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Abstract

We describe an Euler scheme to approximate solutions of Lévy driven stochastic
differential equations (SDEs) where the grid points are given by the arrival times of a
Poisson process and thus are random. This result extends the previous work of Ferreiro-
Castilla et al. (2014). We provide a complete numerical analysis of the algorithm
to approximate the terminal value of the SDE and prove that the mean-square error
converges with rate O(n−1/2). The only requirement of the methodology is to have exact
samples from the resolvent of the Lévy process driving the SDE. Classical examples,
such as stable processes, subclasses of spectrally one-sided Lévy processes, and new
families, such as meromorphic Lévy processes (Kuznetsov et al. (2012), are examples
for which our algorithm provides an interesting alternative to existing methods, due to
its straightforward implementation and its robustness with respect to the jump structure
of the driving Lévy process.

Keywords: Lévy process; Euler scheme; meromorphic Lévy process; stochastic differen-
tial equation
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1. Introduction

Let Y := {Yt }t∈[0,T ] be the solution of the stochastic differential equation (SDE)

Yt = y0 +
∫ t

0
a(Ys−) dXs, t ∈ [0, T ], (1.1)

where a is smooth enough so that (1.1) has a strong solution. There is a great need from
applications in mathematical finance, insurance mathematics, mathematical biology, physics,
and engineering to solve such SDEs numerically; see, for example, [6], [13], [26], and [27].
Most studies deal with the case that X := {Xt }t∈[0,T ] is a Wiener process. The complete path
of X is numerically intractable and, ultimately, any numerical scheme can only be based on
simulating the increments of the driving process. Therefore, typical approximation schemes
rely on Taylor-type approximations of the integral. For Itô integrals with respect to Wiener
processes, Taylor expansions of arbitrary order are available and therefore approximations of
arbitrary convergence rate (cf. Kloeden and Platen [15]).
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Several problems arise when X in (1.1) is replaced by a Lévy process. For instance,
increments of X are not available in general and approximations of the driving process are
required. Moreover, multiple stochastic integrals with respect to Poisson measures are more
difficult to handle and most numerical schemes are based on modifications of a first-order
Taylor approximation or an Euler scheme, although higher-order schemes can be described as
in Baran [3]. The basic Euler scheme for (1.1) is then

Ŷ0 = y0, Ŷti+1 = Ŷti + a(Ŷti )(Xti+1 − Xti ) for 0 ≤ i ≤ n − 1, (1.2)

where {ti}0≤i≤n (typically ti = iT /n) is a deterministic partition of [0, T ] and n ∈ N. For the
exact Euler scheme, where the increments of the Lévy process X are available, convergence
rates are explicit for the weak and the strong error. The weak error refers to the convergence
rate of |E[f (YT )] − E[f (ŶT )]| for a function f in a suitable class. Protter and Talay [23]
require that f ∈ C4(R) in addition to some condition on the first moments of X to show
that |E[f (YT )] − E[f (ŶT )]| = O(n−1). The literature on the strong error estimates is less
extensive. The strong error refers to the pth moment, for p ≥ 1, of the pathwise convergence,
i.e. E[supt∈[0,T ] |Yt − Ŷt |p]. It can be inferred from Dereich and Heidenreich [8] that under
the assumption that finite second moments of X exist, we also have E[supt∈[0,T ] |Yt − Ŷt |2] =
O(n−1).

However, the above convergence rates are theoretical, since the exact distributions of the
increments of Lévy processes are in general not available and an extra approximation error
needs to be incorporated. See, for example, Jacod et al. [14] for a weak error estimate
with fairly general assumptions on the approximation of the increments of X, or Dereich and
Heidenreich [8] for a strong error estimate where the jump component of X is truncated below a
certain threshold. Indeed, the most common approach relies on the Lévy–Itô decomposition and
removes the jumps below a given threshold, transforming the original Lévy process into a jump
diffusion process. Therefore, the final convergence rates depend in general on the structure of
the small jumps. Compound Poisson processes are piecewise constant processes with jumps
occurring at the arrival times of a Poisson point process. Hence, a more promising modification
is to move away from the deterministic equally spaced grid points in (1.2). A jump-adapted
discretisation scheme consists of interlacing an equally spaced grid for the approximation
of the continuous component of the driving process, with a random grid given by the jump
times of the purely discontinuous part, as described in Rubenthaler [24]. In its simplest form,
the approximation can perform very poorly when the jump component has paths of infinite
p-variation, with p close to 2, as shown in Dereich and Heidenreich [8] (recall that all Lévy
processes have finite 2-variation paths). A more sensible approach is to substitute the small
jumps by a Gaussian correction as performed in Dereich [7], but this method has its limitations
as discussed in Asmussen and Rosiński [2]. A novel approach described in Kohatsu-Higa et
al. [16] is to approximate the small jumps with an extra compound Poisson process matching
a given number of moments of the original driving process, provided these moments exist.
Convergence rates for weak errors are derived under further assumptions on the smoothness of
the function f . Under the assumption that the Lévy measure is a regularly varying function,
the authors in [16] combine the above approach with a high-order scheme for the continuous
part, obtaining arbitrary convergence rates for the weak error.

The aim of this paper is to describe an Euler scheme defined entirely on a random grid, built
from the arrival times of a Poisson process. In all the methodologies mentioned above, the
largest time step in the Euler approximation is bounded above by a constant. In our scheme
this feature can no longer be assumed, as the inter-arrival times of a Poisson process are
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exponentially distributed. The origin of this scheme is based on recent developments for
Wiener–Hopf factorisations of Lévy processes in [17]–[19]. The Wiener–Hopf factorisation is
a distributional decomposition of the path of a Lévy process in terms of the running supremum
and the running infimum. In Ferreiro-Castilla et al. [11] this factorisation is used to sample from
the bivariate distribution of (Xt , sups<t Xs) by constructing a random walk approximation with
time steps chosen according to a an exponential distribution, i.e. the arrival times of a Poisson
process. This scheme effectively constructs a skeleton of the path of X and therefore it is natural
to investigate also how this skeleton would perform to obtain approximations of (1.1).

Although the skeleton constructs a random walk approximation of the path which captures
not only the end point but the supremum over each exponential time step, in this paper we
will consider an Euler scheme for the solution YT of (1.1) at the end point only. Therefore,
the proposed algorithm is a modification of the Euler scheme where we assume that we can
sample from the distribution of Xe(n/T ) for exponentially distributed time steps e(n/T ) with
mean T/n independent of X. In other words, the grid points in our Euler scheme are given
by a Poisson point process with rate n/T denoted by N(n/T ), where the mean T/n plays the
role of the grid size. We will call our scheme the Euler–Poisson scheme. Our analysis does
not assume any particular way of obtaining the distribution of Xe(n/T ) and there is no reason
why the latter should be easier to obtain than the distribution of X1 for a general Lévy process.
Nevertheless, for a large class of processes called meromorphic Lévy processes, see Kuznetsov
et al. [19], the distribution of Xe(n/T ) is explicit and samples from it are numerically easy to
obtain. However, the most important and significant advantage is that in contrast to the more
classical methods mentioned above, our numerical performance does not depend on the jump
structure of X. The main result of this paper derives the convergence rate in the mean-square
error for the approximation Ỹn of YT obtained via the Euler–Poisson scheme, showing that
E[|YT − Ỹn|2] = O(n−1/2). We will also show that our methodology is closely related to
classical discretisation schemes for the partial integro-differential equation (PIDE) associated
with computing E[f (YT )] for a given function f .

This paper is organised as follows. In the next section we will introduce the basic notation,
describe the Euler–Poisson scheme, and state our main result. The numerical analysis of
our methodology is given in Section 3. Finally, we collect several remarks and observations
regarding feasibility, and extensions and its relation with PIDEs about our scheme in Section 4.

2. The Euler–Poisson scheme

2.1. Preliminaries

Let (�, F , {Ft }t≥0, P) be a filtered probability space and let Y := {Yt }t∈[0,T ] be a R
dY -

valued, adapted stochastic process which is the strong solution of the SDE

Yt = y0 +
∫ t

0
a(Ys−) dXs, t ∈ [0, T ], (2.1)

where a := R
dY → R

dY ⊗R
dX is a coefficient with smoothness to be specified, X := {Xt }t∈[0,T ]

is a dX-dimensional square-integrable Lévy process, y0 ∈ R
dY , and T < ∞. Recall that a Lévy

process is a stochastic process issued from the origin which enjoys the properties of having
stationary and independent increments with paths that are almost surely right-continuous with
left limits. It is a well-understood fact that, as a consequence, the law of every Lévy process is
characterised through a triplet (b, �, �), where b ∈ R

dX , � ∈ R
dX×dX , and � is a measure

concentrated on R
dX\{0} such that

∫
R

dX (1 ∧ |x|2)�(dx) < ∞. For square-integrable Lévy
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processes we have, for all t ≥ 0 and θ ∈ R
dX ,

E[ei〈θ,Xt 〉] = e−t�(θ),

where �(θ) = i〈b, θ〉 + 1
2 〈θ, ���θ〉 + ∫

R
dX (1 − ei〈θ,x〉 + i〈θ, x〉)�(dx) is the so-called

characteristic exponent of the process and 〈·, ·〉 is the usual inner product. Furthermore, the
Lévy–Itô decomposition guarantees that we can decompose X as

Xt = �Wt + Lt + bt, t ≥ 0, (2.2)

where W := {Wt }t∈[0,T ] is a dX-dimensional Wiener process and L := {Lt }t∈[0,T ] is a dX-
dimensional L2(�, F , P) martingale representing the compensated jumps of X. For ease of
notation, we will assume in the following derivations, without loss of generality, that there
exists a constant k ∈ R

+ such that∫
R

dX

|x|2�(dx) ≤ k2, |�| ≤ k, |b| ≤ k, |y0| ≤ k.

We use | · | without distinction to denote the Euclidean norm for vectors or the Frobenius norm
for matrices.

Theorem 2.1. (Situ [26, Section 3.1].) Consider the SDE driven by a square-integrable Lévy
process given in (2.1). Let a := R

dY → R
dY ⊗ R

dX be a measurable function such that

|a(x) − a(x′)| ≤ k′|x − x′| and |a(y0)| ≤ k′ for x, x′ ∈ R
dY, k′ ∈ R

+.

Then (2.1) has a unique strong solution adapted to the filtration generated by X, F X, and there
exists a positive constant K1 depending only on k′ and T such that

E

[
sup

t∈[0,T ]
|Yt |2

]
≤ K1.

Without loss of generality we set k′ = k in Theorem 2.1. In the following, all constants
denoted by Ki and κi depend only on k and T and may be renamed without further notice in
consecutive equations.

2.2. The discretisation scheme

As mentioned in the introduction, in this paper we are concerned with a modification of the
standard Euler scheme, replacing equally spaced time steps by exponentially distributed ones
so that the grid points in our scheme are arrival times of a Poisson process. For n ≥ 1, let
{ei (n/T )}i≥1 be an independent and identically distributed (i.i.d.) sequence of random variables
in (�, F , P), where e(q) denotes an exponential random variable such that E[e(q)] = q−1,
and denote by G the σ -algebra generated by {ei (n/T )}i≥1, assumed to be independent of X;
we set e0 = 0 for convenience. We will also denote by N(n/T ) := {Nt (n/T )}t≥0 the Poisson
process with arrival times {ti}i≥0. In the above description the mean T/n is the analogue of the
grid size for deterministic spaced Euler schemes. The Euler–Poisson scheme is then given by
the discrete Markov chain Ỹ := {Ỹti }i≥0 defined recursively by

Ỹti := Ỹti−1 + a(Ỹti−1)	Xei (n/T ) for i ≥ 1, Ỹ0 := y0, (2.3)

where 	Xei
:= Xei (n/T ) − Xei−1(n/T )

d= Xe(n/T ) and ti := ∑i
j=0ej (n/T ). Note that

ti
d=g(i, n/T ), where g(α, β) denotes a gamma distribution with shape parameter α and rate
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parameter β. We claim that Ỹtn is an approximation of YT and our task in this paper is to derive
the asymptotic behaviour of

lim
n→∞ E[|YT − Ỹtn |2]. (2.4)

Before we proceed, let us introduce a new process which stochastically interpolates the
Euler–Poisson scheme. Denote by ι(t) the largest grid point before t , i.e. ι(t) := sup[0, t] ∩
{ti}i≥0, and define

Ŷt := y0 +
∫ t

0
a(Ŷι(s−)) dXs = Ŷι(t) + a(Ŷι(t))(Xt − Xι(t)) for t ∈ [0, tn ∨ T ]. (2.5)

Note that for t ∈ [ti , ti+1), we have Ỹti = Ŷti = Ŷι(t) and hence Ŷ := {Ŷt }t∈[0,tn∨T ] interpolates,
in a random way, the chain Ỹ . Yet another important random variable which is going to play a
crucial role in the following derivations is the largest gap of the random grid {ti}i≥0 restricted
to [0, T ]. Let us denote this G-measurable random variable by

τ := sup
s∈[0,T ]

(s − ι(s)). (2.6)

2.3. Main result and feasibility of the Euler–Poisson scheme

With the above notation we can now formally state the main result of this paper, proved in
Section 3.

Theorem 2.2. Under the assumptions of Theorem 2.1, there exists a positive constant K2
depending only on k and T such that

E[|YT − Ỹtn |2] ≤ K2√
n

.

It is clear from the preceding section that the Euler–Poisson method is of practical interest
only if samples from the distribution of Xe(q) are available. In general, there is no reason
why the latter distribution is easier to handle than the distribution of X1 itself. Nevertheless,
recent developments in Wiener–Hopf theory for one-dimensional Lévy processes have provided
a rich enough variety of examples for which the necessary distributional sampling can be
performed and thus the Euler–Poisson scheme may lead to simpler numerical techniques to
approximate (2.1). This family of processes are called meromorphic Lévy processes; see [18]
and [19]. For the class of meromorphic Lévy processes, theWiener–Hopf factors are explicit and
hence we can efficiently sample from the distribution of Xe(q) through its factorisation. Indeed,
numerical algorithms involving the computation of Xe(q) for meromorphic Lévy processes are
very easy to implement and robust with respect to the jump structure; see, for example, [11].
One large subfamily of such processes is the β-class of Lévy processes, which also conveniently
offers all the desirable properties of better known Lévy processes that are used in mathematical
finance, such as CGMY processes, VG processes, or Meixner processes; see, for example,
[10] and [25]. This brings the possibility to study new processes associated to the SDE (2.1).
For instance, the results in [11] and the ones presented here suggest that we can sample and
numerically analyse approximate solutions for SDEs such as

Yt = y0 +
∫ t

0
a(Ys−, Xs−) dXs or Yt = y0 +

∫ t

0
a(Ys−, Xs−) dXs,
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where Xt = sups≤t Xs and Xt := infs≤t Xs . To the best of the authors’ knowledge, such SDEs
have not yet been numerically considered in the literature, but it is not difficult to imagine
applications of such processes. For instance, models that appear in stochastic dynamics for
population studies or chemical reactions might be modelled by the above SDEs where the
knowledge of X can replace the artificial barrier restrictions that are usually imposed on the
driving processes due to physical constraints; see, for example, [26, Chapter 11]. In financial
mathematics it might be used to model drawdown or barrier constraints on credit derivatives.

3. Numerical analysis

The construction of the Euler–Poisson scheme uses a random grid that is supported on an
interval that can be shorter or longer than [0, T ]. We will split the mean-square error described
in (2.4) between what we denote by the discretisation error and the hitting error. To fix ideas,
let us write

|YT − Ỹtn | = |YT − Ŷtn | ≤ |YT − ŶT | + |ŶT − Ŷtn |, (3.1)

where the first term on the right-hand side of the above inequality corresponds to the discreti-
sation error and the second term to the hitting error.

3.1. The discretisation error

Heuristically, the discretisation error should behave in the same way as it does for the
classical Euler scheme with deterministic, equally spaced grid points. In order to see this, we
first derive a technical lemma in which we obtain the analogous result for Ŷ to the one described
in Theorem 2.1 for Y .

Lemma 3.1. Under the assumptions of Theorem 2.1, the process Ŷ defined in (2.5) is adapted
to G ∨ F X and there exists a constant K3 > 0 such that

(i) E[supt∈[0,T ] |Ŷt |2] ≤ K3;

(ii) E[supt∈[0,T ] |Ŷt |2 | G] ≤ K3.

Proof. The adaptivity property is clear from the right-hand side of (2.5). The square
integrability of Lemma 3.1(i) follows similarly as in the proof of Theorem 2.1, which we
briefly review here for the sake of completeness. Let σN := inf{t > 0 | |Ŷt | > N}, t ∈ [0, T ].
Then, using the definition of Ŷ and the Cauchy–Schwarz inequality for the random Lebesgue
integral, we have

1

3
|Ŷt∧σN

|2 ≤ |y0|2 +
∣∣∣∣
∫ t∧σN

0
a(Ŷι(s))b ds

∣∣∣∣2

+
∣∣∣∣
∫ t∧σN

0
a(Ŷι(s−)) d(�Ws + Ls)

∣∣∣∣2

≤ |y0|2 + (t ∧ σN)k2
∫ t∧σN

0
|a(Ŷι(s))|2 ds

+
∣∣∣∣
∫ t∧σN

0
a(Ŷι(s−)) d(�Ws + Ls)

∣∣∣∣2

. (3.2)

Using the Lipschitz condition of a, we further derive the growth condition

|a(x)|2 = |a(x) − a(y0) + a(y0)|2 ≤ 4k2|x|2 + 2k2(2k2 + 1) ≤ K0|x|2 + K0 (3.3)

for a constant K0 depending on k only. Hence, using the definition of the stopping time σN ,
we conclude that the stochastic integral in (3.2) is a square-integrable martingale, to which we
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apply Doob’s inequality and the Itô isometry to obtain

1

3
E

[
sup

r≤t∧σN

|Ŷr |2
]

≤ k2 + tk2
E

[∫ t∧σN

0
|a(Ŷι(s))|2 ds

]
+ 8k2

E

[∫ t∧σN

0
|a(Ŷι(s))|2 ds

]

≤ k2 + (tk2 + 8k2)

(
K0E

[∫ t∧σN

0
|Ŷι(s)|2 ds

]
+ K0t

)

≤ κ1 + κ1

∫ t

0
E

[
sup

r≤s∧σN

|Ŷr |2
]

ds,

where κ1 is a constant depending only on k and T . Finally, applying Gronwall’s lemma, we
obtain

E

[
sup

r≤t∧σN

|Ŷr |2
]

≤ 3κ1e3κ1t ≤ 3κ1e3κ1T = K3

and Lemma 3.1(i) follows by letting N ↑ ∞. The proof of Lemma 3.1(ii) follows analogously
by noting that X is independent of G; therefore, conditioned on G, the stochastic integral

∫ t∧σN

0
a(Ŷι(s−)) d(�Ws + Ls)

is a martingale with respect to F X, allowing us to use conditioned versions of Doob’s inequality
and of Itô isometry. The bound in Lemma 3.1(ii) then follows in the same way as for
Lemma 3.1(i). �

In the following theorem we derive the asymptotic behaviour for the discretisation error
which ultimately depends on the random grid size τ defined in (2.6). The necessary results to
obtain bounds for the moments of τ are derived in Appendix A.

Theorem 3.1. Under the assumptions of Theorem 2.1, there exists a constant K4 > 0 such that

E

[
sup

t∈[0,T ]
|Yt − Ŷt |2

]
≤ K4 log(n)

n
.

Proof. Let t ∈ [0, T ] and define

Zt := Yt − Ŷt =
∫ t

0
(a(Ys) − a(Ŷι(s)))b ds +

∫ t

0
(a(Ys−) − a(Ŷι(s−))) d(�Ws + Ls). (3.4)

From Theorem 2.1 and Lemma 3.1, we deduce that the stochastic integral on the right-hand side
of (3.4) is a square-integrable martingale with respect to the filtration G ∨ F X. We apply the
Cauchy–Schwarz inequality to the random Lebesgue integral and Doob’s martingale inequality
plus the Itô isometry to the stochastic integral in (3.4) to obtain

1

2
E

[
sup
r<t

|Zr |2
]

≤ E

[
sup
r<t

(∫ r

0
(a(Ys) − a(Ŷι(s)))b ds

)2

+
(∫ r

0
(a(Ys−) − a(Ŷι(s−))) d(�Ws + Ls)

)2]
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≤ k2
E

[
t

∫ t

0
|Ys − Ŷι(s)|2 ds

]
+ 8k2

E

[∫ t

0
|Ys − Ŷι(s)|2 ds

]

≤ κ2

∫ t

0
E[|Zs |2] + E[|Ŷs − Ŷι(s)|2] ds

≤ κ2

∫ t

0
E

[
sup
r<s

|Zr |2
]

+ E[|Ŷs − Ŷι(s)|2] ds, (3.5)

where κ2 is a positive constant depending on k and T only. The next objective is to use
Gronwall’s lemma in (3.5). This will rely on controlling |Ŷs − Ŷι(s)|. Since X has independent
increments and, due to the growth condition of a(x) in (3.3), we can write

E[|Ŷs − Ŷι(s)|2] = E[|a(Ŷι(s))|2]E[|Xs − Xι(s)|2]
≤ (K0E[|Ŷι(s)|2] + K0)E[|Xs − Xι(s)|2]
≤ (2K0E[|Zι(s)|2] + 2K0E[|Yι(s)|2] + K0)E[|Xs − Xι(s)|2]. (3.6)

Now,
E[|Xs − Xι(s)|2] ≤ k2

E[2τ + τ 2] ≤ k2(2T + T 2),

and so together with (3.5) and (3.6), as well as Theorem 2.1, we obtain

E

[
sup
r<t

|Zr |2
]

≤ κ2E[2τ + τ 2] + κ2

∫ t

0
E

[
sup
r<s

|Zr |2
]

ds,

where we renamed the constant κ2. From Gronwall’s inequality, it follows that

E

[
sup

t∈[0,T ]
|Yt − Ŷt |2

]
≤ E[2τ + τ 2]κ2eT κ2 = K4E[2τ + τ 2].

This completes the proof of the theorem up to bounding E[2τ + τ 2]. This bound follows from
Proposition A.1 in Appendix A. �
3.2. The hitting error

In the next result we derive the asymptotic behaviour for the hitting error, which is essentially
measuring how fast the random time tn converges to T . This, in turn, is controlled by the variance
of a gamma distribution. Before we proceed, let us first derive two technical lemmas in the
spirit of Lemma 3.1.

Lemma 3.2. Under the assumptions of Theorem 2.1, the process Ŷ defined in (2.5) is adapted
to G ∨ F X and there exists a constant K5 > 0 such that

max
0≤i≤n

E[|Ŷti |2] ≤ K5.

Proof. Fix i > 0 and recalling the definition of Ŷti in (2.5), we have

E[|Ŷti |2] = E[|Ŷti−1 |2] + E[|a(Ŷti−1)|2]E[|Xti − Xti−1 |2]
+ 2E[Ŷti−1

�a(Ŷti−1)]E[Xti − Xti−1 ]
≤ E[|Ŷti−1 |2]

(
1 + K02k2 T

n

(
1 + T

n

)
+ 2

√
K0k

T

n

)
+ K02k2 T

n

(
1 + T

n

)

+ 2
√

K0k
T

n
, (3.7)
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where we use the fact that ti − ti−1
d=e(n/T ) and the orthogonal decomposition of X in (2.2),

as well as the growth condition (3.3) and the following inequality, which follows from the
assumptions on a(x):

|x�a(x)| ≤ √
K0|x|2 + √

K0.

It is then clear from (3.7) that there exists a constant κ3, depending on k and T only, such that

E[|Ŷti |2] ≤ E[|Ŷti−1 |2]
(

1 + κ3

n

)
+ κ3

n
≤ |y0|2

(
1 + κ3

n

)i

+ i exp

(
i
κ3

n

)
κ3

n
,

which follows from the argument that if xm+1 ≤ αxm + β and α ≥ 1, then xm ≤ αmx0 +
mem(α−1)β. Finally,

max
0≤i≤n

E[|Ŷti |2] ≤ |y0|2
(

1 + κ3

n

)n

+ eκ3κ3 ≤ eκ3(k2 + κ3)

which concludes the proof. �
Lemma 3.3. Under the assumptions of Theorem 2.1, the process Ŷ defined in (2.5) is adapted
to G ∨ F X and there exists a constant K6 > 0 such that

(i) E[max0≤i≤n |Ŷti |2] ≤ K6;

(ii) E[(E[max0≤i≤n |Ŷti |2|G])2] ≤ K6.

Proof. We define 	Ŷi := Ŷti+1 − Ŷti and use the same principles as in (3.7) and Lemma 3.2
to derive

E[|	Ŷti |2] = E[|a(Ŷti )|2]E[|Xti+1 − Xti |2]
≤ (K0K5 + K0)2k2 T

n

(
1 + T

n

)
for 0 ≤ i ≤ n − 1,

and, hence, there exists a constant κ4 depending only on k and T such that

max
0≤i≤n−1

E[|	Ŷti |2] ≤ κ4

n
. (3.8)

Consider now the filtration Hi := σ 〈Ŷtj , 0 ≤ j ≤ i〉 and the auxiliary random variables

Zi := 	Ŷti − E[	Ŷti | Hi] for 0 ≤ i ≤ n − 1.

It is clear that Zi is Hi+1-measurable and it is not difficult to check that
∑i

j=0Zi is a martingale
such that E[ZiZj ] = 0 if i �= j . Therefore, we can write

max
0≤i≤n

|Ŷti |2 ≤ 2

(
|y0|2 + max

0≤i≤n−1

∣∣∣∣
i∑

j=0

	Ŷtj

∣∣∣∣2)

= 2

(
|y0|2 + max

0≤i≤n−1

∣∣∣∣
i∑

j=0

Zj + E[	Ŷtj | Hj ]
∣∣∣∣2)

≤ 2

(
|y0|2 + 2 max

0≤i≤n−1

∣∣∣∣
i∑

j=0

Zj

∣∣∣∣2

︸ ︷︷ ︸
(∗)

+2 max
0≤i≤n−1

∣∣∣∣
i∑

j=0

E[	Ŷtj | Hj ]
∣∣∣∣2

︸ ︷︷ ︸
(∗∗)

)
. (3.9)
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We now use Doob’s martingale inequality and the orthogonality of {Zi}n−1
i=0 to bound (∗).

Combining this with Jensen’s inequality and (3.8), we obtain

E[(∗)] ≤ E

[n−1∑
j=0

|Zj |2
]

≤ 2E

[n−1∑
j=0

|	Ŷtj |2 + |E[	Ŷtj | Hj ]|2
]

≤ 4
n−1∑
j=0

E[|	Ŷtj |2] ≤ 4κ4.

Similarly, using Lemma 3.2, we obtain

E[(∗∗)] ≤ E

[(n−1∑
j=0

|E[	Ŷtj | Hj ]|
)2]

= E

[(n−1∑
j=0

|a(Ŷtj )|k
T

n

)2]
≤ k2T 2(K0K5 + K0).

Lemma 3.3(i) follows by substituting the upper bounds for E[(∗)] and E[(∗∗)] into (3.9).
For Lemma 3.3(ii) we consider Hi := G ∨ σ 〈Ŷtj , 0 ≤ j ≤ i〉 and reproduce the above

derivations up to (3.9). By the definition of 	Ŷti , we have

E[(∗) | G] ≤ 4
n−1∑
j=0

E[|	Ŷtj |2 | G] ≤ 8k2 max
0≤i≤n−1

E[|a(Ŷti )|2 | G]
n∑

j=0

ej (1 + ej ), (3.10)

E[(∗∗) | G] ≤ E

[(n−1∑
j=0

|a(Ŷtj )|kej

)2 ∣∣∣∣ G

]
≤ k2 max

0≤i≤n−1
E[|a(Ŷti )|2 | G]n

n∑
j=0

e2
j . (3.11)

Therefore, to prove Lemma 3.3(ii) it is enough to recall (3.9) and to show that E[(E[(∗) | G])2+
(E[(∗∗) | G])2] ≤ κ5 for some constant κ5 depending on k and T only. Using the Cauchy–
Schwarz inequality and renaming κ5, a sufficient condition for this claim to hold is

E

[(
max

0≤i≤n−1
E[|a(Ŷti )|2 | G]

)4] + E

[(
n

n∑
j=0

e2
j

)4

+
( n∑

j=0

ej (1 + ej )

)4]
≤ κ5. (3.12)

Since E[e(n/T )i] = i! T i/ni for i ≥ 1, we can check that

E

[(
n

n∑
j=0

e2
j

)4

+
( n∑

j=0

ej (1 + ej )

)4]
≤ 8! T 8 + 8

(
4! T 4 + 8! T 8

n4

)
(3.13)

and the second term in (3.12) is bounded. Adapting the left-hand side of (3.7) to incorporate
the conditional expectation, we write

E[|Ŷti |2 | G] ≤ E[|Ŷti−1 |2 | G](1 + K02k2(ei + e2
i ) + 2

√
K0kei ) + K02k2(ei + e2

i )

+ 2
√

K0kei ,

where κ6 is a constant that depends only on k. Using again a recurrence argument, we easily
see that

max
0≤i≤n

E[|Ŷti |2 | G] ≤ |y0|2
n∏

i=1

(1 + κ6(ei + e2
i )) +

n∑
i=1

κ6(ei + e2
i )

n∏
j=i+1

(1 + κ6(ej + e2
j )).

Finally, the bound on the first term in (3.12) follows from this inequality in a similar manner
to that used in (3.13). Since (3.12) holds, so do (3.10) and (3.11), which proves Lemma 3.3(ii)
and completes the proof. �
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Proposition 3.1. Under the assumptions of Theorem 2.1, there exists a constant K7 > 0 such
that

E[|ŶT − Ŷtn |2] ≤ K7√
n

.

Proof. Let us write

1

2
|ŶT − Ŷtn |2 ≤

∣∣∣∣
∫ T

tn

a(Ŷι(s))b ds

∣∣∣∣2

+
∣∣∣∣
∫ T

tn

a(Ŷι(s−)) d(�Ws + Ls)

∣∣∣∣2

.

According to Lemmas 3.1(i) and 3.3(i), the stochastic integral in the above decomposition is a
square-integrable martingale with respect to G ∨ F X. Hence, we can use again the Cauchy–
Schwarz inequality to the random Lebesgue integral and the Itô isometry for the stochastic
integral to obtain

1

2
E[|ŶT − Ŷtn |2]

≤ E

[
(k2|T − tn| + 2k2)

∫ T

tn

|a(Ŷι(s))|2 ds

]

= k2
E

[
(|T − tn| + 2)

∫ T

tn

E[|a(Ŷι(s))|2 | G] ds

]

≤ k2
E

[
(|T − tn|2 + 2|T − tn|)

(
sup

t∈[0,T ∨tn]
E[|a(Ŷι(s))|2 | G]

)]

≤ k2
(
E[(|T − tn|2 + 2|T − tn|)2]︸ ︷︷ ︸

(�)

E

[(
sup

t∈[0,T ∨tn]
E[|a(Ŷι(t))|2 | G]

)2]
︸ ︷︷ ︸

(��)

)1/2
. (3.14)

Note that we have used the fact that {ti}i≥0 are measurable with respect to G. Thanks to
Lemmas 3.1(ii) and 3.3(ii) we can bound (��) by some constant κ7 depending on k and T

only:

(��) ≤ E

[(
sup

t∈[0,T ]
E[|a(Ŷt )|2 | G] + max

0≤i≤n
E[|a(Ŷti )|2 | G]

)2] ≤ κ7.

To compute the expression in (�) we recall that tn
d=g(n, n/T ). Hence, we can apply Jensen’s

inequality to bound the first three moments of the difference |T − tn| from above by powers of
the fourth moment E[|T − g(n, n/T )|4] = 3T 4(2 + n)n−3, i.e.

(�) = E

[∣∣∣∣T − g

(
n,

n

T

)∣∣∣∣4]
+ 4E

[∣∣∣∣T − g

(
n,

n

T

)∣∣∣∣3]
+ 4E

[∣∣∣∣T − g

(
n,

n

T

)∣∣∣∣2]

≤
(

3T 4(2 + n)

n3

)
+ 4

(
3T 4(2 + n)

n3

)3/4

+ 4

(
3T 4(2 + n)

n3

)1/2

.

Recall now (3.14) and the upper bounds for (�) and (��) to conclude the proof. �

Proof of Theorem 2.2. Using the decomposition of the mean-square error in (3.1), the
proof of the main result of this paper is now merely a corollary of Theorem 3.1 and Proposi-
tion 3.1. �
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4. Remarks on the Euler–Poisson scheme

4.1. Enhanced Euler–Poisson scheme

The Euler–Poisson scheme has a deterministic number of iterations, but since it is supported
on a random grid, it is natural to investigate if there is a more efficient way to stop the algorithm.

Recall the Poisson process N(n/T ) defined in Section 2.2 and define T (n, T ) := tNT +1,
where we drop the dependence on n/T for ease of notation. Consider the Euler–Poisson scheme
now stopped at the random iteration dictated by NT + 1, i.e. T (n, T ) is the grid point closest
to and greater than T . In other words, this enhanced Euler–Poisson scheme considers ŶT (n,T )

as the approximation of YT .

Corollary 4.1. Under the assumptions of Theorem 2.1, there exists a constant K8 > 0 such
that

E[|YT − ỸT (n,T )|2] ≤ K8 log(n)

n
.

Proof. We first prove a result analogous to Proposition 3.1 for the random iteration NT + 1.
From the construction of Ŷ , recalling that ỸT (n,T ) = ŶT (n,T ), we write

E[|ŶT − ŶT (n,T )|2] = E[|a(Ŷι(T ))|2]E[|XT (n,T ) − XT |2]
≤ (K0K3 + K0)(k

2
E[|T (n, T ) − T |2] + 2k2

E[|T (n, T ) − T |])

= (K0K3 + K0)

(
k2 T 2

n2 + 2k2 T

n

)
, (4.1)

where the only difference with the proof of Proposition 3.1 is the fact that due to the lack of a
memory property T (n, T ) − T

d=e(n/T ) and that we have used (3.3) and Lemmas 3.1 and 3.3
to bound a(Ŷι(T )). To prove the claim of the result we just need to split the error |YT − ỸT (n,T )|
into a discretisation error and a hitting error, as shown in (3.1), and then use Theorem 3.1
together with (4.1). �

Thus, this enhanced Euler–Poisson scheme is quasi-optimal. Another equivalent modifica-
tion would be to use as the final point T̃ (n, T ) := tNT

, i.e. the closest point in the Poisson grid
that is smaller than T . This modification also leads to a quasi-optimal convergence. However,
unfortunately, to construct either ŶT (n,T ) or ŶT̃ (n,T ) we need to be able to sample from the
bivariate (	Xei

, ei ) and not just from the resolvent of X, and thus the univariate 	Xei
. The

Wiener–Hopf factorisation does not provide the pair (	Xei
, ei ) and so far there is also no

other approach. Therefore, the enhancement is of little practical relevance. Moreover, if the
distribution of (	Xei

, ei ) is available then the distribution of Xt is given by

P(	Xe(q) ∈ dx, e(q) ∈ dt) = P(Xt ∈ dx)qe−qt dt (4.2)

and one might as well use the classical Euler scheme for SDEs (also known as Euler–Maruyama).
The only advantage of the enhanced Euler–Poisson algorithm over Euler–Maruyama would be
to avoid the Laplace transformation in (4.2).

4.2. Heuristics behind the Euler–Poisson scheme

The Feynman–Kac representation identifies conditional expectations of functionals of the
solution of a SDE as solutions of a certain PIDE. In this section we aim to formalise the
relationship between the discretisation procedure given by the Euler–Poisson scheme in (2.3)
and its counterpart in the PIDE representation. We claim that, in some sense, the solution Y
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of (2.1) sampled over a random grid generated by the arrival times of a Poisson process is more
natural, since it is equivalent to performing a discretisation in time by the method of lines to
the associated Feynman–Kac equation. We are not the first to point out this relationship. It was
also the basis of Carr [4], where an approximation for American options of finite maturity was
obtained by randomising the time horizon by an Erlang distribution. Matache et al. [20] also
point out, informally, the relation between a deterministic discretisation in time of a Feynman–
Kac PIDE and its probabilistic counterpart.

Theorem 4.1. (Situ [26, Section 8.17].) Consider the following integro-differential operator:

AY g(x) := 〈a(x)b, ∇〉g(x) + 1
2 〈a(x)���a�(x)∇, ∇〉g(x)

+
∫

R
dX

(g(x + a(x)z) − g(x) − 〈a(x)z, ∇〉g(x))�(dz),

taking values in C1,2([0, T ] × R
dY , R). Let us assume that the assumptions of Theorem 2.1

hold:

(i) a := R
dY → R

dY ⊗ R
dX is bounded;

(ii) there exists δ1, δ2 > 0 such that δ1|λ|2 ≤ 〈a(x)���a�(x)λ, λ〉 ≤ δ2|λ|2 for all x, λ ∈
R

dY .

Let u(t, x) ∈ C1,2([0, T ] × R
dY , R) be a classical solution of the PIDE

∂

∂t
u(t, x) = AY u(t, x) (4.3)

with initial condition u(0, x) = f (x) for some bounded continuous function f : R
dY → R,

i.e. f ∈ C0. Then

u(T − t, x) = E[f (YT ) | Yt = x] = E[f (YT −t ) | Y0 = x] := Ex[f (YT −t )], (4.4)

where Y is the unique strong solution of (2.1) and 0 ≤ t ≤ T .

The converse of the preceding statement also holds with appropriate assumptions. It can be
written under much more general assumptions and in terms of weak solutions of the PIDE, but
the simpler statement above is enough to make the point in this section. A typical setting where
the above relation is exploited happens when (4.4) represents the price of an option under the
risky asset Y , which is computed by numerically solving the associated PIDE. The celebrated
Black–Scholes formula is an example of this approach when the underlying process follows
a geometric Brownian motion; for incomplete markets generated by Lévy processes similar
formulas hold (cf. Chan [5]).

Recall the random times {ti}i≥0 defined in Section 2.2 as the arrival times of a Poisson
process N , and consider the Laplace–Carlson transform L of u(t, x), i.e.

L[u](x) =
∫ ∞

0

n

T
exp

(
−nt

T

)
u(t, x) dt

=
∫ ∞

0

n

T
exp

(
−nt

T

)
Ex[f (Yt )] dt

= Ex[f (Ye(n/T ))]
= Ex[f (Yt1)], (4.5)
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where we have used the boundedness of f ∈ C0 to apply Fubini’s theorem. Note that the last
term in the above equation corresponds to the expectation of the solution in (2.1) at the first
arrival time of the Poisson process N . Moreover, due to the boundedness of f we can also
interchange the differential operator AY and the transform L to obtain the integro-differential
equation satisfied by the Laplace–Carlson transform:

L[u](x) − f (x)

T /n
= AY L[u](x), (4.6)

which contains a difference instead of the differential ∂/∂t in (4.3). Due to the homogeneity
of AY , this turns out to be of the same form as the first-order finite difference approximation in
time of (4.3) with respect to L[u] instead of u. To fix ideas, the following proposition explicitly
relates the solution Y at the arrival times of N with the iterates of what is known in the literature
as the method of lines or Rothe’s method for PIDEs.

Proposition 4.1. Under the assumptions of Theorems 2.1 and 4.1, consider Rothe’s method
for (4.3), given by

ui(x) − ui−1(x)

T /n
= AY ui(x) for i = 1, . . . , n (4.7)

with u0(x) = f (x). Then, for all i = 1, . . . , n, ui(x) = Ex[f (Yti )].
Proof. It is clear that the solution of (2.1) given by Theorem 2.1 has the strong Markov

property (cf. Protter [22, Theorem 32, p. 294]). Therefore, we write

Ex[f (Yti )] = Ex[EYt1
[EYt2

[· · · EYti−1
[f (Yti )] · · · ]]],

and apply recursively the arguments derived from (4.5) and (4.6) in the above nested expectations
to obtain the recursive solutions that solve the system of differential equations in (4.7). �
4.3. Pathwise convergence

The Euler–Poisson scheme is supported on a random grid and there is no straightforward
way to perform a pathwise numerical analysis of the algorithm. Nevertheless the above analogy
with Rothe’s method suggests that one may try to study the behaviour of

E

[
max

1≤i≤n
|YiT/n − Ỹti |2

]
= E

[
max

1≤i≤n
|YiT/n − Ŷti |2

]
.

Indeed, Theorem 3.1 states a pathwise result for the discretisation error and, hence, using
the decomposition in (3.1), one would need to obtain only a pathwise analogue of the hitting
error in order to study the above quantity, i.e. a pathwise generalisation of Proposition 3.1.
Unfortunately, the latter is not true. A weaker statement that can be proved and involves the
entire path of the Euler–Poisson scheme is

max
1≤i≤n

E[|YiT/n − Ỹti |2] ≤ K9√
n

, (4.8)

where K9 > 0 depends only on k and T . The result in (4.8) is a direct consequence of
Theorem 3.1 and Proposition 3.1 together with the following observation (derivable from Doob
[9, Theorem 5.1]):

E

[
max

1≤i≤n

∣∣∣∣ti − T i

n

∣∣∣∣p
]

≤ 8E[|tn − T |p] for p ≥ 1.
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Appendix A. Moments of τ

Let m ∈ N. If a Poisson process N has m arrivals up to time T then those m arrival times have
the same distribution as m ordered independent uniform random variables on [0, T ]. Therefore,
in order to study the random variable τ defined in (2.6), we can start by studying the largest
partition on the interval [0, 1] defined by m independent uniform random variables in [0, 1].

Let {Ui}i=1,...,m−1 be a sequence of i.i.d. random variables with common uniform distribution
in [0, 1] and consider its order statistics U(i) for i = 0, . . . , m, where U0 = 0 and Um = 1.
Denote the largest gap by

λm := max
i=1...,m

{U(i) − U(i−1)}.
Recall the definition of τ in (2.6). The conditional distribution of τ is, up to a constant, equal
to λ. Indeed, (1/T )τ , conditioned on NT , is equal in distribution to λNT +1. In particular, we
have

1

T
E[τ ] = E[λNT +1]. (A.1)

Fisher [12] has already studied the behaviour of λm and the following expression is given in
Mauldon [21]:

E[(1 − λms)−m] = m!
1 − s

m∏
j=2

1

j − s
, |s| < 1

2 , m ≥ 1.

All moments of λm can be expanded from the above expression and, in particular, for m ≥ 1,
we have

mE[λm] =
m∑

j=1

1

j
= �(m + 1) + γ,

where � is the digamma function (see Abramowitz and Stegun [1, Sections 6.3.2 and 6.4.10]).
Recall that the function �(m + 1) + γ is 0 for m = 0, positive for m > 0, and grows
asymptotically as log(m + 1), i.e. limm→∞ �(m)/ log(m) = 1. Therefore, there is a constant
κ0 > 0 independent of m such that �(m + 1) + γ ≤ κ0 log(m + 1) for m ≥ 1. Hence,

mE[λm] ≤ κ0 log(m + 1) for m ≥ 1.

Proposition A.1. It holds that

E[τ ] + E[τ 2] ≤ KA log(n)

n
.

Proof. According to (A.1) and recalling that the arrival rate for NT is n/T , we have

1

T
E[τ ] = E[λNT +1] =

∞∑
k=0

E[λNT +1 | NT = k]P(NT = k)

≤ κ0

∞∑
k=0

log(k + 2)

k + 1
exp

(
− n

T

)
(n/T )k

k!

= κ0
T

n

∞∑
k=1

log(k + 1) exp

(
− n

T

)
(n/T )k

k!
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= κ0T

n
E[log(NT + 1)]

≤ κ0T

n
log(E[NT ] + 1)

= κ0T log(n + 1)

n
,

where the last inequality is due to Jensen’s inequality and the concavity of x → ln(x + 1) for
x ≥ 0. To derive the claim of the proposition we can use the crude upper bound λ2

m ≤ λm,
since λm ∈ [0, 1], and, hence,

1

T 2 E[τ 2] = E[λ2
NT +1] ≤ E[λNT +1]. �
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