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Let it(G) be the number of independent sets of size t in a graph G. Engbers and Galvin

asked how large it(G) could be in graphs with minimum degree at least δ. They further

conjectured that when n � 2δ and t � 3, it(G) is maximized by the complete bipartite graph

Kδ,n−δ . This conjecture has recently drawn the attention of many researchers. In this short

note, we prove this conjecture.
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1. Introduction

Given a finite graph G, let it(G) be the number of independent sets of size t in a graph, and

let i(G) =
∑

t�0 it(G) be the total number of independent sets. There are many extremal

results on i(G) and it(G) over families of graphs with various degree restrictions. Kahn [6]

and Zhao [12] studied the maximum number of independent sets in a d-regular graph.

Relaxing the regularity constraint to a minimum degree condition, Galvin [5] conjectured

that the number of independent sets in an n-vertex graph with minimum degree δ � n/2

is maximized by a complete bipartite graph Kδ,n−δ . This conjecture was recently proved

(in stronger form) by Cutler and Radcliffe [3] for all n and δ, and they characterized the

extremal graphs for δ > n/2 as well.

One can further strengthen Galvin’s conjecture by asking whether the extremal graphs

also simultaneously maximize the number of independent sets of size t, for all t. This

claim unfortunately is too strong, as there are easy counterexamples for t = 2. On the
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other hand, no such examples are known for t � 3. Moreover, in this case Engbers and

Galvin [4] made the following conjecture.

Conjecture 1.1. For every t � 3 and δ � n/2, the complete bipartite graph Kδ,n−δ maximizes

the number of independent sets of size t, over all n-vertex graphs with minimum degree at

least δ.

Engbers and Galvin [4] proved this for δ = 2 and δ = 3, and for all δ > 3 they proved

it when t � 2δ + 1. Alexander, Cutler, and Mink [1] proved it for the entire range of t

for bipartite graphs, but it appeared non-trivial to extend the result to general graphs.

The first result for all graphs and all t was obtained by Law and McDiarmid [9], who

proved the statement for δ � n1/3/2. This was improved by Alexander and Mink [2], who

required that

(δ + 1)(δ + 2)

3
� n.

In this short note, we completely resolve this conjecture.

Theorem 1.2. Let δ � n/2. For every t � 3, every n-vertex graph G with minimum degree

at least δ satisfies it(G) � it(Kδ,n−δ), and when t � δ, Kδ,n−δ is the unique extremal graph.

2. Proof

We will work with the complementary graph, and count cliques instead of independent

sets. Cutler and Radcliffe [3] also discovered that the complement was more naturally

amenable to extension; we will touch on this in our concluding remarks. Let us define

some notation for use in our proof. A t-clique is a clique with t vertices. For a graph

G = (V , E), G is its complement, and kt(G) is the number of t-cliques in G. For any vertex

v ∈ V , N(v) is the set of the neighbours of v, d(v) is the degree of v, and kt(v) is the number

of t-cliques which contain vertex v. Note that
∑

v∈V kt(v) = tkt(G). We also define G + H

as the graph consisting of the disjoint union of two graphs G and H . By considering the

complementary graph, it is clear that our main theorem is equivalent to the following

statement.

Proposition 2.1. Let 1 � b � Δ + 1. For all t � 3, kt(G) is maximized by KΔ+1 + Kb, over

(Δ + 1 + b)-vertex graphs with maximum degree at most Δ. When t � b, this is the unique

extremal graph, and when b < t � Δ + 1, the extremal graphs are KΔ+1 + H , where H is an

arbitrary b-vertex graph.

Remark. When b � 0, the number of t-cliques in graphs with maximum degree at most

Δ is trivially maximized by the complete graph. On the other hand, when b > (Δ + 1),

the problem becomes much more difficult, and our investigation is still ongoing. This

paper focuses on the first complete segment 1 � b � Δ + 1, which, as mentioned in the

Introduction, was previously attempted in [2, 4, 9].
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Although our result holds for all t � 3, it turns out that the main step is to establish it

for the case t = 3 using induction and double-counting. Afterwards, a separate argument

will reduce the general t > 3 case to this case of t = 3.

Lemma 2.2. Proposition 2.1 is true when t = 3.

Proof. We proceed by induction on b. The base case b = 0 is trivial. Now assume it is

true for b − 1. Suppose first that k3(v) � (
b − 1

2 ) for some vertex v. Applying the inductive

hypothesis to G − v, we see that

k3(G) � k3(G − v) + k3(v) �
(

Δ + 1

3

)
+

(
b − 1

3

)
+

(
b − 1

2

)
�

(
Δ + 1

3

)
+

(
b

3

)
,

and equality holds if and only if G − v is optimal and k3(v) = (
b − 1

2 ). By the inductive

hypothesis, G − v is KΔ+1 + H ′, where H ′ is a (b − 1)-vertex graph. The maximum degree

restriction forces v’s neighbours to be entirely in H ′, and so G = KΔ+1 + H for some

b-vertex graph H . Moreover, since k3(v) = (
b − 1

2 ) we get that for b � 3, H is a clique.

This leaves us with the case where k3(v) > (
b − 1

2 ) for every vertex v, which forces

b � d(v) � Δ. We will show that here, the number of 3-cliques is strictly suboptimal.

The number of triples (u, v, w) where uv is an edge and vw is not an edge is clearly∑n
i=1 d(v)(n − 1 − d(v)). Also, every set of three vertices either contributes 0 to this sum

(if either all or none of the three edges between them are present), or contributes 2 (if

they induce exactly one or exactly two edges). Therefore, we obtain an equality which

also appeared in [11]:

2

[(
n

3

)
− (k3(G) + k3(G))

]
=

∑
v∈V

d(v)(n − 1 − d(v)).

Rearranging this equality and applying k3(G) � 0, we find

k3(G) �
(
n

3

)
− 1

2

∑
v∈V

d(v)(n − 1 − d(v)). (2.1)

Since we have already bounded b � d(v) � Δ, and b + Δ = n − 1 by definition, we have

d(v)(n − 1 − d(v)) � bΔ.

Substituting this into (2.1) and using n = (Δ + 1) + b,

k3(G) �
(
n

3

)
− nbΔ

2
=

(
Δ + 1

3

)
+

(
b

3

)
− b(Δ + 1 − b)

2
<

(
Δ + 1

3

)
+

(
b

3

)
,

because b � Δ. This completes the case where every vertex has k3(v) > (
b − 1

2 ).

We reduce the general case to the case of t = 3 via the following variant of the celebrated

Kruskal–Katona theorem [7, 8], which appears as Exercise 31b in Chapter 13 of Lovász’s

book [10]. Here, the generalized binomial coefficient (
x
k ) is defined to be the product

1

k!
(x)(x − 1)(x − 2) · · · (x − k + 1),

which exists for non-integral x.
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Theorem 2.3. Let k � 3 be an integer, and let x � k be a real number. Then, every graph

with exactly (
x
2 ) edges contains at most (

x
k ) cliques of order k.

We now use Lemma 2.2 and Theorem 2.3 to finish the general case of Proposition 2.1.

Lemma 2.4. If Proposition 2.1 is true for t = 3, then it is also true for t > 3.

Proof. Fix any t � 4. We proceed by induction on b. The base case b = 0 is trivial. For

the inductive step, assume the result is true for b − 1. If there is a vertex v such that

k3(v) � (
b − 1

2 ), then by applying Theorem 2.3 to the subgraph induced by N(v), we find

that there are at most (
b − 1
t − 1 ) cliques of order t − 1 entirely contained in N(v). The t-cliques

which contain v correspond bijectively to the (t − 1)-cliques in N(v), and so kt(v) � (
b − 1
t − 1 ).

The same argument used at the beginning of Lemma 2.2 then correctly establishes the

bound and characterizes the extremal graphs.

If some k3(v) = (
Δ
2 ), then the maximum degree condition implies that the graph contains

a KΔ+1 which is disconnected from the remaining b � Δ + 1 vertices, and the result also

easily follows. Therefore, it remains to consider the case where all (
b − 1

2 ) < k3(v) < (
Δ
2 ), in

which we will prove that the number of t-cliques is strictly suboptimal. It is well known

and standard that for each fixed k, the binomial coefficient (
x
k ) is strictly convex and

increasing in the real variable x on the interval x � k − 1. Hence,
(
k
k

)
= 1 implies that

(
x
k ) < 1 for all k − 1 < x < k, and so Theorem 2.3 then actually applies for all x � k − 1.

Thus, if we define u(x) to be the positive root of
(
u
2

)
= x, that is,

u(x) =
(1 +

√
1 + 8x)

2
,

and let

ft(x) =

{
0 if u(x) < t − 2,(
u(x)
t−1

)
if u(x) � t − 2,

(2.2)

the application of the Kruskal–Katona theorem in the previous paragraph establishes

that kt(v) � ft(k3(v)).

We will also need that ft(x) is strictly convex for x > (
t − 2

2 ). For this, observe that by

the generalized product rule,

f′
t(x) = u′ · [(u − 1)(u − 2) · · · (u − (t − 2)) + · · · + u(u − 1) · · · (u − (t − 3))],

which is u′(x) multiplied by a sum of t − 1 products. Since

u′(x) =
2√

1 + 8x
,

for any constant C ,

(u′)(u − C) = 1 − (2C − 1)√
1 + 8x

.
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Note that this is a positive increasing function when C ∈ {1, 2} and x > (
t − 2

2 ). In

particular, since t � 4, each of the t − 1 products contains a factor of (u − 1) or (u − 2),

or possibly both; we can then always select one of them to absorb the (u′) factor, and

conclude that f′
t(x) is the sum of t − 1 products, each of which is composed of t − 2

factors that are positive increasing functions on x > (
t − 2

2 ). Thus ft(x) is strictly convex

on that domain, and since ft(x) = 0 for x � (
t − 2

2 ), it is convex everywhere.

If t = Δ + 1, there will be no t-cliques in G unless G contains a KΔ+1, which must

be isolated because of the maximum degree condition; we are then finished as before.

Hence we may assume t � Δ for the remainder, which in particular implies that ft(x) is

strictly convex and strictly increasing in the neighbourhood of x = (
Δ
2 ). Let the vertices

be v1, . . . , vn, and define xi = k3(vi). We have

tkt(G) =
∑
v∈V

kt(v) �
n∑

i=1

ft(xi),

and so it suffices to show that∑
ft(xi) < t

(
Δ + 1

t

)
+ t

(
b

t

)
under the following conditions, the latter of which comes from Lemma 2.2:(

b − 1

2

)
< xi <

(
Δ

2

)
,

n∑
i=1

xi � 3

(
Δ + 1

3

)
+ 3

(
b

3

)
. (2.3)

To this end, consider a tuple of real numbers (x1, . . . , xn) which satisfies the conditions.

Although (2.3) constrains each xi within an open interval, we will perturb the xi within

the closed interval which includes the endpoints, in such a way that the objective
∑

ft(xi)

is non-decreasing, and we will reach a tuple which achieves an objective value of exactly

t
(
Δ+1
t

)
+ t

(
b
t

)
. Finally, we will use our observation of strict convexity and monotonicity

around x = (
Δ
2 ) to show that one of the steps strictly increased

∑
ft(xi), which will

complete the proof.

First, since the upper limit for
∑

xi in (2.3) is achievable by setting Δ + 1 of the xi to

(
Δ
2 ) and b of the xi to (

b − 1
2 ), and ft(x) is non-decreasing, we may increase some of the xi

in the interval (
b − 1

2

)
� xi �

(
Δ

2

)

such that the inequality for
∑

xi in (2.3) is tight. Next, by convexity of ft(x), we may push

apart xi and xj while conserving their sum, and the objective is non-decreasing. After a

finite number of steps, we arrive at a tuple in which all but at most one of the xi is equal

to either the lower limit (
b − 1

2 ) or the upper limit (
Δ
2 ), and

∑
xi = 3

(
Δ + 1

3

)
+ 3

(
b

3

)
.

However, since this value of
∑

xi is achievable by Δ + 1 many (
Δ
2 ) and b many (

b − 1
2 ),

this implies that in fact, the tuple of the xi has precisely this form. (To see this, note that
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by an affine transformation, the statement is equivalent to the fact that if n and k are

integers, and 0 � yi � 1 are n real numbers which sum to k, all but one of which is at an

endpoint, then exactly k of the yi are equal to 1 and the rest are equal to 0.) Thus, our

final objective is equal to

(Δ + 1)

(
Δ

t − 1

)
+ b

(
b − 1

t − 1

)
= t

(
Δ + 1

t

)
+ t

(
b

t

)
,

as claimed. Finally, since some xi take the value (
Δ
2 ), the strictness of ft(x)’s monotonicity

and convexity in the neighbourhood x = (
Δ
2 ) implies that at some stage of our process,

we strictly increased the objective. Therefore, in this case where all(
b − 1

2

)
< k3(v) <

(
Δ

2

)
,

the number of t-cliques is indeed sub-optimal, and our proof is complete.

3. Concluding remarks

The natural generalization of Proposition 2.1 considers the maximum number of t-cliques

in graphs with maximum degree Δ and n = a(Δ + 1) + b vertices, where 0 � b < Δ + 1.

In the language of independent sets, this question was also proposed by Engbers and

Galvin [4]. The case a = 0 is trivial, and Proposition 2.1 completely solves the case

a = 1. We believe that also for a > 1 and t � 3, kt(G) is maximized by aKΔ+1 + Kb, over

(a(Δ + 1) + b)-vertex graphs with maximum degree at most Δ.

An easy double-counting argument shows that it is true when b = 0. When a � 2

and b > 0, the problem seems considerably more delicate. Nevertheless, the same proof

that we used in Lemma 2.4 (mutatis mutandis) shows that the general case t > 3 of this

problem can be reduced to the case t = 3. Therefore, the most intriguing and challenging

part is to show that aKΔ+1 + Kb maximizes the number of triangles over all graphs with

(a(Δ + 1) + b) vertices and maximum degree at most Δ. We have some partial results on

this main case, but our investigation is still ongoing.
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