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Abstract

The broad aim of this work was to study intraspecific
variation of seed germination in Phillyrea angustifolia
L. (Oleaceae), a species with a hard (water-permeable)
endocarp. Germination of seeds from six different wild
populations was correlated with traits related either to
seed morphology or to environmental parameters.
Germination of naked seeds (seeds without endocarp)
at the optimum germination conditions was similar
among populations and individuals, but great differ-
ences could be detected regarding the germination of
seeds with endocarp both at inter- and intra-popula-
tional levels. Differences among populations could be
related to climatic parameters and to morphometric
variables of seeds with endocarp. A higher germination
was associated with populations growing in habitats
with more severe summer (higher temperature, lower
precipitation and a longer drought period) and produ-
cing elongated seeds (lower Feret ratio and roundness).
Moreover, seeds from eight different individuals within a
population were tested independently, and great differ-
ences regarding the germination of seeds with endo-
carp could be detected among individuals. Our
results suggest that the morphological variation found
in P. angustifolia endocarp is both under strong mater-
nal genetic control as well as influenced by environmen-
tal factors, as indicated by the high variability among
individuals within one population and the significant
correlation between climate variables and seed germin-
ation among populations. Finally, it is emphasized that
standardization of plant propagation protocols should
take into account the degree of intraspecific variation
of Mediterranean species.

Keywords: climate change, hard endocarp, inter-population
variability, intra-population variability, Phillyrea
angustifolia, physiological dormancy, seed dormancy,
seed germination

Introduction

Information on propagation strategies of Mediterranean
plant species is most relevant for ecosystem conserva-
tion, especially in the present context of climate change
(Manso et al., 2014; Cochrane, 2016). Plants living in
Mediterranean ecosystems must cope with extreme
summer droughts and frequent fires that play an
important role in such ecosystems (Chaves et al.,
2002). Climate change might alter the hydrological
cycle in the Mediterranean region (Mariotti et al.,
2008), and models predict a reduction in total precipita-
tion and drier summers (Christensen et al., 2007), as well
as an increase in fire hazard (Moriondo et al., 2006;
Pausas et al., 2008; Moreno et al., 2010). Seed germin-
ation is subject to strong selection pressure and, conse-
quently, is likely to be highly sensitive to climatic
changes (Walck et al., 2011). In light of these forecast
changes, a better understanding of inter- and intra-
population variation in seed germination is of high
importance since plasticity in its response among popu-
lations and individuals will provide a buffer against cli-
mate change (Lacerda et al., 2004; Fernández-Pascual
and Jiménez-Alfaro, 2014; Hudson et al., 2015).

To produce seeds with different germination
responses is themechanismbywhichmanyplant species
are able to adapt to changing environmental conditions,
and it is a common strategy in Mediterranean wild spe-
cies (Pérez-García, 1993; Kigel, 1995; Pérez-García,
2009; Martínez-Fernández et al., 2014; Cochrane et al.,
2014). Phenotypic variation in a trait can be the result
of genetic and environmental influences. Populations
from similar habitats may have differences in seed
morphology or germination, and these differences can
arise from local climatic factors during seed maturation
and from the effect of maternal genotype (Fenner, 1992;
Wulff, 1995; Baskin and Baskin, 2014). Furthermore,
intra-population variation can be attributed to genetic
differences among individual parent plants, even within
a small geographic area (Pérez-García, 1993; Bewley and
Black, 1994; Qaderi and Cavers, 2002).

In this scenario, we examined the germination char-
acteristics and seed morphology of wild populations
and individuals of Phillyrea angustifolia L. (Oleaceae) –
narrow leaf phillyrea, narrow-leaved mock privet,
or evergreen privet – a small tree that grows in
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well-preserved Mediterranean habitats and plays an
important role in the post-fire ecological dynamics
(Herrera et al., 1994; Vitale et al., 2007). In recent
years there has been a renewed interest in P. angustifolia
plant production. It is increasingly used for landscap-
ing purposes, for being thermophilic and low water
demanding (De Marco et al., 2005), but also in restor-
ation programmes, since many of its natural popula-
tions are under decline. Germination in P. angustifolia,
both in nature and in nurseries, is poor, erratic, and
too gradual, resulting in a set of plants at different
physiological phases (Catalán, 1991; Traveset et al.,
2007). These trees produce blue-black drupes, contain-
ing a single seed enclosed by a lignified endocarp.
Previous investigations in the Phillyrea genus indicate
that the endocarp may mechanically interfere with
the emergence of the radicle but that it is at the same
time water permeable (Mira et al., 2015b, 2016).
Therefore, and contrary to a previous suggestion
(Takos and Efthimiou, 2003), seeds do not exhibit phys-
ical dormancy, defined as the result of a water-
impermeable layer in the seed or fruit coat (Baskin
and Baskin, 2004).

By collecting seeds from wild populations across a
range of habitats and relating seed characteristics to cli-
mate parameters we intended to learn how germin-
ation strategies have maximized establishment
probabilities for the species. The general aim of this
work was to evaluate intraspecific variation of germin-
ation behaviour in P. angustifolia seeds. The specific
aims were to investigate whether seed germination in
P. angustifolia: (1) varied among populations, (2) varied
among individuals of a population and (3) could be
correlated with traits related either to seed morphology
or to environmental parameters.

Materials and methods

Seed collection

The studied wild populations of P. angustifolia are all
located in the Iberian Peninsula. Fruits from popula-
tions 1 and 5 (P1 and P5) were collected by the authors
in September 2012, fruits from populations 2 and 3 (P2
and P3) were provided by Semillas Montaraz S.A.,
those of population 4 (P4) by Forestal Catalana S.A.,
and those of population 6 (P6) by Viveros
Municipales Devesa-Albufera. Samples from popula-
tions 2, 3, 4 and 6 were also collected in September
2012. These six populations represent a broad range
of the habitats of this species in the Iberian Peninsula
(Table 1). Climatic data were obtained from the
Spanish State Meteorological Agency (AEMET), from
meteorological observatories close to the population
sites. The climate data (Table 1) are mean values of 5
years (2008–2012). Fruit collection was performed T
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according to the following standards: sampling ran-
domly and evenly from as many plants as possible,
in order to capture the widest possible genetic diversity
from the population, and never collecting more than
20% of the available fruits from each individual on
the day of collection (ENSCONET, 2009).

In parallel, in the case of P1, fruit collection was car-
ried out separately for eight individual trees, in order
to study intra-population differences in germination.
For each of the eight individuals in P1, at least 250
fruits were collected.

In all cases, the fleshy exocarp and mesocarp of the
fruit were manually removed. To carry out the assays
with naked seeds (seeds without endocarp), endocarp
was completely removed using pliers and a scalpel.
Seeds were stored for 1 month under laboratory condi-
tions (at about 23°C, 35% relative humidity, in dark-
ness) until the start of trials in October 2012.

Image analysis

Representative images of 25 seeds with endocarp from
each population were obtained with a digital camera
(Nikon Coolpix 4500) mounted on a copy stand table
(Kaiser 5410 RS2) equipped with four lighting units.
Light conditions were stable throughout the acquisi-
tion procedure to achieve reproducibility and compar-
ability of all images. Measurements on the digital
images were determined using software ImageJ ver-
sion 1.43 (Rasband, 1997–2015) for the following para-
meters: area, perimeter, diameter maximum, diameter
minimum, Feret ratio (diameter minimum/diameter
maximum), shape factor (4π area/perimeter2) and
roundness factor (4 area/π diameter maximum2).
Feret ratio indicates an aspect ratio close to an equiaxed
particle when values are close to 1; shape factor indi-
cates maximum shape homogeneity when values are
close to 1; and roundness indicates maximum circular-
ity when values are close to 1.

Seed germination

For all germination trials, four replicates of 25 seeds
were incubated in glass Petri dishes (9 cm diameter)
on top of two sheets of filter paper previously mois-
tened with 4 ml of distilled water. To avoid contamin-
ation, seeds were disinfected with 10% HCl for 5 min
before starting the assay. Filter papers were re-wetted
regularly with distilled water as required. Incubation
conditions were 15°C with a 16-h photoperiod pro-
vided by cool white fluorescent tubes with an irradi-
ance of 35 μmol m2 s–1. These incubation conditions
were chosen as the most suitable for P. angustifolia
seed germination in a previous study (Mira et al.,
2015b). Samples were checked daily and germinated

seeds were counted and removed. The incubation per-
iod was 45 days for naked seeds and 65 days for seeds
with endocarp. Emergence of the radicle was the criter-
ion for germination. In all germination trials, non-
germinated seeds were checked for viability by the
Tetrazolium test. Seeds were cut in half and submerged
in a 1% solution of tetrazolium chloride for 24 h in the
dark at 25°C. The number of non-viable seeds (equal or
less than 5% of the total seeds) and empty seeds (equal
or less than 2%) were excluded from calculation of final
germination percentage.

Seedling emergence

To determine the effects of different substrates on seed
emergence, naked seeds from P1 were sown in three
substrates: an equal volume mix of sand and vermicu-
lite, soil from the original habitat, and sterilized soil
from the original habitat. Soil was sterilized by auto-
claving at 120°C and 1 atm for 1 h. For each treatment,
52 seeds were individually sowed in the cells of a seed-
bed. Cells were partially filled with gravel (previously
disinfected with HCl at 10%) and then completed with
the assayed substrate. Seedbeds were incubated in a
greenhouse, with a minimum prefixed temperature of
10°C. Seedling emergence was measured (cotyledons
visible at substrate surface), and seed vigour was eval-
uated measuring plant height and number of leaves
after 4 and 6 months.

Data analysis

The statistical analyses of seed germination data were
done using the approach proposed by Ritz et al.
(2013) with the ‘drc’ package (Ritz and Streibig, 2005)
for the software environment R (R Core Team, 2015).
We considered a non-linear log-logistic model to relate
the cumulative germination and to monitor time after
initialization of the test:

F t( ) = d/ 1+ exp b log t( ) − log MGT( )( )[ ]( )
,

where d is the maximum germination percentage; MGT
(mean germination time) is the time where 50% of the
seeds that germinated during the experiment have ger-
minated; and b is proportional to the slope of F at time
t. The estimation of non-linear regression parameters
was based on treating data as an event time; that is,
considering the monitoring interval when seeds were
germinated or the time interval of the entire experi-
ment if they did not germinate. Thus we have a multi-
nomial distribution across these intervals and this
distribution was used to obtain the parameter esti-
mates by maximum likelihood. The time-event model
implemented in the ‘drc’ package allows parameter
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comparison among germination curves for different
treatment groups.

Also, one-way factorial ANOVA was used to test
differences among populations in morphometric para-
meters of seeds and also differences on vigour para-
meters of seedlings in different substrates. Where
ANOVA indicated a significant effect (P < 0.01), a
multiple comparison test was carried out using the
Tukey test.

Finally, data were subjected to principal component
analysis (PCA) to assess associations between variables
and to detect population separation trends based on
the variables analysed. Twenty-one variables were
included in the analysis of each population using a cor-
relation matrix: climatic parameters of the population
habitat, seed morphometric parameters, and germin-
ation and MGT of seeds with endocarp and naked
seeds. Principal component analysis allowed us to con-
dense as much of the original information contained in
the 21 variables in orthogonal variables called principal
components (PCs), which were weighed linear combi-
nations of the original variables (Meglen, 1992;
Wenning and Erickson, 1994). After data were normal-
ized, the contribution of each variable to each PC was
assessed. The adequacy of this analysis is verified by
the amount of the total information of the original vari-
ables retained by the PCs. Therefore, the initial set of 21
variables become a reduced set of two new variables
(PCs), which enabled the two-dimensional projection
of the six populations on the PCs. Germination percen-
tages were arcsine square-root transformed for PCA
analysis. PCA analysis was performed using SPSS
20.0 (IBM Corporation, 2013).

Results

Inter-population variation

The morphometric analysis of seed samples with endo-
carp allowed us to obtain extremely precise data on
endocarp size and shape (Table 2). Endocarp shape

was subspherical in all populations, as determined
by: Feret ratio (0.77–0.86), shape factor (0.81–0.87),
and roundness (0.79–0.89). Shape factor values showed
little differences among populations. Endocarp area,
perimeter, diameter maximum and minimum were
also similar in all populations except for P3, in which
values were higher. However, Feret ratio and round-
ness values were significantly different among popula-
tions. Mass of seeds with endocarp in P5 was
significantly lower than in the rest of the populations.
Therefore, seeds with endocarp showed little variation
in size or mass, but did show differences in circularity
and aspect ratio: the seeds with endocarp of P2, P4 and
P6 were more rounded, and those of P1, P3 and P5
were more elongated.

The germination of P. angustifolia seeds from six dif-
ferent populations was studied (Table 3, Fig. 1). The
germination of seeds with endocarp was slow (34–54
days, MGT), and significant differences on final ger-
mination percentages were observed (Table 3, Fig. 1).
P1 and P5 showed the highest germination (91–87%),
and P4 the lowest (3%). Germination of naked seeds
(without endocarp) was significantly faster in P1, P5
and P6 (15–16 days, MGT) than in P2, P3 and P4 (19–
22 days), although there were no significant differences
of germination percentages (78–88%) among popula-
tions (Table 3). To further study the germination
behaviour of P. angustifolia, seedling emergence was
tested. To do so, naked seeds from P1 were incubated
in a greenhouse in three different substrates. No seed-
ling emerged before 100 days (Fig. 2). After 200 days,
seedling emergence was 50% in sand and vermiculite,
29% in soil, and 8% in the sterilized soil. Although
the number of emerged seedlings varied among treat-
ments, no significant differences (P > 0.01) were
detected among the vigour parameters: average plant
height was 4.0 ± 0.3 cm after 4 months, and 7.3 ± 0.4
cm after 6 months; and average number of leaves
was 4.6 ± 0.4 after 4 months, and 12.2 ± 0.6 after 6
months.

PCA based on 21 climatic, morphometric and ger-
mination variables allowed us to separate the studied

Table 2. Morphometric parameters of seeds with endocarp from six Phillyrea angustifolia populations

Seed morphometric parameters

Area Perimeter Diameter max Diameter min
Feret ratio Shape factor Roundness

Mass
Population (mm2) (mm) (mm) (mm) (mg)

P1 5.4 ± 0.2a 8.8 ± 0.2a 3.1 ± 0.1b 2.4 ± 0.1a 0.77 ± 0.01a 0.86 ± 0.01b 0.79 ± 0.01a 101.6 ± 7.9a
P2 5.5 ± 0.1a 9.1 ± 0.1ab 3.0 ± 0.1b 2.5 ± 0.0ab 0.84 ± 0.01cd 0.84 ± 0.01b 0.86 ± 0.01bc 114.9 ± 2.6a
P3 6.6 ± 0.2b 9.7 ± 0.1b 3.4 ± 0.1c 2.7 ± 0.0b 0.80 ± 0.01abc 0.87 ± 0.01b 0.83 ± 0.01ab 118.8 ± 1.1a
P4 4.8 ± 0.3a 8.4 ± 0.3 2.7 ± 0.1a 2.4 ± 0.1a 0.86 ± 0.01d 0.85 ± 0.01b 0.89 ± 0.01c 114.3 ± 3.7a
P5 5.1 ± 0.1a 9.0 ± 0.1 3.1 ± 0.0b 2.4 ± 0.0a 0.78 ± 0.01ab 0.81 ± 0.01a 0.82 ± 0.01ab 073.2 ± 3.9b
P6 4.9 ± 0.2a 8.4 ± 0.2 2.8 ± 0.1ab 2.3 ± 0.0a 0.82 ± 0.01bcd 0.86 ± 0.00b 0.85 ± 0.00bc 113.5 ± 7.4a

Values are means ± standard error (SE). In each column, the mean values followed by the same letters are not significantly different (P > 0.01).
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populations. The first three PCs explained 90% of the
observed variation. Contribution of variables to PCs
is presented in Table 4. The first principal component
(PC1) accounted for 40% of the variation. In this com-
ponent, the most relevant variables were germination
of seeds with endocarp, seed morphometric para-
meters (such as diameter maximum, Feret ratio and
roundness), and habitat characteristic (such as precipi-
tation and temperature in summer) (Table 4). The
second principal component (PC2) accounted for 29%
of the observed variation. In this component, the
most relevant variables were also seed morphometric
parameters (such as area, diameter minimum and
shape factor) and habitat characteristic (such as alti-
tude, temperature in winter and daily thermal

oscillation). The third principal component (PC3)
explained 21% of the observed variation. The variables
with most relevance in this third component were habi-
tat characteristic (such as annual precipitation, tem-
perature, and number of frost months). As PC3 is not
clearly related to seed characteristics, like germination
or morphometric parameters, discussion referred to
this axis is not relevant for this study and was omitted.

Two-dimensional projections of populations as
defined by PC1 and PC2 are shown in Fig. 3. PC1 sepa-
rated P1, P3 and P5 from P2, P4 and P6. PC1 clustered
populations P1, P3 and P5 towards the region of
greater germination of seeds with endocarp, seeds
with endocarp with higher values of diameter max-
imum, lower Feret and roundness ratio, and regarding
the habitat: higher temperature of the warmest month,
lower precipitation in summer (June to August) and

Table 3. Seed germination curve parameters of Phillyrea
angustifolia seeds from six populations

Population

Germination MGT
(%) (days)

Seeds with
endocarp

Naked
seeds

Seeds with
endocarp

Naked
seeds

P1 87 ± 4a 88 ± 3a 34 ± 1a 15 ± 0a
P2 38 ± 10b 85 ± 4a 54 ± 7bc 22 ± 1b
P3 54 ± 7b 82 ± 4a 47 ± 2bc 21 ± 1b
P4 3 ± 2c 80 ± 4a 34 ± 4ab 19 ± 1c
P5 91 ± 6a 88 ± 5a 52 ± 2c 15 ± 1a
P6 50 ± 6b 78 ± 4a 51 ± 2c 16 ± 0a

Values are maximum germination percentage (mean ± standard
error) and mean germination time (MGT) ± standard error.
Parameters were estimated by maximum likelihood from a non-
linear log-logistic model with a multinomial distribution. Within a
column, values followed by the same letters are not significantly dif-
ferent (P > 0.01). For each treatment, four replicates of 25 seeds were
tested.

Figure 1. Germination time courses of Phillyrea angustifolia seeds with endocarp (A) and naked seeds (B) from six populations:
P1 (●), P2 ( ), P3 ( ), P4 (Δ), P5 ( ) and P6 (□). Values are the averages of four replicates.

Figure 2. Germination time courses for Phillyrea angustifolia
naked seeds sown in three types of substrate: an equal
volume mix of sand and vermiculite (●), soil from the original
habitat ( ), and sterilized soil ( ).
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longer drought. PC2 separated population P3 from the
remaining populations, especially from P5. PC2 situ-
ates P3 towards the region of greater area and diameter
minimum, and regarding the habitat: lower altitude,
greater temperature of the coolest month and lower
annual mean of daily thermal oscillation.

Correlations (coefficient of determination and
P-value) among germination, morphometric variables,
and habitat parameters of P. angustifolia seeds belong-
ing to six populations were calculated (Table S1).
Strong correlations between germination of seeds
with endocarp and both Feret ratio and roundness
(0.97 and 0.94, respectively, P < 0.01) and also with
mean temperature of the warmest month (0.91, P <
0.05), were observed. Germination of naked seeds
also correlated with mean temperature of the warmest
month (0.84, P < 0.05), and with annual mean of daily
thermal oscillation (0.90, P < 0.05).

Intra-population variation

The germination of P. angustifolia seeds from eight indi-
viduals of P1 was studied (Table 5, Fig. 4). Great differ-
ences were detected regarding germination of seeds
with endocarp, with some individuals showing low
germination (6–10%) and others showing high germin-
ation (81–88%) (Table 5). Differences were also
detected among naked seeds, with most individuals
showing high germination percentages (72–95%), but
seeds from individual #3 achieved only 35% germin-
ation. Germination speed (MGT) was also significantly
different among individuals, with values between 12
and 16 days for naked seed, and between 24 and 41
days for seed with endocarp.

Table 4. Contribution of variables, variance and cumulative
variance explained by the three principal components for cli-
matic and seed morphometric parameters of six populations
of Phillyrea angustifolia

Component

1 2 3

Area 0.45 0.77 0.42
Perimeter 0.56 0.59 0.54
Diameter maximum 0.77 0.54 0.33
Diameter minimum 0.27 0.78 0.53
Feret ratio −0.98 0.09 0.13
Shape factor –0.27 0.78 –0.25
Roundness −0.94 0.08 0.14
Mass –0.59 0.71 0.06
Altitude 0.13 −0.80 0.36
Precipitation per year –0.51 0.18 0.80
Precipitation summer −0.90 –0.35 –0.17
Drought 0.93 0.35 –0.04
Temperature annual 0.41 0.54 −0.71
Temperature warmest month 0.96 –0.18 0.00
Temperature coolest month 0.20 0.76 –0.66
Daily thermal oscillation 0.47 −0.81 0.34
Frost days –0.28 –0.13 0.89
Germination seeds with endocarp 0.94 –0.22 –0.02
Germination naked seeds 0.72 –0.50 0.39
MGT seeds with endocarp 0.11 0.05 0.47
MGT naked seeds –0.45 0.55 0.68
Variance (%) 40.20 28.87 20.95
Cumulative variance (%) 40.20 69.07 90.02

Bold values are used to highlight those variables with a high contri-
bution to each principal component.

Figure 3. Projection of six populations of Phillyrea angustifolia
on a bidimensional plane defined by principal components 1
(PC1) and 2 (PC2). Population numbers are indicated in
Table 1.

Table 5. Germination parameters of Phillyrea angustifolia
seeds from eight individuals of the same population (P1)
after 45 days of incubation at 15°C

Germination (%) MGT (days)

Individual
Seeds with
endocarp

Naked
seeds

Seeds with
endocarp Naked seeds

1 6 ± 2c 78 ± 5bc 36 ± 6b 12 ± 1a
2 61 ± 5b 72 ± 5c 24 ± 2abc 13 ± 1ab
3 10 ± 3c 35 ± 5d 29 ± 4a 16 ± 1de
4 81 ± 4a 89 ± 3ab 30 ± 1de 15 ± 0d
5 88 ± 3a 81 ± 4bc 32 ± 1c 16 ± 0e
6 65 ± 5b 95 ± 2a 41 ± 2ef 13 ± 0ab
7 67 ± 5b 87 ± 3ab 39 ± 1d 14 ± 0c
8 84 ± 4a 90 ± 4ab 35 ± 1e 15 ± 0de

Values are expressed by final germination percentages (mean ± stand-
ard error) and mean germination time (MGT ± standard error). In
each column, the mean values followed by the same letters are not
significantly different (P > 0.01).
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Discussion

Phenotypic plasticity of seed traits will play a major
role in plant responses to climate change (Nicotra
et al., 2010; Reed et al., 2011). Our data provide useful
information on inter- and intra-population variability
of seed traits of a wild species. Phillyrea angustifolia is
difficult to propagate in nurseries, with low, delayed
and too gradual seed germination, due to the hardness
of the lignified endocarp impeding radicle emergence.
Previous work indicated that Phillyrea endocarp could
be water permeable (Mira et al., 2015b, 2016) and,
therefore, seeds do not have physical dormancy sensu
stricto (as defined by Baskin and Baskin, 2004).
Nonetheless, the hardness of the endocarp mechanic-
ally interferes with the emergence of the radicle,
being a major impediment for germination. When the
endocarp is removed, we found that seed germination
showed an average of 84% among populations. These
germination results are in agreement with previous
data on Phyllirea (García-Fayos et al., 2001; Herranz
et al., 2006) and on seeds collected from P1 in 2011 pre-
viously studied by Mira et al. (2015b). Therefore, ger-
mination of naked seeds seems to be high, fast and
homogeneous among populations and little influence
of climate or year of collection could be inferred.
However, great variability in germination percentage
and speeds was found among populations when seed
germination was assayed in the presence of the endo-
carp. Moreover, inter-population variability of mor-
phometric parameters of seeds with endocarp was
detected. Feret ratio and roundness, parameters that
evaluate circularity, were significantly different
among populations in seeds with endocarp. Also,
while shape factor and seed mass were similar in
most accessions, some populations were significantly
different in these parameters. Ruprecht et al. (2015)
have reported that more rounded seeds are more

tolerant to fire. Conversely, in our work, less rounded
P. angustifolia seeds are related to climatic conditions
(dry and hot summer) that favour fire occurrence in
natural habitats.

Differences in seed germination among populations
could be explained on the basis of inter-population
variability of endocarp hardness, as previously sug-
gested (Traveset et al., 2007). In wild Mediterranean
plants, inter-population differences in hardness and
permeability of the dispersion unit, whether it be
seed or fruit, have been previously detected, as in the
seed coat of Capsicum annuum (Hernández-Verdugo
et al., 2001) and Vicia villosa (Renzi et al., 2016) or in
the pericarp of Onopordum nervosum (Pérez-García
and Pita, 1989) and Onopordum acanthium
(Pérez-García, 1993; Qaderi and Cavers, 2002). The
inter-population variability of the endocarp could
explain the difficulties faced by nurseries to propagate
this plant (Catalán, 1991; Traveset et al., 2007) and the
contradictory results obtained with germination pre-
treatments such as scarification with sulphuric acid
(Bacchetta et al., 2008; Mira et al., 2015b, 2016).
Likewise, field experiments showed that germination
increased when fruits had been eaten by goats
(Grande et al., 2013) but decreased when eaten by
birds (Traveset et al., 2008).

Our results indicate that the origin of the plant
material used in Mediterranean reforestation and forest
restoration must be strongly considered. Standardiza-
tion of plant propagation protocols should take into
account the P. angustifolia intraspecific variation, and
caution is advisable when considering the results of
studies based on one single wild population. After ger-
mination, seedling emergence and plant development
were slow with any of the substrates tested in this
study. Substrate had no effect on plant growth but
had a strong effect on seedling emergence. Sterilizing
soil was detrimental for seedling emergence,

Figure 4. Germination time courses of Phillyrea angustifolia seeds with endocarp (A) and naked seeds (B) from eight individuals
of the same population (P1): 1 (●), 2 ( ), 3 ( ), 4 (Δ), 5 (▪), 6 (□), 7 ( ) and 8 ( ). Values are the averages of four replicates.
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suggesting that the treatment might have killed mycor-
rhizal fungi in the soil. However, the artificial substrate
of sand and vermiculite produced higher seedling
emergence percentages (50%) than soil (29%) and
would be, therefore, recommended for P. angustifolia
plant propagation. The better performance of the artifi-
cial substrate is probably due to its higher water
adsorption characteristics, since it is been stated by
Lloret et al. (2004) that drier conditions can limit seed-
ling emergence by decreasing germination in the
related species P. latifolia.

Phenotypic variation of the hardness of the endo-
carp can be the result of maternal genetic and environ-
mental influences (as reviewed by Hudson et al., 2015)
during embryo formation and fruit dispersal. Seed ger-
mination, the morphology of seed with endocarp and
climatic variables allowed us to discriminate the six
populations studied. We found that seeds with an
endocarp that can be more easily broken by the radicle
were more elongated in shape and collected originally
from warmer and drier habitats: summer temperatures
over 32.3°C, average summer rainfall under 51 mm,
and over 3.8 drought months. This observation was
supported by a significant correlation between germin-
ation of seeds with endocarp and Feret ratio, round-
ness, mean temperature of the warmest month and
precipitation in summer. According to the correlation
obtained among seed germination and climatic para-
meters, it could be hypothesized that less dormant
seeds are able to germinate earlier in spring. Then,
more developed seedlings are better able to withstand
hot and dry summer conditions.

To elucidate the maternal genetic effect on seeds
traits, intra-population variability of seed germination
was studied. Seed germination of naked seeds differed
only slightly among individuals. However, our data
show greater differences in seed germination among
individuals when the hard endocarp is not removed
before planting. Great intra-population variability in
germination has been detected in several wild
Mediterranean species, such as Erica australis (Cruz
et al., 2003), Ceratonia siliqua (Pérez-García, 2009),
Astragalus gines-lopezii (Martínez-Fernández et al.,
2014), Senecio coiincyi (Martínez-García et al., 2012),
Gentiana lutea (Pérez-García et al., 2012), and several spe-
cies of Cistaceae (Pérez-García, 1997; Tavşanoğlu and
Çatav, 2012). In the Mediterranean climate, with vari-
able and unpredictable environmental conditions, an
important survival strategy of wild species would be
variation in either germination requirements (Kigel,
1995; Cruz et al., 2003; Pérez-García et al., 2003;
Pérez-García, 2005; Pérez-García et al., 2006;
Pérez-García and González-Benito, 2012; Pérez-García
et al., 2012; Baskin and Baskin, 2014; Copete et al.,
2014; Martínez-Fernández et al., 2014), seed dormancy
(Pérez-García et al., 2012), seed longevity (Mira et al.,
2011a; Lazar et al., 2014; Mira et al., 2015a) or seed

characteristics (Pérez-García et al., 2006; Mira et al.,
2011b; Pérez-García and González-Benito, 2012). In
nature, P. angustifolia flowering takes place in March
to June, fruits ripen in September to October and are
dispersed from September to March. Seeds germinate
with early spring temperature, from February to April
(Herrera et al., 1994; Andrés, 2011), after physiological
dormancy of the embryo is broken and, therefore, the
embryo becomes strong enough to break the endocarp.
Our results suggest that endocarp phenotype has a high
heritability, affecting intra-population variability in seed
germination. The time when physiological dormancy of
the embryo is broken and subsequent germination
occurs will vary greatly among populations and also
among individuals, seed germination being progressive
along the season. Therefore, P. angustifolia plasticity
would be an adaptative response to the enviromental
variation of the Mediterranean climate.

Conclusions

Germination of P. angustifolia naked seeds was similar
among populations and individuals, but great differ-
ences could be detected in the germination of seeds
with an endocarp. Those diferences could be related
to climatic and morphometric parameters of the popu-
lation of origin, with higher germination associated
with populations producing elongated seeds and
habitats with a more severe summer. The phenotypic
variation found in the endocarp is under both strong
maternal genetic and environmental control, as indi-
cated by the high variability among individuals
within one population and the significant correlation
between climate variables and seed germination.
Selection pressures have shaped a high phenotypic
plasticity in the species, which would allow it to
adapt rapidly to the future scenario of climate change
in which most Mediterranean areas are expected to
become more stochastic (IPCC, 2014). Finally, the ori-
gin of the plant material used in Mediterranean refor-
estation must be strongly considered, while
standardization of plant propagation protocols should
take into account the intra-specific variation of
Mediterranean species.
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