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A method for improving range resolution in passive radar system is to jointly use more than one transmission channel of the
same illuminator of opportunity (IO). This paper specifically focuses on the exploitation of multiple adjacent digital video
broadcasting-terrestrial (DVB-T) channels for achieving high-range resolution profiles with a passive radar system operating
in air surveillance scenario. Firstly, we present an analysis of the ambiguity function obtained from a multichannel DVB-T
source and a pre-processing technique able to improve the characteristics of the multichannel signal are presented. Afterwards,
the experimental scenario is defined and detection results on aerial targets are shown.
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I . I N T R O D U C T I O N

Passive radar systems make use of broadcast or communi-
cation transmitters, also referred to as illuminators of oppor-
tunity (IO), in order to accomplish target detection and
tracking. As a matter of fact, this system concept is of great
interest to both civilian and military scenarios. This is
especially due to a number of advantages in comparison
with active radars including: the lack of a dedicated transmit-
ter that potentially implies low cost, low weight, and low
probability of intercept. These are combined with the great
advantage of not requiring any dedicated frequency band
and the benefit of an enhanced target radar cross section,
thanks to the bistatic configuration. Dealing with these
kinds of radar systems, the choice of the IO used as a
reference signal is a key point for obtaining desired radar
performance. A number of systems making use of FM
radio signals [1, 2], analog and digital television transmitters
[3–6], Global System for Mobile Communications (GSM)
and Universal Mobile Telecommunications System
(UMTS) signals [7–10] have been developed. The perform-
ance of a passive radar system mainly depends on the trans-
mitted power and on the characteristics of the exploited IO.
Since the range coverage strongly depends on the trans-
mitted power level, high-power transmitters, such as FM
radio, Digital Audio Broadcasting (DAB) radio, and analog
or digital video broadcasting (DVB) television transmitters
are preferred. Regarding the waveform suitability for radar
purposes, the ambiguity function (AF) provides a

mathematical tool for radar designers to identify resolution
and ambiguities in both delay time and Doppler [1, 11,
12]. It is worth noting that the AF of analog sources (e.g.
FM radio or analog TV) cannot be predicted when related
to a time-varying signal structure, which typically produces
a content-dependent signal bandwidth. In contrast, digital
waveforms exhibit an AF with a thumb-tack shape and a
bandwidth that is constant in time. Furthermore, in many
countries, the analog radio and TV transmissions are sched-
uled to be dismissed and to be replaced by digital ones.
Consequently, DVB-terrestrial (DVB-T) transmitters are
certainly good candidates for passive radar purposes,
thanks to the high level of radiated power and the good
waveform performances in terms of range and Doppler res-
olution. Ongoing research field into passive radar systems
concerns the theoretical range resolution improvement by
using multiple FM channels [13, 14] and DVB-T channels
[13]. For example Olsen and Woodbridge [13] give a math-
ematical framework to deal with equally and not-equally
spaced FM radio or DVB-T channels. In previous research
[15], two approaches to achieve high-resolution exploiting
multiple adjacent DVB-T channels of the same transmitter
have been presented. This paper analyzes the application of
one of these techniques to real data. Moreover, preliminary
detection results in an air surveillance scenario will be
shown. This paper is organized as follows: in Section II a
comparison between single-channel DVB-T AF and multi-
channel DVB-T AF is presented and analyzed. Then, in
Section II.A a pre-processing technique capable of reducing
the side peaks of the single- and multichannel DVB-T AF
is introduced and explained. Furthermore, the acquisition
system and the experimental scenario are described.
Finally, real data results are presented and discussed in
order to focus on the enhancement of the radar range
resolution.
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I I . M U L T I C H A N N E L D V B - T S I G N A L :
A M B I G U I T Y F U N C T I O N A N A L Y S I S

A multichannel DVB-T signal can be analytically modeled as

sref t( ) = <e
∑Nc−1

m=0

s̃m t( )ej2pfmt

{ }
, (1)

where Nc is the number of channels, fm is the carrier frequency
for the mth channel, and s̃m(t) is the complex envelope of the
mth channel. Under the assumption that the Nc channels are
equally spaced, it is possible to write fm as f0 + mDf, where Df
represents the channel bandwidth. If sref (t) is downconverted
with respect to f0, it is possible to write the complex envelope
of the signal as

s̃ref t( ) =
∑Nc−1

m=0

s̃m t( )ej2pmDft . (2)

The DVB-T multichannel AF of the signal s̃ref (t) can be
written as

x(t, fd)

=
∫+1

−1

s̃ref (t)s̃∗ref (t − t)ej2pfd tdt

=
∑Nc−1

m=0

∑Nc−1

p=0

∫+1

−1

s̃m(t)ej2pmDft s̃∗p(t − t)e−j2ppDf (t−t)ej2pfd tdt

=
∑Nc−1

m=0

∑Nc−1

p=0

ej2ppDf t
∫+1

−1

s̃m(t)ej2pmDft s̃∗p(t − t)e−j2ppDftej2pfd tdt.

(3)

Under the following assumptions:

– s̃m(t) is a bandwidth-limited signal (with bandwidth equal
to 2B);

– the signal bandwidth is always smaller than the channel
bandwidth, Df ≥ 2B (i.e. the channels do not overlap);

– the Doppler frequency is negligible with respect to the
signal bandwidth, fd ≪ 2B;

it is possible to rewrite equation (3) as

x(t, fd) =
∑Nc−1

p=0

ej2ppDf t
∫+1

−1

s̃p(t)s̃∗p(t − t)ej2pfd tdt

=
∑Nc−1

p=0

ej2ppDf tAFp t, fd
( )

, (4)

where AFp (t, fd) is the AF of a single DVB-T channel. Under
the realistic assumption that the auto-AF of a generic single
DVB-T channel exhibits the same main characteristics,

equation (4) can be simplified to

|x(t, fd)| ≈ AF t, fd
( ) ∑Nc−1

p=0

ej2ppDf t

∣∣∣∣∣
∣∣∣∣∣

≈ AF t, fd
( )

Nc
sinc NcDft( )

sinc Dft( )

∣∣∣∣
∣∣∣∣. (5)

From equation (5) it can be observed that the range resolution
is improved by a factor of Nc with respect to the single DVB-T
channel usage. Moreover, the AF relative to one channel rep-
resents the envelope of the multichannel AF. The number of
channels Nc and the value of Df influence the range resolution
and the sidelobe level. As a preliminary step, three adjacent
DVB-T channels have been acquired through an SDR
(Software Defined Radio) board, then analyzed and processed
to obtain the AF of the DVB-T multichannel waveform. The
central frequency is 754 MHz and the whole analyzed signal
shows about 24 MHz of bandwidth (Fig. 1).

In this case, the AF has been computed and compared with
the one obtained for a single DVB-T channel. Plots of the AF
along time delay (range) and Doppler frequency are rep-
resented in Fig. 2. It is worth noting that the range resolution

Fig. 1. DVB-T multichannel spectrum.

Fig. 2. Multichannel AF from real data: (a) range profile and (b) Doppler
profile.
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is improved by Nc times with respect to the single DVB-T
channel, while the Doppler profile maintained the same
behavior.

A) Pre-processing technique
The AF presents unwanted deterministic side peaks due to the
known structure of the DVB-T signal, which includes pilots,
guard intervals, and the guard band between adjacent chan-
nels. To reduce the unwanted side peaks on the AF, a pre-
processing technique has been proposed. The method
described here is an improved version of the pre-filtering
approach presented in [16]. The goal of the filter proposed
here is to reduce the side peaks in the range Doppler map
working on the whole Doppler frequency domain. It should
be noted that the DVB-T ambiguities appear each TU/12
along the time-delay domain and each 1/4(TU + TG) along
the Doppler domain, where TU is the Orthogonal frequency-
division multiplexing (OFDM) symbol duration and TG is
the guard interval duration [17].

Figure 3 presents the pre-processing block scheme. A wide-
band receiver can be used to acquire the reference signal, and
then each DVB-T channel is extracted and filtered. The pre-
processing filter is based on the estimation of the power spec-
tral density (PSD) of the DVB-T signal and of the PSD of a
simulated DVB-T signal composed by random components.

It is possible to mitigate the effect of the time-delay/
Doppler ambiguities by applying a pre-processing filter com-
posed by a filter bank as shown in Fig. 4.

Each filter has a frequency response given by

H(f , fDi ) =
																					

PSDRC(f )

Sref (f )S∗ref (f − fDi )
∣∣∣ ∣∣∣

√√√√ , (6)

Fig. 3. DVB-T multichannel processing.

Fig. 4. Pre-processing filter bank.
Fig. 5. AF 3-D views: (a) AF without pre-processing and (b) AF after
pre-processing.
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where PSDRC ( f ) is the PSD composed by the reference
channel only, Sref ( f ) is the Fourier transform of the
reference signal, and Sref( f 2 fDi

) is Fourier transform of the
reference signal shifted by fDi

. For every channel the DVB-T
signal is pre-filtered as presented in Fig. 4, and then combined
in order to form a pre-processed multichannel signal
with a flat spectrum (Fig. 3). In Fig. 5 AFs before and after
pre-processing are shown. Figure 5(b) presents the range
Doppler ambiguities strongly attenuated. To quantify this
attenuation it is possible to consider the SPR index (side
peaks reduction) as defined in [16] and here briefly recalled:

SPR =
∑Nsp

i=1 |xNF(ti, fdi )|dB∑Nsp

i=1 xF(ti, fdi )|dB

, (7)

where xNF is the not filtered AF, xF is the filtered AF, Nsp is the
number of side peaks of the AF, and (ti, fdi

) is
the Doppler-delay position of the ith side peak in the
Doppler-delay map. For the here-proposed multichannel
pre-processing technique, the SPR value is about 25 dB.

I I I . E X P E R I M E N T A L S E T U P

The equipment that has been used in this experiment is com-
posed of commercial off-the-shelf low-cost TV antennas, two
synchronized Ettus Research USRP2 board equipped with a
RF front-end tunable from 800 to 2400 MHz. The main tech-
nical specifications of the USRP2 are:

– FPGA Xilinx Spartan 3-2000 EP1C12 Q240C8 “Cyclone”;
– two high-speed analog-to-digital converters operating at 14

bits with a sampling rate of 100 mega-samples per seconds
(100 MS/s);

– two high-speed digital-to-analog converters operating at 16
bit with a sampling rate of 400 MS/s;

– gigabit Ethernet interface.

The antenna used during preliminary measurements and
the experiment for the target channel is a Yagi-Uda antenna
with a receiving gain equal to 18 dB and a half power beam
width of 208 in the horizontal plane. On the reference
channel, a Yagi-Uda antenna with a gain of 15 dB has been
used.

Fig. 6. (a) Experiment scenario geometry and target trajectory and (b) expected Doppler frequencies for a target that is moving between the two red dots of the left
side figure.
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I V . E X P E R I M E N T A L R E S U L T S

The experiment scenario geometry is shown in Fig. 6(a).
Specifically, the receiver was located at the Department of
Information Engineering in Pisa and the DVB-T transmitter
was 14 km away from the receiver at 368 north-east as indi-
cated by the white arrow in Fig. 6(a). Moreover, the surveil-
lance antenna was pointed at 158 of azimuth and 308 of
elevation. The targets of interest were airplanes taking off
from the nearby Pisa airport. Figure 6(a) shows the trajectory
of the considered target. The expected Doppler frequencies for
the target in the surveillance area are shown in Fig. 6(b). The
reference and surveillance channels have been simultaneously
acquired with the equipment presented in Section III. Then
the pre-processing technique has been applied and finally
the cross-ambiguity function (CAF) relative to three adjacent

DVB-T channels has been evaluated (Fig. 7). The peak due to
the target echo, specifically a Boeing 737-400, is clearly visible
at the 87th range bin (i.e. around 1700 m for the geometry
considered in Fig. 6(a)). A Doppler frequency value of
2169 Hz is in accordance with the expected velocity (more
than 450 km/h).

In order to better evaluate the range resolution improve-
ment, the CAF has been calculated both for one and three
DVB-T channels. Particularly, Fig. 8 presents the range
profile along the Doppler frequency relative to the airplane
echo (i.e. 2169 Hz). Considering the geometry in Fig. 6(a),
the bistatic range resolution achievable [18] by using a
single channel is around 57 m, whereas exploiting three adja-
cent channels is around 18 m. It is worth noting by looking at
the target echo peak, that the range resolution relative to three
DVB-T channels (solid line) is improved with respect to the
single DVB-T channel (dashed line). As a matter of fact, the
blue line range profile shows only one main peak whereas
two peaks are clearly visible on the red line.

V . C O N C L U S I O N

In this paper, the exploitation of multiple DVB-T channels for
a passive radar system has been considered in order to
improve the radar range resolution. This paper demonstrates
the possibility of achieving a range resolution enhancement
exploiting a multichannel DVB-T signal. The theoretical
study has been supported by preliminary measurements rela-
tive to three adjacent DVB-T channels. Experimental results
in aerial scenario have been carried out and discussed.
Furthermore, an effective preprocessing technique for
single- and multichannel DVB-T signals has been proposed
and preliminarily tested on real data.
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