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We present self-contained proofs of the stability of the constants in the volume
doubling property and the Poincaré and Sobolev inequalities for Riemannian
approximations in Carnot groups. We use an explicit Riemannian approximation
based on the Lie algebra structure that is suited for studying nonlinear subelliptic
partial differential equations. Our approach is independent of the results obtained
in [11].
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1. Introduction

The technique of approximating a sub-Riemannian (degenerate) metric by Rieman-
nian (non-degenerate) metrics was most likely first used by Korányi [9] to study
geodesics in the Heisenberg group. It was later used by Jerison and Sánchez-Calle
[8] to study subelliptic second order linear operators and by Monti [10] to study
Carnot-Carathéodory metrics. These approximations are obtained by essentially
adding a small multiple of the Euclidean metric and letting it go to zero. More
structured approximations tailored to the nilpotent Lie algebra structure of the vec-
tors fields generating the sub-Riemannian metric were introduced by Capogna and
Citti and have become a powerful tool for studying nonlinear elliptic and parabolic
partial differential equations in the subelliptic setting, see [2, 3, 6].
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Of great interest is to determine what geometric and analytical properties are
preserved by these approximations. Note, for example, that the Hausdorff dimension
is certainly not preserved. Capogna, Citti and their collaborators [2, 4, 5] have
established that the constants in the volume doubling property and the Poincaré
and Sobolev inequalities are stable under certain Riemannian approximations. Their
proofs are based on the results of the seminal paper [11], and are valid for general
systems of Hörmander vector fields.

The purpose of this note is to provide a direct and explicit proof of these facts in
the case of Carnot groups, independent of the results of [11], which are not needed in
the case of Carnot groups. We are motivated by the study of non-linear sub-elliptic
equations in Carnot groups. We believe these simpler and constructive proofs might
help us think of new ways to advance our understanding of the regularity of solutions
to non-linear partial differential equations in Carnot groups.

Our proof makes very explicit the relation between the gradient of the approx-
imating vector fields and the approximating distances (see remark 2.9 below) and
gives an explicit expression of the constant in the Poincaré-Sobolev inequality in
terms of the doubling constant [see formula (4.1) below].

The plan of the paper is as follows. In § 2, we set the notation, review properties
of the various distances associated to the families of vector fields we use in our
approximations, and prove the approximation property for these distances. In § 3,
we provide our explicit proof of the doubling property and exhibit an explicit family
of approximating gauges. And in § 4, we present Poincaré and Sobolev inequalities
that hold uniformly for all the approximating metrics and where the relevant gra-
dients approximate the Carnot group subelliptic gradient when the approximation
parameter ε→ 0.

2. Preliminaires

A Carnot group (G, ·) is a connected and simply connected Lie group whose Lie
algebra g admits a stratification

g =
ν⊕
i=1

V i, (2.1)

where ν ∈ N, ν � 2 and V i is a vector subspace such that

(i) [V 1, V i] = V i+1 if i � ν − 1,

(ii) [V 1, V ν ] = {0}.
(2.2)

Letting ni = dim(V i) and n = n1 + · · · + nν , it is always possible to identify (G, ·)
with a Carnot group whose underlying manifold is R

n, and that satisfies the
properties we describe next (see chapter 2 of the book [1]).

We write points x ∈ G (identified with R
n) as follows:

x = (x(1), . . . , x(ν)) = (x11, . . . , x1n1 , x21, . . . , x2n2 , . . . , xν1, . . . , xνnν
),

where x(i) stands for the vector (xi1, . . . , xini
) for all i = 1, . . . , ν. The identity of

the group is 0 ∈ R
n and the inverse of x ∈ R

n is x−1 = −x.
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Riemannian approximation 1141

The anisotropic dilations {δλ}λ>0, defined as

δλ(x) = (λx(1), . . . , λνx(ν)),

are group automorphisms. The number Q =
∑ν
i=1 ini is the homogeneous dimen-

sion of the group, and it agrees with the Hausdorff dimension of the metric space
(G, d0), where d0 is defined below (definition 2.1). The Lebesgue measure is left
and right invariant, and also δλ-homogeneous of degree Q, that is |δλ(A)| = λQ|A|
for all λ > 0 and measurable sets A ⊂ G.

The Jacobian basis of g consists of left invariant vector fields

{X11, . . . , X1n1 , . . . , Xν1, . . . , Xνnν
} = {Xij}i=1,...,ν

j=1,...,ni
, (2.3)

which coincide with {∂xij
}i=1,...,ν
j=1,...,ni

at the origin x = 0 and are adapted to the
stratification; that is, for each i = 1, . . . , ν the collection {Xi1, . . . , Xini

} is a basis
of the i-th layer V i. As a consequence X11, . . . , X1n1 are Lie generators of g, and
will be referred to as horizontal vector fields.

The vector field Xij is δλ-homogeneous of degree i and has the form

Xij = ∂xij
+

ν∑
k=i+1

nk∑
l=1

bklij (x
(1), . . . , x(k−i))∂xkl

, (2.4)

where bklij are polynomials δλ-homogeneous of degree k − i, depending only on the
variables x(1), . . . , x(k−i).

The exponential map Exp: g −→ G written with respect to this basis is the
identity, i.e.,

Exp

⎛
⎝∑

ij

xijXij

⎞
⎠ = x. (2.5)

In the above formula we used the convention that the sum
∑
ij is extended to all

indexes i = 1, . . . , ν and j = 1, . . . , ni, which we will use throughout this exposition.
By a slight abuse of notation we also denote by Xij(x) the vector in R

n whose
components are the components of the vector field Xij with respect to the frame
{∂xkl

}k=1,...,ν
l=1,...,nk

at the point x ∈ R
n.

Definition 2.1. For x, y ∈ G and r > 0, let AC0(x, y, r) denote the set of all
absolutely continuous functions ϕ : [0, 1] �→ G such that ϕ(0) = x, ϕ(1) = y and

ϕ′(t) =
n1∑
j=1

a1j(t)X1j(ϕ(t)) for a.e. t ∈ [0, 1] (2.6)

for a vector of measurable functions a = (a11, . . . , a1n1) ∈ L∞([0, 1],Rn1) with

‖a‖L∞([0,1],Rn1 ) = ess sup

⎧⎪⎨
⎪⎩|a(t)| =

⎛
⎝ n1∑
j=1

a2
1j(t)

⎞
⎠

1/2

: t ∈ [0, 1]

⎫⎪⎬
⎪⎭ < r. (2.7)
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Define the Carnot-Carathéodory distance as

d0(x, y) = inf{r > 0 | AC0(x, y, r) �= ∅}.

Note that by the bracket generating property of {X11, . . . , X1n1} there is always
an r > 0 such that AC0(x, y, r) �= ∅.

Proposition 2.2. For x, y ∈ G and 1 � p � ∞ define the distance dp(x, y) as in
definition 2.1 replacing ‖a‖L∞([0,1],Rn1 ) by ‖a‖Lp([0,1],Rn1 ). Then, we have dp(x, y) =
d0(x, y).

Proof. See proposition 3.1 in [8] or theorem 1.1.6 in [10]. �

Let d∗0 be the control distance in G associated to the horizontal vector fields
{X11, . . . , X1n1}. To define d∗0 we select a metric g on the first layer V1 by declaring
{X11, . . . , X1n1} to be an orthonormal basis; that is, we set g(X1i,X1j) = δij for
1 � i, j � n1. Let φ : [0, 1] �→ G be an absolutely continuous horizontal curve (i.e.,
it satisfies condition (2.6) for a.e. t ∈ [0, 1]). Its length is given by

lg(φ) =
∫ 1

0

√
g(φ′(t), φ′(t)) dt.

Given points x, y ∈ G we define

d∗0(x, y) = inf {lg(φ) : there exists φ : [0, 1] �→ G horizontal, φ(0) = x, φ(1) = y} .

Lemma 2.3. For all x, y ∈ G we have

d∗0(x, y) = d0(x, y).

Proof. Writing

lg(φ) =
∫ 1

0

|a(t)|dt = ‖a‖L1([0,1],Rn1 ),

we have that d∗0(x, y) = d1(x, y) and thus agrees with d0(x, y) by proposition 2.2.
�

Definition 2.4. Fix ε > 0. For x, y ∈ G and r > 0, let ACε0(x, y, r) be the set of
all absolutely continuous functions ϕ : [0, 1] → G such that ϕ(0) = x, ϕ(1) = y and

ϕ′(t) =
∑
ij

aij(t)Xij(ϕ(t)) for a.e. t ∈ [0, 1]

for a vector of measurable functions

a = (a(1), . . . , a(ν)) = (a11, . . . , a1n1 , a21, . . . , a2n2 , . . . , aν1, . . . , aνnν
)

∈ L∞([0, 1],Rn)

with

‖a(i)‖L∞([0,1],Rni ) < εi−1r for 1 � i � ν.
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Define the distance

dε0(x, y) = inf{r > 0|ACε0(x, y, r) �= ∅}.
This distance is induced by the vector fields

X ε
1 = {εi−1Xij : 1 � i � ν, 1 � j � ni}. (2.8)

Lemma 2.5. Let dε,∗0 be the control distance for the vector fields X ε
1 . We have

dε,∗0 = dε0.

The lemma follows from the following proposition:

Proposition 2.6. For x, y ∈ G and 1 � p � ∞ define the distance dεp(x, y) as
in definition 2.4 replacing ‖a(i)‖L∞([0,1],Rni ) by ‖a(i)‖Lp([0,1],Rni ). Then, we have
dεp(x, y) = dε0(x, y).

Proof. The proof of theorem 1.1.6 in [10] (reparametrization by arc length) applies
when using the vector fields X ε

1 . �

The metric dε0 is the Riemannian approximation to d0 used in this paper.

Lemma 2.7. For all x, y ∈ G

lim
ε→0

dε0(x, y) = d0(x, y).

Moreover, the convergence is uniform on compact subsets of G × G.

Proof. See theorem 1.2.1 in [10]. The idea is to consider curves that are minimizers
for dε0 and show that there is a subsequence that converges to a minimizer of d0. �

Remark 2.8. The distance d0 satisfies the homogeneity condition

d0 (δλ(x), δλ(y)) = λd0(x, y),

while this is not the case for the approximations dε0.

Remark 2.9. Note that the vector fields from (2.8) are the natural choice to study
subelliptic PDEs since we can approximate the horizontal gradient of a function u,

∇0u = (X11u, . . . ,X1n1u) ,

by the gradient relative to X ε
1 ,

∇ε
0u =

(
X11u, . . . ,X1n1u, εX21u, . . . , εX2n2u, . . . , ε

ν−1Xν1u, . . . , ε
ν−1Xνnν

u
)
.

If we were to follow directly the approach developed in [11] (see pages 104 and
107), instead of (2.8) we would have to consider the vector fields

X ε
ν =

ν⋃
k=1

{εi−kXij , k � i � ν, 1 � j � ni},

which approximate the full Jacobian basis (2.3).
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Example 2.10. The Lie algebra of the Heisenberg group H, defined on R
3, has a

basis of {X11,X12,X21}, and the only non-zero commutator is given by [X11,X12] =
X21. These vector fields can be expressed as

X11 =
∂

∂x1
− x2

2
∂

∂x3
, X12 =

∂

∂x2
+
x1

2
∂

∂x3
, X21 =

∂

∂x3
.

The vector fields (2.8) are

X ε
1 = {X11,X12, εX21}. (2.9)

and

X ε
2 =

2⋃
k=1

{εi−kXij , k � i � ν, 1 � j � ni} = {X11,X12, εX21,X21}

Example 2.11. The Lie algebra of the Engel group, defined on R
4, has a basis

formed by {X11,X12,X21,X31} where,

X11 =
∂

∂x1
− x2

2
∂

∂x3
−
(x1x2

12
+
x3

2

) ∂

∂x4
,

X12 =
∂

∂x2
+
x1

2
∂

∂x3
+
x2

1

12
∂

∂x4
,

X21 =
∂

∂x3
+
x1

2
∂

∂x4
,

X31 =
∂

∂x4
.

(2.10)

The only non-zero commutators are [X11,X12] = X21 and [X11,X21] = X31. The
vector fields (2.8) are

X ε
1 = {X11,X12, εX21, ε

2X31}. (2.11)

and

X ε
3 =

3⋃
k=1

{εi−kXij , k � i � ν, 1 � j � ni}

= {X11,X12, εX21, ε
2X31,X21, εX31,X31}

3. The doubling property

We denote by B0(x0, r) the open ball with respect to the metric d0 centred at
x0 ∈ G with radius r > 0, and by Bε0(x0, r) the one with respect to dε0. We observe
that both metrics are left-invariant, therefore

B0(x0, r) = x0 ·B0(0, r) and Bε0(x0, r) = x0 ·Bε0(0, r).
For ε = 0 we set B0

0(x0, r) = B0(x0, r), which is consistent with lemma 2.7.
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We also consider

Box(0, r) = {x ∈ R
n : |xij | < ri for i = 1, . . . , ν and j = 1, . . . , ni},

and

Boxε(0, r) = {x ∈ R
n : |xij | < εi−1r for i = 1, . . . , ν and j = 1, . . . , ni}.

For x0 ∈ G define the left-translated boxes

Box(x0, r) = x0 · Box(0, r) and Boxε(x0, r) = x0 · Boxε(0, r).

Note that δr(Box(0, 1)) = Box(0, r) for all r > 0, while this is not true for Boxε(0, r).
Since the Lebesgue measure is left-invariant, we have

|Box(x0, r)| = |Box(0, r)| = rQ, (3.1)

and

|Boxε(x0, r)| = |Boxε(0, r)| = εQ−nrn. (3.2)

Lemma 3.1. There exists C � 1 such that for all x ∈ G and r > 0 we have

B0(x,C−1r) ⊆ Box(x, r) ⊆ B0(x,Cr).

Proof. The identity map between R
n equipped with the Euclidean topology and

R
n equipped with the topology induced by the metric d0 is a homeomorphism

preserving bounded sets (proposition 5.15.4 in [1]). Since Box(0, 1) is bounded and
open in the Euclidean topology, there exists C � 1 such that

B0(0, C−1) ⊆ Box(0, 1) ⊆ B0(0, C).

We conclude the proof by applying a left translation and a dilation. �

Lemma 3.2. Let ε, r > 0 and x ∈ G. There exists C � 1, independent of x, r and
ε, such that

Box(x, r) ⊆ Bε0(x,Cr).

Proof. For all x, y ∈ G, ε > 0, r > 0 we have AC0(x, y, r) ⊆ ACε0(x, y, r). Therefore
dε0(x, y) � d0(x, y), and hence it follows that B0(x, r) ⊆ Bε0(x, r). We can now apply
lemma 3.1 to finish the proof. �

Lemma 3.3. Let k ∈ {1, . . . , ν}, d > 0 and R � 0. Moreover, let b be a polynomial
on G that is δλ-homogeneous of degree d > 0 and depends on the variables xij with
i = 1, . . . , k and j = 1, . . . , nk. If x ∈ G satisfies the inequalities

|xij | � CijR
i (3.3)

for all i = 1, . . . , k and j = 1, . . . , nk and for some constants Cij > 0, then the
inequality

|b(x11, . . . , xknk
)| � CRd

holds for some constant C > 0.
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Proof. The polynomial b has the form

b(x11, . . . , xknk
) =

∑
α

cαx
α11
11 xα12

12 · · ·xαknk

knk
,

where the sum is extended to all multi-indexes α = (α11, . . . , αknk
) such that∑k

i=1

∑ni

j=1 αiji = d. Taking into account the bounds (3.3), we obtain

|b(x11, . . . , xknk
)| � CR

∑k
i=1

∑ni
j=1 αiji = CRd,

where C > 0 is a constant depending on Cij . �

Lemma 3.4. For all ε, r > 0 and x ∈ G we have Boxε(x, r) ⊆ Bε0(x,
√
n r).

Proof. By left translation it is enough to prove the statement for x = 0. Let u ∈
Boxε(0, r). Then |uij | < εi−1r for all i = 1, . . . , ν and j = 1, . . . , ni. In particular
|u(i)| < εi−1r

√
n for all i = 1, . . . , ν. Consider the curve γ : [0, 1] −→ R

n, γ(t) =
Exp(t

∑
i,j uijXij), which is the integral curve of the vector field

∑
ij uijXij at

time t issued from the origin. As a consequence, γ′(t) =
∑
ij uijXij(γ(t)) for all

t ∈ [0, 1], γ(0) = 0 and γ(1) = u by (2.5). Therefore γ ∈ ACε0(0, u,
√
n r), so u ∈

Bε0(0,
√
nr). �

Lemma 3.5. Let ε, r > 0 and x ∈ G. There exists C � 1, independent of x, r
and ε, such that

Bε0(x, r) ⊆ Box(x,Cr) if ε < r

and

Bε0(x, r) ⊆ Boxε(x,Cr) if r � ε.

Proof. By left translation, it is enough to prove the statement for x = 0. Let u ∈
Bε0(0, r). Then there exists a curve γ ∈ ACε0(0, u, r), i.e., an absolutely continuous
function

γ : [0, 1] −→ R
n, γ(t) = (γ11(t), . . . , γνnν

(t)),

such that γ(0) = 0, γ(1) = u,

γ′(t) =
∑
ij

aij(t)Xij(γ(t))

and ||aij ||L∞ < εi−1r for all i = 1, . . . , ν and j = 1, . . . , ni. Exploiting (2.4), for all
i = 1, . . . , ν and j = 1, . . . , ni, we have

γ′ij(t) =
i−1∑
k=1

nk∑
l=1

akl(t)b
ij
kl(γ11(t), . . . , γi−k ni−k

(t)) + aij(t), (3.4)
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where we allow
∑0
k=1 = 0. More explicitly,

γ′1j(t) = a1j(t) for j = 1, . . . , n1,

γ′2j(t) =
n1∑
l=1

a1l(t)b
2j
1l (γ11(t), . . . , γ1n1(t)) + a2j for j = 1, . . . , n2,

...

γ′νj(t) =
ν−1∑
k=1

nk∑
l=1

akl(t)b
νj
kl (γ11(t), . . . , γν−k nν−k

(t)) + aνj for j = 1, . . . , nν .

Due to the pyramid shape of the system above and the homogeneity of the
polynomials bijkl we claim that

||γ′ij ||L∞ � Cijr
i if ε < r,

||γ′ij ||L∞ � Cijε
i−1r if r � ε,

(3.5)

for all i = 1, . . . , ν and j = 1, . . . , ni and some constants Cij > 0 independent of ε
and r. By integration over the interval [0, 1], the same bounds hold for ||γij ||L∞ ,
therefore

|uij | = |γij(1)| � Cri if ε < r,

and

|uij | = |γij(1)| � Cεi−1r if r � ε,

which means u ∈ Box(0, Cr) if ε < r, and u ∈ Boxε(0, Cr) if r � ε.
We are left to prove (3.5). First, directly from (3.4), for j = 1, . . . , n1 we have

||γ′1j‖L∞ = ‖a1j‖L∞ < r,

and therefore

||γ1j ||L∞ < r.

Fix i ∈ {2, . . . , ν} and assume that

||γαβ ||L∞ < Cαβr
α if ε < r,

and

||γαβ ||L∞ < Cαβε
α−1r if r � ε,

for all α = 1, . . . , i− 1 and β = 1, . . . , nα. In particular, we have that

||γαβ ||L∞ < Cαβε
α if r � ε.

Then, by lemma 3.3, for all j = 1, . . . , ni, k = 1, . . . , i− 1 and l = 1, . . . , nk, we have

|bijkl(γ11(t), . . . , γi−kni−k
(t))| � Cri−k if ε < r,
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and

|bijkl(γ11(t), . . . , γi−k ni−k
(t))| � Cεi−k if r � ε,

for some constant C independent of ε and r. To finish the proof of (3.5), observe
that by (3.4) we get

||γ′ij ||L∞ � εi−1r + C
i−1∑
k=1

εk−1r · ri−k � Cijr
i if ε < r,

and

||γ′ij ||L∞ � εi−1r + C

i−1∑
k=1

εk−1r · εi−k � Cijε
i−1r if r � ε.

�

We are now ready to establish the doubling property of the balls Bε0.

Theorem 3.6. There exists a constant cd � 1, independent of ε, r and x, such that
for all ε > 0, r > 0 and x ∈ G we have

|Bε0(x, 2r)| � cd |Bε0(x, r)| .
Proof. By combining lemmas 3.2, 3.4 and 3.5 we obtain the existence of a constant
C � 1 such that

Box(x,C−1r) ⊆ Bε0(x, r) ⊆ Box(x,Cr) if ε < r,

and

Boxε(x,C−1r) ⊆ Bε0(x, r) ⊆ Boxε(x,Cr) if r � ε.

Therefore by (3.1) and (3.2) we obtain

C−QrQ � |Bε0(x, r)| � CQrQ if ε < r (3.6)

and

C−nεQ−nrn � |Bε0(x, r)| � CnεQ−nrn if r � ε, (3.7)

where C is independent of ε, r and x.
To finish the proof we check the doubling property, for which we distinguish the

following cases.
If 0 < ε < r, then

|Bε0(x, 2r)| � (2C)QrQ � (2C2)Q|Bε0(x, r)|.
If 0 < r � ε < 2r, then

|Bε0(x, 2r)| � (2C)QrQ � (2C)QεQ−nrn � (2C)QCn|Bε0(x, r)|.
If 0 < 2r � ε, then

|Bε0(x, 2r)| � (2C)nεQ−nrn � (2C)nCn|Bε0(x, r)|.
�
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The following corollary immediately follows from lemma 3.2, theorem 3.6 and the
volume estimates (3.6) and (3.7).

Corollary 3.7. Let 0 < ε, 0 < r < R and x ∈ G. There exists a constant c � 1,
independent of ε, r and x, such that

c−1 rQ � |Bε0(x, r)| � cmax{rQ, εQ−nrn},
and

|Bε0(x,R)| � cd

(
R

r

)log2 cd

|Bε0(x, r)|.

We conclude this section with a brief digression on an explicit gauge Nε that
is equivalent to the metric dε0 and approximates the homogeneous norm N0 below.
The discussion provides a complete parallel between distances and gauges in Carnot
groups and their corresponding Riemannian approximations.

For x = (x(1), . . . , x(ν)) = (x11, . . . , x1n1 , x21, . . . , x2n2 , . . . , xν1, . . . , xνnν
) ∈ G

and ε > 0 we define the ε-gauge

Nε(x) = |x(1)| +
ν∑
i=2

min
{ |x(i)|
εi−1

, |x(i)| 1i
}

and for ε = 0 we set

N0(x) = |x(1)| +
ν∑
i=2

|x(i)| 1i =
ν∑
i=1

|x(i)| 1i .

The gauge Nε is an adaptation of the gauge introduced in definition 3.9 in [2].

Proposition 3.8. There exists a constant C � 1 such that for all ε � 0 and r > 0
we have

{x : Nε(x) < r} ⊂ Bε0(0, C r),

and

Bε0(0, r) ⊂ {x : Nε(x) < Cν
√
n r}.

Proof. Consider the case ε > 0. Suppose that Nε(x) < r. We have |x(1)| < r and
min{ |x(i)|

εi−1 , |x(i)| 1i } < r for indexes i = 2, . . . ν. Observe that

min
{ |x(i)|
εi−1

, |x(i)| 1i
}

=

⎧⎨
⎩

|x(i)|
εi−1

if |x(i)| � εi

|x(i)| 1i if |x(i)| � εi,

so that we obtain

min
{ |x(i)|
εi−1

, |x(i)| 1i
}
< r =⇒

⎧⎨
⎩

|x(i)|
εi−1

< r if r < ε

|x(i)| 1i < r if r � ε.

https://doi.org/10.1017/prm.2021.50 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.50


1150 A. Domokos, J. J. Manfredi and D. Ricciotti

In the case r < ε we get |x(i)| < εi−1r that gives x ∈ Boxε(0, r). In the case r � ε
we get |x(i)| < ri that gives x ∈ Box(0, r). Using lemmas 3.2 and 3.4 we conclude
that x ∈ Bε0(0, Cr) for some C � 1.

Suppose now that x ∈ Bε0(0, r). In the case ε � r, lemma 3.5 implies x ∈
Boxε(0, Cr) for some C � 1. We then have |x(i)| < C

√
n εi−1r, i = 1, . . . , ν. We

get

min
{ |x(i)|
εi−1

, |x(i)| 1i
}
< min{C√n r, (C√n εi−1r)1/i} � C

√
nr.

To achieve the last inequality above, notice that ε � C
√
nr implies (C

√
n εi−1r)1/i �

C
√
nr, while r � ε < C

√
nr implies (C

√
n εi−1r)1/i < C

√
nr.

In the case ε < r, lemma 3.5 implies x ∈ Box(0, Cr). We then have |x(i)| <√
nCiri, i = 1, . . . , ν. Hence, even in this case, we get

min
{ |x(i)|
εi−1

, |x(i)| 1i
}
< min

{√
nCiri

εi−1
,
√
n

1
i C r

}
< C

√
nr.

Therefore, for all ε > 0, we obtain

Nε(x) < C

ν∑
i=1

√
n r = Cν

√
n r.

The case ε = 0 is just lemma 3.1. �

Corollary 3.9. There exists a constant C � 1 such that for all ε � 0 and r > 0
we have

1
C
dε0(x, 0) � Nε(x) � Cν

√
ndε0(x, 0).

4. The Poincaré and Sobolev inequalities

In this section we will use balls with an arbitrary, but fixed centre x0, so we simplify
the notations for the average values over these balls as,

ur = ⨍Bε
0(x0,r)

u(x) dx.

Lemma 4.1. Let γ : [0, 1] → G be a C1 curve such that

γ′(t) =
∑
ij

aij(t)Xij(γ(t)), for all t ∈ [0, 1].

If u ∈ C1(G), then we have

d
dt
u(γ(t)) =

∑
ij

aij(t)Xiju(γ(t)).
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Proof. By definition, the derivative of a curve γ : [0, 1] → G is the vector field
defined as γ′(t) ∈ Tγ(t)G, γ′(t)f = d

dt (f ◦ γ)(t). If γ′(t) =
∑
ij aij(t)Xij(γ(t)) then

it follows that d
dtu(γ(t)) =

∑
ij aij(t)Xiju(γ(t)). �

Let us recall the notation for the gradient relative to X ε
1 ,

∇ε
0u =

(
X11u, . . . ,X1n1u, εX21u, . . . , εX2n2u, . . . , ε

ν−1Xν1u, . . . , ε
ν−1Xνnν

u
)
,

which was already introduced in remark 2.9.
Our next theorem is the weak 1-1 Poincaré inequality for the balls Bε0(x, r). Note

that the gradient appearing in the right-hand side of the inequality is the natural
gradient along the approximating vector fields ∇ε

0u.

Theorem 4.2. There exists a constant C1 � 1, independent of ε, such that for all
u ∈ C1(G), r > 0, x0 ∈ G we have

⨍Bε
0(x0,r)

|u(x) − ur|dx � C1 r ⨍Bε
0(x0,3r)

|∇ε
0u(x)| dx.

The proof presented below shows that we can take

C1 = 2n (cd)2 3log2 cd , (4.1)

where cd is the doubling constant from theorem 3.6.

Proof. Let x, y ∈ Bε0(x0, r) and z ∈ G such that x = y · z. Then,

dε0(z, 0) = dε0(y
−1x, 0) = dε0(x, y) < 2r.

By the left invariance of dε0 we have dε0(y · z, y) < 2r, so there exists ϕy,z ∈ ACε0(y, y ·
z, 2r) such that

ϕ′
y,z(t) =

∑
ij

aij(t)Xij(ϕ(t)), a.e. t ∈ [0, 1]

and

||a(i)||L∞([0,1],Rni ) < εi−12r, 1 � i � ν.

By lemma 4.1, we get that

u(y · z) − u(y) =
∫ 1

0

d
dt
u(ϕy,z(t)) dt =

∫ 1

0

∑
ij

aijXiju(ϕy,z(t)) dt.

Therefore, by embedding ε into ∇ε
0, we obtain that

|u(y · z) − u(y)| � 2nr
∫ 1

0

|∇ε
0u(ϕy,z(t))| dt.
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We use again the left invariance of dε0 and also the fact that the change of variables
x = y · z has Jacobian equal to 1. Therefore,∫

Bε
0(x0,r)

|u(x) − ur| dx

�
∫
Bε

0(x0,r)
⨍Bε

0(x0,r)

|u(x) − u(y)|dy dx

= ⨍Bε
0(x0,r)

∫
Bε

0(x0,r)

|u(x) − u(y)| dxdy

� ⨍Bε
0(x0,r)

∫
Bε

0(0,2r)

|u(y · z) − u(y)| dz dy

� 2nr ⨍Bε
0(x0,r)

∫
Bε

0(0,2r)

∫ 1

0

|∇ε
0u(ϕy,z(t))| dtdz dy

� 2nr
1

|Bε0(x0, r)|
∫ 1

0

∫
Bε

0(0,2r)

∫
Bε

0(x0,r)

|∇ε
0u(ϕy,z(t))| dy dz dt.

If ϕy,z ∈ ACε0(y, y · z, 2r), then there exists ψz ∈ ACε0(0, z, 2r) such that ϕy,z(t) =
y · ψz(t), for all t ∈ [0, 1]. Therefore, if y ∈ Bε0(x0, r), then

dε0(ϕy,z(t), x0) = dε0(y · ψz(t), x0) � dε0(y · ψz(t), y) + dε0(y, x0)

� dε0(ψz(t), 0) + dε0(y, x0) < 2r + r = 3r.

We continue the integral estimates started above.∫
Bε

0(x0,r)

|u(x) − ur|dx

� 2nr
1

|Bε0(x0, r)|
∫ 1

0

∫
Bε

0(0,2r)

∫
Bε

0(x0,r)

|∇ε
0u(ϕy,z(t))| dy dz dt

= 2nr
1

|Bε0(x0, r)|
∫ 1

0

∫
Bε

0(0,2r)

∫
Bε

0(x0,r)

|∇ε
0u(y · ψz(t))| dy dz dt

= 2nr
1

|Bε0(x0, r)|
∫ 1

0

∫
Bε

0(0,2r)

∫
Bε

0(x0,r)·ψz(t)

|∇ε
0u(y1)| dy1 dz dt

� 2nr
1

|Bε0(x0, r)|
∫ 1

0

∫
Bε

0(0,2r)

∫
Bε

0(x0,3r)

|∇ε
0u(y)|dy dz dt

� 2nr
|Bε0(0, 2r)|
|Bε0(x0, r)|

∫
Bε

0(x0,3r)

|∇ε
0u(y)|dy.

Noting that, by theorem 3.6 we have

|Bε0(0, 2r)|
|Bε0(x0, r)| =

|Bε0(x0, 2r)|
|Bε0(x0, r)| � cd,
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we obtain ∫
Bε

0(x0,r)

|u(x) − ur|dx � 2n cd r
∫
Bε

0(x0,3r)

|∇ε
0u(y)|dy.

Finally, by corollary 3.7, we get

⨍Bε
0(x0,r)

|u(x) − ur|dx � C1 r ⨍Bε
0(x0,3r)

|∇ε
0u(y)|dy,

where

C1 = 2n (cd)2 3log2 cd .

�

With the results of corollary 3.7 and theorem 4.2, we can use theorem 5.1 from
[7], to get the Poincaré-Sobolev inequality:

Theorem 4.3. Let 1 � p < Q and 1 � q � Qp
Q−p . There exists a constant Cp,q > 0,

independent of ε, such that for all u ∈ C1(G), r > 0, x0 ∈ G we have

(
⨍Bε

0(x0,r)

|u(x) − ur|q dx

) 1
q

� Cp,q r

(
⨍Bε

0(x0,3r)

|∇ε
0u(x)|p dx

) 1
p

.

Remark 4.4. We remark that the constant Cp,q in the above theorem is indepen-
dent of ε because, as detailed in theorem 5.1 of [7], it only depends on p,q, Q, the
constant C1 of theorem 4.2 and the doubling constant cd of theorem 3.6, which are
all independent of ε.

Remark 4.5. The balls B0(x0, r) and Bε0(x0, r) are John domains with constant
C = 1. Therefore, the Poincaré inequality from theorem 4.2 and the Poincaré-
Sobolev inequality from theorem 4.3 hold with the same ball; that is, we can replace
Bε0(x0, 3r) by Bε0(x0, r) in both inequalities by possibly changing the constants C1

and Cp,q, which remain independent of ε. See § 9 in [7].

It is well-known that the Poincaré-Sobolev inequality implies the Sobolev inequal-
ity in our setting [7]. We use the notation C1

0 (B) for C1 functions with compact
support in B.

Theorem 4.6. Let 1 � p < Q and 1 � q � Qp
Q−p . For all r > 0, x0 ∈ G and u ∈

C1
0 (Bε0(x0, r)), we have

(
⨍Bε

0(x0,r)

|u(x)|q dx

) 1
q

� C ′
p,q r

(
⨍Bε

0(x0,r)

|∇ε
0u(x)|p dx

) 1
p

,

where C ′
p,q is a constant independent of ε.
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In fact, keeping track of the constant we get

C ′
p,q =

(
1 + 2(cd)

1
q +1
)
Cp,q,

where Cp,q is the Poincaré-Sobolev constant from theorem 4.3.

Remark 4.7. We remark that the main results of the paper continue to hold if
instead of the Jacobian basis {Xij} we choose any other basis {Yij} adapted to the
stratification, since we can pass from one to the other by multiplying by a suitable
block diagonal matrix whose blocks are invertible matrices with constant entries.
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