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SUMMARY
The problem of the control of the object cooperative
manipulation during the work of multiple non-redundant six
degrees-of-freedom manipulators is considered in this
paper. The problem of the cooperative manipulation control
is, like all its problems, solvable only if the system is
considered as the elastic one, taking into account all existing
constraints. The controlled system is with the output
number greater than the available number of inputs,
therefore, in the first stage the desired motions are selected
from the set of the possible nominal ones, containing the
trajectories of the manipulated object mass centre and slave
manipulators contacts. Afterward, the classification of
control tasks is performed. The procedure for the calcula-
tion of the driving torques introduced into the joints of the
manipulators, necessary to obtain the nominal trajectory
tracking, is proposed. The theoretical analysis of cooper-
ative system closed loop behaviour is exposed, particular
attention being paid to the uncontrolled variables. The
procedure is illustrated on the example of the simple closed
loop cooperative system, consisting of the manipulated
object and two one degree-of-freedom manipulators. For
this system, the behaviour is determined and the driving
torques are calculated.

KEYWORDS: Cooperating robots; Elastic interconnections; Non-
redundant manipulators; Control laws.

1. INTRODUCTION – PROBLEM DEFINITION
The determination of the adequate control is the key
problem in the object cooperative manipulation realisation.
The control laws are based on the cooperative manipulation
model, having sense only if that model describes its statics
and dynamics with sufficient exactness. The basic property
of the cooperative manipulation is that the number of
outputs is greater than the number of possible physical
inputs, whereas its control task is in essence the desired
trajectory tracking one. Therefore, the determination of the
cooperative manipulation nominal motion1 must precede the
choice and determination of the control laws. However,
when the solution of the cooperative system operation
problem is approached form the rigid body mechanics point
of view, which is common procedure in the obtainable
literature, there appears the force indefiniteness problem,
because the cooperative system in the steady state corre-

sponds to the statically undefined space grid. In reference 2
it has been shown for the first time that the problem of the
cooperative system force indefiniteness can be solved
exclusively by the introduction of the elastic properties
assumption of either the whole or the part of the cooperative
system, its dynamics being modelled as the elastic structure
general motion. It has been shown that the force indefinite-
ness problem, appearing in the available literature, results
from the assumption of cooperative system being non-
elastic in this part in which the force acting in the
manipulated object mass centre (MC) is decomposed into
the contact forces. The expansion in reference 2 yields a
mathematical model without force indefiniteness, com-
prised of the rigid body dynamics model (manipulators and
manipulated object) and the set of the equations of the
elastic connections. In the choice and determination of the
control laws, the basic criterion that must be fulfilled is the
realisation of required quality of tracking of this cooperative
system coordinated motion, which is defined as the nominal
one.

The numerous choices of the cooperative manipulation
control laws, given in the available literature, are based on
the model with force indefiniteness and, therefore, are not
the adequate solution. The number of the proposals of the
elastic object cooperative manipulation models and control
laws is small.3–6 The model given in references 3, 4 correctly
describing the motion around steady unloaded state is used
to make conclusions about the cooperative system general
motion. The model given in references 5 and 6 begins with
the erroneous implicit assumption that the position and
orientation of the elastic system unloaded state are known
during the motion. Regardless of the model validity,
practically all authors are with the control laws propositions
relying on the a priori given behaviour of the nominal
trajectories or nominal forces deviations. The simulation or
experiment has proved the stability of the closed loop
cooperative system, not the mathematical analysis.

The cooperative manipulation basic task is the controlled
transfer of the workpiece in space and time. From the
control theory point of view, the task reduces to the tracking
along the selected nominal trajectory. Nominal trajectory
defines explicit or implicit requirement of the manipulated
object MC motion. It is given as the six dimensional time-
variable vector of the manipulated object position and
orientation. The model of the cooperative system dynamics2

is with the greater number of the equations of motion than
the number of the physical inputs. Further in the text, the
variables upon which the system tracking is performed are
defined as the controlled outputs, while the remainders are
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the uncontrolled ones. Similarly, the cooperative system
with the feedback is defined as the controlled one, without
it as the uncontrolled one. The first problem to be solved is
the nominal motion determination. The solution of this
problem1 yields the nominal variables sets (6m inputs and
6m+6 states) of the uncontrolled cooperative system. As the
number of the nominal variables is greater than the number
of physical inputs (driving torques), the control definition
must begin with the selection of the variable upon which the
system is tracked. Therefore, the cooperative manipulation
control must be the hierarchical one. For the given class of
control tasks, the algorithms performing the selection of the
nominal motion character and nominal motion variables
defined as the controlled outputs are determined at the
higher control level. These algorithms have also to define
the transients while changing the master and nominals
during the manipulation. The hihger control levels are not
the objects of this paper. The control laws for the selected
classes of the controlled outputs are defined at the lower
control level.

Special analysis is given in determining the answer to the
question: What can be required from the cooperative
system, i.e. which are the classes of the controlled outputs
and what are their properties? For example, if from the
available driving torques, or inputs, only six are used for the
controlled motion along the required trajectory, there
remains the problem how to introduce the 6m26 remaining
ones. Therefore, there arises the problem which, what kind
and how many of the 6m+6m nominal variables, remaining
when the outputs presenting the required controlled trajec-
tory are taken out, can be selected as the controlled
outputs?

The control laws in this paper are given as the driving
torques calculated on the basis of the cooperative manipula-
tion dynamics model, providing the controlled output errors
with the a priori determined properties. The advantage of
these control laws is that the driving torques are calculated
exactly. The disadvantage is their complexity, because all
state variables and their derivatives are taking part in them.
The theoretical analysis of the cooperative system behaviour
is performed relatively easy using the physical relations
describing its dynamics and statics. This advantage enables
one to perform theoretical analysis of the controlled
cooperative system in the whole, for the controlled as well
as for the uncontrolled variables, yielding thus a proper
conclusion about the whole system stability.

2. MATHEMATICAL MODEL OF COOPERATIVE
MANIPULATION
The cooperative system control laws selection is based on
the model developed in reference 2, yielding the univocal
solution to the force indefiniteness problem. The cooper-
ative action of m six degrees-of-freedom (6DOF)
manipulators contacting the body which has no imposed
limitations to the motion in the three-dimentional (3D)
space is modelled in reference 2. The contact of the
manipulators and the manipulated object is elastic, without
the possibility of the manipulator’s tip relative motion along
the object surface. Manipulated object and its contact areas
with the manipulators are approximated by the elastic

system consisting of m+1 bodies rigid in the whole
elastically interconnected by the axial and torsion springs.
Each body is allowed 6DOF. The gravitational and contact
forces are considered as the external ones, acting in the MC
of those bodies. This model is briefly presented in this
section, in the form suitable for the control laws selection.

The mathematical model of the elastic system dynamics
that is performing general motion under the action of the
external system contact forces Fc and grativitation G is
described by the means of absolute coodinates2 and given by
the relations.

Wc(Yc)Ÿc +wc(Y, Ẏ)=Fc

W0(Y0)Ÿ0 +w0(Y, Ẏ)=0
(1)

where index c denotes values related to the contacts, and
index 0 denotes values related to the manipulated object. In
these equations, the following notations have been intro-
duced: Y=col(Yc, Y0)PR(6m+6)3 1, Yc = col(Y1, Y2, . . . , Ym)
PR6m3 1, Y0PR63 1, Yi =col(ri , Ai)=col(xi, yi, zi, ci, ui, wi)
PR63 1 for the absolute coordinates vectors of the elastic
system nodes positions and orientations; Fc =
col(Fc1, Fc2, . . . , Fcm)PR6m3 1 for the contact force vector;
Wc(Yc)=diag(W1(Y1), . . . , Wm(Ym))PR6m3 6m, Wc(Yc)=
WT

c(Yc), detWc(Yc)≠0, Wi(Yi)=WT
i(Yi)PR63 6, detWi(Yi)≠0,

i=0, 1, . . . , m for the inertial matrices of all objects; and the
arbitrary term wc(Y, Ẏ)=col(w1(Y, Ẏ), . . . , wm(Y, Ẏ))P
R6m3 1. The arbitrary term wi presents the vector taking into
the account all forces depending on elastic system nodes
velocities and positions and orientations, is of the form
wi(Y, Ẏ)=Ẇi(Yi)Ẏi 2­Ti(Yi, Ẏi)/­Yi +Di(Y)Ẏ
+0.5­(YTp̄a(Y)Y)/­Yi +pia(Y)Y2Gi(mig)=Fbi +Di(Y)Ẏ+Fe

2GiPR63 1, i=0, 1, . . . , m; where Ti =0.5ẎT
i WiẎi presents

kinetic energy; YTpa(Y)YPR(6m+6)3 (6m+6) deformation energy;
p̄a(Y) denotes that the quadratic form differentiation is
performed over pa matrix only; pia, Di are, respectively,
submatrices of the stiffness and damping matrix, composed
of the 6i+1-st up to 6i+6-th row of these matrices; Gi is the
weight of the i-th body and Fbi =Ẇi(Yi)Ẏi 2­Ti(Yi, Ẏi)/­Yi. At
each elastic system passage through the unloaded state its
deformation energy equals zero. Of the 6m+6 equations (1),
only rank K=6m equations are independent whereby matrix
K(Y) is determined from the elastic force expression

Fe =K(Y) · Y=
1
2

­YTp̄aY
­Y

+pa(Y)Y=G+FFc

0G
=FA

c
b
dG FYc

Y0
G=

uy

Ay

cy

us

As

cs

u0

A0

c0

Yu

Ys

Y0

(2)

h(q, 0)=t+JTfcPR6m3 1

Yc =U(q)PR6m3 1.

The partition of the matrix K(Y) has been performed thus
that the rank K(Y)=rangA=6m, and that the block
matrices are consistent to multiplication with vector
Y=col(Yc, Y0)=col(Yy, Ys, Y0)=col(Yy, Yso), Yc =col(Yy, Ys),
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Yso =col(Ys, Y0). In the addition to the indices used in the (1),
index 1 (i.e. 1→y) is used for the master, and indices from
2 to m (i.e. 2. . . m→s1. . . sm21 or s) for the slaves. This
indexing system holds for the other vectors and matrices.
E.g., if vectors Yy, Ys and Y0 are considered, the stiffness
matrix consists of the submatrices given in (2), while the
contact and elastic forces are, respectively,
Fcv, =Fc1, Fcs =col(Fc2, . . . , Fcm) and Fe =col(Fev, Fes, Fe0).
In the case that the elastic system general motion is
performed around its unloaded state only, then the absolute
coordinates are Y=Y0 +y; Y0 = col(Yc0, Y00) =const are the
coordinates of the steady unloaded state; y=col(yc, y0)=col
(yy, ys, y0) are the coordinates of the loaded state deviations
relative to the unloaded one; while pa (Y)=pa =K=const
and D(Y)=D=const. The model of the elastic system
dynamics expressed via the y coordinates possesses the
same form as the equation (1), whereby wi(y, ẏ)=Ẇi(yi)ẏi

2­Ti(yiẏi)Y­ẏi +Di ẏ+Kiy2Gi(mig)P R63 1,
i=0, 1, 2, . . . , m.

The model of the motion of the m6DOF non-elastic
manipulators with non-compliant joints and with the gripper
force within the internal coordinates space is given by
expression7,8

H(q)q̈+h(q, q̇)=t+JTfc (3)

whereby the notations are introduced: H(q)=diag(H1, (q1)
, . . . , Hm(qm))PR6m3 6m, Hi(qi)PR63 6 is the positive definite
matrix of the manipulators inertia; h(q, q̇)=col(h1(q1, q̇1)
, . . . , hm(qm, q̇m))PR6m3 1, is the vector that takes into
account the influences of the gravitation, Coriolis’
acceleration and centrifugal forces; t=col(t1, . . . , tm)PR6m3 1,
tiPR63 1 is the joint drives vector,
J=diag(J1, . . . , Jm)PR6m3 6m, JiPR63 6 is the transformation
matrix of the internal coordinates velocity vector into the
manipulator tip velocity vector; fc =col(fc1, . . . , fcm)
=2col(Fc1, . . . , Fcm)PR6m3 1, fci = 2FciP R63 1 is the con-
tact force on the manipulator gripper;
q=col(q1, . . . , qm)PR6m3 1, q̇=col(q̇1, . . . , q̇m)PR6m3 1 are
the interior coordinates vector and its derivative.

If the kinematic relation of the internal q and absolute
coordinates of the contacts is presented by the expression
Yi =Ui(qi)PR63 1, i=1, . . . , m, then the relation of their
velocities and acceleration is determined by the expressions7

Ẏi =­Ui(qi)/­qi · q̇i = Ji(qi)q̇iPR63 1, Ÿi = J̇i(qi)q̇i +Ji(qi) q̈iP
R63 1, i=1, . . . , m, or, in the united form

Yc =U(q)PR6m3 1

Ẏc =J(q)q̇PR6m3 1 (4)

Ÿc = J̇(q)q̇+J(q)q̈PR6m3 1

Model of cooperative manipulation dynamics is given by
(1), (3) and (4). Using the previously described indexing
system, unifying the equations (1), (3) and taking into
account Fc =2 fc gives the description of the cooperative
system dynamics in the form

Ny(qy)q̈y +ny(q, q̇, Y0, Ẏ0)= ty

Ns(qs)q̈s +ns(q, q̇, Y0, Ẏ0)= ts

W(Y0)Ÿ0 +w(q, q̇, Y0, Ẏ0)= 0 (5)

Py(qy)q̈y +py(q, q̇, Y0, Ẏ0)= Fcv

Ps(qs)q̈s +ps(q, q̇, Y0, Ẏ0)= Fcs

where: diag(Ny(qy), Ns(qs))=diag(N1(q1), N2(q2), . . . , Nm (qm))
=H(q)+JT(q)Wc(U(q))J(q)PR6m3 6m, uN(q)u ≠0, Ni(qi)
=Hi(qi)+JT

i (qi)Wci(Ui(qi))Ji(qi)PR63 6, uNi(qi)u ≠0, i=1, . . . ,
m, Ny(qy)PR63 6, uNy(qy)≠0, Ns(qs)PR6(m21)3 6(m21), uNs(qs)u
≠0, P(q)=Wc(U(q))J(q)=diag(P1(q1), P2(q2), . . . , Pm(qm))
=diag(Py(qy), Ps(qs)) P R6m3 6m, uP(q)u ≠ 0, Pi(qi) =
Wci (Ui(qi))Ji(qi)PR63 6,uPi (qi)u ≠0 i=1, . . . , m,Py(qy)
PR63 6, uPy(qy)u ≠0, Ps(qs)PR6(m21)3 6(m21)uPs(qs)u ≠0,
n(q, q̇, Y0, Ẏ0)=col(nv(q, q̇, Y0, Ẏ0), ns(q, q̇, Y0, Ẏ0))
=h(q, q̇)+JT(q)Wc(F(q))J̇(q)q̇+JT(q)wc(F(q), J(q)q̇, Y0, Ẏ0)
PR6m3 6, w(q, q̇, Y0, Ẏ0)=w0(U(q), J(q)q̇, Y0Ẏ0)PR63 1 and
p(q, q̇, Y0, Ẏ0)=Wc (U(q))J̇(q)q̇+wc(U(q), J(q)q̇, Y0, Ẏ0)
PR6m3 1.

The first three equations in (5) describe the cooperative
system behaviour. The last two equations express the
contact forces as the internal coordinates function. This is
the differential function given by the elastic system
dynamics model (1) into which the kinematic relations (4)
are incorporated.

3. CLASSIFICATION OF CONTROL TASKS

3.1 Basic postulates
For the linear system of nx ordinary first order differential
equations with matrices Ā, B̄, C̄, D̄, states xPRnx3 1, inputs
yPRny3 1 and outputs gPRng3 1 the state controllability and
observability conditions are known9. The system output
variable g(0) is controllable if and only if there exists
control y which, in the limited time interval, translates this
system from the initial state x(t0), corresponding to the
initial output value g(t0), into the state corresponding to the
output value g(t)=0. For the linear system with one input
(ny =1) and one output (ng =1) to be controllable with
respect to the output, it is necessary and sufficient that rank
(C̄TB̄, C̄TĀB̄, . . . , C̄TĀnx 21B̄, D̄)=1. Kalman has proved10

that the linear system with single input and single output is
controllable, i.e. observable, if and only if its dual system is
observable, i.e. controllable, respectively. For the linear
stationary time continuous dynamic system has been proven
that the positive resolving of the controllability problem
guarantees the existence of the closed loop system control,
providing thus its stability. Intuitively applying the same
reasoning it follows that in the selection of the non-linear
system control laws, initial stage must be the solution of
system controllability problem. The linear system theory
criteria cannot be directly applied to non-linear systems.
Nevertheless, it can be expected that in the part of the
conditions necessary for the non-linear system controllabil-
ity originate at least the conditions for the number and
properties of the requirements that can be imposed upon this
system (in this case, the cooperative manipulation one).
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The following considerations lead to the part of the
conditions necessary for the non–linear system controllabil-
ity. Over same input Dy, state Dx and output Dg domains
the general form of the solution for the linear and non-linear
differential equations system is the same, x(t)=x(x0, t0, t, y),
g(t)=g(x, y)=g(x(x0, t0, t, y), y)=g(t, y), where the time t
and initial instant t0 and state x0 are parameters. Elimination
of parameter t yields the functional relations x=x(x0, y).
g=g(x, y)=g(x(y), y) defining the mapping of the input
domain into the state domain and both of these domains into
the output domain. The function x=x(x0, y) determines the
mapping Fy

x: y→x of the whole input domain into the whole
or the part of the state domain Dy→Dy

x#Dx. The controlled
outputs function g(t) defines the mapping F yx

g :
(y, x(x0, y))→g of the whole product of the whole input
domain and the part of the state domain (obtained by the
mapping from the input domain) into the domain of the
controlled outputs which is the part of the outputs domain
Dy3 Dy

x→ Dy
g#Dyx

g . The controllability and observability
definitions and theorems organise the properties and
conditions of the mapping between input, state and output
domains. The output controllability definition precisely
states the properties of the mapping of the input Dy and the
part of the state Dy

x domains into the controlled output
domain Dy

g. From the conditions rank (C̄TB̄, C̄TĀB̄, . . .,
C̄TĀnx 21B̄, D̄)=1 and the results of Kalman work it follows
that the dimensions of the input space Dy and controlled
output space Dy

g must be the same dim{Dy}=dim{Dy
g} and

that there must exist both, the direct and the inverse
mapping. In other words, for a system to be output
controllable, there must exist the biunivocal correspondence
between the whole input space Dy and the whole controlled
output space Dy

g. The following can be summed up. Domain
to domain mapping considerations are based on the
functional relations between the differential equations
system solutions and the controlled outputs. These func-
tional relations have the same form in the case of linear and
non-linear systems. In the previous consideration any
properties specific to the linear system have not been used.
The linear system represents the description of the non-
linear one in the sufficiently small vicinity of any point of
the state space where the non-linear system is defined.
Therefore, under these conditions the output controllability
conclusion holds for both, the linear and non-linear systems.
For the functions gi =gi (y1, . . . , yny

), i=1, . . . , ny con-
tinuously differentiable in some region of the ny

-dimensional space is known11 that, if the Jacobian is
different from zero ­(g1, g2, . . . , gny

)/­(y1, y2, . . . , yny
) =

det(­gi/­yj)≠0, the mapping g=g(y) between sufficiently
small vicinity of the selected point y in the space Dy and the
vicinity of the point g(y) in the space Dy

g is biunivocal.
In order that previous Jacobian exists at all, the necessary

condition for biunivocal mapping is, obviously, that the
dimensions of the input space Dy and controlled output
space Dy

g are the same. In the mapping, there can be set
exactly dim{Dy}=dim{Dy

g} independent variables y or g
and obtain exactly the same number of dependent variables
g or y. Each variable y or g selected as the independent one
can express one independent control requirement to the
system. As the independent variables, there can be selected

only outputs g, only inputs y or their combination. In other
words, the system control requirements can be imposed to
its output, input or even to their combination. The imposed
requirements must be consistant, meaning that to one
independent variable or its dependent variable there can be
imposed one and only one independent requirement. It
follows, that the number of controlled outputs must be equal
to the number of control inputs, and that to exactly one input
exactly one output must correspond, which is the function
of that input and the system state generated by the input
action.

In principle, the number of inputs ny is not the same as the
number of outputs ng. If ny >ng, the problem is easily
solvable by cancelling the surplus of inputs. That can be
achieved by establishing functional relations between the ng

inputs and the remainder of ny 2ng inputs. That can be also
achieved applying the hierarchical control, thus that for
defined control task ng suitable inputs are selected on the
higher control level, while the remainder of the inputs is
held constant. If the number of really possible outputs ng

(mutually independent variables) is greater than the number
of inputs ny, ng >ny, then ny outputs can be controlled, while
the remainder of ng 2ny outputs are uncontrolled, their
behaviour determined exclusively by the controlled object
dynamics. This relation of outputs and physical inputs exists
in the cooperative manipulation. The control task reduces to
the selection of the set of ng =ny controlled outputs and the
selection of such inputs that the behaviour of the remainder
of outputs is acceptable. Therefore, the control system must
be the hierarchical one. On the higher hierarchical level, the
set of system nominal motions is defined, the controlled
outputs are selected and the mode of transfer between
nominal motion sets is determined. On the lower hierarchi-
cal level, the control of the selected variables is performed
with the exactly determined control laws. 

The selected control laws must provide such object inputs
yob that, exclusively in accordance to the controlled object
dynamics ẋ= f(x, yob), object states x=x(xo, yob) are pro-
duced. These states are generating outputs g=g(x) that are
satisfying the imposed requirements (Figure 1). Physics of

Fig. 1. Control system structure
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any controlled object determines its input Dy state Dx and
output Dg domains, as well as the mapping functions
x=x(xo, yob) and g=g(x) between them (Figure 2, longer
dotted bold line). The object dynamics is determined by this
physics and cannot be changed by any control. The selected
control laws are producing only these control system
outputs gCL =yob, i.e. controlled object excitations, that the
mapping g(x) from the state domain generated by these
excitations into the output domain is performed only upon
this part of the output function g(x) which is satisfying the
imposed requirements (Figures 1b, 1c, and 2a, short bold
line).

General form of the control system output is gCL =
yob(x, xCL, yCL)(Figure 2c.). The control system output gCL is
always the function of the imposed required object input
yCL. The control system output can be the function of the
object state x. Finally, the control system output is the
function of the control system state xCL, for the case of this
system being the dynamic one. As the physics of the object
determines mapping functions, so it defines the require-
ments that can be imposed to the object, expressed as the
closed loop system requirements yCL. In addition, the
nominal regimes cannot be demanded arbitrarily, but in
accordance to the physics defining the controlled object
dynamics. Hereby, the object nominal motion is deter-
mined only as this accomplishable object motion which
ideally fulfils, in accordance with the object physics,
maximally possible number of imposed requirements,
equal to the number of object physical inputs. One
solution of this problem is given in reference 1.

The analysis of the object dynamic behaviour presents the
considerations about the character of the solutions of the
differential equations system describing it, for the excita-
tions that are the functions: for the uncontrolled object only
of the time; for the controlled object of the time and state.
The analysis of the controlled object dynamic behaviour can

be performed on the base of the closed loop model, open
loop model and object model only, for the case when its
input is completely determined. In this paper, the analysis of
the behaviour of the controlled variables is based on the
closed loop model. The analysis of the behaviour of the
uncontrolled output variables is based on the object model
only.

Attention must be paid to the fact that the elastic part of
the cooperative system possesses an infinite number of
eigenfrequencies and model forms corresponding to them.
Choosing the cooperative manipulation model in the form
(5) the insight into the 6m eigenfrequencies and model
forms can be obtained. Then, for the condition that the
assumption about the elastic system presentation by springs
is the valid one, the lowest eigenfrequency is the closest to
the real one.The character of the attack load of the particular
elastic system dictates the character of its motion. In other
words, in the phase of the nominals selection the character
of the elastic, i.e. cooperative, system motion is defined. The
quasi-static tarnsfer can be selected as the nominal motion,
as well as the motion that is far or close to the elastic
structure eigen model forms (resonant states). The analysis
of the behaviour of the closed loop cooperative system must
demonstrate whether the required nominal motion of the
system with the selected vector of the controlled outputs and
control laws can be asymptotically stable accomplished.

3.2 Task Classification
In the cooperative manipulation control several sets can be
observed from or into which mapping is carried out in the
input–output sense (Figure 3.). Note some mappings of
these sets. The manipulator state set Dq is obtained by
mapping the pair (t, Fc) into the state q, (t, Fc)→q. The
driving torques t set Dt can be obtained by mapping the
pair (q, Fc) into the driving torques, t, (q, Fc)→t, and
contact forces set DFc by mapping the pair (t, q) into the
contact forces Fc, (t, q)→Fc. The mapping law is deter-
mined by solving the last two equations (5). The elastic
system state set DY =DYc <DYo can be obtained by
mapping out of the contact forces set DFc into the elastic
system state set DY by the law defined by solving the first
three equations of the differential equations system (5). The
elastic forces Fe set DFe is obtained by mapping the elastic
system state Y into these forces by the law
Fe =K(Y)Y, i.e.Y→Fe.

As the dimension of the cooperative system input space
(driving torques) is 6m, to this system the 6m independent
consistent requirements can be maximally imposed,
expressed by the controlled output vector properties. As the
controlled output vector Yu some of the following vector
types can be selected: 

The position and orientation vector of the cooperative
system elements. The selection can be part Y=
col (Yy, Ys, Y0)PR6m+6 of the elastic system state Yu =Ys0 =
col(Ys, Y0)PR6m, or, expressed by the internal coordinates
Yu =col(qs, Y0)PR6m and Yu =qPR6m.

The elastic force vector FePR6m+6 is the function of the
elastic system nodes state vector Y, so for the controlled
output can be adopted Yu =Fes0PR6m or Yu =FecPR6m vector.

Fig. 2. Mapping of the control object domains
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The contact force vector Yu =FcPR6m, where should be
noted that, for this controlled output selection, the manipu-
lated object MC spatial position and orientation and,
consequently, the whole cooperative system position and
orientation can be arbitrary.

The part of the contacts position and orientation vector
Ȳc, or the part of the corresponding internal coordinates q̄
and the part of the contact forces vector F̄c. The character-
istics selection of the controlled output vector is Yu =
col(Ycy, Fcs)PR6m, that is Yu =col(qy, Fcs)PR6m, in the struc-
ture analogue to the vector Yu =col(Y0, Fcs).

From the analysis point of view, in the cooperative
manipulation the control laws selection based on the
cooperative system elements position and orientation vector
is equivalent to this based on elastic force vector. One group
of mutually equivalent controlled outputs is Yu =Yc, Yu =q
and Yu =Fec, while the other is Yu =Ys0, Yu =Fes0 and Yu =
(qs, Y0), therefore, it is sufficient to make the control laws
selection for only one of these outputs. 

In accordance to the previously stated, in the cooperative
manipulation the typical control tasks are:

• Tracking the nominal trajectory of one elastic system
node (manipulated object MC Y 0

0(t)PR6 or master contact
Yo

y(t)PR6) and tracking of the slave manipulator contacts
nominal trajectories Y0

sPR(6m26), that is, slave manip-
ulators nominal internal coordinates q0

sPR6m26. The
cooperative system controlled output is the 6m-dimen-
sional vector Yu =col(Ys, Y0) or Yu =col(Yy, Ys)=Yc, that is,
Yu =col(qs, Y0) or Yu =col(qy, qs)=q. Untracked elastic
system output variables (uncontrolled outputs) are the
contact forces FcPR6m and the position and orientation of
one contact PR6).

• Tracking of one elastic system node nominal trajectory
(manipulated object MC Y0

0(t)PR6 or master contact
Y0

y(t)PR6) and the tracking of the nominal contact forces
F0

csPR6m26 in the slave manipulators contact. The cooper-
ative system controlled output is the 6m-dimensional
vector Yu =col (Fcs, Y0) or Yu =col(Fcs, Yy) that is,
Yu =col(Fcs, qy). Untracked elastic system output variables
(uncontrolled outputs) are the position and orientations of

m nodes (for the Yo
o tracking these are the contacts position

and orientation YcPR6m) and the contact force FcyPR6 in
the master manipulator contact.

4. CONTROL LAWS
In this paper the tracking of the nominal trajectories of the
manipulated object MC and slave manipulators contacts is
analysed. The controlled output for this case is the vector
Yu =col(qs, Y0). It is demanded that, with a priori required
qualities, controlled cooperative system tracks selected
nominal trajectory Y0(t)=col(q0

s(t), Y0
0(t)) determined by the

particular procedure1. The character of the system uncon-
trolled variable deviations from the nominal values should
be tested separately.

The proposition of the procedure for the calculation of the
driving torques providing controlled output errors with a
priori required properties is as follows.

Let the vector of the deviations between real controlled
and nominal trajectory as well as the vector of the deviation
derivatives be,

(l)
hs(t)=

(l)

q0
s(t)2

(l)
qs(t) and D

(k)
Y0 =

(k)

Y0
0(t)2

(k)
Y0(t), l, k=0, 1, 2, . . .

respectively. If hs(t) and DY0(t) are the solutions of the
homogenous differential equations 

xs(
(l)

hs,
(l21)

hs , . . . ,
(0)
hs)=0,

(0)
hs =hs

and

x0(D
(k)
Y0, D

(k21)
Y0 , . . . , D

(0)
Y0)=0, D

(0)
Y0 =DY0,

obtained as the response to the initial deviation states
hs(t0)=q0

s(t0)2qs(t0) and DY0(t0)=Y0
0(t0)2Y0(t0), then the

correspondence between the properties of the preceding
differential equations and the variation character of the
deviations hs(t) and DY0 can be established. Analogous to
the linear regulation loop, it can be required from the closed
loop non-linear system that the nominal trajectory devia-
tions satisfy the differential equations with the exactly
defined properties regarding stability and quality indices of

Fig. 3. Cooperative manipulation domain mapping
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the solution behaviour. Rearranging the previous differential
equations yields the deviation highest order as the func-
tional relation of the deviation lower order derivatives as the
independent variables. Further calculation renders the
highest order derivative values of the controlled variables

(l)
qs =

(l)

q0
s(t)2Qs(

(l21)
hs ,

(l22)
hs , . . . , hs)

and

(k)
Y0(t)=

(k)

Y0
0(t)2Q0(D

(k21)
Y0 , D

(k22)
Y0 , . . . , DY0)

that the controlled object must posses in order that the
deviations between the real controlled and the nominal
trajectory satisfy the required differential equations. Based
on the requirements that the previous derivatives are
realised, after substituting them into (5), the driving torques
t are calculated. The proposed procedure presents the
expansion of the procedure based on the requirement that
deviations from the nominals are satisfying linear differ-
ential equations, applied to the cooperative manipulation.
This procedure is regularly met in the available literature.
For the case of the manipulator contacting the dynamic
environment, this expansion is given in reference 8.

In this tracking case, the calculated value

(k)
Y0(t)

should be substituted into the third equation (5). The
requirement is imposed through the third derivative (k=3)
of the deviation between the real and nominal manipulated
object MC trajectory. Differentiating the third equation in
(5) under the condition that the matrix ­wyu­q̇y is non-
singular and using the master and slaves indexing
convention (2) yields the constrained master accelerations
as

q̈y =2a(&Y0, Ÿ0, Ẏ0, Y0, q̇, q)2b·q̈s, U­wy

­q̇y
U≠0, (6)

where a(&Y0, Ÿ0, Ẏ0, Y0, q̇, q)=(­wy/­q̇y)
21(Ẇ(Y0)Ÿ0 +

W(Y0) &Y0 +­w/­qq̇+­w/­Y0Ẏ0 +­w/­Y0Ÿ0)PR631, b=
b(Ẏ0, Y0, q̇, q)= (­wy/­ q̇y)

21­w/­q̇s PR63 (6m26). The matrix
­wy/­q̇y is singular for the conditions corresponding to the
elastic system passage through unloaded state2. It is
considered that during the transfer the object is clenched
and by that loaded. If, in spite of that, the matrix ­wv/­q̇y is
singular, erroneous selection of the master manipulator has
been done. That selection must be changed as the manipu-
lated object dynamics has no direct influence on the link
accelerations of the manipulator selected as the master.

Let the differential equation

D&Y0 =Q0(DŸ0, DẎ0, DY0) ⇒&Y0 =&Y 0
0 2Q0(DŸ0, DẎ0, DY0) (7)

has the trivial asymptotically stable equilibrium state
DY0 =0 (i.e. Y 0

0(t)= Y0(t)) only.
Let it be required that this differential equation be thus

selected that its trivial solution, obtained as the response to

the initial deviation DY0(t0)=Y 0
0(t0)2Y0(t0), be asymptot-

ically stable with the desired indices of the dynamic
behaviour quality. Substituting the calculated necessary
third derivative &Y0(t) from (7) into (6) yields the constrained
master accelerations as function of the system state,
imposed requirement and slave accelerations q̈s in the form
q̈y = 2a(&Y 0

0 2Q0(DŸ0, DẎ0, DY0), Ÿ0, Ẏ0, Y0, q̇, q) 2b · q̈s.
Substituting this acceleration into (5) the driving torques
and master contact forces are obtained as the function of the
slaves’ accelerations, too. Therefore, it results that all
driving torques and contact forces are depending on the
slave accelerations q̈s.

Let the differential equation

ḧs(t)=Qs(ḣs, hs) ⇒q̈s(t)= q̈0
s(t)2Qs(ḣs, hs) (8)

has the trivial asymptotically stable equilibrium state hs =0
(i.e. q0

s(t)=qs(t)). Let it be required that this differential
equation be thus selected that its trivial solution, obtained as
the response to the initial deviation hs(t0)=q0

s(t0)2qs(t0), be
asymptotically stable with desired indices of the dynamic
behaviour quality.

Substituting the calculated slaves’ acccelerations q̈s from
(8) into (5) the driving torques are calculated as

ty =Ny(qy)[2a(&Y 0
0 2Q0(DŸ0, DẎ0, DY0), Ÿ0, Ẏ0, Y0, q̇, q)

2b · (q̈0
s(t)2Qs(ḣs, hs))]+hy(q, q̇, Y0, Ẏ0) (9)

ts =Ns(qs)(q̈
0
s(t)2Qs(ḣs, hs))+hs(q, q̇, Y0, Ẏ0)

These torques should be introduced into the manipulator
joints in order to obtain the tracking of the required
controlled output Yu0 =col(Y 0

0, q0
s) with the qualities indi-

rectly required a priori by (7) and (8). In order to form the
driving torques it is necessary to have information about all
instantaneous manipulated object kinematic values
Ÿ0, Ẏ0, Y0, information about internal coordinates q and
their derivatives q̇ and information about nominal outputs
derivatives &Y 0

0, Ÿ 0
0, Ẏ 0

0, Y 0
0, q0

sq̇
0
s and q̈0

s

Let us introduce the calculated driving torques (9) as the
input into the cooperative manipulation model (5) and prove
that the imposed requirements are realisable. After rearrang-
ing is obtained.

Ny(qy)[q̈y +a(&Y 0
0 2Q0(DŸ0, D ˙̇Y0, DY0), Ÿ0, Ẏ0, Y0, q̇, q)

+b · (q̈0
s(t)2Qs(ḣs, hs))]=0

Ns(qs)[q̈
0
s(t)2 q̈s 2Qs(ḣs, hs)]=0

W(Y0)Ÿ0 +w(q, q̇, Y0, Ẏ0)=0

(10)

Due to the matrix Ns(qs) non-singularity, from the second
equation it follows that by introduced driving torques ts

from (9) the imposed requirement (8) is realised. As the
matrix Ny(qy) is also non-singular, the expression in the
square brackets in the first equation must equal zero. The
master acceleration q̈y has to satisfy (6), so after substituting
the value of a(&Y0, Ÿ0, Ẏ0, q̇, q) and rearranging, it is obtained
(­wy /­q̇y)

21W(Y0) · [&Y0
0 2&Y0 2Q0(DŸ0, DẎ0, DY0) =0. As the

matrices ­wy/­q̇y and W(Y0) are non-singular, it finally
follows that by introduced driving torques the required
deviation (&Y0 =&Y 0

0 2Q0(DŸ0, DẎ0, DY0) is realised, present-
ing just the initially imposed requirement (7).

It has been demonstrated that the cooperative system
controlled by the driving torques calculated in (9) tracks the
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nominal controlled outputs stably and with required quali-
ties, indirectly imposed by (7) and (8). As the law of the
controlled output third D&Y0 and second ḧs = q̈0

s 2 q̈s =Dq̈s

derivitive deviation is realised by the adopted control laws
and as DY0(t)=0 and hs(t)=0 are the only asymptotically
stable solutions of equations (7) and (8), the controlled
outputs lower derivatives deviations from the nominal
values are with the exponentially decreasing character.
Therefore, the controlled outputs are tracked asymptotically
stable, i.e. after initial deviation, with the increase of time
they are tending toward their nominal values. The functional
relation Yc =U(q) causes that the slave manipulator internal
coordinates q0

s tracking produces the slave manipulator
contacts Y 0

s =U(q0
s) trajectory tracking. This relation is used

to rate the behaviour of the uncontrolled variables qy, Fcy

and Fcs and calculated driving torques t.
After the asymptotic tracking of the controlled outputs Y0

and qs is accomplished, the conclusion about the uncon-
trolled variables behaviour is made on the basis of the
analysis of the elastic system physics. The goal of the
analyses is to determine the uncontrolled variable deviations
from their nominal values. The analysis results should
answer the question if, on the basis of known controlled
variable deviations from nominal values, the uncontrolled
variable deviations from nominal values can be exactly
determined as well as what their properties are.

To illustrate the considerations, motion in vertical plane
of the simple elastic structure (elastic system) consisting of
two rigid bodies with their MCs in the nodes, intercon-
nected by non-inertial elastic link, is analysed (Figure 4.).
Let in one node some external load Fc =Fc(t) be acting. Let
the node trajectories Y 0

0 =Y 0
0(t), Y 0

c(t)=Y 0
c(t) and contact

force F0
c =F0

c(t) be determined a priori. To simplify the
presentation, further on the time dependence will not be
stated, but it will be considered that all variables refer to the
determined observation instant t. During the motion is
known that somewhere in the space the elastic structure
unloaded state exists, but it is unknown where it exactly is,
as the displacement of any node relative to the unloaded
state is unknown. Let its position and orientation be
determined by the coordinates Y k

0 and Y k
c. If the nodes are

moving along the nominal trajectories, the displacements
relative to the unloaded state, equal to yk0

0 and yk
* =Y* 2Yk

*,
DY* =Y 0

* 2Y* =yk0
* 2yk

*, *=0, c are valid. The appearance of
the elastic forces acting in the elastic system nodes is the
consequence of these displacements. During the real motion
these forces are Fe =col(Fe0, Fec), while during the nominal
one they are F0

e =col(F0
e0, F0

ec). Regardless of the character
and origin of the forces acting in the elastic system nodes,
the elasticity properties are kept unchanged. Therefore, if in
nodes are elastic links with damping properties and some
masses and external force actions, the elastic forces Fe and
F0

e are balancing the resultant of the dynamic F#
d*, gravita-

tional G* and contact F#
c*, *=0, c, #=2 , 0 forces. For easy

relation reference, the damping properties are taken out of
consideration, resulting that dynamic forces acting in one
elastic structure node are only depending on kinematic
variables describing the state of that node. For the linear
region of stress dilatation dependence the relations for
undisturbed (nominal) F0

e =Kkyk0 and disturbed Fe =Kkyk

motion are valid. The subtraction yields DFe =DFd +
col (DFc, 0)=Kk (yk0 2yk). Taking into account the kinematic
relations, developed form of these equations in instant t is 

DFdc +DFc =Ak · Dc +bk · DY0

DFd0 =ck · DYc +dk · DY0 (11)

where: DFd* =F0
d* 2Fd*, *=c, 0 and DFc =F0

c 2Fc are the
dynamic and contact forces deviations from nominal values;
F #

d* =2W*(Y
#
*)Ÿ

#
* 2Fb*(Y

#
*, Ẏ #

*), *=y, s, 0, #=2 , 0 are the
realised and nominal dynamic force; AkPR33 3, bkPR33 3,
ckPR333, dkPR33 3 are the submatrices of the constant
stiffness matrix Kk. If the position and orientation of the
moving unloaded state is known and if the stiffness matrix
K of the unloaded state at rest is defined, then the stiffness
matrix Kk could be obtained by Kk =AT

r (a)KAr(a), where
Ar(a)=diag (A(a), I, . . . Ar(a), I) and I is the unit matrix.
A(a) is the coodinate transformation matrix in rotation for
the orientation a=Ak

i 2Ai0 defined by the difference
between the moving unloaded state orientation Ak

i (t) in the
instant t and unloaded state at rest orientation Ai0. Although
the moving unloaded state position and orientation, as well
as the orientation Ak

i (t) of some its node are unknown, for

Fig. 4. Clenched elastic object motion in the plane
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conclusions further on, it is essential that in each instant t
constant matrix Kk exists.

The elastic structure additional loading is described by
(11). These relations can be considered as the equilibrium
equations of the fictitious spatial grid, loaded in the nodes
by forces DFdc +DFc and DFd0 producing the corresponding
node displacements DYc and DY0. Let us adopt as the
fictitious spatial grid support the point with coordinates Y0.
Then, the support displacement is determined by DY0,
whereas the resistance of this support is determined by
DFd0. If the trajectories Y 0

0 and Y0 are known (i.e. the
character of their deviation DY0 =Y 0

0 2Y0), the character of
F0

d0, Fd0 and DFd0 can be explicitly determined. The second
node displacement DYc that must be done in order that the
support resistance is DFd0 when displaced by DY0 is
determined from the second equation. For known Yc and
DYc Y 0

c is determined and on their basis F0
dc, Fdc and DFdc, so

that DFc is easily determined from the first equation.
Therefore, knowing DY0, DYc can be exactly determined,
and on the basis of both of the DFc.

On the basis of previous considerations, for the elastic
system (1) guided along the nominal trajectories Y 0

0 and Y 0
s

the equations

DFdy +DFcy =uk
yDYy + uk

sDYs +uk
0DY0

DFds +DFcs =Ak
yDYy +Ak

sDYs +Ak
0DY0

DFd0 =ck
yDYy +ck

sDYs +ck
0DY0 (12)

are obtained, describing the equilibrium of the fictitious
space grid loaded in the nodes by forces DFdy +DFcy,
DFds +DFcs and DFd0 producing the corresponding node
displacements DYy, DYs, DF0.

It is proved in the selection of the control laws (9) for the
controlled output Yu(t)=col(qs(t), Y0(t)) 6m-dimensional
vector, that the deviation vector DYs0 =col(DYs, DY0) and its
derivatives are with exponentially decreasing character.
Considering this and knowing that the object physics
imposes relation (12), the conclusion about uncontrolled
variable deviations between the real and nominal trajecto-
ries must be made.

The vector DFds0 =col(DFds, DFd0) is determined on the
basis of DYs0 and its derivatives. Because of DYs0 and its
derivatives variation character, the vector DFds0 is also
exponentially decreasing to zero. The variation DYy is
determined, for the non-singular matrix ck

y, from the last
equation (12). Because DYy is linear dependant on DFd0, DYs

and DY0, so is DYy also exponentially decreasing to zero.
Therefore, the uncontrolled output variable Yy is asymptot-
ically tending to the master contact nominal trajectory Y 0

y.
Using annalogous procedure to the second equation in (12),
the conclusion that the slave contact force increments DFcs

are also exponentially decreasing to zero is made. There-

fore, the slave contact forces are asymptotically tending to
their nominal values F0

cs.
For the known realised trajectory Yy and calculated

deviations DYy the nominal trajectory Y 0
y can be determined,

and on their basis also DFdy. The bounded value of DFcy is
finally calculated from the first equation in (12). This
demonstrates that, in the case of asymptotic tracking the
nominal trajectories of the manipulated object MC and slave
contacts, all uncontrolled output variables are also asymp-
totically tracked. In the case that the trajectories of other m
nodes are selected as the nominal ones, e.g. the contact
nominal trajectories Y0

c =col(Y 0
y(t), Y0

s(t)) only, the same
conclusion can be drawn for the selected controlled output
vector Yu =q.

Normalising some of the equations of the cooperative
system dynamics that is explicitly expressing the driving
torques (9), (5) or the manipulator dynamics expression (3),
the assessment of the driving torques behaviour can be
performed. The simplest way to obtain the norm is to use the
manipulator dynamics expression (3), i.e. iti ≤ iH(q)i
iq̈i + ih(q, q̇)i + iJT(q)iifci After initial deviation, with the
increase of time q0

s, qy and fc =2Fc =2col(Fy, Fs) are
tracked asymptotically stable. For bounded arguments all
elements on the right side of the normalised driving torques
equation are bounded, therefore, the driving torques are
bounded.

Let us conclude, that tracking of the nominal controlled
outputs Yu =col(Y 0

0, q0
s) in the required manner, indirectly

defined by (7) and (8), is provided by introducing the
control laws defined by expressions (9) determining the
driving torques that should be realised in the manipulator
joints. These control laws are providing that, after the
transient process generated by initial deviation between the
controlled outputs and corresponding nominal values,
uncontrolled variables are not unbounded.

5. Example of cooperative system control laws
synthesis
In order to illustrate the problem of determining the control
laws of the cooperative system coordinated motion, a simple
example of the “linear cooperative system” (Figure 5.),
elaborated in papers4, 5, is reviewed. The system in the
example consists of one object and two rigid one DOF
manipulators. With regard to the examples published in
references 4 and 5 this system is modified in reference 1 by
the change of the axis along which the motion is performed.
The change is done in order to emphazise the properties of
the cooperative system at rest. Between the object and
manipulators elastic connections are inserted. The masses of
the connections are much smaller then the mass of the
object, so their influence can be neglected.

Fig. 5. “Linear cooperative system”
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To describe the general motion, the cooperative system
dynamics model is expressed by the absolute coordinates Y
in the form1,12

m1Ÿ1 +dpẎ1 2dpẎ2 +cpY1 2cpY2 +m1g+cps1 =t1

m2Ÿ3 2dkẎ2 +dkẎ3 2ckY2 +ckY3 +m2g2cks3 =t2

mŸ2 2dpẎ1 +(dp +dk)Ẏ2 2dkẎ3

2cpY1 +(cp +ck)Y2 2ckY3 +mg2cps1 +cks3 =0

dpẎ1 2dpẎ2 +cpY1 2cpY2 +cps1 =Fc1

2dkẎ2 +dkẎ3 2ckY2 +ckY3 2cks3 =Fc2

(13)

The elastic system model (Figure 5) parameters are
s1 =s2 =0.05[m] (the distances between nodes in unloaded
state); m=25[kg]; cp =20 · 103[N/m]; ck =10 · 103[N/
m]; dp =500[N/(m/s)] and dk =1000[N/(m/s)]. The
manipulator model parameters are m1 =12.5[kg] and
m2 =12.5[kg]. The cooperative system initial position before
the onset of the clenching process is determined by the
nodes coordinates Y10 =0.150[m], Y20 =0.200[m] and
Y30 =0.250[m].

Adopting the first manipulator for the master and
comparing (13) to (5) it is concluded that is qy =q1 =Y1,
qs =q2 =Y3, Y0 =Y2, ty =t1, ts =t2, Ny (qy)=m1, Ns(qs)=m2,
W(Y0)=m, Py (qy)=0, Ps(qs)=0, ny (q, q̇, Y0, Ẏ0)=dpẎ1 2
dpẎ2 +cpY1 2cpY2 +m1g+cps1, ns(q, q̇, Y0, Ẏ0)=2dkẎ2 +dkẎ3 2
ckY2 +ckY3 +m2g2cks3, w(q, q̇, Y0, Ẏ0)=2dpẎ1 +(dp +dk)Ẏ2 2
dkẎ32cpY1+(cp+ck)Y22ckY3+mg2cps1+cks3, py(q, q̇, Y0, Ẏ0)=
dpẎ1 2dpẎ2 +cpY1 2cpY2 +cps1 and ps(q, q̇, Y0, Ẏ0)=2dkẎ2 +
dkẎ3 2ckẎ2 +ckY3 2cks3. In the synthesis of the control laws
for tracking the nominal trajectories of the manipulated
object MC and slave manipulator contact two functions
must be selected. The concreate form of the differential
equations describing the realised trajectory deviation rela-
tive to nominal trajectory must be selected for both, the
manipulated object MC (7) and slave manipulator contact
(8). Linear form of these equations is selected

DŸ2 +b2DŸ2 +b1DẎ2 +b0DY2 =ky2uy2|uy2 =0 =0
ḧs +a1ḣs +b0hs =khuh|uh =0 =0 (14)

where DY2 =Y 0
2 2Y2 and hs =Y 0

3 2Y3. Comparing these
equations to (7) and (8), it is concluded that
Q0(DŸ2, DẎ2, DY2)=2b2DŸ2 2b1Ẏ2 2b0DY2 +ky2uy2|uy2 =0 and
Qs(ḣs, hs)=2a1ḣs +a0hs +khuh|uh =0. The following coef-
ficient numerical values are selected: b0 =7106.118[s23];
b1 =8883.0936[s22]; b2 =46.38938[s21]; a0 =355.3059[s22]
and a1 =26.38938[s21]. The master acceleration is selected
by relation (6), whereby the auxiliary relations
a=2 [m&Y2 +(dp +dk)Ÿ2 2cpẎ1 +(cp +ck)Ẏ2 2ckẎ3]/dp and b=
dk /dp, with included ­wy /­q̇y =­w/­Ẏ1 =2dp and ­ws /­q̇s

=­w/­Ẏ3 =2dk, are selected a priori. In accordance to (9),
the control laws are determined by

t1 =m1[2a0 2b(Ÿ 0
3 2Q0

s)]+ny

t2 =m2[Ÿ
0
3 2Q0

s]+ns (15)

where Ny, Ns, ny and ns are stated without independent
variable notation. The variables with upper index 0 are
determined by a0 = 2 [m(&Y 0

2 2Q0
0)+(dp +dk)Ÿ2 2

cpẎ1 +(cp +ck)Ẏ2 2ckẎ3]/dp,

Q0
0 = 2b2(Ÿ

0
2 2 Ÿ2)2b1(Y

0
2 2Y2)2b0(Y

0
2 2Y2) and Q0

s =
2a1 (Ẏ 0

3 2 Ẏ3)2b0 (Y 0
3 2Y3). The manipulated object MC

nominal trajectory and its derivatives are Y 0
2, Ẏ 0

2, Ÿ 0
2 and &Y 0

2.
The slave contact nominal trajectory and its derivatives are
Y 0

3, Ẏ 0
3, Ÿ 0

3, in this case being the same as the slave
manipulator internal coodinate and its derivatives.

The testing of the synthesized control laws function is
performed by observing the nominal trajectories tracking
when initially the deviation between the real and nominal
trajectories exists. The nominal trajectories along which the
system should be guided are, for the same example,
determined in reference 1. The nominal trajectories of the
manipulated object MC Y 0

0 and slave manipulator contact Y 0
s

are tracked by the synthesized control laws. The simulation
results of the controlled cooperative system are presented in
the Figures 6a to 6d. The diagrams in the Figures are
simultaneously presenting the nominal (the last character
for the nominal variables symbol is ‘0’) and the realised
trajectories. Observing the results, high quality tracking of
the nominal trajectories can be concluded, whereas the
remaining uncontrolled variables are tending to correspond-
ing nominal values.

6. CONCLUSION
The analysis of the cooperative system controllability
considering it as a non-linear controlled object was
performed in this paper on the basis of the cooperative
manipulation dynamics model with solved force indefinite-
ness problem. It was demonstrated on the basis of the
mapping between the non-linear system input, state and
output domains that the existance of biunivocal correspon-
dence between the input and controlled output domains is
necessary condition for non-linear system output controlla-
bility. It has been concluded that the number of independent
requirements that can be imposed to the cooperative system
is exactly the same as the number of independent driving
torques. The existence of two control task types based on
controlled output vector classification is presented in the
paper. The first one is the tracking of the selected point
nominal trajectories only, while the second one is the
tracking of one point nominal trajectory and nominal
contact forces of slave manipulators. The control laws for
tracking the nominal trajectories of the manipulated object
MC and slave manipulator contacts are determined. They
are presented by driving torques calculated from the
condition that the controlled output deviations from corre-
sponding nominals satisfy a priori the set of differential
non-linear equations with exact properties regarding stabil-
ity and quality indices of the solution behaviour. The closed
loop cooperative system tracking the vector of the con-
trolled output nominals in the required way has been proved
analytically. For the case of the controlled output asymptotic
tracking, conclusion about the uncontrolled variables behav-
iour has been done on the basis of the elastic system physics
analyses. It has been demonstrated that, when the controlled
output nominals are tracked asymptotically stable, the
uncontrolled variables are tending to their nominal values.
The driving torques calculation procedure and the closed
loop cooperative system behaviour are illustrated on the
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example of a simple cooperative system consisting of a
manipulated object and two one DOF manipulators.
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