ⋅ ⋅ ∩ A i) is
enclosed in A i . Moreover, A i ∩ A i+1 is enclosed in A i and thus A1 ∩ ⋅ ⋅ ⋅ ∩ A i+1 is
enclosed in A i . Consequently A1 ∩ ⋅ ⋅ ⋅ ∩ A i+1 = ψ−1

i (A1 ∩ ⋅ ⋅ ⋅ ∩ A i+1) is enclosed in
A. Let X = A1 ∩ ⋅ ⋅ ⋅ ∩ An+1. By induction, X is enclosed in A and ϕ ∶= ψn ûxes X. As
X ⊃ X, we deduce that X ∈ cl#(X) and we get the lemma. ∎

Lemma 5.12 Let I be a masure of type 3. hen for all cl ∈ CLΛ′ , I satisûes (MA iii,
cl).

Proof Each face is contained in the ûnite enclosure of a local face and each chim-
ney is contained in the ûnite enclosure of an extended chimney. hus by Lemma 5.11,
applied when X is a local face and a germ of a chimney, I satisûes (MA iii, cl#). Con-
sequently for all cl ∈ CLΛ′ , I satisûes (MA iii, cl), hence (MA3, cl) and the lemma is
proved. ∎

Lemma 5.13 Let I be a masure of type 3 and cl ∈ CLΛ′ . hen I satisûes (MA2′, cl).

Proof If A is an apartment and F is a ûlter of A, then cl(F) ⊂ cl#(F). herefore
it suõces to prove that I satisûes (MA2′, cl#). We conclude the proof by applying
Lemma 5.11 applied when X is a point, a germ of a preordered segment. ∎

Using Proposition 5.3, we deduce that a masure of type 2 or 3 satisûes (MAO), as
(MA4) is a consequence of (MA ii).

Lemma 5.14 Let I be amasure of type 3. Let r be a chimney ofA, r = r(F ℓ , Fv), where

F ℓ , resp., Fv , is a local face, resp., vectorial face, of A. Let R# = germ∞(cl#(F ℓ , Fv)).

Let A be an apartment containing r andR# and such that there exists ϕ∶A R#

Ð→ A. hen

ϕ∶A r
→ A.
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Proof One can suppose that Fv ⊂ Cv

f
. LetU ∈R# such thatU is enclosed,U ⊂ A∩A

and such that U is ûxed by ϕ. One writes U = ⋂k
i=1 D(β i , k i), with β1 , . . . , βk ∈ Φ and

(k1 , . . . , kr) ∈ ∏
r

i=1 Λ
′
β i
.

Let ξ ∈ Fv be such that U ∈ cl(F ℓ + Fv + ξ). Let J = {i ∈ [[1, k]] ∣ β i(ξ) ≠ 0}.
For all i ∈ [[1, r]], one has D(β i , k i) ⊃ nξ for n ≫ 0. hus β i(ξ) > 0 for all i ∈ J.
One has U − ξ = ⋂k

i=1 D(β i , k i + β i(ξ)). Let λ ∈ ]1,+∞[ be such that for all i ∈ J,
there exists k̃ i ∈ Λ′

β i
such that k i + β i(ξ) ≤ k̃ i ≤ k i + λβ i(ξ). Let Ũ = ⋂k

i=1 D(β i , k̃ i).
hen U − ξ ⊂ Ũ ⊂ U − λξ. herefore, Ũ ∈ r. Let V ′ ∈ r be such that V ′ ⊂ A ∩ A
and such that V ′ + Fv ⊂ V ′. hen V ∶= Ũ ∩ V ′ ∈ r. Let v ∈ V and δ ⊂ Fv be the
ray based at 0 and containing ξ. By the proof of of [Rou11, Proposition 5.4] (which

uses only (MA1), (MA2′), (MA3), (MA4) and (MAO)), there exists gv ∶A
v+δ
ÐÐ→ A. As

V ⊂ U − λξ, there exists a shortening δ′ of v + δ contained in U . hen g−1
v ○ ϕ∶A→ A

ûxes δ′. Consequently, g−1
v ○ ϕ ûxes the support of δ′ and thus ϕ ûxes v: ϕ ûxes V .

herefore ϕ ûxes r, and the lemma follows. ∎

Lemma 5.15 Let I be a masure of type 3 and cl ∈ CLΛ′ . hen I satisûes (MA2′′, cl).

Proof Let r = cl(F l , Fv) be a solid chimney of an apartment A and A′ be an apart-
ment containing r. One supposes that A = A. Let r# = cl#(F l , Fv), resp., re = F l + Fv ,
andR#, resp.,Re , be the germ of r#, resp., re). By Lemma 5.11 applied with X = Re ,

there exists ϕ∶A
R#

Ð→ A′. By Lemma 5.14, ϕ ûxes r and thus I satisûes (MA2”, cl). ∎

We can now prove heorem 5.2. Let cl ∈ CLΛ′ . By Lemma 5.10, a masure of type
(1, cl) is also a masure of type (2, cl) and thus it is a masure of type 3. By Lemma 5.12,
Lemma 5.13, and Lemma 5.15, a masure of type 3 is a masure of type (1, cl), which
concludes the proof of the theorem.

5.2 Friendly Pairs in I

Let A = (A,W , Λ′) be an apartment. Let I be a masure of type A. We now use
the ûnite enclosure cl = cl#Λ′ , which makes sense by heorem 5.1. A family (F j) j∈J
of ûlters in I is said to be friendly if there exists an apartment containing ⋃ j∈J F j .
In this section, we obtain friendliness results for pairs of faces, improving results of
[Rou11, §5]. We will use it to give a very simple axiomatics of masures in the aõne
case. hese kinds of results also have interest in their own right: the deûnitions of the
Iwahori–Hecke algebra of [BPGR16] and of the parahoric Hecke algebras of [AH17]
rely on the existence of apartments containing pairs of faces.

If x ∈ I, є ∈ {−,+}, and A is an apartment, one denotes by Fx , resp., Fє , Fє(A),
Cx , . . . , the set of faces of I based at x, resp., and of sign є, and contained in A, the
set of chambers of I based at x, . . . . If X is a ûlter, one denotes by A(X) the set of
apartments containing X.

Lemma 5.16 Let A be an apartment of I, a ∈ A, and C1 ,C2 ∈ Ca(A). Let Da be the

set of half-apartments of A whose wall contains a. Suppose that C1 ≠ C2. hen there

exists D ∈Da such that D ⊃ C1 and D ⊉ C2.
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Proof Let Cv
1 and C

v
2 be vectorial chambers of A such that C1 = F(a,Cv

1 ) and C2 =
F(a,Cv

2). Suppose that for all D ∈ Da such that D ⊃ C1, one has D ⊃ C2. Let X ∈ C1.
here exist half-apartments D1 , . . . ,Dk and Ω ∈ VA(a) such that X ⊃ ⋂k

i=1 D
○
i ⊃

Ω ∩ (a + Cv
1 ).

Let J = { j ∈ [[1, k]] ∣ D j ∉ Da}. For all j ∈ J, one chooses Ω j ∈ VA(a) such that
D○

j
⊃ Ω j . If j ∈ [[1, k]]/J, D j ⊃ C1, thus D j ⊃ C2 and hence D○

j
⊃ C2. herefore, there

exists Ω j ∈ VA(a) such that D○
j
⊃ Ω j ∩ (x + Cv

2). Hence

X ⊃
k

⋂
j=1
D
○
j ⊃ (

k

⋂
j=1

Ω j) ∩ (x + Cv
2),

thus X ∈ C2 and C1 ⊃ C2.
Let D ∈ Da such that D ⊃ C2. Suppose that D ⊉ C1. Let D′ be the half-apartment

opposite D. hen D′ ⊃ C1 and therefore D′ ⊃ C2: this is absurd. herefore for all
D ∈ Da such that D ⊃ C2, one has D ⊃ C1. By the same reasoning as above, we
deduce that C2 ⊃ C1 and thus C1 = C2. his is absurd, and the lemma is proved. ∎

he following proposition improves [Rou11, Proposition 5.1]. It is the analogue of
axiom (I1) of buildings (see the Introduction).

Proposition 5.17 Let {x , y} be a friendly pair in I.

(i) Let A ∈ A({x , y}) and δ be a ray of A based at x and containing y (if y ≠ x,

δ is unique) and Fx ∈ Fx . hen (δ, Fx) is friendly. Moreover, there exists A′ ∈

A(δ ∪ Fx) such that there exists an isomorphism ϕ∶A
δ
→ A′.

(ii) Let (Fx , Fy) ∈ Fx × Fy . hen (Fx , Fy) is friendly.

Proof We begin by proving (i). Let Cx be a chamber of I containing Fx . Let C be
a chamber of A based at x and having the same sign as Cx . By [Rou11, Proposition
5.1], there exists an apartment B containing Cx and C. Let C1 = C , . . . ,Cn = Cx

be a gallery in B from C to Cx . If i ∈ [[1, n]], one lets Pi be the statement “there
exists an apartment A i containing C i and δ such that there exists an isomorphism

ϕ∶A
δ
→ A i”. he property P1 is true by taking A1 = A. Let i ∈ [[1, n − 1]] be such that

Pi is true. If C i+1 = C i , then Pi+1 is true. Suppose C i ≠ C i+1. Let A i be an apartment
containing C i and δ. By Lemma 5.16, there exists a half-apartment D of Awhose wall
contains x and such that C i ⊂ D and C i+1 ⊈ D. As C i and C i+1 are adjacent, the wall
M of D is the wall separating C i and C i+1. By (MA2), there exists an isomorphism
ϕ∶B

C i
Ð→ A i . Let M′ = ϕ(M) and D1, D2 be the half-apartments of A i delimited by

M′. Let j ∈ {1, 2} such that D j ⊃ δ. By [Rou11, Proposition 2.9(1)], there exists an

apartment A i+1 containing D j and C i+1. Let ψ i ∶A
δ
→ A i and ψ∶A i

D j
Ð→ A i+1. hen

ψ ○ ψ i ∶A
δ
→ A i+1. herefore Pi+1 is true. Consequently, Pn is true, which proves (i).

Let us prove (ii), which is very similar to (i). As a particular case of (i), there exists
an apartment A′ containing Fx and y. Let Cy be a chamber of I containing Fy . Let C
be a chamber of A′ based at y and of the same sign as Fy . Let C1 = C , . . . ,Cn = Cy be
a gallery of chambers from C to Cy (which exists by [Rou11, Proposition 5.1]). By the
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same reasoning as above, for all i ∈ [[1, n]], there exists an apartment containing Fx
and C i , which proves (ii). ∎

5.3 Axioms of Masures in the Affine Case

In this section, we study the particular case of masures associated with the irreducible
aõne Kac–Moody matrix A, which means that A satisûes condition (aò) of [Kac94,
heorem 4.3].

Let S be a generating root system associated with an irreducible and aõne Kac–
Moody matrix and A = (S,W , Λ′) be an apartment. By [Rou11, §1.3], one has T̊ =

{v ∈ A ∣ δ(v) > 0} for some imaginary root δ ∈ Q+/{0} and T = T̊ ∪ Ain , where
Ain = ⋂i∈I ker(α i).

We ûx an apartment A of aõne type. Let (MA af i)=(MA1).
Let (MA af ii): let A and B be two apartments. hen A ∩ B is enclosed and there

exists ϕ∶A
A∩B
ÐÐ→ B.

Let (MA af iii)= (MA iii).
he aim of this subsection is to prove the following theorem.

heorem 5.18 Let I be a construction of type A and cl ∈ CLΛ′ . hen I is a masure

for cl if and only if I satisûes (MA af i), (MA af ii) and (MA af iii, cl) if and only if I

satisûes (MA af i), (MA af ii) and (MA af iii, cl#).

Remark 5.19 Actually, we do not know if these axioms are true for masures asso-
ciated with indeûnite Kac–Moody groups. We do not know if the intersection of two
apartments is always convex in a masure.

he fact that we can exchange (MA af iii, cl#) and (MA af iii, cl) for all cl ∈ CLΛ′

follows from heorem 5.2. he fact that a construction satisfying (MA af ii) and (MA
af iii, cl#) is a masure is clear and does not use the fact that A is associated with an
aõne Kac–Moody matrix. It remains to prove that a masure of type A satisûes (MA
af ii), which is the aim of this subsection.

Lemma 5.20 Let A and B be two apartments such that there exist x , y ∈ A ∩ B such

that x≤̊y and x ≠ y. hen A ∩ B is convex.

Proof One identiûes A and A. Let a, b ∈ A ∩ B. If δ(a) ≠ δ(b), then a ≤ b or b ≤ a
and [a, b] ⊂ B by (MAO). Suppose δ(a) = δ(b). As δ(x) ≠ δ(y), one can suppose
that δ(a) ≠ δ(x). hen [a, x] ⊂ B. Let (an) ∈ [a, x]N be such that δ(an) ≠ δ(a) for
all n ∈ N and an → a. Let t ∈ [0, 1]. hen tan + (1 − t)b ∈ B for all n ∈ N and by
Proposition 3.9, ta + (1 − t)b ∈ B: A ∩ B is convex. ∎

Lemma 5.21 Let A and A′ be two apartments of I. hen A ∩ A′ is convex. Moreover,

if x , y ∈ A ∩ A′, there exists an isomorphism ϕ∶A
[x ,y]A
ÐÐÐ→ A′.

Proof Let x , y ∈ A ∩ A′ be such that x ≠ y. Let Cx be a chamber of A based at x
and Cy be a chamber of A′ based at y. Let B be an apartment containing Cx and Cy ,
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which exists by Proposition 5.17. By Lemma 5.20, A∩ B and A′ ∩ B are convex and by

Proposition 3.26, there exist isomorphisms ψ∶A
A∩B
ÐÐ→ B and ψ′∶B

A
′∩B
ÐÐ→ A′. herefore

[x , y]A = [x , y]B = [x , y]A′ . Moreover, ϕ = ψ′ ○ ψ ûxes [x , y]A and the lemma is
proved. ∎

heorem 5.22 Let A and B be two apartments. hen A ∩ B is enclosed and there

exists an isomorphism ϕ∶A
A∩B
ÐÐ→ B.

Proof he fact that A ∩ B is enclosed is a consequence of Lemma 5.21 and Proposi-
tion 3.22. By Proposition 3.14, there exist ℓ ∈ N, enclosed subsets P1 , . . . , Pℓ of A such

that supp(A ∩ B) = supp(Pj) and isomorphisms ϕ j ∶A
P j
Ð→ B for all j ∈ [[1, ℓ]]. Let

x ∈ Intr(P1) and y ∈ A ∩ B. By Lemma 5.21, there exists ϕy ∶A
[x ,y]
ÐÐ→ B. hen ϕ−1

y ○ ϕ1

ûxes a neighborhood of x in [x , y] and thus ϕ1 ûxes y, which proves the theorem. ∎
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