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The stochastic cash balance problem is a periodic review inventory problem faced by
a firm in which the customer demands might be positive or negative. At the beginning
of each time period, the firm may decide to replenish the inventory or return excess
stock. Both the ordering cost and the return cost include a fixed component and a
variable component. A holding or penalty cost is charged depending on whether the
inventory level is positive or negative. The objective of the firm is to find an ordering
and return policy so as to minimize the total expected cost over the entire planning
horizon. We show how the concept of symmetric K-convexity introduced by Chen
and Simchi-Levi [2,3] and the concept of (K , Q)-convexity introduced by Ye and
Duenyas [13] can be used to characterize the optimal policy for this problem.

1. INTRODUCTION

The stochastic cash balance problem is a cost minimization problem faced by a firm
that has to decide how much cash to hold in order to meet its transaction requirements
for a given planning horizon with multiple time periods. At the beginning of each time
period, the firm makes decisions about the right amount of cash to hold. In particular,
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the firm might choose to increase or decrease the cash levels. Either transaction
can incur a cost, which might include both a fixed component independent of the
transaction amount and a variable component that is proportional to the transaction
amount. During the time period, a stochastic inflow or outflow of cash is incurred
to satisfy the firm’s transaction. Therefore, the cash levels of the firm might increase
or decrease depending on its net expenses. At the end of the transaction period, the
cash levels may be positive or negative depending on whether cash is held or owed.
A holding cost is charged when the cash level is positive and a penalty cost is charged
if the cash level is negative. The objective of the firm is to find a policy for holding
cash so as to minimize the total expected (possibly discounted) cost over the entire
planning horizon.

Even though coined with the name cash balance, the stochastic cash balance
problem can be used to model several other important applications not related to cash.
For instance, it models stochastic inventory management for rented equipment studied
by Whisler [12]. It is also closely related to a stochastic inventory control problem
with returns (see Feinberg and Lewis [5]) or, more broadly, to reverse logistics (see
Fleischmann, Bloemhof-Ruwaarda, Dekker, van der Laana, et al. [7]). Indeed, the
stochastic cash balance problem can be regarded as a special type of inventory control
problem. Hence, in the following, we will use the term inventory level instead of cash
level. We will also use the terms order or return to indicate the increase or decrease
of the cash levels.

The stochastic cash balance problem received considerable amount of attention
in the 1960s. In particular, Eppen and Fama [4] and Whisler [12] studied this problem
assuming that there is no fixed transaction cost for either orders or returns. In this
case, they were able to characterize the optimal policy. Girgis [8] studied this problem
assuming that there is at most one fixed transaction cost; that is, there is a fixed cost
for orders but not for returns, or there is a fixed cost for returns but not for orders. In
this case, Girgis showed that the concept if-convexity introduced by Scarf [10] can be
used to provide a characterization of the structure of the optimal policy.

When there are fixed costs for both orders and returns, the problem becomes
much more difficult. Indeed, Neave [9] showed that the K-convexity concept might
not be suitable when there are fixed costs for both orders and returns. Nonetheless,
Neave partially characterized the structure of the optimal policy of the stochastic cash
balance problem by constructing the so-called convex-envelope functions associated
with the cost-to-go functions.

In this article, we describe some new insights about the stochastic cash balance
problem with fixed costs for both orders and returns. In particular, we are able to
utilize the newly developed concept of symmetric K-convexity introduced by Chen
and Simchi-Levi [2,3] and the concept of (K , Q)-convexity (which reduces to sym-
metric K-convexity when K = Q) introduced by Ye and Duenyas [13] to provide a
characterization of the structure of the optimal policy. Compared with Neave [9], our
approach is more straightforward and conceptually much simpler. Furthermore, some
refined results are available based on this approach. Finally, Feinberg and Lewis [6]
extended the structural results to the infinite horizon stochastic cash balance problem.
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The organization of this article is as follows. In Section 2 we introduce the formal
model of the stochastic cash balance problem and review some related literature on
this model and on the concept of (K , Q)-convexity. In Section 3 we show how the
concept of (K , Q)-convexity and the concept of symmetric K-convexity can be used
for the stochastic cash balance problem. Finally, we provide some concluding remarks
in Section 4.

2. MODEL

Consider a firm that has to make ordering or return decisions over a finite planning
horizon with a total of N time periods. For convenience, we index periods from 1 to
N , where 1 is the last period and N is the first period of the planning horizon.

At the beginning of each time period, an ordering or return decision is made. Let
x be the inventory level at the beginning of time period n before a decision is made and
let y be the inventory level at the beginning of time period n after an ordering or return
decision was made. Lead time for the ordering or return transaction is assumed to be
zero and the transaction cost is denoted by c(y, x), which is calculated as follows:

c(y, x) =

⎧⎪⎨
⎪⎩

K + k(y − x) if y > x

0 if y = x

Q + q(x − y) if y < x,

where K ≥ 0, Q ≥ 0, and k + q ≥ 0. Notice that the assumption that k + q ≥ 0
implies that the unit refund is no more than the unit ordering cost.

Demand in time period n, denoted by ξn, is stochastic and can be positive or
negative. Negative demand implies that the return from end customers is higher than
their purchase. Furthermore, demands in different periods are independent of each
other. At the end of time period n, inventory holding or penalty cost ln(z) is charged
and is a function of z, the inventory level at the end of that period. Therefore, the
expected inventory holding or penalty cost at period n is given by

Ln(y) = E{ln(y − ξn)},
where y is the inventory level at the beginning of time period n after an ordering or
return decision was made. For technical reasons, we assume the following.

Assumption 1: The function Ln is convex and lim|z|→∞ Ln(z) = ∞. In addition, there
exists finite numbers xn ≤ yn ≤ wn ≤ zn such that

(Ln(yn) − Ln(xn))/(yn − xn) < −k and (Ln(zn) − Ln(wn))/(zn − wn) > q.

Those technical assumptions are imposed to avoid trivial complications and are
the same as those imposed by Neave [9]. If these assumptions are violated, the first
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inequality implies that it is never optimal to order and the second inequality implies
that it is never optimal to return.

The objective of the firm is to find an ordering and return policy so as to minimize
the total expected (possibly discounted) ordering or return costs plus inventory hold-
ing or penalty costs over the entire planning horizon. Similarly to classic stochastic
inventory control problems, the stochastic cash balance problem can be formulated
and analyzed by a dynamic program.

Let Cn(x) be the cost-to-go function starting at the beginning of a period when
there are n periods left in the planning horizon and the initial inventory level is x. The
dynamic programming recursion is

Cn(x) = min
y

{c(y, x) + Ln(y) + γ E[Cn−1(y − ξn)]}, (1)

where γ ∈ (0, 1] is a discount factor. For simplicity of presentation, we assume that
C0(x) = 0. Even though this assumption seems to be arbitrary, we note that this
assumption can be easily extended.

Define Hn(x) = Ln(x) + γ E{Cn−1(x − ξn)}. It is not hard to see that with
Assumption 1, Hn(x) → ∞ and, thus, Cn(x) → ∞ for |x| → ∞. In addition, under
mild conditions on the random variable ξn and the inventory holding and penalty cost
function ln(x),1 one can show by induction that Cn(x) is continuous. Indeed, since

Cn(x) = min{Hn(x), min
y≥x

{K + k(y − x) + Hn(y)}, min
y≤x

{Q + q(x − y) + Hn(y)}},

Cn(x) is continuous as long as Cn−1(x) is since the minimum and expectation operators
preserve continuity provided that the mild conditions on ξn and ln(x) hold. Thus,
throughout this article, we assume that Cn(x) is continuous. With this assumption, the
minimum in the dynamic program (1) can be attained. Specifically, we will use yn(x)
to denote an optimal solution for problem (1).

Eppen and Fama [4] and Whisler [12] studied a special case of the stochastic cash
balance problem. In particular, they assumed that K = Q = 0. Under this assumption,
they showed that at time period n, there exist two parameters Tn and Un with Tn ≤ Un,
such that the optimal inventory level yn(x) at the beginning of time period n after a
decision is made satisfies

yn(x) =

⎧⎪⎨
⎪⎩

Tn if x ≤ Tn

x if x ∈ (Tn, Un)

Un if x ≥ Un.

Girgis [8] studied another special case of the stochastic cash balance problem. The
author assumed that K > 0, Q = 0, and kq > 0 or K = 0, Q > 0, and kq > 0. Girgis
showed that when K > 0, Q = 0, and kq > 0, the cost-to-go, Cn(x), is K-convex, and
as a consequence, there exist three parameters tn, Tn, and Un with tn ≤ Tn ≤ Un such
that the optimal inventory level yn(x) at the beginning of time period n after a decision
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is made has the form

yn(x) =

⎧⎪⎨
⎪⎩

Tn if x ≤ tn
∈ [tn, x] if x ∈ (tn, Un)

Un if x ≥ Un

By symmetry, if K = 0, Q > 0, and kq > 0, there exists three parameter Tn ≤ Un ≤ un

such that the optimal policy has the structure

yn(x) =

⎧⎪⎨
⎪⎩

Tn if x ≤ Tn

∈ [x, un] if x ∈ (Tn, un)

Un if x ≥ un.

Neave [9] studied the stochastic cash balance problem with general ordering and
return costs (i.e., when K , Q > 0 and k, q ≥ 0). He provided an example that shows
that a simple policy (analogous to a two-sided (s, S) policy) is not necessarily optimal
and the concept K-convexity might not be appropriate even when K = Q > 0, and
k = q = 0. He developed a technique that constructs convex upper and lower bounds
(so-called convex envelope functions) on the nonconvex cost-to-go functions Cn(x)
to provide a characterization of the optimal policy.

Neave [9] showed that at time period n, there exist six parameters tn, t+n , Tn, Un,
u−

n , and un with tn ≤ t+n ≤ Tn ≤ Un ≤ u−
n ≤ un, such that the optimal inventory level

yn(x) at the beginning of time period n after a decision is made satisfies

yn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tn if x ≤ tn
∈ {x, Tn} if x ∈ (tn, t+n )

∈ [x, u−
n ] if x ∈ [t+n , u−

n ], 0 < K < Q

x if x ∈ [t+n , u−
n ], K = Q > 0

∈ [t+n , x] if x ∈ [t+n , u−
n ], K > Q > 0

∈ {x, Un} if x ∈ (u−
n , un)

Un if x ≥ Un.

In fact, Neave [9] provided a detailed proof for the case K = Q > 0 and claimed
that the same approach can be used to obtain the characterization of the optimal
policy when K �= Q. Unfortunately, it is not clear to us how this argument can
get through in the case x ∈ (tn, t+n ) when K > Q > 0 or in the case x ∈ (u−

n , un)

when Q > K > 0. This problem has been also independently pointed out by Ye and
Duenyas [13].

In this article, we develop some new insights on the stochastic cash balance
problem. It was first proven in Chen [1] that the cost-to-go function Cn(x) is symmetric
max {K , Q}-convex, which allows one to provide a characterization of the optimal
policy. Building on the concepts of K-convexity and symmetric K-convexity, Ye and
Duenyas [13] introduced the concept of (K , Q)-convexity and applied it to analyze
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a capacity investment problem with fixed capacity adjustment costs. They noticed
that their capacity investment problem has some similarities to the stochastic cash
balance problem. Indeed, in this article we prove that the cost-to-go function Cn(x) is
in fact (K , Q)-convex and the structure of the optimal policy follows directly from this
property. In the special case with K = Q, the cost-to-go function Cn(x) is symmetric K-
convex. Compared with Neave [9], our approach is straightforward and conceptually
simpler. For instance, we do not need to construct upper and lower bounds on the cost-
to-go function, the tool used in Neave’s approach. In addition, our approach provides
additional insights on the structure of the optimal policy.

In the following, we present the (K , Q)-convexity introduced by Ye and
Duenyas [13].

Definition 2.1: A real-valued function f is called (K , Q)-convex for K, Q ≥ 0, if for
any x0, x1 with x0 ≤ x1 and λ ∈ [0, 1],

f ((1 − λ)x0 + λx1) ≤ (1 − λ)f (x0) + λf (x1)

+ λK + (1 − λ)Q − min{λ, 1 − λ} min{K , Q}. (2)

A function f is called (K , Q)-concave if −f is (K , Q)-convex.

Notice that the (K , 0)-convexity is exactly the K-convexity introduced by
Scarf [10] for the classical stochastic inventory control problem. Moreover, (K , K)-
convexity is symmetric K-convexity, a concept introduced and applied in Chen and
Simchi-Levi [2,3] to analyze a joint inventory control and pricing problem with fixed
ordering costs and general demand distributions.

Below we list some properties of the (K , Q)-convexity, which are parallel to those
properties of the symmetric K-convexity in Chen and Simchi-Levi [2,3].

Lemma 1:

(a) A (K , Q)-convex function is also (K ′, Q′)-convex for K ≤ K ′ and Q ≤ Q′. A
real-valued convex function is (0, 0)-convex and hence (K , Q)-convex for all
K , Q ≥ 0.

(b) If g1(y) and g2(y) are (K1, Q1)-convex, and (K2, Q2)-convex, respectively,
and (K1 − Q1)(K2 − Q2) ≥ 0, then for α, β ≥ 0, αg1(y) + βg2(y) is (αK1 +
βK2, αQ1 + βQ2)-convex.

(c) If g(y) is (K , Q)-convex and w is a random variable, then E{g(y − w)} is
also (K , Q)-convex, provided E{|g(y − w)|} < ∞ for all y.

(d) Assume that g is a continuous (K , Q)-convex function with K ≥ Q and
g(y) → ∞ as |y| → ∞. Define

S ∈ argminx {g(x)},
s = min{x | g(x) = g(S) + K},

s′ = min{x | g(x) = g(S) + K − Q},
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and

u = max{x | g(x) = g(S) + Q}.
Then s ≤ s′ ≤ S ≤ u and we have the following results:

(i) g(s) = g(S) + K and g(y) ≥ g(s) for all y ≤ s.

(ii) g(u) = g(S) + Q and g(y) ≥ g(u) for all y ≥ u.

(iii) g(y) ≤ g(z) + Q for all y and z with z ≤ y ≤ s′.
(iv) g(y) ≤ g(z) + K for all y and z with s′ ≤ y ≤ z.

(v) g(y) ≤ g(z) + K for all y and z with (s + S)/2 ≤ y ≤ z.

Proof: We only prove part (d)(v). The readers are referred to Ye and Duenyas [13]
for the proof of the remaining parts.

Part (d)(iv) implies that it suffices to prove that g(x) ≤ g(S) + K for S ≥ x ≥ (s +
S)/2. In fact, let x = (1 − λ)s + λS with λ ≥ 1/2. Then from the (K, Q)-convexity of
the function g, we have that

g(x) ≤ (1 − λ)g(s) + λg(S) + λK + (1 − λ)Q − min{λ, 1 − λ} min{K , Q}
= (1 − λ)(g(s) + K) + λg(S) + λK + (1 − λ)Q − λQ

= g(S) + K + (1 − 2λ)Q

≤ g(S) + K .

Thus, part (d)(v) holds. �

Of course, a result parallel to Lemma 1(d) can be shown for the case when K ≤ Q.
Later we will see that Lemma 1(d) allows us to provide a characterization of

the structure of the optimal policy of the stochastic cash balance problem. Indeed, if
g(x) is given by the function kx + Hn(x), then Lemma 1(d)(i) implies that S and s
give the order-up-to level and the reorder point, respectively, and Lemma 1(d)(iv) and
(d)(v) implies that it is optimal not to place an order for an inventory level higher than
min{s′, (s + S)/2}. On the other hand, if g(x) is given by the function −qx + Hn(x),
then Lemma 1(d)(ii) implies that S and u give the return-down-to level and the return
point, respectively, and Lemma 1(d)(iii) implies that it is optimal not to return for an
inventory level below s′.2 We refer to Section 3 for more details.

The following property will be very useful when we analyze the stochastic cash
balance problem in the next section.

Lemma 23: Consider a continuous function f : 	 → 	 with lim|x|→∞ f (x) = ∞. If
f is (K , Q)-convex, then the function

g(x) = min
y≤x

{Qδ(x − y) + f (y)}
is also (K , Q)-convex, where δ(x) = 1 for x > 0 and δ(x) = 0 otherwise. Similarly,

h(x) = min
y≥x

{Kδ(y − x) + f (y)}
is also (K , Q)-convex.
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Proof: First observe that the assumptions on f guarantee the attainment of the
minimum in the definition of g and h.

Let R = {x | g(x) < f (x)} and E = {x | g(x) = f (x)}. Fix x0, x1 ∈ 	 and assume
x0 ≤ x1. Define xλ = (1 − λ)x0 + λx1 for λ ∈ [0, 1].

We distinguish four cases.

(1) x0 ∈ E, x1 ∈ E. Thus, g(x0) = f (x0) and g(x1) = f (x1). Note that g(x) ≤ f (x)
for any x and, in particular, g(xλ) ≤ f (xλ). Hence, inequality (2) in the
definition of (K , Q)-convexity holds (with f replaced by g).

(2) x0 ∈ R, x1 ∈ R. In this case, let g(xi) = Q + f (yi)(i = 0, 1) with xi ≥ yi; that
is, yi achieves the minimum in the definition of g at xj. Define yλ = (1 − λ)

y0 + λx1. It is straightforward to see that yλ ≤ xλ and g(xλ) ≤ Q + f (yλ).
Therefore,

g(xλ) ≤ Q + f (yλ)

≤ (1 − λ)(Q + f (y0)) + λ(Q + f (x1)) + λK + (1 − λ)Q

− min{λ, 1 − λ} min{K , Q}
= (1 − λ)g(x0) + λg(x1) + λK + (1 − λ)Q − min{λ, 1 − λ} min{K , Q}.

(3) x0 ∈ E, x1 ∈ R. Let y1 < x1 be such that g(x1) = Q + f (y1). From the
definition of the function g, we have f (y1) ≤ f (x0).
We distinguish three subcases.
(a) xλ ≥ y1. In this case,

g(xλ) ≤ Q + f (y1)

= g(x1) + (1 − λ)(g(x0) − f (x0))

≤ (1 − λ)g(x0) + λg(x1) + (1 − λ)(Q + f (y1) − f (x0))

≤ (1 − λ)g(x0) + λg(x1) + (1 − λ)Q

≤ (1 − λ)g(x0) + λg(x1) + λK + (1 − λ)Q

− min{λ, 1 − λ} min{K , Q},
where the first inequality follows from the definition of the function g,
the second inequality holds since x1 ∈ E and x1 ∈ R, the third inequality
holds since f (y1) ≤ f (x0), and the last inequality holds since λK ≥
min{λ, 1 − λ} min{K , Q}

(b) xλ ≤ y1 and f (y1) − f (x0) ≤ Q − K . Let λ ≤ μ be such that xλ =
(1 − μ)x0 + μy1.

g(xλ) ≤ f (xλ)

≤ (1 − μ)f (x0) + μf (y1) + μK + (1 − μ)Q

− min{μ, 1 − μ} min{K , Q}

https://doi.org/10.1017/S0269964809000242 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000242


“S0269964809000242jra” — 2009/8/3 — 18:26 — page 553 — #9

�

�

�

�

STOCHASTIC CASH BALANCE PROBLEM 553

= (1 − λ)g(x0) + λg(x1) + λK + (1 − λ)Q

− min{λ, 1 − λ} min{K , Q} + (μ − λ)( f (y1) − f (x0))

− λQ + (μ − λ)(K − Q) + min{λ, 1 − λ} min{K , Q}
− min{μ, 1 − μ} min{K , Q}

≤ (1 − λ)g(x0) + λg(x1) + λK + (1 − λ)Q

− min{λ, 1 − λ} min{K , Q} − λQ + min{λ, 1 − λ} min{K , Q}
− min{μ, 1 − μ} min{K , Q}

≤ (1 − λ)g(x0) + λg(x1) + λK + (1 − λ)Q

− min{λ, 1 − λ} min{K , Q}
where the first inequality follows from the definition of the function g
the second inequality follows from the (K , Q)-convexity of the function
f , the first equality follows from rearranging terms, the third inequality
follows from the the assumption that f (y1) − f (x0) ≤ Q − K , and the
last inequality is trivial.

(c) xλ ≤ y1 and f (y1) − f (x0) ≥ Q − K . In this case,

g(xλ) ≤ Q + f (x0)

= (1 − λ)g(x0) + λg(x1) + (1 − λ)Q + λ( f (x0) − f (y1))

≤ (1 − λ)g(x0) + λg(x1) + (1 − λ)Q + λ(K − Q)

= (1 − λ)g(x0) + λg(x1) + λK + (1 − λ)Q − λQ

≤ (1 − λ)g(x0) + λg(x1) + λK + (1 − λ)Q

− min{λ, 1 − λ} min{K , Q},
where the first inequality follows from the definition of the function g,
the first equality holds since x0 ∈ E and x1 ∈ R, the second inequality
follows from the assumption that f (y1) − f (x0) ≥ Q − K , and the last
inequality is trivial.

(4) x0 ∈ R, x1 ∈ E. Let g(x0) = Q + f (y0) for some y0 < x0. We distinguish
between two cases.
(a) f (y0) − f (x1) ≤ K − Q.

g(xλ) ≤ Q + f (x0)

= (1 − λ)g(x0) + λg(x1) + λ(Q + f (y0) − f (x1))

≤ (1 − λ)g(x0) + λg(x1) + λK

≤ (1 − λ)g(x0) + λg(x1) + λK + (1 − λ)Q

− min{λ, 1 − λ} min{K , Q},
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where the first inequality follows from the definition of the function g, the
equality follows from the assumption that x0 ∈ R and x1 ∈ E, the second
inequality follows from the assumption that f (y0) − f (x1) ≤ K − Q, and
the last inequality is trivial,

(b) f (y0) − f (x1) ≥ K − Q. Let μ ≥ λ be such that xλ = (1 − μ)y0 + μx1.
Then

g(xλ) ≤ f (xλ)

≤ (1 − μ)f (y0) + μf (x1) + μK + (1 − μ)Q

− min{μ, 1 − μ} min{K , Q}
= (1 − λ)g(x0) + λg(x1) + λK + (1 − λ)Q

− min{λ, 1 − λ} min{K , Q} + (μ − λ)( f (x1) − f (y0))

− (1 − λ)Q + (μ − λ)(K − Q) + min{λ, 1 − λ} min{K , Q}
− min{μ, 1 − μ} min{K , Q}

≤ (1 − λ)g(x0) + λg(x1) + λK + (1 − λ)Q

− min{λ, 1 − λ} min{K , Q} − (1 − λ)Q

+ min{λ, 1 − λ} min{K , Q} − min{μ, 1 − μ} min{K , Q}
≤ (1 − λ)g(x0) + λg(x1) + λK + (1 − λ)Q

− min{λ, 1 − λ} min{K , Q},
where the first inequality follows from the definition of the function g,
the second inequality follows from the (K , Q)-convexity of the function
f , the equality holds by rearranging terms, the third inequality follows
from the assumption that f (y0) − f (x1) ≥ K − Q, and the last inequality
is trivial. �

Thus, cases (l)–(4) imply that the function g is (K , Q)-convex. Similarly, one can
show that h is also (K , Q)-convex.

3. MAIN RESULTS

In this section, we prove that the cost-to-go function Cn(x) is (K , Q)-convex and
provide a characterization of the optimal policy. Without loss of generality, we assume
that K ≥ Q.

Recall that Hn(x) = Ln(x) + γ E{Cn−1(x − ξn)}. Define

Tn ∈ argminx{kx + Hn(x)},
tn = min{x|kx + Hn(x) = K + kTn + Hn(Tn)},
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t′n = min{x|kx + Hn(x) = K − Q + kTn + Hn(Tn)},
Un ∈ argminx{−qx + Hn(x)},

un = max{x| − qx + Hn(x) = Q − qUn + Hn(Un)}.

and

u′
n = min{x| − qx + Hn(x) = K − Q − qUn + Hn(Un)}.

In the case where k + q = 0, we choose Tn = Un. Later we will see that Tn is the
order-up-to level, tn is the reorder point, Un is the return-down-to level, un is the
return point, and t′n and u′

n can be used to specify some intervals in which only partial
characterization is possible. It is clear that tn ≤ t′n ≤ Tn and u′

n ≤ Un ≤ un. In addition,
we have the following inequalities.

Lemma 3: Un ≥ Tn, u′
n ≥ t′n, and

k(Un − Tn) ≥ Hn(Tn) − Hn(Un) ≥ −q(Un − Tn).

Proof: By the definition of Tn and Un, we have that

kTn + Hn(Tn) ≤ kUn + Hn(Un) (3)

and

−qUn + Hn(Un) ≤ −qTn + Hn(Tn). (4)

Inequality (3) implies that k(Un − Tn) ≥ Hn(Tn) − Hn(Un) and inequality (4) implies
that Hn(Tn) − Hn(Un) ≥ −q(Un − Tn). Adding (3) and (4) together gives that

(k + q)(Un − Tn) ≥ 0,

which implies that Un ≥ Tn when k + q > 0. By assumption, we have that Tn − Un

when k + q = 0.
We now show that u′

n ≥ t′n. In fact, for any x < t′n, we have that

−qx + Hn(x) = kx + Hn(x) − (k + q)x

> K − Q + kTn + Hn(Tn) − (k + q)x

= K − Q − qUn + Hn(Un) + (k + q)(Tn − x) + (Hn(Tn) − Hn(Un))

+ q(Un − Tn)

≥ K − Q − qUn + Hn(Un),

where the first inequality follows from the definition of t′n and the last inequality follows
from the inequality (4) and the assumption that k + q ≥ 0. Therefore, u′

n ≥ t′n. �
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3.1. K �= Q

In this subsection, we assume that K �= Q. We focus on the case that K > Q ≥ 0. The
results for the case Q > K ≥ 0 follow from a symmetric argument.

Theorem 3.1: Assume that K > Q. The cost-to-go functions Cn(x) and Hn(x) are
(K , Q)-convex and it is optimal to set the inventory level yn(x) after a decision is
made as follows.

yn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tn if x ≤ tn
∈ {x, Tn} if x ∈ (tn, t′n)
x if x ∈ [t′n, u′

n)

∈ [t′n, x] if x ∈ [u′
n, un)

Un if x ≥ un.

(5)

Proof: By induction. Notice that C0(x) = 0 and H1(x) = L1(x) are convex and,
hence, (K , Q)-convex. Now, assume that Cn−1(x) is (K , Q)-convex; then Lemma 1
(b) and (c) imply that Hn(x) is also (K , Q)-convex.

Let On be the set of inventory levels where orders are placed, Rn be the set of
inventory levels where returns are made, and En be the set of inventory levels where
no transactions are made.

First, notice that

Cn(x) = min{Hn(x), min
y>x

K + k(y − x) + Hn(y), min
y>x

Q + q(x − y) + Hn(y)}.

In the following we show that (5) characterizes the structure of the optimal policy.
We distinguish among five different cases.

Case 1: x ≥ t′n. We claim that it is optimal not to order. In fact, assume that we place
an order to raise the inventory level to yn(x). Then

Cn(x) = K + k(yn(x) − x) + Hn(yn(x)) ≥ Hn(x),

where the inequality follows from the definition of t′n and Lemma 1(d)(iv). Thus,
staying put at the current inventory level x is no worse than placing an order.

Case 2: x ≤ u′
n. We claim that it is optimal not to return. In fact, assume that we

reduce the inventory level to yn(x). Then

Cn(x) = Q + q(x − yn(x)) + Hn(yn(x)) ≥ Hn(x),

where the inequality follows from the definition of u′
n and Lemma 1(d)(iii) by special-

izing on the function −qx + Hn(x). Thus, staying put at the current inventory level x
is no worse than making a return.
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Case 3: x ≤ tn. The definitions of tn and Tn and Case 1 imply that it is optimal to
place an order and set yn(x) = Tn.

Case 4: x ≥ un. The definitions of un and Un and Case 2 imply that it is optimal to
make a return and set yn(x) = Un.

Case 5: x ∈ (u′
n, un). We show that the optimal inventory level yn(x)can be chosen

so that yn(x) ∈ [t′n, Un]. In fact, for x ≥ Un, if staying put is not optimal, then from
Case 1 it is clearly optimal to make a return to reduce the inventory level to Un.

For x ≥ Tn, we claim that the optimal inventory level yn(x) can be chosen so that
yn(x) ≥ Tn. Indeed, if yn(x) < Tn, then we have

Cn(x) = Q + q(x − yn(x)) + Hn(yn(x))

= Q + kyn(x) + Hn(yn(x)) + q(x − yn(x)) − kyn(x)

≥ Q + kTn + Hn(Tn) + q(x − yn(x)) − kyn(x)

= Q + q(x − Tn) + Hn(Tn) + (k + q)(Tn − yn(x))

≥ Q + q(x − Tn) + Hn(Tn)

≥ Cn(x),

where the first inequality follows from the definition of Tn and the last inequality
follows from the definition of Cn(x). Thus, if it is optimal to reduce the inventory to
a level below Tn, then it is also optimal to just reduce the inventory level to Tn.

Finally, for x < Tn and x ∈ [u′
n, un], we claim that the optimal inventory level

yn(x) can be chosen so that yn(x) ≥ t′n. Indeed, if yn(x) < t′n, then

Cn(x) = Q + q(x − yn(x)) + Hn(yn(x))

= Q + kyn(x) + Hn(yn(x)) + q(x − yn(x)) − kyn(x)

> Q + K − Q + kTn + Hn(Tn) + q(x − yn(x)) − kyn(x)

= K + k(Tn − x) + Hn(Tn) + (k + q)(x − yn(x))

≥ K + k(Tn − x) + Hn(Tn)

≥ Cn(x),

where the first inequality follows the definition of t′n and the last inequality follows
from the definition of Cn(x). Thus, if it is optimal to reduce the inventory to a level
below t′n, then it is also optimal to increase the inventory level to Tn.

Cases 1–5 imply the structure of the optimal policy is given by (5).
It remains to prove that the (K , Q)-convexity of Hn(x) implies the (K , Q)-

convexity of the function Cn(x). In particular, we will prove that for any x0, x1,
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and λ ∈ [0, 1] with x0 ≤ x1 and xλ = (1 − λ)x0 + λx1, we have

Cn(xλ) ≤ (1 − λ)Cn(x0) + λCn(x1) + λ(K − Q) + max{λ, 1 − λ}Q, (6)

which is exactly the same definition of (K , Q)-convexity when K ≥ Q.
We consider three different cases.

Case 1: x0 ∈ En or x1 ∈ En. In this case, inequality (6) follows from Lemma 2.

Case 2: x0, x1 ∈ On or x0, x1 ∈ Rn. In this case, inequality (6) follows from Lemma 2.

Case 3: x0 ∈ On and x1 ∈ Rn. Then Cn(x0) = K + k(Tn − x0) + Hn(Tn) and
Cn(x1) = Q + q(x1 − y1) + Hn(y1), for some y1 < x1. Notice that from our above
analysis, if x1 ≥ Tn, then y1 ≥ Tn. We distinguish between three cases:

Subcase 1: xλ ≤ Tn.

Cn(xλ) ≤ K + k(Tn − xλ) + Hn(Tn)

= (1 − λ)Cn(x0) + λCn(x1)

+ λ((K + k(Tn − x1) + Hn(Tn)) − (Q + q(x1 − y1) + Hn(y1)))

= (1 − λ)Cn(x0) + λCn(x1)

+ λ(K − Q − (k + q)(x1 − y1) + (kTn + Hn(Tn)) − (ky1 + Hn(y1)))

≤ (1 − λ)Cn(x0) + λCn(x1) + λ(K − Q),

where the last inequality holds since k + q ≥ 0 and Tn is the global minimizer of
function kx + Hn(x).

Subcase 2: xλ ≥ y1 ≥ Tn.

Cn(xλ) ≤ Q + q(xλ − y1) + Hn(y1)

= (1 − λ)Cn(x0) + λCn(x1)

+ (1 − λ)((Q + q(x0 − y1) + Hn(y1)) − (K + k(Tn − x0) + Hn(Tn)))

= (1 − λ)Cn(x0) + λCn(x1) + (1 − λ)(Q − K − (k + q)(Tn − x0)

+ (−qy1 + Hn(y1)) − (−qTn + Hn(Tn)))

≤ (1 − λ)Cn(x0) + λCn(x1) + (1 − λ)(Q − K),

where the second inequality holds since −qy1 + Hn(y1) ≤ −qTn + Hn(Tn).
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Subcase 3: Tn ≤ xλ ≤ y1. Let xλ = (1 − μ)Tn + μy1. Then we have that

μ(y1 − Tn) = λ(x1 − x0) − Tn − x0) (7)

and

Cn(xλ) ≤ Hn(xλ)

≤ (1 − μ)Hn(Tn) + μHn(y1) + μ(K − Q) + max{μ, 1 − μ}Q
= (1 − λ)Cn(x0) + λCn(x1) + λ(K − Q) + (μ − λ)(K − Q)

+ max{μ, 1 − μ}Q + (μ − λ)(Hn(y1) − Hn(Tn))

− (1 − λ)(K + k(Tn − x0)) − λ(Q + q(x1 − y1))

= (1 − λ)Cn(x0) + λCn(x1) + λ(K − Q)

+ (μ − λ)(K − Q) + max{μ, 1 − μ}Q − (1 − λ)K − λQ + �

= (1 − λ)Cn(x0) + λCn(x1) + λ(K − Q)

+ max{μ, 1 − μ}Q − μQ − (1 − μ)K + �

≤ (1 − λ)Cn(x0) + λCn(x1) + λ(K − Q) + �,

where

� = (μ − λ)(Hn(y1) − Hn(Tn)) − (1 − λ)k(Tn − x0) − λq(x1 − y1)

and the second inequality follows from the (K, Q)-convexity of function Hn. Thus, it
suffices to prove that � ≤ 0. We distinguish between two cases.

First, if μ ≥ λ, then

� ≤ (μ − λ)q(y1 − Tn) − (1 − λ)k(Tn − x0) − λq(x1 − y1)

= qλ(x1 − x0) − q(Tn − x0) − λq(y1 − Tn) − (1 − λ)k(Tn − x0) − λq(x1 − y1)

= −(1 − λ)(k + q)(Tn − x0)

≤ 0,

where the first inequality holds since −qy1 + Hn(y1) ≤ −qTn + Hn(Tn), the first
equality follows from (7), and the last equality follows from simple algebra.

If μ ≤ λ, then

� ≤ (−μ + λ)k(y1 − Tn) − (1 − λ)k(Tn − x0) − λq(x1 − y1)

= −kλ(x1 − x0) + k(Tn − x0) + λk(y1 − Tn) − (1 − λ)k(Tn − x0) − λq(x1 − y1)

= −λ(k + q)(x1 − y1)

≤ 0,

where the first inequality holds since Hn(y1) − Hn(Tn) ≥ −k(y1 − Tn), the first
equality follows from (7), and the last equality follows from simple algebra. �
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From the above proof, we know that when the initial inventory level x is no
more than the reorder point tn, an order is placed to raise the inventory level to Tn.
On the other hand, when the initial inventory level x is no less than the return point
un, we decrease the inventory level to the return-down-to level Un. For inventory
levels between (t′n, u′

n), no action is taken. However, for inventory levels in other
intervals, only partial characterization is available. For instance, yn(x) ∈ {x, Un} for
x ∈ [Un, un] and yn(x) ≥ Tn for x ≥ Tn. Also observe that Lemma 1(d)(v) implies that
t′n in Theorem 3.1 can be replaced by min (t′n, (tn + Tn)/2).

It is interesting to notice that the optimal policy characterized by Theorem 3.1 is
similar to the optimal policy identified by Neave. The main difference is that when
x ∈ [t′n, u′

n) the optimal policy identified by Theorem 3.1 specifies that no action is
needed, whereas in Neave’s policy, it is not clear whether a decision need to be made.

3.2. K = Q

In this subsection, we focus on a special case of the stochastic cash balance problem
where K = Q > 0.

Theorem 3.2: Assume that K = Q. The cost-to-go functions Cn(x) and Hn(x) are
symmetric K-convex and the optimal inventory level yn(x) after a decision is made
satisfies

yn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tn if x ≤ tn
∈ {x, Tn} if x ∈ (tn, (tn + Tn)/2)

x if x ∈ [(tn + Tn)/2, (Un + un)/2]
∈ {x, Un} if x ∈ [Un+, un)/2, un)

Un if x ≥ un.

(8)

Proof: The symmetric K-convexity of functions Cn(x) and Hn(x) follows from
Theorem 3.1 since the (K , Q)-convexity reduces to the symmetric K-convexity when
K = Q. It remains to characterize the optimal inventory policy [i.e., to show that the
structure of yn(x) is as defined in (8)]. In fact, from the definitions of tn, Tn, un, and
Un and Lemma 1(d)(v), one can see that no order is placed when x ≥ (tn + Tn)/2
since kx + Hn(x) is symmetric K-convex. Similarly, no return is placed when x ≤
(Un + un)/2 since −qx + Hn(x) is symmetric K-convex. Therefore, the structure of
the optimal policy follows from Theorem 3.1. �

Notice that when x ∈ (tn, (tn + Tn)/2), the optimal policy is either do nothing or
increase inventory to Tn. Similarly, when x ∈ (Un + un)/2, un), the optimal policy is
either do nothing or reduce inventory to Un. Thus, Tn and Un are the unique order-up-to
level and return-down-to level, respectively.

It is also appropriate to point out that Neave [9] provided an example that
demonstrates that even when Ln is symmetric and convex, k = q = 0, K = Q, and
the distribution function of the demand is symmetric, it is possible to order for

https://doi.org/10.1017/S0269964809000242 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000242


“S0269964809000242jra” — 2009/8/3 — 18:26 — page 561 — #17

�

�

�

�

STOCHASTIC CASH BALANCE PROBLEM 561

x ∈ (tn, +Tn)/2) or to return for x ∈ (Un + un)/2, un) [i.e., the sets On ∩ (tn, (tn +
Tn)/2) and Rn ∩ (Un, (Un + un)/2) might not be empty]. Furthermore, in his example,
the functions Cn(x) and Hn(x) are not K-convex.

4. CONCLUDING REMARKS

In this article, we show that new concepts such as symmetric K-convexity and (K , Q)-
convexity, can be very useful for the stochastic cash balance problem. It is easy to see
that these concepts can be applied to extend our results to the stochastic cash balance
problem with time-dependent parameters.

It is appropriate to point out that similar structural results of the optimal policy
for the stochastic cash balance problem have been derived by Neave [9], although, as
observed earlier, his analysis is not complete. He constructed by induction a convex
function Cn(x) such that Cn(x) ≤ Cn(x) ≤ Cn(x) + max{K , Q} for any x. The lower
and upper bounds of the function Cn(x) allows Neave to characterize the structure
of the optimal policy. Interestingly, the symmetric K-convexity approach used in our
article implies the existence of those lower and upper bounds for Cn(x) with similar
properties. Indeed, we have the following result, whose proof is presented in the
Appendix.

Theorem 4.1: Assume that f : 	 → 	 is (K , Q)-convex. There exists a convex
function f (x) such that

f (x) ≤ f (x) ≤ f (x) + max{K , Q} for any x.

Acknowledgments
This research was supported in part by the Center of eBusiness at MIT, ONR Contracts N00014-95-1-0232
and N00014-01-1-0146, and by NSF Contracts DMI-9732795, DMI-0085683 and DMI-0245352. This
research is also supported by National Science Foundation Grant CCR-9731273, CMMI-0653909, and
CMMI-0926845 ARRA.

We thank one anonymous referee for valuable suggestions to improve the paper.

Notes

1. If ln(z) = O(|z|ρ) for some integer ρ, it suffices to assume that E{|ξn|ρ} < ∞.
2. Note that the S and s′ for the function g(x) = −qx + Hn(x) are different from the S and s′ defined

for the function g(x) = kx + Hn(x).
3. This result first appeared in the earlier version (2003) of this article and also appeared in Simchi-

Levi, Chen, and Bramel [11] as an exercise. We note that in the published version of Ye and Duenyas [13],
referred to as Ye and Duenyas [14], they present an extension of this result, in which the domain of the
function f can be an interval.
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APPENDIX

Proof of Theorem 4.1: Assume without loss of generality that K ≥ Q. Since a (K , Q)-convex
function is also symmetric K-convex, it suffices to prove the result for a symmetric K-convex
function f .

Let f (x) be the lower convex envelope of function f (x); that is,

f (x) = inf{(1 − λ)f (x0) + λf (x1) | x = (1 − λ)x0 + λx1, λ ∈ [0, 1]}.
Obviously, f (x) is a lower bound of f (x). In addition, for a given x, any λ ∈ [0, 1] and

x0 and x1 with x = (1 − λ)x0 + λx1, we have from the definition of symmetric K-convexity
that

f (x) ≤ (1 − λ)f (x0) + λf (x1) + max{1 − λ, λ}K ≤ (1 − λ)f (x0) + λf (x1) + K .

Hence, f (x) ≤ f (x) + K .
We now show that f (x) is convex. Notice that f (x) is convex if and only if the epigraph of

f (x), epi ( f ) = {(x, w) | f (x) ≤ w}, is convex. However, it is not difficult to see that epi ( f )

is the convexification of epi ( f ) and, hence, is a convex set. Thus, f (x) is convex. �
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