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We investigate various variable martingale Hardy spaces corresponding to variable
Lebesgue spaces Lp(·) defined by rearrangement functions. In particular, we show
that the dual of martingale variable Hardy space Hs

p(·) with 0 < p− � p+ � 1 can be

described as a BMO-type space and establish martingale inequalities among these
martingale Hardy spaces. Furthermore, we give an application of martingale
inequalities in stochastic integral with Brownian motion.
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1. Introduction

Variable Lebesgue spaces Lp(·)(Rn) in harmonic analysis nowadays have been well
studied. It is generally accepted that the dividing line between the ‘early’ and ‘mod-
ern’ periods in the study of variable Lebesgue spaces is the foundational paper of
Kováčik and Rákosńık [20] from 1991. But the origin of the variable Lebesgue
spaces predates their work by 60 years, since they were first studied by Orlicz [27]
in 1931. The most influential work is due to Zhikov [32, 33], who beginning in
1986 applied the variable Lebesgue spaces to problems in the calculus of variations.
The connection between variable exponent spaces and variational integrals with
non-standard growth and coercivity conditions was made in [34]. Moreover, the
substantial progress on the study of variable Lebesgue spaces is due to Diening
[5, 6], who proposed the so-called log-Hölder condition on variable exponents to
obtain the boundedness of Hardy-Littlewood maximal operator on Lp(·)(Rn). Since
then, the investigation on variable Lebesgue spaces has been developed rapidly.
A lot of interesting work on the theory of function spaces with variable expo-
nents appeared, such as Nakai and Sawano [25] defined Hardy spaces with variable
exponents on R

n by the grand maximal function, and investigated the Littlewood-
Paley characterization and the dual spaces of Hardy spaces with variable exponents.
It should be mentioned that Cruz-Uribe and Wang [4] independently introduced
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the variable Hardy space Hp(·)(Rn), investigated its atomic decomposition and dis-
cussed the boundedness of operators on it with the variable exponents p(·) satisfying
some condition slightly weaker than that used in [25]. The variable Lorentz-Hardy
spaces Hp(·),q(Rn) were considered by Yan et al. [31] and Jiao et al. [15]. We refer to
[3, 7, 8, 21, 22, 30] and references therein for the recent progress on Lebesgue spaces
with variable exponents and some applications in PDEs.

Inspired by the considerable progress of variable Lebesgue spaces in harmonic
analysis, martingale variable Lebesgue spaces have gained more and more attentions
in recent years. Let (Ω,F , P, {Fn}n�0) be a complete probability space and p(·) be
a measurable function on Ω. Similar to Lp(·)(Rn), we may define Lp(·)(Ω). Aoyama
[1] proved the Doob maximal inequality under the assumption that the variable
exponent p(·) is Fn-measurable for all n � 0. This is the first attempt to study
martingale variable Lebesgue space. However, the condition imposed on p(·) is
quite strong. Indeed, Nakai and Sadasue [26] gave a counterexample to show that,
at least, F0-measurability of p(·) is not necessary for the boundedness of the Doob
maximal operator on Lp(·)(Ω). In order to get the Doob maximal inequality on
variable Lebesgue spaces, there are two major difficulties need to be overcome. First,
abstract probability space generally does not enjoy nice metric structure, and thus
the log-Hölder condition is not applicable any more. Second, the arguments used in
classical Lebesgue spaces are no longer efficient here and the essential reason is that
the space Lp(·)(Ω) is not a rearrangement invariant space. To better describe the
Doob maximal inequalities in variable exponent setting, Jiao et al. [13] introduced
a condition without metric characterization of variable exponent p(·) to replace
the log-Hölder continuous condition. Under this new condition, they obtained the
weak-type and strong-type estimates of the Doob maximal operator, and formulated
the duals of martingale variable Hardy spaces. Still using the same condition, Jiao
et al. [12] described the boundedness of fractional integral operator in martingale
variable Hardy spaces. In the very recent paper [16], Jiao et al. gave a relatively
complete investigation on martingale variable Hardy(-Lorentz) spaces. However, all
the results mentioned above (namely, [12, 13, 16]) only works for atomic σ-algebras
{Fn}n�0. We also refer the reader to [14, 17, 29] for more results about martingales
in variable exponent Lebesgue spaces.

Recently, new variable Lebesgue space Lp(·)(Rn) [9, 18] defined by rearrang-
ing function came into view. Compared with the usual variable Lebesgue space
Lp(·)(Rn), the advantage Lp(·)(Rn) possesses is that it is a rearrangement invari-
ant space. With the emergence of this new variable Lebesgue space, one question
arises: whether we can define and investigate corresponding new martingale vari-
able Lebesgue spaces. In this paper, we shall concentrate on this question. Our
variable Lebesgue space Lp(·)(Ω) here is defined on the probability space (Ω,F , P)
(see definition 2.10 below). Note that p(·) now is defined in [0, 1]. Under the assump-
tion that p(·) satisfies the local log-Hölder condition, we obtain the strong-type and
weak-type estimates for the Doob maximal operators in Lp(·)(Ω). Also, we investi-
gate various variable martingale Hardy spaces corresponding to Lp(·)(Ω). Via atomic
decompositions, we show that the dual of martingale variable Hardy space Hs

p(·)(Ω)
with 0 < p− � p+ � 1 can be described as a BMO-type space. Moreover, we estab-
lish some new martingale inequalities among these martingale Hardy spaces defined
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in the § 2.4. Finally, we obtain an application of martingale inequalities in stochastic
integral with Brownian motion. Compared with the results due to Jiao et al.
[12, 13, 16], we do not need to assume that Fn is an atomic σ-algebra any more.

Throughout this paper, Z, N and C denote the integer set, the nonnegative inte-
ger set and set of complex numbers, respectively. We denote the absolute positive
constant by C, which can vary from line to line, and we denote by Cp(·) the constant
depending only on p(·). The symbol A � B stands for the inequality A � CB or
A � Cp(·)B. If we write A ≈ B, then it stands for A � B � A. Moreover, for each
measurable set E ⊂ Ω (or ⊂ [0, 1]), we denote |E| the measure of E.

2. Preliminaries

This section contains four subsections. Firstly, we introduce the definition and some
related properties of the classical variable Lebesgue space. Secondly, we give the
definition of Lebesgue space Lp(·)(Ω) and its useful properties. In § 2.4, the variable
exponent martingale Hardy spaces corresponding to Lp(·)(Ω) are defined.

2.1. Variable Lebesgue spaces Lp(·)

Throughout the paper, we always suppose that (Ω,F , P) is a complete probability
space. Let (R,μ) a measure space. For any measurable set E ⊂ R, we will often
denote the measure of E simply by |E| whenever no confusion can occur. Indeed,
(R,μ) could be (Ω,F , P) or (Rn,m)(n � 1), where m is the Lebesgue measure.

A measurable function p(·) : R → (0,∞) is called a variable exponent. For a
measurable set A ⊂ R, we denote

p−(A) := ess inf
x∈A

p(x), p+(A) := ess sup
x∈A

p(x),

and for convenience

p− := p−(R), p+ := p+(R), p := min{1, p−}.

In sequel, we always use the following symbols

P(R) = {p(·) : 0 < p− � p+ < ∞},

and

Pa(R) = {p(·) : a < p− � p+ < ∞}, a ∈ R
+.

Throughout the paper, given a variable exponent p(·), we define the conjugate
variable exponent p′(·) by the formula

1
p′(x)

+
1

p(x)
= 1, x ∈ R.

The variable Lebesgue spaces Lp(·)(R) are defined as follows.
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Definition 2.1. Let p(·) ∈ P(R). The variable exponent Lebesgue space Lp(·)(R)
is defined as the set of all measurable functions f on R such that, for some λ > 0,

ρ

(
f

λ

)
=
∫

R

(
|f(x)|

λ

)p(x)

dμ < ∞.

This becomes a quasi-Banach function space when it is equipped with the quasi-
norm

‖f‖Lp(·) = inf{λ > 0 :
∫

R

(
|f(x)|

λ

)p(x)

dμ � 1}. (2.1)

According to [10, theorem 1.3], for any f ∈ Lp(·)(R), we have ρ(f) � 1 if and only
if ‖f‖Lp(·) � 1. For any quasi-Banach space X, we denote by X∗ the dual space of
X. Next, we present some basic properties for variable Lebesgue spaces Lp(·)(R).

Lemma 2.2 [3, theorem 2.80]. Let p(·) ∈ P1(R). Then (Lp(·)(R))∗ = Lp′(·)(R).

Lemma 2.3 [20, theorem 2.8]. Let p(·), q(·) ∈ P(Ω). If p(·) � q(·), then for every
f ∈ Lq(·)(Ω), we have

‖f‖Lp(·)(Ω) � 2‖f‖Lq(·)(Ω).

Lemma 2.4 [3, corollary 2.28]. Let r(·), p(·), q(·) ∈ P(R) satisfy

1
r(·) =

1
p(·) +

1
q(·) .

Then there is a positive constant Cs(·) > 0 such that for all f ∈ Lp(·)(R) and g ∈
Lq(·)(R),

‖fg‖Lr(·) � Cs(·)‖f‖Lp(·)‖g‖Lq(·) ,

where s(·) = r(·)
p(·) .

The following lemma is from [31].

Lemma 2.5 [31, remark 2.1]. Given p(·) ∈ P(R), if 0 < p− � p+ � 1, then for any
positive function f, g ∈ Lp(·)(R), we have

‖f‖Lp(·)(R) + ‖g‖Lp(·)(R) � ‖f + g‖Lp(·)(R).

2.2. The maximal operators and log-Hölder continuous condition

We begin this subsection with the following log-Hölder continuous condition for
the variable exponent p(·) defined on R

n (see [3, lemma 3.24]).
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Definition 2.6. Let p(·) ∈ P(Rn). We say that p(·) is locally log-Hölder con-
tinuous, if there exists a positive constant C such that for all x, y ∈ R

n with
|x − y| < 1

2 ,

|p(x) − p(y)| � C

− log |x − y| . (2.2)

We say p(·) is log-Hölder continuous at infinity if there exists a positive constant C
such that for all x ∈ R

n, p∞ = limx→∞ p(x),

|p(x) − p∞| � C

log(e + |x|) . (2.3)

The conditions (2.2) and (2.3) are called log-Hölder condition.

Lemma 2.7 [13, lemma 5.2]. Let p(·) ∈ P([0, 1]) satisfy locally log-Hölder condition.
For any interval Q ⊂ [0, 1], then for x ∈ Q, we have

‖χQ‖Lp(·)
≈ |Q|1/p−(Q)

≈ |Q|1/p(x)
≈ |Q|1/p+(Q),

where denote the Lebesgue measure of Q by |Q|.

For locally integrable function f defined on R
n, the Hardy-littlewood maximal

operator is defined by

M(f)(x) = sup
x∈Q

1
|Q|

∫
Q

|f(y)|dy, x ∈ R
n,

where the supremum is taken over all cubes Q ⊂ R
n that contain x.

The log-Hölder condition is sufficient so that the Hardy-littlewood maximal
operator is bounded on Lp(·)(Rn), p− > 1.

Lemma 2.8 [3, theorem 3.16]. Let R ⊂ R and let p(·) ∈ P(R) satisfy log-Hölder
condition. Then

‖M(f)‖Lp(·)(R) � Cp(·)‖f‖Lp(·)(R), p− > 1

and

‖M(f)‖wLp(·)(R) � Cp(·)‖f‖Lp(·)(R), p− � 1.

Remark 2.9. If |R| < ∞, then p(·) is automatically log-Hölder continuous at infin-
ity (see [3, chapter 2.1]). In this case, if p(·) is log-Hölder continuous, p(·) is actually
local log-Hölder continuous.
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2.3. Variable Lebesgue spaces Lp(·)

Assume that f is a measurable function on (Ω,F , P). We define the distribution
function df : [0,∞) → [0, 1] associated with f by

df (s) = |{x ∈ Ω : |f(x)| > s}|, s ∈ [0,∞).

The non-increasing rearrangement function f∗ : [0,∞) → (0,∞] of f is defined by

f∗(t) = inf
{
s � 0 : df (s) � t

}
.

We state several basic properties of the function f∗. For all E ∈ F ,

χ∗
E = χ(0,|E|),

∫
Ω

fgdP �
∫ ∞

0

f∗(t)g∗(t)dt. (2.4)

For more properties, we refer the reader to [11, proposition 1.4.5].
We also define the function f∗∗ associated with f∗ by

f∗∗(t) =
1
t

∫ t

0

f∗(s)ds, t > 0.

According to [2, proposition 3.2, theorem 3.4], f∗∗ is non-negative, decreasing and
continuous on (0,∞). Further, we have

f∗(t) � f∗∗(t), t > 0

and

(f + g)∗∗(t) � f∗∗(t) + g∗∗(t), t > 0. (2.5)

We take the following definition from [9, 18].

Definition 2.10. Let p(·) ∈ P([0, 1]). Define the variable exponent Lebesgue space
Lp(·)(Ω) as the space of all measurable functions f(x) on Ω such that

�p(·)(f) =
∫ ∞

0

f∗(t)p(t)dt < ∞.

For any f ∈ Lp(·)(Ω), define

‖f‖Lp(·)(Ω) := ‖f∗‖Lp(·)([0,1]).

Obviously, the Lebesgue space Lp(·)(Ω) goes back to the classical Lebesgue space
Lp(Ω) as variable exponent p(·) is equal to the constant p. With the help of next
lemma, we will show that ‖ · ‖Lp(·)(Ω) is a quasi-norm for p(·) ∈ P([0, 1]) satisfying
local log-Hölder condition.
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Lemma 2.11 [19, theorem E]. Let p(·) ∈ P1([0, 1]) satisfy locally log-Hölder condi-
tion. Then the following Hardy-type inequalities hold∥∥∥∥1

t

∫ t

0

f(s)ds

∥∥∥∥
Lp(·)([0,1])

� Cp(·)‖f‖Lp(·)([0,1]) (2.6)

and ∥∥∥∥
∫ 1

t

f(s)
s

ds

∥∥∥∥
Lp(·)([0,1])

� Cp(·)‖f‖Lp(·)([0,1]), (2.7)

Remark 2.12. In fact, in [19, theorem E], p(·) is local log-Hölder continuous on
interval [0, δ] for some small δ > 0. Later, it was proved in [7, theorem 3.1] that
(2.6) holds true with a weaker condition stated in [7, hypothesis].

Lemma 2.13. Given p(·) ∈ P([0, 1]) and f ∈ Lp(·)(Ω), we have

‖|f |t‖Lp(·) = ‖f‖t
Ltp(·) , t > 0.

Proof. Note that (f∗)t = (|f |t)∗. The desired equality follows from [3, proposition
2.18]. �

Proposition 2.14. Let p(·) ∈ P([0, 1]) and let f, g ∈ Lp(·)(Ω). If p(·) satisfies local
log-Hölder condition, then ‖ · ‖Lp(·)(Ω) is a quasi-norm, moreover, we have

‖f + g‖Lp(·) � ‖f‖Lp(·) + ‖g‖Lp(·) .

Proof. Take f, g ∈ Lp(·) and s ∈ (0, p). According to lemma 2.13 and (2.5), we have

‖f + g‖Lp(·) = ‖|f + g|s‖1/s
Lp(·)/s

� ‖(|f |s + |g|s)∗∗‖1/s
Lp(·)/s

� ‖(|f |s)∗∗ +
(|g|s)∗∗‖1/s

Lp(·)/s
.

Since p(·)/s > 1, ‖ · ‖Lp(·)/s
is a norm. It follows (2.6) that ‖f∗∗‖Lp(·)/s

� ‖f∗‖Lp(·)/s
.

Thus, using lemma 2.13, we obtain

‖f + g‖Lp(·) � ‖(|f |s)∗∗‖1/s
Lp(·)/s

+ ‖(|g|s)∗∗‖1/s
Lp(·)/s

� ‖(|f |s)∗‖1/s
Lp(·) + ‖(|g|s)∗‖1/s

Lp(·)

= ‖f‖Lp(·) + ‖g‖Lp(·) . �

We now present several useful lemmas for the variable Lebesgue space Lp(·)(Ω).

Lemma 2.15. Given p(·) ∈ P1([0, 1]), if f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω), then there
is a positive constant Cp(·) > 0 such that∫

Ω

|fg|dP � Cp(·)‖f‖Lp(·)‖g‖Lp′(·) .
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Proof. Since
∫
Ω
|fg|dP �

∫ 1

0
f∗(t)g∗(t)dt, the desired Hölder inequality follows from

lemma 2.2. �

Lemma 2.16. Let r(·), p(·), q(·) ∈ P([0, 1]) satisfy

1
r(·) =

1
p(·) +

1
q(·) .

Then for all h ∈ Lq(·)(Ω) and E ∈ F , we have

‖χEh‖Lr(·) � ‖χE‖Lp(·) ‖h‖Lq(·) .

Proof. For any E ∈ F , according to the Hölder inequality (see lemma 2.4) and

(χEh)∗(t) � h∗χ[0,|E|](t), 0 � t � ∞,

we have

‖χEh‖Lr(·) �
∥∥h∗χ[0,|E|]

∥∥
Lr(·)

�
∥∥χ[0,|E|]

∥∥
Lp(·)

‖h∗‖Lq(·) = ‖χE‖Lp(·) ‖h‖Lq(·) . �

By lemma 2.3, we have the following lemma.

Lemma 2.17. Given p(·), q(·) ∈ P([0, 1]), if p(·) � q(·), then Lq(·) ⊂ Lp(·).

Using lemma 2.7, we can easily prove the next lemma.

Lemma 2.18. Given p(·) ∈ P([0, 1]), and p(·) is locally log-Hölder continuous, then
for all I ∈ F , we have

‖χI‖Lp(·) ≈ |I|(1/p−([0,|I|])) ≈ |I|(1/p(x)) ≈ |I|(1/p+([0,|I|])), x ∈ (0, |I|).

Proposition 2.19. Let p(·) ∈ P([0, 1]) satisfy locally log-Hölder condition.

(1) Then for all I ∈ F , we have

‖χI‖1 ≈ ‖χI‖Lp(·)‖χI‖Lq(·) ,

where

1 =
1

p(·) +
1

q(·) .

(2) Let q(·) ∈ P([0, 1]), and q(·) is locally log-Hölder continuous in [0, 1]. Then
for all I ∈ F , we have

‖χI‖Lr(·) ≈ ‖χI‖Lp(·)‖χI‖Lq(·) ,

where
1

r(·) =
1

p(·) +
1

q(·) .
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Proof. (1) By [3, proposition 2.3], q(·) = (p(·)/p(·) − 1) satisfies locally log-Hölder
condition. Then the desired result follows from lemma 2.18.

(2) For any I ∈ F , it follows from (χI)∗ = χ(0,|I|) and lemma 2.18 that for any
x ∈ (0, |I|), we have

‖χI‖Lr(·) =
∥∥χ[0,|I|]

∥∥
Lr(·)

≈ |I|(1/r(x)) = |I|(1/p(x))+(1/q(x)) ≈ ‖χI‖Lp(·) ‖χI‖Lq(·) .

�

2.4. Variable martingale Hardy spaces

Now we introduce some standard notation from martingale theory. We refer to
[23] and [28] for the classical martingale space theory. Let (Ω,F , P) be a com-
plete probability space with subalgebras (Fn)n�0 and F = σ(∪n�0Fn). Recall that
the conditional expectation operator relative to Fn is denoted by EFn

(simply by
En), that is, E(f |Fn) = En(f). We also call (Fn)n�0 a stochastic basis with con-
vention F−1 = F0. A sequence of measurable functions f = (fn)n�0 ⊂ L1(Ω) is
called a martingale with respect to (Fn)n�0 if En(fn+1) = fn for every n � 0. For
a martingale f = (fn)n�0,

dnf = fn − fn−1, n � 0,

denote the martingale difference (with convention d0f = 0). In addition, if fn ∈
Lp(·), f is called an Lp(·)-martingale with respect to (Fn). In this case, we set

‖f‖Lp(·) = sup
n�0

‖fn‖Lp(·) .

If ‖f‖Lp(·) < ∞, f is called a bounded Lp(·)-martingale and denoted f ∈ Lp(·). For
a martingale relative to (Ω,F , P, (Fn)n�0), define the maximal operator, the square
function and the conditional square function of f , respectively, as follows (f−1 = 0)

Mm(f) = sup
n�m

|fn|, Mf = sup
n�1

|fn|;

Sm(f) =

(
m∑

n=0

|dfn|2
)1/2

, S(f) =

( ∞∑
n=0

|dfn|2
)1/2

;

sm(f) =

(
m∑

n=0

EFn−1 |dfn|2
)1/2

, s(f) =

( ∞∑
n=0

EFn−1 |dfn|2
)1/2

.

Denote by Λ the collection of all sequences (λn)n�0 of non-decreasing, non-negative
and adapted functions with λ∞ = limn→∞ λn. Let p(·) ∈ P([0, 1]). The variable
exponent martingale Hardy spaces associated with variable exponent Lebesgue
space Lp(·) are defined as follows:

HM
p(·) = {f = (fn)n�0 : ‖f‖HM

p(·)
= ‖M(f)‖Lp(·) < ∞};

HS
p(·) = {f = (fn)n�0 : ‖f‖HS

p(·)
= ‖S(f)‖Lp(·) < ∞};
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Hs
p(·) = {f = (fn)n�0 : ‖f‖Hs

p(·)
= ‖s(f)‖Lp(·) < ∞};

Qp(·) = {f = (fn)n�0 : ∃(λn)n�0 ∈ Λ, s.t. Sn(f) � λn−1, λ∞ ∈ Lp(·)},
‖f‖Qp(·) = inf

(λn)∈Λ
‖λ∞‖Lp(·) ,

where the infimum is taken over all (λn)n�0 ∈ Λ such that Sn(f) � λn−1.

Pp(·) = {f = (fn)n�0 : ∃(λn)n�0 ∈ Λ, s.t. |fn| � λn−1, λ∞ ∈ Lp(·)},

‖f‖Pp(·) = inf
(λn)∈Λ

‖λ∞‖Lp(·) ,

where the infimum is taken over all (λn)n�0 ∈ Λ such that |fn| � λn−1.

Remark 2.20. If p(·) = p is a constant, then the above definitions of variable Hardy
spaces go back to the classical definitions (see [28]).

We are going to end this subsection with the Doob’s maximal inequalities. To
this end, we introduce weak variable exponent Lebesgue space wLp(·)(Ω).

Definition 2.21. Let p(·) ∈ P([0, 1]). The weak variable exponent Lebesgue space
wLp(·)(Ω) is defined as follows:

wLp(·)(Ω) = {f ∈ L(Ω) : ‖f‖wLp(·) < ∞},
with the quasi-norm

‖f‖wLp(·) = sup
t>0

t‖χ{|f |>t}‖Lp(·) .

We have

‖f‖wLp(·) = ‖f∗‖wLp(·) := sup
t>0

t‖χ{f∗>t}‖Lp(·) . (2.8)

In fact, by [11, proposition 1.4.5(3)], we have

{s � 0 : f∗(s) > t} = [0, df (t)).

Applying the above equation, we obtain

‖f‖wLp(·) = sup
t>0

t‖χ{x∈Ω:|f(x)|>t}‖Lp(·) = sup
t>0

t‖χ(0,df (t))‖Lp(·)

= sup
t>0

t‖χ{s∈[0,1]:f∗(s)>t}‖Lp(·) � ‖f∗‖wLp(·) .

Theorem 2.22 Doob’s inequalities. Let p(·) ∈ P([0, 1]) satisfy locally log-Hölder
condition and f ∈ Lp(·)(Ω). Then there exists a positive constant Cp(·), such that

‖Mf‖Lp(·) � Cp(·)‖f‖Lp(·) , p−>1

and

‖Mf‖wLp(·) � Cp(·)‖f‖Lp(·) , p−�1.
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Proof. Take f = (fn)n�0 ∈ Lp(·)(Ω). According to [23, theorem 3.6.3], we have

(Mf)∗(t) � f∗∗(t), ∀t > 0. (2.9)

Then, applying lemma 2.11, we deduce that

‖Mf‖Lp(·) = ‖(Mf)∗‖Lp(·) � ‖f∗∗‖Lp(·) � Cp(·)‖f∗‖Lp(·) = Cp(·)‖f‖Lp(·) .

According to (2.9) and the definition of the Hardy-littlewood maximal operator M,
we have

(Mf)∗(t) � M(f∗)(t), ∀0 < t < 1.

From (2.8) and lemma 2.8, we conclude that

‖Mf‖wLp(·) = ‖(Mf)∗‖wLp(·) � ‖M(f∗)‖wLp(·) � ‖f∗‖Lp(·) = ‖f‖Lp(·) . �

3. Atomic decompositions for variable Hardy martingale spaces

In this section, we consider the atomic decomposition for the new variable Hardy
martingale spaces introduced in § 2.4.

3.1. Atomic decompositions in Hs
p(·)(Ω)

We begin with the following definition and denote the set of all stopping time
with respect to {Fn}n�0 by Γ.

Definition 3.1. Let p(·) ∈ P([0, 1]). A measurable function a is called a
(1, p(·),∞)-atom (or (2, p(·),∞)-atom, (3, p(·),∞)-atom, respectively), if there
exists a stopping time τ ∈ Γ such that

(1) an := En(a) = 0 if n � τ ,

(2) ‖s(a)‖∞(or ‖S(a)‖∞, ‖M(a)‖∞, respectively) � 1
‖χ{τ<∞}‖Lp(·)

.

Definition 3.2. Let p(·) ∈ P([0, 1]). Assume that d = 1, 2 or 3. The atomic Hardy
space Hat,d,∞

p(·) (Ω) is defined as the space of all martingales f = (fn)n�0 such that

fn =
∑
k∈Z

μkak
n a.e. ∀n � 0, (3.1)

where (ak)k∈Z is a sequence of (d, p(·),∞)-atoms, associated with stopping time
τk ∈ Γ and ak

n = En(ak). For f ∈ Hat,d,∞
p(·) , define its quasi-norm by

‖f‖Hat,d,∞
p(·)

= inf

∥∥∥∥∥∥
[∑

k∈Z

(
μkχ{τk<∞}

‖ χ{τk<∞} ‖Lp(·)

)t]1/t
∥∥∥∥∥∥
Lp(·)

,

where 0 < t < p
¯

and the infimum is taken over all the decompositions of f by the
form (3.1).
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Theorem 3.3. Let p(·) ∈ P([0, 1]). Then

Hs
p(·)(Ω) = Hat,1,∞

p(·) (Ω)

with equivalent quasi-norms.

Proof. Assume that f ∈ Hs
p(·). Let us consider the following stopping time, for all

k ∈ Z,

τk = inf{n ∈ N : sn+1(f) > 2k}, inf φ = ∞.

The sequence of these stopping times is obviously non-decreasing. For each stopping
τ , denote fτ

n = fn∧τ , where n ∧ τ = min(n, τ). Hence

fn =
∑
k∈Z

(fτk+1
n − fτk

n ).

Let

μk = 3 · 2k
∥∥χ{τk<∞}

∥∥
Lp(·)

and ak
n =

f
τk+1
n − fτk

n

μk
.

If μk = 0, then let ak
n = 0 for all k ∈ Z, n ∈ N. Thus (ak

n)n�0 is a martingale for
each fixed k ∈ Z. By the definition of τk, since s(fτk) = sτk

(f) � 2k, we obtain

s
(
(ak

n)n�0

)
� s(fτk+1) + s(fτk)

μk
� ‖χ{τk<∞}‖−1

Lp(·) .

Thus (ak
n)n�0 is a L2-bounded martingale. Consequently there exists an element

ak ∈ L2 such that

ak
n = En(ak), ∀n ∈ N.

If n � τk, then ak
n = (fτk+1

n − fτk
n /μk) = 0, supp(ak) ⊆ {τk < ∞} and

‖s(ak)‖∞ � 1
‖χ{τk<∞}‖Lp(·)

.

We conclude that ak is really a (1, p(·),∞)-atom according to the above estimate.
Denote ϑk = {τk < ∞} = {s(f) > 2k}. Recalling that τk is nondecreasing for

each k ∈ Z, we have ϑk ⊃ ϑk+1. Then

∑
k∈Z

(
3 · 2kχϑk

(x)
)t

is the sum of the geometric sequence {(3 · 2kχϑk
(x))t}k∈Z, where 0 < t < p. Thus,

∑
k∈Z

(
3 · 2kχϑk

(x)

)t

≈
(∑

k∈Z

3 · 2kχϑk
(x)

)t

≈
(∑

k∈Z

3 · 2kχϑk\ϑk+1(x)

)t

.
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Note that ϑk\ϑk+1 = {2k < s(f) � 2k+1}. Then

‖f‖Hat,1,∞
p(·)

�

∥∥∥∥∥∥
(∑

k∈Z

(
3 · 2kχ{τk<∞}

)t)1/t
∥∥∥∥∥∥
Lp(·)

�
∥∥∥∥∥
∑
k∈Z

3 · 2kχϑk\ϑk+1

∥∥∥∥∥
Lp(·)

�
∥∥∥∥∥
∑
k∈Z

3 · s(f)χϑk\ϑk+1

∥∥∥∥∥
Lp(·)

� ‖s(f)‖Lp(·) = ‖f‖Hs
p(·) . (3.2)

We now prove that the sum
∑

k∈Z
μkak converges in Hs

p(·)(Ω). Since s(f − fτk)2 =
s(f)2 − s(fτk)2, it follows that

s
(
f − fτk

)
, s(fτk) � s(f)2 and s

(
f − fτk

)
, s(fτ−k) → 0 a.e. as k → ∞.

Consequently, by the dominated convergence theorem in variable Lp(·)(Ω) (see [3,
theorem 2.62]),∥∥∥∥∥f −

N∑
k=−M

μkak

∥∥∥∥∥
p

Hs
p(·)

� ‖f − fτN+1‖p

Hs
p(·)

+ ‖fτ−M ‖p

Hs
p(·)

converges to 0 a.e. as M, N → ∞.
Conversely, taking f ∈ Hat,1,∞

p(·) , (Ω) according to the definition of Hat,1,∞
p(·) (Ω), we

have the decomposition

f =
∑
k∈Z

μkak a.e,

where (ak)k∈Z is a sequence of (1, p(·),∞)-atoms, associated with stopping time
τk ∈ Γ and ak

n = En(ak). Since

‖s(ak)‖∞ � 1∥∥χ{τk<∞}
∥∥
Lp(·)

and s(ak) = s(ak)χ{τk<∞},

we obtain

‖f‖Hs
p(·) = ‖s(f)‖Lp(·) �

∥∥∥∥∥
∑
k∈Z

μks(ak)

∥∥∥∥∥
Lp(·)

�
∥∥∥∥∥
∑
k∈Z

μk

χ{τk<∞}
‖χ{τk<∞}‖Lp(·)

∥∥∥∥∥
Lp(·)

�

∥∥∥∥∥∥
[∑

k∈Z

(
μkχ{τk<∞}

‖χ{τk<∞}‖Lp(·)

)t
]1/t

∥∥∥∥∥∥
Lp(·)

, (3.3)

which implies that ‖f‖Hs
p(·) � ‖f‖Hat,1,∞

p(·)
. The proof is complete. �
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Theorem 3.4. Let p(·) ∈ P([0, 1]). Then

Qp(·)(Ω) = Hat,2,∞
p(·) (Ω), Pp(·)(Ω) = Hat,3,∞

p(·) (Ω)

with equivalent quasi-norms.

Proof. The proof is similar to the one of theorem 3.3, so we only sketch the outline.
We only prove the first atomic decomposition since the later one is the same. Let
f = (fn)n�0 ∈ Qp(·)(Ω). The stopping times τk are defined by

τk = inf{n ∈ N : λn > 2k},

where (λn)n�0 is the sequence in the definition of Qp(·)(Ω). Let ak
n and μk (k ∈ Z)

be the same as the proof of theorem 3.3. Then we get (3.1), where (ak)k∈Z is a
sequence of (2, p(·),∞)-atoms. Moreover,

∥∥∥∥∥∥
[∑

k∈Z

(
μkχ{τk<∞}

‖χ{τk<∞}‖Lp(·)

)t]1/t
∥∥∥∥∥∥
Lp(·)

� ‖f‖Qp(·)

still holds.
To prove the converse part, for any f ∈ Hat,2,∞

p(·) , let

λn =
∑
k∈Z

μkχ{τk�n}‖S(ak)‖∞.

Then (λn)n�0 is a non-decreasing, non-negative and adapted sequence such that
Sn+1(f) � λn for any n � 0. According to the estimate that (ak)k∈Z is a sequence
of (2, p(·),∞)-atoms, we obtain f ∈ Qp(·)(Ω) and

‖f‖Qp(·) � inf

∥∥∥∥∥∥
[∑

k∈Z

(
μkχ{τk<∞}

‖χ{τk<∞}‖Lp(·)

)t]1/t
∥∥∥∥∥∥
Lp(·)

,

where the infimum is taken over all the decompositions as in (3.1). �

3.2. Atomic decompositions in HM
p(·)(Ω)

We are ready to prove the atomic decompositions for martingale Hardy spaces
HM

p(·)(Ω) and HS
p(·)(Ω). The stochastic basis (Fn)n�0 is said to be regular, if for

n � 0 and A ∈ Fn, there exists B ∈ Fn−1 such that

A ⊂ B and |B| � C|A|, (3.4)

where C is a positive constant independent of n.
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We need the following proposition.

Proposition 3.5. Let p(·) ∈ P([0, 1]) satisfy 0 < p− � p+ � 1. For any n ∈ N, let
0 < νi < ∞ and Ai ∈ F , i = 1, · · ·, n. If the measurable sets sequence {Ai}1�i�n is
non-increasing, then

n∑
i=1

νi ‖χAi
‖Lp(·) �

∥∥∥∥∥
n∑

i=1

νiχAi

∥∥∥∥∥
Lp(·)

. (3.5)

Proof. By lemma 2.5, we obtain

n∑
i=1

νi ‖χAi
‖Lp(·) =

n∑
i=1

∥∥νiχ[0,|Ai|)
∥∥

Lp(·)
�
∥∥∥∥∥

n∑
i=1

νiχ[0,|Ai|)

∥∥∥∥∥
Lp(·)

.

Then, to finish the proof, it suffices to show that(
n∑

i=1

νiχAi

)∗
=

n∑
i=1

νiχ[0,|Ai|). (3.6)

Since An ⊆ An−1 ⊆ · · · ⊆ A1, we have (with convenience An+1 = ∅)

n∑
i=1

νiχAi
=

n∑
i=1

(
i∑

j=1

vj

)
χAi\Ai+1 .

Then basic calculation gives us (see [11, example 1.4.2])
⎛
⎝ n∑

i=1

(
i∑

j=1

vj

)
χAi\Ai+1

⎞
⎠

∗

=
n∑

i=1

(
i∑

j=1

vj

)
χ[|Ai+1|,|Ai|) =

n∑
i=1

νiχ[0,|Ai|).

The proof is complete. �

Theorem 3.6. Let p(·) ∈ P([0, 1]) satisfy locally log-Hölder condition. If {Fn}n�0

is regular, then

HS
p(·)(Ω) = Hat,2,∞

p(·) (Ω), HM
p(·)(Ω) = Hat,3,∞

p(·) (Ω)

with equivalent quasi-norms.

Proof. We only give the proof for the second equality since the other one is similar.
Take f ∈ HM

p(·)(Ω). Consider the following stopping times with respect to (Fn)n�0,

ρk := inf{n ∈ N : |fn| > 2k}, k ∈ Z.

For fixed k ∈ Z, according to the regularity of (Fn){n�0}, we can choose
a small enough measurable set F k

j ∈ Fj−1 such that {ρk = j} ⊂ F k
j and
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|F k
j | � C|{ρk = j}|. Define a new family of stopping times by

τk(x) := inf{n ∈ N : x ∈ F k
n+1}.

It is obvious that τk is non-decreasing. For any j ∈ N, according to the definition
of stopping times ρk and τk, we have

{τk = j − 1} ∈ Fj−1 and {ρk = j} ⊂ {τk = j − 1} ⊂ F k
j .

Denote Ak = {τk < ∞} and A′
k = {ρk < ∞}. By the regularity of (Fn)n�0 and

{ρk = j} ∈ Fj , we obtain

|Ak| =
∞∑

j=1

|{τk = j}| �
∞∑

j=1

|F k
j+1| � C

∞∑
j=1

|{ρk = j + 1}|) = C|A′
k|,

where C is the constant as in (3.4), which implies that

|A′
k| � |Ak| � C|A′

k|. (3.7)

Using lemma 2.18 and (3.7), we have

‖χAk
‖Lp(·) ≈ |Ak|(1/p−[0,|Ak|]) � (C|A′

k|)(1/p−[0,|Ak|])

� C
1

p− (|A′
k|)(1/p−[0,|A′

k|]) ≈ ‖χA′
k
‖Lp(·) , (3.8)

which deduces that

‖χAk
‖Lp(·)

� ‖χA′
k
‖Lp(·) = ‖χ{Mf>2k}‖Lp(·) � 2−k ‖Mf‖Lp(·) → 0

as k → ∞, that is to say limk → ∞ |τk = ∞| = 1 and limk → ∞ τk = ∞ a.e. Thus

lim
k → ∞

fτk
n = fn a.e. (n ∈ N) and fn =

∑
k∈Z

fτk+1
n − fτk

n .

We still define μk = 3 · 2k ‖χAk
‖Lp(·)

and ak
n = (fτk+1

n − fτk
n /μk). By a simi-

lar argument as used in the proof of theorem 3.3, we can see that ak is a
(3, p(·),∞)-atom associated with stopping time τk.

Now we show

‖f‖Hat,3,∞
p(·)

� ‖f‖HM
p(·)

.

According to (2.5), we have

Z :=

∥∥∥∥∥∥
∑
k∈Z

(
μkχAk

‖χAk
‖Lp(·)

)t
∥∥∥∥∥∥

1/t

Lp(·)/t

�
∥∥∥∥∥
∑
k∈Z

(
3 · 2k

)t
χ∗∗

Ak

∥∥∥∥∥
1/t

Lp(·)/t

.
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Using lemma 2.2, we may choose a positive function g ∈ L(p(·)/t)′ with ‖g‖L(p(·)/t)′ �
1 such that

Zt �
∫ 1

0

∑
k∈Z

(
3 · 2k

)t
χ∗∗

Ak
gdx =

∑
k∈Z

(
3 · 2k

)t ∫ 1

0

1
x

∫ x

0

χ∗
Ak

(y)dyg(x)dx

=
∑
k∈Z

(
3 · 2k

)t ∫ 1

0

∫ 1

y

g(x)
x

dxχ[0,|Ak|](y)dy.

We denote h(y) =
∫ 1

y
(g(x)/x)dx, 0 � y � 1. Since (p(·)/t)′ > 1, it follows from

lemma 2.8 and (2.7) that

‖M(h)‖L(p(·)/t)′ � ‖h‖L(p(·)/t)′ � ‖g‖L(p(·)/t)′ � 1. (3.9)

Applying (3.7), Hölder inequality and (3.9), we find that

Zt �
∑
k∈Z

(
3 · 2k

)t ∫ 1

0

h(y)χ[0,|Ak|](y)dy

=
∑
k∈Z

(
3 · 2k

)t|Ak|
(

1
|Ak|

∫ 1

0

χ[0,|Ak|]hdy

)

(3.7)

�
∑
k∈Z

(
3 · 2k

)t|A′
k|
(

1
|Ak|

∫ 1

0

χ[0,|Ak|]hdy

)

�
∑
k∈Z

(
3 · 2k

)t ∫ 1

0

χ[0,|A′
k|)M(h)dy

�
∥∥∥∥∥
∑
k∈Z

(
3 · 2k

)t
χ[0,|A′

k|)

∥∥∥∥∥
Lp(·)/t

‖M(h)‖L(p(·)/t)′

�
∥∥∥∥∥
∑
k∈Z

(
3 · 2k

)t
χ[0,|A′

k|)

∥∥∥∥∥
Lp(·)/t

.

Note that A′
k+1 ⊂ A′

k. By (3.6), we obtain

Zt �
∥∥∥∥∥
∑
k∈Z

(
3 · 2k

)t
χA′

k

∥∥∥∥∥
Lp(·)/t

=

∥∥∥∥∥
∑
k∈Z

(
3 · 2k

)t
χ{Mf>2k}

∥∥∥∥∥
Lp(·)/t

Taking the same argument as in (3.2), we can see that ‖f‖Hat,3,∞
p(·)

� ‖f‖HM
p(·)

. The
converse inequality

‖f‖HM
p(·)

� ‖f‖Hat,3,∞
p(·)

can be similarly proved as (3.3). Theorem is thereby proved. �

Combining theorem 3.4 and theorem 3.6, we have the following corollary.
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Corollary 3.7. Let p(·) ∈ P([0, 1]) satisfy locally log-Hölder condition. If {Fn}n�0

is regular, then

HS
p(·)(Ω) = Qp(·)(Ω), HM

p(·)(Ω) = Pp(·)(Ω)

with equivalent quasi-norms.

4. Duality

In this section, applying atomic decomposition, we now prove a duality theorem.
First let us introduce the new Lipschitz spaces with variable exponents.

Definition 4.1. Let (α(·) + 1) be a variable exponent and 1 < q < ∞. Define

BMOq(α(·))(Ω) = {f ∈ Lq(Ω) : ‖f‖BMOq(α(·)) < ∞},
where

‖f‖BMOq(α(·)) = sup
τ∈Γ

‖χ{τ<∞}‖−1
L1/α(·)+1

‖χ{τ<∞}‖q/q−1‖f − fτ‖q.

For q = 1, we define BMO1(α(·))(Ω) with the norm

‖f‖BMOq(α(·)) = sup
τ∈Γ

‖χ{τ<∞}‖−1
L1/α(·)+1

‖f − fτ‖1.

Remark 4.2. If α(·) = 0, then this definition goes back to classical martingale
BMO space. If α(·) = α0 > 0 is a constant, then this definition becomes the classical
martingale Lipschitz space. We refer the reader to [28] for details.

The following corollary is a consequence of proposition 3.5.

Corollary 4.3. Let p(·) ∈ P([0, 1]) satisfy 0 < p− � p+ � 1. If f ∈ Hs
p(·)(Ω), then

∑
k∈Z

μk �

∥∥∥∥∥∥
[∑

k∈Z

(
μkχ{τk<∞}

‖χ{τk<∞}‖Lp(·)

)t]1/t
∥∥∥∥∥∥
Lp(·)

, 0 < t < p,

where μk and τk are derived from the decomposition f =
∑

k∈Z
μkak (μk = 3 ·

2k
∥∥χ{τk<∞}

∥∥
Lp(·)

) in theorem 3.3.

Proof. It is easy to see {τk+1 < ∞} = {s(f) > 2k+1} ⊂ {τk < ∞} = {s(f) > 2k}
and 0 < μk < ∞. According to the above proposition 3.5 , we have∑

k∈Z

μk =
∑
k∈Z

3 · 2k
∥∥χ{τk<∞}

∥∥
Lp(·)

�
∥∥∥∥∥
∑
k∈Z

3 · 2kχ{τk<∞}

∥∥∥∥∥
Lp(·)

�

∥∥∥∥∥∥
[∑

k∈Z

(
μkχ{τk<∞}

‖χ{τk<∞}‖Lp(·)

)t]1/t
∥∥∥∥∥∥
Lp(·)

,

where the last ‘�’ is due to 0 < t � 1. �
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Theorem 4.4. Let p(·) ∈ P([0, 1]) satisfy locally log-Hölder condition with
0 < p− � p+ � 1. Then

(Hs
p(·)(Ω))∗ = BMO2(α(·))(Ω), α(·) =

1
p(·) − 1.

Proof. Let ϕ ∈ BMO2(α(·))(Ω) ⊂ L2(Ω). Define

lϕ(f) = E(fϕ), ∀f ∈ L2(Ω).

We claim that lϕ is a bounded linear functional on Hs
p(·)(Ω). Note that L2(Ω) ⊂

Hs
p(·)(Ω). It follows from theorem 3.3 that

f =
∑
k∈Z

μkak, f ∈ L2(Ω),

and the convergence holds also in the L2-norm, where ak is an (1, p(·),∞)-atom
and μk = 3 · 2k

∥∥χ{τk<∞}
∥∥
Lp(·)

. Hence

lϕ(f) = E(fϕ) =
∑
k∈Z

μkE(akϕ).

By the definition of the atom ak and the orthogonality of the martingale difference
sequence,

E(akϕ) = E(ak(ϕ − ϕτk))

always holds. Using Hölder’s inequality, we conclude that

|lϕ(f)| �
∑
k∈Z

μk

∣∣∣ ∫
Ω

ak(ϕ − ϕτk)dp
∣∣∣ �∑

k∈Z

μk

∥∥ak
∥∥

2

∥∥(ϕ − ϕτk)χ{τk<∞}
∥∥

2

=
∑
k∈Z

μk

∥∥s(ak)χ{τk<∞}
∥∥

2

∥∥(ϕ − ϕτk)χ{τk<∞}
∥∥

2

�
∑
k∈Z

μk

∥∥s(ak)‖∞‖χ{τk<∞}
∥∥

2

∥∥(ϕ − ϕτk)χ{τk<∞}
∥∥

2

�
∑
k∈Z

μk
|{τk < ∞}|1/2∥∥χ{τk<∞}

∥∥
Lp(·)

∥∥(ϕ − ϕτk)χ{τk<∞}
∥∥

2

�
∑
k∈Z

μk ‖ϕ‖BMO2(α(·)) ,

where the first ‘ =′ and the fourth ‘ �′ is due to s(ak) = s(ak)χ{τk<∞} and (2) of
the definition 3.1 respectively. Since p+ � 1, we obtain from corollary 4.3 that

|lϕ(f)| � ‖f‖Hs
p(·)‖ϕ‖BMO2(α(·)).

We know that L2(Ω) is dense in Hs
p(·)(Ω), see [13]. Consequently, lϕ can be uniquely

extended to be a linear function on Hs
p(·)(Ω), and ‖lϕ‖ � ‖ϕ‖BMO2(α(·)).
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On the other hand, let l be an arbitrary bounded linear function on Hs
p(·)(Ω).

We shall show that there exists ϕ ∈ BMO2(α(·))(Ω) such that l = lϕ and

‖ϕ‖BMO2(α(·)) � ‖l‖.

Since 0 < p− � p+ � 1 and lemma 2.17, we have

‖f‖Hs
p(·) � ‖s(f)‖p+ � ‖s(f)‖2 = ‖f‖2, ∀f ∈ L2.

Then L2 is embedded continuously in Hs
p(·)(Ω). Consequently, there exists ϕ ∈ L2

such that

l(f) = E(fϕ), f ∈ L2.

Take stopping time τ ∈ Γ. We set

g =
ϕ − ϕτ

‖ϕ − ϕτ‖2

∥∥χ{τ<∞}
∥∥
L(1/α(·)+1)

∥∥χ{τ<∞}
∥∥−1

2

,

then g is not necessarily a (1, p(·),∞)-atom, but it satisfies g = gχ{τ<∞}. Assume
that r > 2. Note that

1
p(x)

=
1

(1/α(x) + (1/r))
+
(

1
r′

− 1
2

)
+

1
2
, ∀x ∈ Ω,

where 1
r + 1

r′ = 1. Observe that

s(ϕ − ϕτ ) = s((ϕ − ϕτ )χ{τ<∞}) = s(ϕ − ϕτ )χ{τ<∞}.

Since F = σ(∪n�0Fn) and {τ = n} ∈ Fn, we know {τ < ∞} =
⋃

n=1{τ = n} ∈ F .
By lemma 2.4, proposition 2.16 and proposition 2.19, we get

‖s(ϕ − ϕτ )‖Lp(·)

� ‖s(ϕ − ϕτ )χ{τ<∞}‖2‖χ{τ<∞}‖(1/(1/r′)−(1/2)‖χ{τ<∞}‖L1/α(·)+(1/r)

= ‖s(ϕ − ϕτ )χ{τ<∞}‖2‖χ{τ<∞}‖−1
2 ‖χ{τ<∞}‖r′‖χ{τ<∞}‖L1/α(·)+(1/r)

≈ ‖s(ϕ − ϕτ )χ{τ<∞}‖2‖χ{τ<∞}‖−1
2 ‖χ{τ<∞}‖L1/α(·)+1 .

Hence, we obtain that

‖g‖Hs
p(·)

=
‖s(ϕ − ϕτ )‖Lp(·)∥∥(ϕ − ϕτ )χ{τ<∞}
∥∥

2

∥∥χ{τ<∞}
∥∥
L(1/α(·)+1)

∥∥χ{τ<∞}
∥∥−1

2

�
∥∥s(ϕ − ϕτ )χ{τ<∞}

∥∥
2

∥∥χ{τ<∞}
∥∥

(1/α(·)+1)

∥∥χ{τ<∞}
∥∥−1

2∥∥(ϕ − ϕτ )χ{τ<∞}
∥∥

2

∥∥χ{τ<∞}
∥∥
L(1/α(·)+1)

∥∥χ{τ<∞}
∥∥−1

2

= 1.
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Finally, we obtain

‖l‖ � l(g) = E(g(ϕ − ϕτ ))

=
∥∥(ϕ − ϕτ )χ{τ<∞}

∥∥
2

∥∥χ{τ<∞}
∥∥−1

L1/α(·)+1

∥∥χ{τ<∞}
∥∥

2
.

Then we have

‖ϕ‖BMO2(α(·)) � ‖l‖ ,

and the proof is complete. �

5. Martingale inequalities and its applications

In this section, we prove a σ-sublinear operator to be bounded from the martin-
gale Hardy spaces to Lp(·)(Ω) by the tool of atomic decompositions. Applying this
result, we deal with martingale inequalities between different Hardy spaces. Fur-
thermore, we obtain an application of martingale inequalities in stochastic integral
with Brownian motion.

5.1. Martingale inequalities

We firstly give the definition of σ-sublinear operator:

Definition 5.1. An operator T : X → Y is called a σ-sublinear operator, if for any
α ∈ C ∣∣∣∣∣T

( ∞∑
k=1

fk

)∣∣∣∣∣ �
∞∑

k=1

|T (fk)| and |T (αf)| = |α|T (f),

where f and fk (k � 1) belong to X, X is a martingale space and Y is a measurable
function space.

The following result is proved by applying lemma 2.8 and lemma 2.11.

Theorem 5.2. Given 1 < r < ∞, let p(·) ∈ P([0, 1]) satisfy locally log-Hölder con-
dition with p+ < r. If T : Hs

r (Ω) → Lr(Ω) is a bounded σ-sublinear operator
and

{|Ta| > 0} ⊂ {τ < ∞} (5.1)

for any (1, p(·),∞)-atoms a associated with stopping time τ , then

‖Tf‖Lp(·) � ‖f‖Hs
p(·) .

Proof. Let a martingale f ∈ Hs
p(·)(Ω). By theorem 3.3, we know that there exists a

sequence of triples {μk, ak, τk} such that f =
∑

k∈Z
μkak and∥∥∥∥∥∥

[∑
k∈Z

(
μkχ{τk<∞}

‖χ{τk<∞}‖Lp(·)

)t]1/t
∥∥∥∥∥∥
Lp(.)

� ‖f‖Hs
p(·) ,

where 0 < t < p, ak is a (1, p(·),∞)-atom associated with stopping time τk and
μk = 3 · 2k‖χ{τk<∞}‖Lp(·) for any k ∈ Z. By the σ-sublinearity of the operator T ,
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we have

‖Tf‖Lp(·) �
∥∥∥∥∥
∑
k∈Z

μk|T (ak)|
∥∥∥∥∥
Lp(·)

�

∥∥∥∥∥∥
∑
k∈Z

(
μk|T (ak)|

)t
∥∥∥∥∥∥

1/t

Lp(·)/t

=: Z.

By (2.5), we obtain

Zt �

∥∥∥∥∥∥
[∑

k∈Z

(
μk|T (ak)|

)t]∗∗∥∥∥∥∥∥
Lp(·)/t

�
∥∥∥∥∥
∑
k∈Z

μt
k

[
T (ak)t

]∗∗∥∥∥∥∥
Lp(·)/t

.

According to lemma 2.2, we may choose a positive function g ∈ L
(

p(·)
t )′([0, 1]) with

‖g‖L
( p(·)

t
)′

� 1 such that

Zt �
∫ 1

0

∑
k∈Z

μt
k

[
T (ak)t

]∗∗
gdx

=
∑
k∈Z

μt
k

∫ 1

0

1
x

∫ x

0

[
T (ak)t

]∗(y)dyg(x)dx

=
∑
k∈Z

μt
k

∫ 1

0

∫ 1

y

g(x)
x

dx
[
T (ak)t

]∗(y)dy.

We denote h(y) =
∫ 1

y
(g(x)/x)dx, 0 � y � 1. Since ((p(·)/t))′ > 1, it follows from

lemma 2.8 and (2.7) that

‖M(h)‖L(p(·)/t)′ � ‖h‖L(p(·)/t)′ � ‖g‖L(p(·)/t)′ � 1. (5.2)

Denote Ak = {τk < ∞}. From (5.1) and Hölder inequality, we obtain

Zt �
∑
k∈Z

μt
k

∫ 1

0

h(y)
[
T (ak)t

]∗(y)dy �
∑
k∈Z

μt
k

∫ 1

0

[
T (ak)t

]∗
χ[0,|Ak|]hdy

�
∑
k∈Z

μt
k‖
[
T (ak)t

]∗‖ r
t
‖χ[0,|Ak|]h‖( r

t )′ .

According to the boundedness of T and the definition of (1, p(·),∞)-atom ak, we
have ∥∥T (ak)

∥∥
r

�
∥∥s(ak)

∥∥
r

� ‖χAk
‖r

‖χAk
‖Lp(·)

.

It follows from p+ < r that

1
(r/t)′

·
(

p(·)
t

)′
> 1.
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Hence, by (5.2), we get

Zt �
∑
k∈Z

μt
k

(
‖χAk

‖r

‖χAk
‖Lp(·)

)t ∥∥χ[0,|Ak|]h
∥∥

(r/t)′

=
∑
k∈Z

3t2tk
∥∥χ[0,|Ak|)

∥∥t

r

(∫ |Ak|

0

h(r/t)′dx

)1/(r/t)′

=
∑
k∈Z

3t2tk

∫ 1

0

χ[0,|Ak|)

(
1

|Ak|
∫ |Ak|

0

h(r/t)′dx

)1/(r/t)′

dy

�
∑
k∈Z

3t2tk

∫ 1

0

χ[0,|Ak|)
(M(h(r/t)′)

)1/(r/t)′dy

�
∥∥∥∥∥
∑
k∈Z

3t2tkχ[0,|Ak|)

∥∥∥∥∥
Lp(·)/t

‖(M(h(r/t)′)
)1/(r/t)′‖L(p(·)/t)′

�
∥∥∥∥∥
∑
k∈Z

3t2tkχ[0,|Ak|)

∥∥∥∥∥
Lp(·)/t

.

Then, by (3.6) and theorem 3.3, we have

Zt �

∥∥∥∥∥∥
∑
k∈Z

(
μk

χAk

‖χAk
‖Lp(·)

)t
∥∥∥∥∥∥
Lp(·)/t

� ‖f‖t
Hs

p(·)
,

which implies that

‖Tf‖Lp(·) � ‖f‖Hs
p(·) .

The proof is complete. �

Similarly to theorem 5.2, we obtain the following theorem by applying
theorem 3.4.

Theorem 5.3. Given 1 < r < ∞, let p(·) ∈ P([0, 1]) satisfy locally log-Hölder
condition with 0 < p+ < r. If T : HS

r (Ω) → Lr(Ω) (or T : HM
r (Ω) → Lr(Ω)) is

a bounded σ-sublinear operator and (5.1) holds for any (2, p(·),∞)-atoms (or
(3, p(·),∞)-atoms), then

‖Tf‖Lp(·) � ‖f‖Qp(·) , f ∈ Qp(·)(Ω),

(or ‖Tf‖Lp(·) � ‖f‖Pp(·) , f ∈ Pp(·)(Ω)).

Now we prove our main result of this section.
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Theorem 5.4. Let p(·) ∈ P([0, 1]) satisfy locally log-Hölder condition. Then the
following inequalities hold:

‖f‖HM
p(·)

� ‖f‖Hs
p(·)

, ‖f‖HS
p(·)

� ‖f‖Hs
p(·)

, if 0 < p− � p+ < 2; (5.3)

‖f‖HM
p(·)

� ‖f‖Pp(·) , ‖f‖HS
p(·)

� ‖f‖Qp(·) ; (5.4)

‖f‖HS
p(·)

� ‖f‖Pp(·) , ‖f‖HM
p(·)

� ‖f‖Qp(·) ; (5.5)

‖f‖Hs
p(·)

� ‖f‖Pp(·) , ‖f‖Hs
p(·)

� ‖f‖Qp(·) ; (5.6)

‖f‖Pp(·) � ‖f‖Qp(·) � ‖f‖Pp(·) . (5.7)

Moreover, if {Fn}n�0 is regular, then

HS
p(·)(Ω) = Qp(·)(Ω) = Pp(·)(Ω) = HM

p(·)(Ω) = Hs
p(·)(Ω) (5.8)

with equivalent quasi-norms.

Proof. It is clear that the operators M , S and s satisfy (5.1).
Since the maximal operator T (f) = M(f) is sublinear and ‖Mf‖2 � C‖sf‖2 (see

[28, theorem 2.11]), it follows from theorem 5.2 that

‖f‖HM
p(·)

= ‖Mf‖Lp(·) � ‖f‖Hs
p(·) ,

which is just the first inequality of (5.3). The same argument can be applied to
prove the second inequality of (5.3).

(5.4) comes easily from the definition of these martingale spaces.
The inequalities (5.5) follow from the combination of the Burkholder-Gundy and

the Doob maximal inequality

‖S(f)‖r ≈ ‖M(f)‖r ≈ ‖f‖r (1 < r < ∞),

(see [28, theorem 2.11]) and theorem 5.3.
Applying the inequalities ([28, theorem 2.11(ii)])

‖s(f)‖r � ‖M(f)‖r ≈ ‖S(f)‖r, 2 < r < ∞,

and theorem 5.3, we get (5.6).
To prove (5.7), we use (5.5). Take f = (fn)n�0 ∈ Qp(·)(Ω). Then there exists an

optimal control (λ1
n)n�0 such that Sn(f) � λ1

n−1 with λ1
∞ ∈ Lp(·)(Ω). Since

|fn| � Mn−1(f) + λ1
n−1,

it follows from the second inequality of (5.5) and lemma 2.14 that

‖f‖Pp(·) � C(‖f‖HM
p(·)

+ ‖λ1
∞‖Lp(·)) � ‖f‖Qp(·) .

On the other hand, if f = (fn)n�0 ∈ Pp(·)(Ω), then there exists an optimal control
(λ2

n)n�0 such that |fn| � λ2
n−1 with λ2

∞ ∈ Lp(·)(Ω). Notice that

Sn(f) � Sn−1(f) + 2λ2
n−1.

Using the first inequality of (5.5), we get the rest of (5.7).
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Further, assume that {Fn}n�0 is regular. Then, according to [28, p.33], we have

Sn(f) � R1/2sn(f) and ‖f‖HS
p(·)

� ‖f‖Hs
p(·)

.

Since sn(f) is Fn−1-measurable, by the definition of Qp(·)(Ω), we have

‖f‖Qp(·) � ‖s(f)‖Lp(·) = ‖f‖Hs
p(·)

.

Hence, by (5.6) we obtain

Qp(·) = Hs
p(·).

Combining this and corollary 3.7, we get

HS
p(·) = Qp(·) = Pp(·) = HM

p(·) = Hs
p(·). �

5.2. Stochastic integral with Brownian motion

This subsection is an application of martingale inequalities established in last
subsection. Let (Ω,F , P) be a complete probability space with a filtration {Ft}t�0.
Let B = {Bt}t�0 be a one-dimensional Brownian motion defined on the probability
space (Ω,F , P) adapted to the filtration.

Definition 5.5. Let p(·) ∈ P([0, 1]) and 0 < T < ∞. Denote by LT
p(·)(Ω) the space

of all real-valued measurable {Ft}-adapted processes f = {ft}0�t�T such that

‖f‖LT
p(·)

=

∥∥∥∥∥
(∫ T

0

|ft|2dt

)1/2
∥∥∥∥∥
Lp(·)(Ω)

< ∞.

The functional ‖ · ‖LT
p(·)

defines a quasi-norm on LT
p(·)(Ω), and the space is

complete under this quasi-norm.
Let us introduce the concept of simple processes.

Definition 5.6. A real-valued stochastic process g = {gt}0�t�T is called a simple
process if there exists a partition 0 = t0 < t1 < · · · < tn = T of [0, T ], and bounded
random variables ξi, 0 � i � n − 1 such that ξi is Fti

-measurable and

gt = ξ0χ[t0,t1](t) +
n−1∑
i=1

ξiχ(ti,ti+1](t). (5.9)

Denote by LT
0 (Ω) the family of all simple processes. Obviously, we have the

inclusion LT
0 (Ω) ⊂ LT

p(·)(Ω). Next definition is the Itô integral for simple processes.

Definition 5.7. Let B = {Bt}t�0 be a one-dimensional Brownian motion. For a
simple process g ∈ LT

0 (Ω), define∫ T

0

gtdBt =
n−1∑
i=0

ξi(Bti+1 − Bti
)

and call it the stochastic integral of g with respect to Brownian motion Bt or the
Itô integral.

https://doi.org/10.1017/prm.2021.17 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.17


New variable martingale Hardy spaces 475

Clearly, the stochastic integral
∫ T

0
gtdBt is FT -measurable. We shall now show

that it belongs to Lp(·)(Ω). To this end, we need the following lemma.

Lemma 5.8. Let p(·) ∈ P([0, 1]) and f = {ft}0�t�T ∈ LT
p(·)(Ω). Then there exists a

sequence process {gn} ⊆ LT
0 (Ω) such that

f = lim
n→∞ gn in LT

p(·).

Namely,

lim
n→∞ ‖f − gn‖LT

p(·)
= 0. (5.10)

Proof. This proof is similar to the one of [24, lemma 5.6], so we do not give the
detailed proof. �

Proposition 5.9. Let p(·) ∈ P([0, 1]) satisfy locally log-Hölder condition and B =
{Bt}t�0 be a one-dimensional Brownian motion. For any g ∈ LT

0 (Ω), if 0 < p− �
p+ < 2 , then there exists a constant Cp(·) dependent only on variable exponent p(·)
such that ∥∥∥∥∥

∫ T

0

gtdBt

∥∥∥∥∥
Lp(·)

� Cp(·)

∥∥∥∥∥∥
(∫ T

0

|gt|2dt

)1/2
∥∥∥∥∥∥
Lp(·)

.

Proof. For g ∈ LT
0 (Ω) with the form of (5.9), we define

ηi :=
∫ ti

0

gtdBt =
i−1∑
j=0

gtj
(Btj+1 − Btj

). (5.11)

It is easy to check that ηi is Fti
-measurable (0 � i � n) and

E(ηi+1|Fti
) = E

(
i∑

j=0

gtj
(Btj+1 − Btj

)|Fti

)

= E

(
i−1∑
j=0

gtj
(Btj+1 − Btj

)|Fti

)
+ E

(
gti

(Bti+1 − Bti
)|Fti

)

=
i−1∑
j=0

gtj
(Btj+1 − Btj

) + gti
· 0

= ηi,

where the third ‘=’ is because gtj
(Btj+1 − Btj

) is Fti
-measurable when j < i and

the increment Bti+1 − Bti
is independent of Fti

. Thus η = (ηi)0�i�n is a martingale.
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By (5.11), the conditional square function of η can be written as follows

s(η) =

⎛
⎝n−1∑

j=0

E

(∣∣ηj+1 − ηj

∣∣2∣∣Ftj

)⎞⎠
1/2

=

⎛
⎝n−1∑

j=0

E

(∣∣gtj

∣∣2 (Btj+1−Btj

)2 ∣∣∣Ftj

)⎞⎠
1/2

=

⎛
⎝n−1∑

j=0

∣∣gtj

∣∣2E

((
Btj+1−Btj

)2 ∣∣∣Ftj

)⎞⎠
1/2

=

⎛
⎝n−1∑

j=0

∣∣gtj

∣∣2 (tj+1 − tj)

⎞
⎠

1/2

.

On the other hand, we get

(∫ T

0

|gt|2dt

)1/2

=

⎛
⎝n−1∑

j=0

∣∣gtj

∣∣2 (tj+1 − tj)

⎞
⎠

1/2

= s(η).

By theorem 5.4, we deduce∥∥∥∥∥
∫ T

0

gtdBt

∥∥∥∥∥
Lp(·)

= ‖ηn‖Lp(·) � ‖M(η)‖Lp(·)

� Cp(·)‖s(η)‖Lp(·) = Cp(·)

∥∥∥∥∥∥
(∫ T

0

|gt|2dt

)1/2
∥∥∥∥∥∥
Lp(·)

.

The proof is complete. �

This proposition implies that for all g ∈ LT
p(·)(Ω), when p(·) satisfies certain con-

ditions,
∫ T

0
gtdBt belongs to Lp(·)(Ω). Next, we will show the main theorem of

this subsection that for any f ∈ LT
p(·)(Ω), there exists a sequence {gn} of simple

processes such that limn→∞
∫ T

0
gn

t dBt exists in Lp(·)(Ω).

Theorem 5.10. Let p(·) ∈ P([0, 1]) satisfy locally log-Hölder condition and B =
{Bt}t�0 be a one-dimensional Brownian motion. Let 0 < p− � p+ < 2. For any
f = {ft}0�t�T ∈ LT

p(·)(Ω), if {gn}n�0 ⊆ LT
0 (Ω) satisfies (5.10), then

XT (ω) := lim
n→∞

∫ T

0

gn
t (ω)dBt exists in Lp(·)(Ω).

Proof. We set

Xn
T (ω) =

∫ T

0

gn
t (ω)dBt, ∀ω ∈ Ω.

It follows from lemma 5.8 and proposition 5.9 that

‖Xn
T − Xm

T ‖Lp(·) =

∥∥∥∥∥
∫ T

0

gn
t − gm

t dBt

∥∥∥∥∥
Lp(·)
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� Cp(·)

∥∥∥∥∥∥
(∫ T

0

∣∣∣gn
t − gm

t

∣∣∣2dt

)1/2
∥∥∥∥∥∥
Lp(·)

−→ 0, as n,m → ∞,

which shows that {Xn
T }n�0 is a Cauchy sequence in Lp(·)(Ω). Thus there exists

XT ∈ Lp(·)(Ω) such that

XT = lim
n→∞Xn

T in LT
p(·).

The proof is complete. �

This theorem leads to the following definition.

Definition 5.11. Let p(·) ∈ P([0, 1]) satisfy locally log-Hölder condition and B =
{Bt}t�0 be a one-dimensional Brownian motion. Let 0 < p− � p+ < 2. For f =
{ft}0�t�T ∈ LT

p(·)(Ω), the Itô integral of f with respect to {Bt} is defined by

∫ T

0

ftdBt = lim
n→∞

∫ T

0

gn
t dBt in Lp(·)(Ω),

where {gn} is a sequence of simple processes satisfying (5.10).
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