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Abstract. We show that if a hyperbolic group acts geometrically on a CAT(0) cube
complex, then the induced boundary action is hyperfinite. This means that for a cubulated
hyperbolic group, the natural action on its Gromov boundary is hyperfinite, which
generalizes an old result of Dougherty, Jackson and Kechris for the free group case.
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1. Introduction
The complexity theory for countable Borel equivalence relations has been an active topic
of study over the last few decades. By the classical result of Feldman and Moore [FM77],
countable Borel equivalence relations correspond to Borel actions of countable groups,
and there has been a lot of effort to understand how the structure of the actions of a group
depends on the group itself.

Recall that if Z is a standard Borel space, then a Borel equivalence relation on Z is
an equivalence relation E ⊆ Z2 which is Borel in Z2. If E and F are Borel equivalence
relations on Z and Y respectively, we say that E is Borel-reducible to F (denoted E ≤B F)
if there is a Borel function f : Z→ Y such that z1 E z2 if and only if f (z1) F f (z2) for
all z1, z2 ∈ Z ( f is then called a reduction from E to F). A smooth equivalence relation is
a Borel equivalence relation which is reducible to id2N , the equality relation on the Cantor
set. The relation E0 is defined on the Cantor set 2N as follows: x E0 y if there exists n such
that x(m)= y(m) for all m > n. A finite (respectively countable) equivalence relation is
an equivalence relation whose classes are finite (respectively countable). An equivalence
relation E on X is hyperfinite (respectively hypersmooth) if there is a sequence Fn of finite
(respectively smooth) equivalence relations on X such that Fn ⊆ Fn+1 and E =

⋃
n Fn .
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Note that if E ≤B F and F is hypersmooth, then E is also hypersmooth. The relation E1

is defined on (2N)N similarly to the definition of E0 on 2N: x E1 y if there exists n such
that x(m)= y(m) for all m > n. Note that a Borel equivalence relation is hypersmooth if
and only if it is Borel-reducible to E1.

Among countable equivalence relations, hyperfinite equivalence relations are exactly
those which are Borel-reducible to E0 [DJK94]. The classical dichotomy of Harrington,
Kechris and Louveau [HKL90] implies that if a countable Borel equivalence relation is
not smooth, then E0 is Borel-reducible to it. Interestingly, a very recent result of Conley
and Miller [CM17] implies that among countable Borel equivalence relations which are
not hyperfinite there is no countable basis with respect to Borel-reducibility.

Hyperfinite equivalence relations have a particular structure, observed by Slaman and
Steel and independently by Weiss (see [Gao09, Theorem 7.2.4]). An equivalence relation
E on Z is hyperfinite if and only if there exists a Borel action of the group of integers
Z on Z which induces E as its orbit equivalence relation. In recent years, there has been
a lot of effort to understand which groups induce hyperfinite equivalence relations. For
instance, Gao and Jackson [GJ15] showed that Borel actions of all abelian groups induce
hyperfinite equivalence relations. It is still unknown if all Borel actions of amenable groups
induce hyperfinite equivalence relations.

In this paper, we are mainly interested in actions of hyperbolic groups. Recall that a
geodesic metric space X is hyperbolic if there exists δ > 0 such that all geodesic triangles
in X are δ-thin, i.e. each of their sides is contained in the δ-neighbourhood of the union of
the other two sides. In such case we also say that X is δ-hyperbolic. A finitely generated
group G is hyperbolic if its Cayley graph (with respect to an arbitrary finite generating
set) is hyperbolic. An isometric action of a group G on a metric space X is proper if for
every compact subset K ⊆ X , the set {g ∈ G : gK ∩ K 6= ∅} is finite. An isometric action
of G on X is cocompact if there exists a compact subset A of X such that G A = X . If
X is a combinatorial complex, then an isometric action of a group on X is proper if and
only if the stabilizers of all vertices are finite. An action of a group is geometric if it is
both proper and cocompact. If a group G acts geometrically on a geodesic metric space X
by isometries, then G is hyperbolic if and only if X is hyperbolic, since hyperbolicity is
invariant under quasi-isometries.

Given a geodesic hyperbolic space X , we denote by ∂X its Gromov boundary (for
definition, see e.g. [KB02]). Any geometric action of a hyperbolic group G on a hyperbolic
space X induces a natural action of G on ∂X by homeomorphisms. If X is the Cayley graph
of a hyperbolic group G, then the Gromov boudary of X is called the Gromov boundary of
the group G.

Hyperbolic groups often admit geometric actions on CAT(0) cube complexes. Recall
that a cube complex is obtained by taking a disjoint collection of unit cubes in Euclidean
spaces of various dimensions and gluing them isometrically along their faces. A geodesic
metric space X is CAT(0) if for every geodesic triangle 1 in X and a comparison triangle
1′ in the Euclidean plane, with sides of the same length as the sides of 1, the distances
between points on 1 are less than or equal to the distances between the corresponding
points on 1′. This is one way of saying that a metric space has non-positive curvature.
For more details on CAT(0) cube complexes, see §2.
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If a hyperbolic group admits a geometric action on a CAT(0) cube complex, then we
say that it is cubulated. Examples of cubulated hyperbolic groups include:
• fundamental groups of hyperbolic surfaces and hyperbolic closed 3-manifolds (Kahn

and Markovic [KM12] and Bergeron and Wise [BW12]);
• uniform hyperbolic lattices of ‘simple type’ (Haglund and Wise [HW12]);
• hyperbolic Coxeter groups (Niblo and Reeves [NR97] and Caprace and Mühlherr

[CM05]);
• C ′(1/6) or C ′(1/4)-T (4) metric small cancellation groups (Wise [Wis04]);
• certain cubical small cancellation groups (Wise [Wis17]);
• Gromov’s random groups with density <1/6 (Ollivier and Wise [OW11]); and
• hyperbolic free-by-cyclic groups (Hagen and Wise [HW16] in the irreducible case and

[HW15] in the general case).
It is worth noting that cubulations of hyperbolic groups played an important role in recent
breakthroughs on the virtual Haken conjecture by Agol [Ago13] and Wise [Wis17]. The
main result of this paper is the following.

THEOREM 1.1. If a hyperbolic group G acts geometrically on a CAT(0) cube complex X,
then the induced action on ∂X is hyperfinite.

Note that if G acts geometrically on X and Y , then there is a G-equivariant
homeomorphism of ∂X and ∂Y [Gro87]. Hence, the above theorem implies the following.

COROLLARY 1.2. If G is a hyperbolic cubulated group, then its natural boundary action
on ∂G is hyperfinite.

The boundary actions of hyperbolic groups have been studied from the perspective of
their complexity. Recall that if µ is a probability measure on a standard Borel space X ,
and E is a countable Borel equivalence relation on X , then E is said to be µ-hyperfinite
if there exists a µ-conull set A ⊆ X such that E ∩ A2 is hyperfinite. A Borel probability
measure µ is E-quasi-invariant if it is quasi-invariant with respect to any group action
inducing E . Kechris and Miller [KM04, Corollary 10.2] showed that if E is µ-hyperfinite
for all E-quasi-invariant Borel measures, then E is µ-hyperfinite for all Borel measures µ.
It is worth noting, however, that for boundary actions of hyperbolic groups there is usually
no unique quasi-invariant measure on the boundary.

In the case of the free group, its boundary action induces the equivalence relation which
is Borel bi-reducible with the so-called tail equivalence relation on the Cantor set: x Et y
if there exists n, m for all k such that x(n + k)= y(m + k). It follows from the results
of Connes, Feldman and Weiss [CFW81, Corollary 13] and Vershik [Ver78] that if G is
the free group, then the action of G on its Gromov boundary (which is the Cantor set) is
µ-hyperfinite for every Borel quasi-invariant probability measure. Dougherty, Jackson and
Kechris [DJK94, Corollary 8.2] showed later that the tail equivalence relation is actually
hyperfinite. On the other hand, Adams [Ada94] showed that for every hyperbolic group
G, the action on ∂G is µ-hyperfinite for all Borel quasi-invariant probability measures. We
do not know how to generalize Corollary 1.2 to all hyperbolic groups.

Our proof uses an idea of Dougherty, Jackson and Kechris [DJK94], and the main
ingredient of the proof is a result that seems to be interesting in its own right. Given a
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hyperbolic group G acting geometrically on a cube complex C , γ ∈ ∂C and an element
x ∈ C , define the interval [x, γ ) to be the set of all vertices of the complex which lie on
a geodesic ray in the 1-skeleton of C from x to γ . We would like to emphasize that we
consider here only the 1-skeleton of C , and all geodesics we consider are the combinatorial
geodesics, i.e. those taken in the 1-skeleton.

LEMMA 1.3. If a hyperbolic group G acts geometrically on a CAT(0) cube complex C
and γ ∈ ∂C, then for every x, y ∈ C, the sets [x, γ ) and [y, γ ) differ by a finite set.

Theorem 1.1 is obtained using Lemma 1.3 and the following result.

THEOREM 1.4. Suppose a hyperbolic group G acts freely and cocompactly on a locally
finite graph V such that for every γ ∈ ∂V and every x, y ∈ V , the sets [x, γ ) and [y, γ )
differ by a finite set. Then the action of G on ∂V induces a hyperfinite equivalence relation.

The assumption that G acts freely on V means that the action on the set of vertices of
V is free.

Given a fixed finite set of generators for a hyperbolic group G, the group acts on its
Cayley graph. For g ∈ G and γ ∈ ∂G, the set [g, γ ) is defined as above. The following
question seems natural.

Question 1.5. Suppose G is a hyperbolic group with a fixed finite generating set and γ ∈
∂G. Is it true that for any two group elements g, h ∈ G, the sets [g, γ ) and [h, γ ) differ by
a finite set?

However, the above question was recently answered in the negative by Touikan [Tou18].
Of course, it may turn out that the answer to the above question depends on the choice of
the generating set. Or, more generally, one can ask the following question.

Question 1.6. Is it true that for every hyperbolic group G, there exists a locally finite graph
V such that G acts geometrically (or even freely and cocompactly) on V , and V has the
property that [x, γ ) and [y, γ ) have finite symmetric difference for every γ ∈ ∂V and
x, y ∈ V ?

We should add here that the class of groups for which we can prove the positive answer
to the above question is limited to groups with the Haagerup property. However, a recent
preprint of Marquis [Mar18] provides a class of new examples of such groups, which
contains property (T) groups.

2. CAT(0) cube complexes
Here, we give a summary of several basic properties of CAT(0) cube complexes without
proof. We refer the reader to [BH99, Ch. II.5] and [Sag14] for more details.

Recall that a cube complex is obtained by taking a disjoint collection of unit cubes in
Euclidean spaces of various dimensions and gluing them isometrically along their faces.
In particular, every cube complex has a piecewise Euclidean metric.

A cube complex X is uniformly locally finite if there exists D > 0 such that each vertex
is contained in at most D edges. Note that if X admits a cocompact group action, then it is
automatically uniformly locally finite.
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Now, for each vertex v in a cube complex X , draw an ε-sphere Sv around v. Note that the
cubes of X divide Sv into simplices (a priori, these simplices may not be embedded in Sv ,
since a cube may not be embedded in X ). Thus, Sv has the structure of a combinatorial
cell complex made of various simplices glued along the faces. This complex is called the
link of the vertex v.

Recall that a simplicial complex K is said to be flag if every complete subgraph of the
1-skeleton of K is actually the 1-skeleton of a simplex in K .

Definition 2.1. A CAT(0) cube complex is a cube complex which is simply connected and
such that the link of each vertex is a flag simplicial complex.

The above is a combinatorial equivalent definition of the CAT(0) property for cube
complexes (for more details, see [BH99, Definition II.1.2]).

Let X be a CAT(0) cube complex with its piecewise Euclidean metric. A subset of
C ⊆ X is convex if for any two points x, y ∈ C , any geodesic segment connecting x and y
is contained in C . A convex subcomplex of X is a subcomplex which is also convex.

Recall that a mid-cube of C = [0, 1]n is a subset of the form f −1
i ({ 12 }), where fi is one

of the coordinate functions.

Definition 2.2. A hyperplane h in X is a subset such that:
(1) h is connected; and
(2) for each cube C ⊆ X , h ∩ C is either empty or a mid-cube of C .

It was proved by Sageev [Sag95] that for each edge e ∈ X , there exists a unique
hyperplane which intersects e in one point. This is called the hyperplane dual to the edge e.
Actually, given an edge e, we can always build locally a piece of hyperplane that cuts
through e. In order to extend this piece to a hyperplane, one needs to make sure that the
piece does not run into itself when one extends it. It is shown in [Sag95] that this can never
happen in a CAT(0) cube complex, and thus such extensions exist.

Let X be a CAT(0) cube complex, and let e ⊆ X be an edge. Denote the hyperplane
dual to e by he. The following facts about hyperplanes are well known [Sag95, Sag14].
(1) The hyperplane he is a convex subset of X and he with the induced cell structure

from X is also a CAT(0) cube complex.
(2) X \ he has exactly two connected components, which are called halfspaces.

Two points in X are separated by a hyperplane h if they are different connected
components of X \ h.

We use the following metric on the 0-skeleton X (0) of X . Given two vertices in X (0), the
`1-distance between them is defined to be the length of the shortest path joining them in
the 1-skeleton X (1). By [HW08, Lemma 13.1], the `1-distance between any two vertices
is equal to the number of hyperplanes separating them.

Given two vertices u, v ∈ X , a combinatorial geodesic between them is an edge path in
X (1) joining u and v which realizes the `1-distance between u and v. Note that there may
be several different combinatorial geodesics joining u and v. By [HW08, Lemma 13.1],
an edge path ω ⊆ X (1) is a combinatorial geodesic if and only if for each pair of different
edges e1, e2 ⊆ ω, the hyperplane dual to e1 and the hyperplane dual to e2 are different.
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An edge path ω crosses a hyperplane h ⊆ X if there exists an edge e ⊆ ω such that h is
the dual to e. So, in other words, ω is a combinatorial geodesic if and only if there does
not exist a hyperplane h ⊆ X such that ω crosses h more than once.

Let Y ⊆ X be a convex subcomplex (with respect to the piecewise Euclidean metric).
Then, by [HW08, Proposition 13.7], Y is also convex with respect to the `1-metric in the
following sense: for any vertices u, v ∈ Y (0), every combinatorial geodesic joining u and
v is contained in Y .

In the rest of this paper, we will always use the `1-metric on X (0) and use d to denote
this metric.

Let Y ⊆ X be a convex subcomplex. By [HW08, Lemma 13.8], for any vertex v ∈ X ,
there exists a unique vertex u ∈ Y such that d(u, v)= d(v, Y (0)). Thus, we have a nearest
point projection map πY : X (0)→ Y (0).

LEMMA 2.3. Let Y ⊆ X be a convex subcomplex and v ∈ X. Let ω be a combinatorial
geodesic from v to πY (v). Then each hyperplane dual to an edge in ω separates v from Y .
Conversely, each hyperplane which separates v from Y is dual to an edge in ω.

Proof. This is a special case of [HW08, Proposition 13.10]. �

The following is a consequence of Lemma 2.3 and the fact that the `1-distance
between any two vertices is equal to the number of hyperplanes separating them [HW08,
Lemma 13.1].

COROLLARY 2.4. Let Y ⊆ X be a convex subcomplex. For every v ∈ X, the distance
d(v, Y (0)) is the number of hyperplanes that separate v from Y .

LEMMA 2.5. Let Y ⊆ X be a convex subcomplex and πY : X (0)→ Y (0) be the nearest
point projection. Given two adjacent vertices u, v ∈ X, write u′ = πY (u) and v′ = πY (v).
Suppose h is the hyperplane separating u and v.
(1) If h ∩ Y = ∅, then u′ = v′.
(2) If h ∩ Y 6= ∅, then u′ and v′ are adjacent vertices in Y . Moreover, the hyperplane

separating u′ and v′ is exactly h.

Proof. Suppose without loss of generality that d(v, Y (0))≤ d(u, Y (0)). Let ωv and ωu be
the combinatorial geodesics which realize the `1-distance from v to Y (0) and u to Y (0)

respectively.
Suppose first that h ∩ Y = ∅. Then h ∩ ωv = ∅, otherwise we would have d(v, Y (0)) >

d(u, Y (0)). Thus, h separates u from Y . Moreover, each hyperplane dual to an edge in ωv
separates u from Y . By Corollary 2.4, we have d(v, Y (0))+ 1≤ d(u, Y (0)). On the other
hand, the concatenation of the edge uv with ωv has length ≤ d(v, Y (0))+ 1. Thus, this
concatenation realizes the `1-distance from u to Y (0). It follows that u′ = v′.

Now suppose h ∩ Y 6= ∅. First, by Lemma 2.3 we get ωv ∩ h = ωu ∩ h = ∅, because
otherwise h would be dual to some edge in ωv or ωu and thus separate u or v from Y and
hence be disjoint from Y . Let ω be a geodesic joining v′ and u′. Note that ω is contained
in Y . The path obtained by concatenating ωv , ω and ωu must intersect h because v and u
lie on different sides of h. Thus, h must intersect ω and thus separate v′ and u′. To see
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that v′ and u′ are adjacent, it is enough to show that h is the only hyperplane separating u′

and v′. Note, however, that if h′ is a hyperplane separating u′ from v′, then h′ must intersect
the path obtained by contatenating ωv , the edge from v to u and ωu . By Lemma 2.3, we
get h′ ∩ ωv = h′ ∩ ωu = ∅, as above. Thus, h′ intersects the edge from u to v, and hence
h′ = h. �

The above lemma implies that we can naturally extend the nearest point projection map
πY : X (0)→ Y (0) to πY : X (1)→ Y (1). The next result follows from Lemma 2.5.

COROLLARY 2.6. Let Y ⊆ X be a convex subcomplex. Let ω ⊆ X be a combinatorial
geodesic. Then πY (ω) is also a combinatorial geodesic.

Note that it is possible that πY (ω) is a single point.

3. The geodesics lemma
Throughout this section, X will be a uniformly locally finite Gromov-hyperbolic CAT(0)
cube complex. Let ∂X be the boundary of X .

Definition 3.1. Let x ∈ X be a vertex and let η ∈ ∂X . Define the interval

[η, x)= {y ∈ X (0) : y lies on a combinatorial geodesic from x to η}.

Recall that if X is δ-hyperbolic, then for any x ∈ X and η ∈ ∂X , any two combinatorial
geodesic rays ω1 and ω2 from x to η satisfy d(ω1(t), ω2(t))≤ 2δ for each t ≥ 0 and
dH (ω1, ω2)≤ 2δ. Here, dH (ω1, ω2) denotes the Hausdorff distance between ω1 and ω2.

Now we will prove Lemma 1.3. Note that it suffices to prove the case where x and y are
adjacent. Thus, in the rest of this section, we will assume x and y are two adjacent vertices
in X .

LEMMA 3.2. Let h be the hyperplane separating x and y and let yη be a combinatorial
geodesic ray from y to η.
(1) If yη never crosses h, then each vertex of yη is contained in [η, x).
(2) If yη crosses h, let z ∈ yη be the first vertex after yη crosses h and let zη ⊆ yη be the

ray after z. Pick a combinatorial geodesic segment xz. Then xz and zη fit together
to form a combinatorial geodesic ray. In particular, each vertex of zη is contained in
[η, x).

Proof. To see (1), let xy be the edge joining x and y. Then h is the hyperplane dual to xy.
Since yη never crosses h, each hyperplane which is dual to some edge of yη is different
from h. Thus, the concatenation of xy and yη is a combinatorial geodesic ray, because all
hyperplanes dual to its edges are distinct [HW08, Lemma 13.1]. Thus, each vertex of yη
in contained in [η, x).

Now we prove (2). Since yη is a combinatorial geodesic ray, it follows [HW08,
Lemma 13.1] that zη does not cross h. Suppose the concatenation of xz and zη is not
a combinatorial geodesic ray. Since xz and zη are already geodesic, the only possibility is
that there exist edges e1 ⊆ xz and e2 ⊆ zη such that they are dual to the same hyperplane h′,
again by [HW08, Lemma 13.1]. Let ui and vi be endpoints of ei , as indicated in the picture
below.
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x

y

u1 e1 v1 z

h′

u2 e2 v2
η

Since xz is a combinatorial geodesic, it crosses h′ only once [HW08, Lemma 13.1]. Thus,
the segments xu1 and v1z stay on different sides of h′. In particular, x and z are in different
sides of h′. Since yη is a combinatorial geodesic ray, it crosses h′ only once, and thus the
segment yz ∪ zu2 is on one side of h′. In particular, y and z are on the same side of h′.
Thus, we deduce that x and y are separated by h′. Since x and y are adjacent, there is only
one hyperplane separating them, and thus h′ = h. This is a contradiction since zη does not
cross h. �

Proof of Lemma 1.3. We assume x and y are adjacent. Let h be the hyperplane separating
them. We argue by contradiction and suppose there exists a sequence {zi : i ∈ N} in
[η, y) \ [η, x) with zi 6= z j for i 6= j . Since X is uniformly locally finite, we can assume
d(zi , y)→∞ as i→∞. Let ωi be a combinatorial geodesic segment from y to η such
that zi ∈ ωi . By Lemma 3.2, each ωi crosses h. Let yvi ⊆ ωi be the segment before ωi

crosses h, and let uiη ⊆ ωi be the segment after ωi crosses h (see the picture below). It
follows from Lemma 3.2(2) that zi ⊆ yvi . In particular, d(vi , y)→∞ as i→∞.

η

h
ui

vi
zi y

Recall that h gives rise to two combinatorial hyperplanes, one containing x , which
we denote by hx , and one containing y, which we denote by hy . Note that vi ∈ hy by
construction. Since hy is a convex subcomplex, it follows [HW08, Proposition 13.7]
that yvi ⊆ hy . Since X is uniformly locally finite (and hence locally compact) and
d(vi , y)→∞, up to passing to a subsequence, we can assume the sequence of segments
{yvi }

∞

i=1 converges to a combinatorial geodesic ray ω. Since yvi ⊆ hy for each i , we have
ω ⊆ hy . Moreover, by δ-hyperbolicity, the Hausdorff distance between ω and any of ωi is
less than 2δ. Thus, ω is a combinatorial geodesic ray joining y and η. Since ω is contained
in hy , we get that for every i and every vertex w ∈ ωi , we have d(w, hy)≤ 2δ.

Let π : X (1)→ h(1)y be the nearest point projection from X (1) to the 1-skeleton of convex
subcomplex hy . Then π(ωi ) is a combinatorial geodesic by Corollary 2.6. It follows from
the above remarks and the definition of π that dH (ωi , π(ωi ))≤ 2δ.

Thus, π(ωi ) is a combinatorial geodesic ray joining y and η. Since yvi ⊆ hy , π(yvi )=

yvi . Thus, yvi is contained in π(ωi ). In particular, zi ∈ π(ωi ). Since π(ωi )⊆ hy , it never
crosses h, and thus Lemma 3.2(1) implies zi ∈ [η, x), which is a contradiction. �
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4. Finite Borel equivalence relations
We will use the following standard application of the second reflection theorem [Kec95,
Theorem 35.16]. Below, if E is an equivalence relation of Z and A ⊆ Z , then E |A denotes
E ∩ A × A.

Notation and standard facts from descriptive set theory can be found in the textbook
[Kec95]. Here, we give a couple of definitions for a non-descriptive set theorist. A subset
A of a Polish space X is analytic if there exists a Borel set B ⊆ X × Y for a Polish space
Y such that A is the projection of B. In other words,

A = {x ∈ X : ∃y ∈ Y B(x, y)}.

The class of all analytic sets is denoted by 61
1. Note that if A ⊆ X × Y is analytic, then so

is its projection on X . Thus, for a Borel set B ⊆ X × Y1 × · · · Yn , the set {x ∈ X : ∃y1 ∈

Y1 · · · ∃yn ∈ Yn B(x, y1, . . . , yn)} is also analytic. Complements of analytic sets are said
to be coanalytic, and the class of coanalytic sets is denoted by 51

1. Borel sets are both
analytic and coanalytic, and conversely, if a set is both analytic and coanalytic, then it is
Borel. Note that for a coanalytic (in particular, Borel) set C ⊆ X × Y , the set {x ∈ X : ∀y ∈
Y C(x, y)} is also coanalytic. The classes of analytic and coanalytic sets are both closed
under countable unions and countable intersections. This implies that if A ⊆ X × N is
analytic, then {x ∈ X : ∀n (x, n) ∈ A} is analytic, and if C ⊆ X × N is coanalytic, then
{x ∈ X : ∃n (x, n) ∈ C} is coanalytic.

A collection8 of subsets of a Polish space Y is called 51
1 on 61

1 if for any Polish space
X and an analytic set A ⊆ X × Y , the set

{x ∈ X :8(Ax )}

is coanalytic. Similarly, if 8 is a collection of pairs of subsets of X , then 8 is said to be
51

1 on 61
1 if for every two analytic sets A, B ⊆ X × Y , the set

{x ∈ X :8(Ax , Bx )}

is coanalytic.
A family 8 of pairs of subsets of X is said to be hereditary if it is closed under taking

subsets in both coordinates, and8 is continuous upward in the second variable if whenever
Bn ⊆ Bn+1 and 8(A, Bn) holds for all n, then 8(A,

⋃
n Bn) holds as well. The second

reflection theorem (stated in the dual form, see [Kec95, 35.16] and the discussion after
its proof) says that if 8 is 51

1 on 61
1, hereditary and continuous upward in the second

variable, then for any analytic set A ⊆ X such that 8(A, Ac) holds, there exists a Borel
set B ⊆ X with A ⊆ B such that 8(B, Bc) holds.

LEMMA 4.1. Let Z be a Polish space, A ⊆ Z be analytic and E be an analytic equivalence
relation on Z such that there is some n > 1 such that every E |A-class has size less than n.
Then there is a Borel equivalence relation F on Z with E |A ⊆ F such that every F-class
has size less than n.

Proof. Note that G = E |A ∪ {(z, z) : z ∈ Z} is an analytic equivalence relation on Z
whose classes have size less than n. Now consider 8⊆ Pow(Z2)× Pow(Z2) defined
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as follows:

(B, C) ∈8 ⇐⇒ ∀x ¬x C x

∧∀(x, y) ¬x B y ∨ ¬y C x

∧∀(x, y, z) ¬x B y ∨ ¬y B z ∨ ¬x C z

∧∀
n
i=1xi

(∨
i 6= j

xi = x j

)
∨

(∨
i 6= j

¬xi B x j

)
.

Note that 8(B, Bc) holds if and only if B is an equivalence relation on Z whose classes
have size less than n, so in particular we have 8(G, Gc). Now, 8 is 51

1 on 61
1, hereditary

and continuous upward in the second variable, so, by the second reflection theorem
[Kec95, Theorem 35.16], there is a Borel set F ⊃ G such that 8(F, Fc) holds, and we
are done. �

5. Proof of main theorem
The following fact lets us reduce our problem to the case of free actions.

LEMMA 5.1. Every cubulated hyperbolic group has a finite index subgroup acting freely
and cocompactly on a CAT(0)-cube complex.

Proof. If G is a hyperbolic group acting properly and cocompactly on a CAT(0) cube
complex X , then by Agol’s theorem [Ago13, Theorem 1.1] (see also Wise [Wis17]) there
is a finite index subgroup F acting faithfully and specially on X (see Haglund and Wise
[HW08, Definition 3.4] for the definition of special action). Now, F embeds into a right-
angled Artin group which is torsion-free, so F is torsion-free. Since every stabilizer is
finite by properness of the action, it must be trivial, since F is torsion-free, and thus F acts
freely on X . �

Proof of Theorem 1.4. Let V be the set of vertices of the graph. Note that V as a metric
space is hyperbolic, since the action of G is geometric. Below, by ∂V we denote the
Gromov boundary of V . Fix v0 ∈ V , and fix a total order on V such that d(v0, v)≤

d(v0, w) H⇒ v ≤ w, where d denotes the graph distance on V . Fix a transversal Ṽ of
the action of G on V (the transversal is finite since the action is cocompact). For v ∈ V ,
we denote by ṽ the unique element of Ṽ in the orbit of v. By a directed edge of V , we mean
a pair (v, v′) ∈ V 2 such that there is an edge from v to v′. We colour the directed edges
of V as follows. We assign a distinct colour to every directed edge (v, v′) with v ∈ Ṽ , and
this extends uniquely (by freeness) to a G-invariant colouring on all directed edges. Let C
be the set of colours (which is finite since V is locally finite), and let c(v, v′) be the colour
of (v, v′). Fix any total order on C . This induces a lexicographical order on C<N (the set
of all finite sequences of elements of C).

For any combinatorial geodesic η ∈ V<N and m, n ∈ N, define

c(η, m, n)= (c(ηm, ηm+1), c(ηm+1, ηm+2), . . . , c(ηm+n−1, ηm+n)) ∈ C<N.

For every a ∈ ∂V , define Sa
⊆ V × C<N as follows:

Sa
= {(ηm, c(η, m, n)) ∈ V × C<N

: η is a combinatorial geodesic

from v0 to a and m, n ∈ N}.
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Let sa
n ∈ C<N be the least string of length n which appears infinitely often in Sa , i.e. such

that there are infinitely many v ∈ V for which (v, sa
n ) ∈ Sa . Note that each sa

n is an initial
segment of sa

n+1. Let
T a

n = {v ∈ V : (v, sa
n ) ∈ Sa

}

and let va
n =min T a

n (with respect to the ordering on V ). Note that every vertex in T a
n has

an edge coloured by sa
1 leaving it, so every vertex of T a

n is in the same orbit. Let

ka
n = d(v0, v

a
n ),

and note that ka
n is non-decreasing in n.

Now let Z = {a ∈ ∂V : ka
n 6→∞}. Then, for each a ∈ ∂V , since ka

n 6→∞ and V is
discrete, there is a finite set containing all va

n , so there is some v ∈ V which is in T a
n

for infinitely many n. Thus, the geodesic class determined by the combinatorial geodesic
starting at ṽ (which is determined by ka

1 ) and following the colours of limn sa
n ∈ CN is a

Borel selector for E . Thus, E is smooth on Z and hence also on the saturation [Z ]E (which
may be larger than Z ).

Now let Y = ∂V \ [Z ]E = {a ∈ ∂V : ∀bEa kb
n →∞}. We will show that E is

hyperfinite on Y . For each n ∈ N, define Hn : ∂V → 2V by

Hn(a)= ga
n T a

n ,

where ga
n ∈ G is the unique element with ga

nv
a
n ∈ Ṽ . Let Fn be the equivalence relation

on im Hn which is the restriction of the shift action of G on 2V . We have the following
lemma.

LEMMA 5.2. There exists K ∈ N such that on im Hn , the relation Fn has equivalence
classes of size at most K .

Proof. Let a, b ∈ ∂V and suppose g ∈ G is such that gHn(a)= Hn(b), i.e. gga
n T a

n =

gb
n T b

n . Since the vertices in both sets are in the same orbit, ga
nv

a
n and gb

nv
b
n are elements

of Ṽ which are in the same orbit, so they are equal, say to some v ∈ Ṽ . It suffices to
show that d(v, gv)≤ 6δ, since then we can choose any K ∈ N larger than max

v∈Ṽ |{g :
d(v, gv)≤ 6δ}|.

gga
nv0

gb
nv0

γm4

v

gv

ηm2

γm5

η

γ
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Note that since T a
n and T b

n are infinite, we have that gga
n a = gb

nb, which we will call
c ∈ ∂X . Let η be a geodesic from gga

nv0 to c with ηm1 = gv. Now, v ∈ gga
n T a

n , so there is
some m2 with d(v, ηm2)≤ 2δ. Note that by choice of va

n , we have m2 ≥ m1. Now let γ
be a geodesic from gb

nv0 to c with γm3 = gv. By the choice of vb
n , there is some m4 ≤ m3

such that d(v, γm4)≤ 2δ. Also, η and γ are 2δ-close after they go through gv, so since
m2 ≥ m1, there is some m5 ≥ m3 such that d(ηm2 , γm5)≤ 2δ. Thus,

2d(v, gv)≤ d(v, γm4)+ d(γm4 , gv)+ d(v, ηm2)+ d(ηm2 , γm5)+ d(γm5 , gv)

= d(γm4 , γm5)+ d(v, γm4)+ d(v, ηm2)+ d(ηm2 , γm5)

≤ 2(d(v, γm4)+ d(v, ηm2)+ d(ηm2 , γm5))

≤ 2(6δ),

where the first equality follows from the fact that γ is a geodesic. �

Now, note that im Hn is analytic. To see this, note first that the set

C = {(a, η) ∈ ∂V × VN
: η is a combinatorial geodesic from v0 to a}

is closed. Write

D = {(a, (η0, . . . , ηn)) : a ∈ ∂V, η a combinatorial geodesic from v0 to a}.

CLAIM 5.3. The set D is Borel in ∂V × V<N.

Proof. The set is clearly analytic, as for a ∈ ∂V and v ∈ V n we have that (a, v) ∈ D if and
only if ∃η ∈ VN such that (a, η) ∈ C and v = (η0, . . . , ηn−1). To see that D is coanalytic,
note that (a, v) ∈ D if and only if ∀m ≥ n∃w ∈ V m (w is a finite geodesic extending v and
∀η, if (a, η) ∈ C , then d(w, η) < 2δ). Here, by d(w, η) we mean the max of d(wi , ηi ) for
i < m. In the latter equivalence, the ‘if’ part follows from a compactness argument and the
‘only if’ is obvious. �

Using the above claim and writing the definitions of the following sets (with formulas
using only countable quantifiers and references to D) one can deduce that the sets
{(a, Sa) : a ∈ ∂V } and {(a, va

n ) : a ∈ ∂V }, {(a, T a
n ) : a ∈ ∂V } and {(a, Hn(a)) : a ∈ ∂V }

are also Borel, for every n. This implies that the set im Hn is analytic for every n.
By Lemma 4.1, there is a Borel equivalence relation F ′n on 2V containing Fn whose

classes are of size at most K . Every finite Borel equivalence relation is smooth (see
[Gao09, Ch. 7.1]), so let fn : 2V

→ 2N be a reduction for F ′n ≤B id2N , and define f :
∂V → (2N)N by f (a)= ( fn(Hn(a)) : n ∈ N). Write E ′ for the pullback of E1 via f . Note
that since each F ′n is finite, the relation E ′ is countable. As E ′ is clearly hypersmooth, we
get that E ′ is hyperfinite by [Gao09, Theorem 8.1.5]. Now, note that f is a homomorphism
from E |Y to E1. Indeed, if a, b ∈ Y with aEb, then let g be such that ga = b. By
our assumption, the sets {gηm : m ∈ N, η a combinatorial geodesic from v0 to a} and
{ηm : m ∈ N, η a combinatorial geodesic from v0 to b} differ by a finite set. Since both
a, b are in Y and V is locally finite, there is N ∈ N such that Hn(a)En Hn(b) for n ≥ N ,
and thus f (x)E1 f (y). Thus, E |Y ⊆ E ′ is a subrelation of a hyperfinite one, and hence it
is hyperfinite as well. This ends the proof. �
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Proof of Theorem 1.1. Let G be a cubulated δ-hyperbolic group. Since hyperfiniteness
passes to finite-index extensions [JKL02, Proposition 1.3], by Lemma 5.1, we can assume
that G acts freely and cocompactly on a CAT(0) cube complex X . Let V = X (0) be the set
of vertices of X . Now the statement follows from Theorem 1.4 and Lemma 1.3.
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