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SUMMARY
Exact knowledge of the position and proper calibration of
robots that move by wheels form an important foundation
in mobile robot applications. In this context, a variety of
sensory systems and techniques have been developed for
accurate positioning of differential drive mobile robots. This
paper, first, provides a brief overview of mobile robots
positioning techniques and then, presents a new benchmark
method capable of calibrating mobile robots with differential
drive mechanisms to correct systematic errors. The proposed
method is compared with the commonly used University of
Michigan Benchmark (UMBmark) odometry method. Two
sets of comparisons are conducted on six prototyped robots
with differential drives. The first set of tests establishes the
workability and accuracy that can be achieved with the new
method and compares them with the ones obtained from
the UMBmark technique. The second experiment compares
the performance of a mobile robot, calibrated with either
the UMBmark or the new method, for an unseen path. It
is demonstrated that the proposed method of calibration
is simple to implement, and leads to accuracy comparable
to the UMBmark method. Specifically, while the error
corrections in both methods are within ± 5% of each other,
the proposed method requires single straight line motion
for calibration, which is believed to be simpler and less
timely to implement than the square path motion required
by the UMBmark technique. The method should therefore
be considered seriously as a new tool when calibrating
differential drive mobile robots.

KEYWORDS: Differential drive mobile robots; Systematic
error; Benchmark tests; Error improvement; Performance
analysis; Statistical results.

1. Introduction
Calibration is defined as a set of operations that establishes,
under specified conditions, relationship between the values
of quantities indicated by a measuring instrument and the
corresponding values realized by standards.1 Calibration is
used to correct both systematic and nonsystematic errors.
Systematic errors are caused by imperfections during design,
fabrication, and assembly. Nonsystematic errors, on the other
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hand, are unwanted errors created during the robot motion.
Recently, there have been many efforts to develop effective
calibration methods for robotic systems.2 They include
odometry,3 3D camera error detection,4 active beacons,5

gyroscope,6 and magnetic compasses.7 Odometry is the
use of data from the movement of actuators to estimate
change in position over time. As compared to other methods,
odometry provides better short-term accuracy allowing very
high sampling rates with lower costs.8 Using the odometry
technique, fewer landmarks (stationary signs placed in
between start and stop points) are needed for certain length
of robot trajectory.8 The odometry method can be applied
to correct errors of all types of mobile robots including
vehicle-type robots and robots with differential drives.
Odometry calibration can be conducted offline or online.
Offline odometry calibration is mostly used by defining an
expanded mobile robot kinematics model and corresponding
calibration parameters.9,10 Offline calibration allows initial
calibration to correct robot positioning errors, followed by
further online calibration using high-accuracy instruments.11

This paper focuses on offline odometry calibration as the first
step of the calibration process.

Effective application of odometry approach in robot
calibration has been a research goal in mobile robotics
for many years.12–17 The most notable one is the work
done by Borenstein and Feng18–20 who introduced a
method for measuring odometry errors in differential drive
mobile robots, which they named University of Michigan
Benchmark (UMBmark) method. They implemented this
method to correct errors for a number of robots including
differential drive and omnimate mobile robots. In a different
study, Maddahi et al.21 applied the UMBmark test on
different types of differential drive mobile robots to correct
systematic positioning errors22 and extended UMBmark test
for nonsystematic positioning errors.23 The results confirmed
the significance and effectiveness of odometry method in
the process of mobile robot calibration. This paper presents
new results of experimental evaluation of the widely used
UMBMark odometry method for calibration of differential
drive mobile robots and further proposes an alternative
method. The proposed method is simple to implement,
and because it is built upon kinematics, it is applicable to
all types of wheeled mobile robots including differential
drive, omnidirectional, and high degrees of freedom wheeled
mobile robots. The proposed method is experimentally
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Fig. 1. (Colour online) Main components of differential drive
mobile robot.

shown to produce position accuracy and percentage of error
reduction, comparable to the UMBmark approach when
applied to differential drive robots.

The robots used in this paper are all prototyped in-house,
for various purposes and use differential mechanisms. The
characteristics and kinematics modeling of differential drive
robots are briefly presented in Section 2. Section 3 briefly
outlines the formulation of the UMBmark, followed by
detailed description of the proposed method in Section 4.
The implementation of both methods is addressed in
Section 5. Section 6 describes the prototyped mobile robots.
Experimental results, comparing the performance of both
calibration approaches as applied to all six types of mobile
robots, are given in Section 7 followed by presenting
some statistical analyses on the basis of experimental data
obtained using both the methods. Conclusions are provided
in Section 8.

2. Brief Background on Differential Drive
Mobile Robots
Figure 1 shows the structure of a typical differential drive
mobile robot. The two driving wheels are actively controlled
to move the robot in various directions. Castor wheels are
used to maintain balance.

With reference to Fig. 2, the kinematics equations
of differential drive robots are obtained using Denavit–
Hartenberg notation.24 On the basis of these equations, the
mobile robot is subject to three constraints. The first two
constraint equations are derived from the fact that two driving
wheels roll and do not slip25:

ẋ cos θ + ẏ sin θ = (DLθ̇L + DRθ̇R)/4, (1)

θ̇ = (DRθ̇R − DLθ̇L)/2l. (2)

The third equation relates to the fact that the mobile robot
cannot move in the lateral direction defined as25

ẋ sin θ − ẏ cos θ = 0. (3)

L

X

Y

l 
R

DL 

x

y 

DR 

Initial position 

xb 

yb 

yb 

xb X

xb 

Fig. 2. (Colour online) Coordinate frames and parameters of
wheeled mobile robot.

With reference to Fig. 2, l denotes the nominal distance
between the two driving wheels. x and y are the coordinates
of the base (body attached) coordinate frame {xbyb} with
respect to the fixed (global) coordinate system {XY}. θ

represents the orientation of the robot, which is the angle
between the base frame {xbyb} and the fixed frame {XY}.
DR and DL denote nominal diameters of right and left wheels,
respectively.

3. UMBmark Method
The UMBmark method is based on compensating two
dominant error sources. The first one is caused by the unequal
wheel diameters (DR and DL) and the second one relates to
the uncertainty on the value of the wheelbase, l (see Fig. 2).
Using UMBmark method, the robot starts out at a “start”
position and moves along a 4 m × 4 m unidirectional square
path in clockwise (CW) and/or counterclockwise (CCW)
directions. The robot is programmed to travel along all four
legs of the square path. However, because of the odometry
errors, it will likely not arrive precisely at the start position, O.
Figure 3 illustrates the schematic of expected experimental
results in CCW direction. In addition, it depicts the desired
(solid line) and actual (dashed line) trajectories obtained
during robot motion. Also, the contribution of two types of
error labeled with α and β angles can be seen in this figure.

Upon completion of each trial, the position offsets along
x and y axes (δxCW/CCW

i and δy
CW/CCW
i ) are measured with

respect to the start point (see Fig. 3). Mean position errors
are then calculated using the following equations20:

δxCW/CCW = 1

n

n∑
i=1

δx
CW/CCW
i , (4)

δyCW/CCW = 1

n

n∑
i=1

δy
CW/CCW
i , (5)

where n is the number of test runs.
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Fig. 3. (Colour online) UMBmark test path in CCW direction. Uncertainty about the wheelbase causes the robot to turn (90 + α) degrees,
instead of the desired 90 degrees. Difference in the wheel diameters moves it along dashed lines, instead of the desired straight lines
contributing to formation of nonzero angle β.

Based on the calculated position offsets, the coefficients α

and β are found from simple geometric relations. Note that
α and β can be positive or negative depending on the ratio of
wheel diameters, actual wheelbase, and the actual position
of robot20

α =
(

δxCW + δxCCW

−4L

)(
180

π

)
=

(
δyCW − δyCCW

−4L

)

×
(

180

π

)
, (6)

β =
(

δxCW − δxCCW

−4L

)(
180

π

)
=

(
δyCW + δyCCW

−4L

)

×
(

180

π

)
. (7)

In Eqs. (6) and (7), L is the straight leg of the square path.
Using the coefficients α and β, the values of Eb and Ed are
calculated as follows:

Eb = l̂

l
= 90◦

90◦ − α
, (8)

Ed = D̂R

D̂L

= DR

DL

L + l sin
(
β
/
2
)

L − l sin
(
β
/
2
) . (9)

The superscript “∧” indicates actual value of the parameter.
The actual wheelbase (l̂) is redefined in software according
to Eq. (8) in terms of Eb and nominal wheelbase (l), based on
the initial measurement. The correction for the unequal wheel
diameters, based on factor Ed , is slightly more involved. After
performing the test procedure, the actual wheel diameter ratio
(D̂R/D̂L) from Eq. (9) is calculated. However, when applying
a compensation factor, we should make sure not to change
the average wheel diameter,20 i.e., DR + DL = D̂R + D̂L.

Using the average wheel diameter and Eq. (9), the actual
values of right and left wheel diameters can be obtained.

4. Proposed Method
The UMBmark method is capable of producing reliable
and reasonable results for differential drive mobile robots.
The method, however, is built upon the consideration that
positioning errors are mainly due to unequal diameters of the
two wheels and uncertainty on the distance between the two
wheels (wheelbase length). The method, therefore, cannot
correct the errors in mobile robots of other types, such as
mobile robots with more than two driving wheels. Lack of
a simple, yet reliable method capable of calibrating errors
in all types of wheeled mobile robots considering all system
errors has motivated the authors to propose a new approach.

The proposed method is built upon kinematic Eqs. (1)–(3)
and aims at improving “lateral” and “longitudinal” errors.
Figure 4 shows the defined trajectory and related variables.
With reference to Fig. 4, the robot is directed to move along
the desired straight line (path A) in Cartesian coordinates
{XY}. Due to systematic errors, regardless of the sources,
the robot follows a different path (path B). Using Eq. (2) and
assuming the constant linear velocity for robot over the test
period, the mobile platform orientation error (λ) is expressed
as follows:

λ =
(

1

4l

)
(DRθR − DLθL). (10)

In Eq. (10), θR and θL are the total orientation of right and
left wheels, respectively.

In order to reduce position error, the robot must be kept
along the desired trajectory (path A) by reorienting itself
continuously during the motion. Thus, a new coefficient,
named “lateral corrective factor” (Flat), is defined which
presents the ratio of the wheels angular velocities. This
coefficient is used to calculate the modified angular
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Fig. 4. (Colour online) Trajectories in the proposed method: desired path (A) actual path (B). The actual position is measured with respect
to the desired end point O.

displacements (and subsequently velocities) in order to
achieve the perfect movement along the straight trajectory

Flat = θR/θL. (11)

From Eq. (11), Flat > 1 implies the right wheel must rotate
faster than the left one. Combining Eqs. (10) and (11) results
in Eq. (12)

Flat = DL

DR

+ 4lλ

DRθL

. (12)

Note that in Eq. (12), the lateral corrective factor (Flat)
is calculated, which expresses the relationship between the
deviation angle and the lateral corrective factor by reading the
amounts of the total left wheel actual angular displacement,
θL, and measurement of orientation angle, λ. Note that the
orientation angle is measured according to the measured
errors along x and y axes (δxi and δyi):

λ = 1

n

n∑
i=1

tan−1
(
δyi

/
δxi

)
, (13)

where n is the number of trial runs and, δxi and δyi are the
longitudinal and lateral errors measured in each trial as shown
in Fig. 4. The goal now is to use the lateral corrective factor
appropriately to the robot motion equations (to be described
in the next section) such that the deviation angle, λ, converges
to zero, i.e., the robot manages to stay along the desired path
(path A). However, even if the robot is aligned with the
desired path, we need to further ensure that it reaches the
desired location, i.e., having no longitudinal error, δx. This
is done by equally adjusting the speeds of the wheels. Thus,
a second coefficient, termed longitudinal corrective factor,

Flon, is defined:

Flon = L√
(L − δx)2 + (δy)2

, (14)

where L is the length of path, δx = 1
n

∑n
i=1 δxi, and δy =

1
n

∑n
i=1 δyi . The significance of the proposed method is that

it is built on simple and easy to understand kinematics
equations. Additionally, the method does not make any
assumption on the sources of error in robot motion.

5. Implementation
As described in Sections 3 and 4, the UMBmark method
corrects the robot motion using two corrective factors α and
β while the proposed method compensates for the robot error
using lateral and longitudinal corrective factors Flat and Flon.
The most integrated approach to implement these factors
in the robot equations of motion is to use them within the
Jacobian matrix that relates robot trajectory (position and
orientation) variables, Ẋ3×1 = [ ẋ ẏ θ̇]

T
, to the joint (wheel)

variables, �̇2×1 = [ θ̇L θ̇R]
T

. This relation is shown in the
following equation, which is obtained by combining Eqs. (1)
and (2)

[
θ̇L

θ̇R

]
=

⎡
⎢⎢⎣

2

DL

cos(θ)
2

DL

sin(θ) − l

DL

2

DR

cos(θ)
2

DR

sin(θ)
l

DR

⎤
⎥⎥⎦

⎡
⎢⎣

ẋ

ẏ

θ̇

⎤
⎥⎦. (15)

This type of implementation allows one to extend the
method to wheeled mobile robots with more than two driving
wheels. If there is no positioning error in the robot motion, the
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Table I. Specifications of prototype robots.

Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6

Dimension (L × W × H; cm) 10 × 10 × 22.5 13 × 18 × 20 18 × 32 × 14 20 × 20 × 18 7 × 7 × 11 28 × 28 × 9
Weight (kg) 0.880 1.250 3.280 1.800 0.105 0.450
Stall torque of motor (nm) 0.2 1.0 0.2 3.0 0.1 0.2
Maximum linear speed (m/min) 0.115 0.095 0.230 0.210 0.820 0.270
Wheel radius (cm) 5.0 3.5 5.5 1.3 2.5 3.5
Wheelbase (cm) 10.5 6.1 8.6 9.0 3.2 13.5
Encoder resolution (pulse/rev) 48 48 60 36 60 36

corrective factors will be α = 0 and β = 0 in the UMBmark
method, and Flat = 1 and Flon = 1 in the proposed method.
Thus, the nominal values of the diameters and wheelbase
are used as shown in Eq. (15). For other situations, Eq. (15)
must be expressed as Eq. (16) when using the UMBmark
technique, or Eq. (17) when using the proposed method:

[
θ̇L

θ̇R

]
=

⎡
⎢⎢⎣

Ed + 1

Da

cos(θ)
Ed + 1

Da

sin(θ) −Ed + 1

2Da

Ebl

Ed + 1

DaEd

cos(θ)
Ed + 1

DaEd

sin(θ)
Ed + 1

2DaEd

Ebl

⎤
⎥⎥⎦

×

⎡
⎢⎣

ẋ

ẏ

θ̇

⎤
⎥⎦, (16)

[
θ̇L

θ̇R

]
=

⎡
⎢⎢⎣

2FLonFLat

DL

cos(θ)
2FLonFLat

DL

sin(θ) −FLonFLat

DL

l

2FLon

DR

cos(θ)
2FLon

DR

sin(θ)
FLon

DR

l

⎤
⎥⎥⎦

×

⎡
⎢⎣

ẋ

ẏ

θ̇

⎤
⎥⎦. (17)

Note that Ed, Eb, Flat, and Flon are determined during the
calibration experiments and Da = 0.5(DR+DL) denotes the
average wheel diameter. Detailed derivations of Eqs. (16)
and (17), used for trajectory control of calibrated robots, are
given in the Appendix.

6. Description of Prototype Robots Used for Evaluation
This section describes all six prototyped mobile robots that
were built in-house at different times and with a variety of
components to examine the performance of the described
benchmark techniques.
Robot 1: Jumper

With reference to Fig. 5(a), the Jumper consists of two
driving wheels, two stepping motors with gear boxes, two
ultrasonic sensors, and a wireless camera to detect the
obstacles. This robot is also equipped with a jumping
mechanism. This vehicle has been designed to pass over
modest obstacles.21

Robot 2: Mobolab
Mobolab [Fig. 5(b)] has two driving wheels, one free castor

wheel, and two stepping motors. Mobolab is programmed to

follow trajectories defined by markers on the ground using
infrared sensors.
Robot 3: Robotest

Robotest [Fig. 5(c)] has two driving wheels activated by
stepper motors. The additional two castor wheels provide
stability. There are two optical sensors in front of the robot
to detect obstacles. This robot is capable of moving in
programmed trajectories and detecting obstacles.
Robot 4: Caterpillar

As shown in Fig. 5(d), the drive mechanism of Caterpillar
consists of two driving wheels, two servo motors with spur
gears, and two castor wheels. The wheels are constructed
with flexible rubber to create enough friction during the
motion.
Robot 5: Maze

Maze [Fig. 5(e)] has two driving wheels that are controlled
by a microprocessor. The additional castor wheels are to
provide better stability. There are two ultrasonic sensors in
front of the robot to detect obstacles. This robot has been
designed and built for maze competitions.
Robot 6: Vacuum Cleaner

The Vacuum Cleaner, shown in Fig. 5(f), works in two self-
controlled and remote control modes. This robot has been
designed for navigation with high maneuverability on flat
and low-friction surfaces. It has four active external sensors,
two drive wheels, two castors, and a vacuum system.

Table I shows key specifications of the mobile robots
described above.

7. Experimental Verification
This section presents results of experimental tests applied
to all prototype robots described above. The metric used to
facilitate the comparison is the radial error (δr) as defined
below:

δr =
√

(δx)2 + (δy)2, (18)

where δx and δy are defined in Figs. 3 and 4 for UMBmark
and proposed methods, respectively. The effectiveness of
each method is then measured by comparing the mean error
improvement index (δrm):

δrm = [(δrm,BF − δrm,AF)/δrm,BF] × 100%, (19)

where δrm,BF and δrm,AF are the mean values of the radial
errors before and after calibration, respectively.

During the experiments, we employed the incremental
optical encoders to count the pulses and then determined
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Fig. 5. (Colour online) Prototype differential drive mobile robots.

the angular rotation of each wheel:

θ = 2π

(
N

E

)
. (20)

In Eq. (20), E is the resolution of the encoder and N is the
number of pulses counted.

Figure 6 shows the position errors before and after
calibration using the UMBmark and proposed methods.
Note that both the methods were applied to all robots

and over many trials. As seen, the motions of all the
robots were corrected with either method, i.e., position
errors became significantly smaller over the corresponding
calibration trajectories. The position errors were measured
with respect to the corresponding desired destinations. Note
that UMBmark uses square path for calibration, whereas the
proposed method moves the robot along a single straight
path to calibrate. Consequently, the final desired destinations
for each method are not the same (compare Figs. 3
and 4).
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Table II. Corrective factors calculated on the basis of calibration
experiments.

UMBmark method Proposed method

α (rad) β (rad) λ (rad) Flat Flon

Robot 1 −0.19 0.31 0.09 1.020 1.024
Robot 2 −0.29 −0.20 0.17 1.023 1.028
Robot 3 −0.38 −0.29 −0.24 1.037 0.968
Robot 4 0.41 0.31 −0.02 1.033 0.966
Robot 5 −0.32 0.41 0.33 1.041 1.028
Robot 6 0.28 −.036 −0.09 1.029 0.969

Table II shows the calculated factors required to correct the
robot motion for all robot types. The values of these factors
were determined according to the test methods described
earlier. As shown in this table, using the proposed method,
the values of Flat and Flon vary between 1.020 to 1.041
and 0.966 to 1.028, respectively. Flat is calculated using
Eq. (12), where DR , DL, and l are nominal geometrical
properties of robots (see Table I). θL is obtained from the
encoder counts using Eq. (20). λ is determined by measuring
positioning errors and employing Eq. (13). Figure 6 confirms
that the positioning errors of robot motion were reduced after
applying the corrective factors.
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Fig. 7. (Colour online) Normal distribution of accuracy in radial direction (Robot 1). The kurtosis or skewness values of more than 2
indicate that data groups differ or skew to a significant degree.27

The form of distribution diagram of position error data,
which are derived from experimental tests, is significant to
predict the future behavior of robots in motion. One of the
most important probability distributions, from both theoret-
ical and practical viewpoints, is the Gaussian (normal) distri-
bution. Figure 7 shows results of benchmark tests for Robot 1.
The normal distribution is clearly depicted. The amount of
mean, standard deviation, and number of performed tests
with this robot can be estimated using these diagrams.

Table III shows values of average errors for all robot types
before and after calibration as well as estimates of skewness
(s), kurtosis (k), and standard deviation (σ ) determined
from measured data. The fifth column of Table III presents
percentage of error improvement (δrm). From Table III, it
is seen that both methods achieved similar improvements
ranging from 80 to 90% and within ± 5% difference. Thus,
we can claim that the proposed method is comparable to
the UMBmark method in terms of the accuracy that can
be achieved. Due to the variability of data over many trials,
standard deviation is used to measure confidence in statistical
conclusions. From Table III, the standard deviation values of
all robots before and after calibration can be read. The last two
columns show the kurtosis and skewness values of position
error data. Kurtosis26 is the measure of the “peakedness” of
the probability distribution of a real-valued random variable.
Higher kurtosis means more of the probability distribution
of a real-valued random variable.26

Note that the kurtosis (k) and skewness (s) values of the
distribution diagrams were calculated using the following
equations28:

k =
1

n

∑n

i=1
(δri − μ)4

(
1

n

∑n

i=1
(δri − μ)2

)2 − 3, (21)

s =
1

n

∑n

i=1
(δri − μ)3

(
1

n

∑n

i=1
(δri − μ)2

)1.5
. (22)

Here, δri denotes the sample value of radial errors and μ is
the corresponding mean value. The calculation of statistical
values was done using a sample of 10 from each set of tests
(n = 10).

The skewness and kurtosis values, illustrated in Table III,
confirm that the derived data satisfy the normal distributions
criterion. Note that for Robot 4 (R4), the standard kurtosis
index is more than 2, which does not satisfy the normality
criteria for this state. However, after calibration, this value
is reduced to 1.32. Thus, for all conditions, the normality
criteria are satisfied which indicates that the test used to
measure the trait (positioning error) is good.29
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Table III. Statistical indices for UMBmark (U) and proposed (P) methods before (BF) and after (AF) calibration.

Mean (μ ) Improvement (δrm; %) Std. Dev. (σ ) Kurtosis (k) Skewness (s)

Robot 1 U BF 38.6 87.57 4.40 1.96 1.17
U AF 4.8 4.23 0.08 −0.19
P BF 35.3 89.24 11.43 −1.63 0.01
P AF 3.8 3.04 1.58 1.39

Robot 2 U BF 37.3 80.97 11.17 −1.08 −0.51
U AF 7.1 5.66 1.19 −0.99
P BF 43.0 82.79 13.12 −1.69 −0.42
P AF 7.4 3.04 −1.43 0.23

Robot 3 U BF 50.3 88.87 10.61 −0.78 −0.16
U AF 5.6 3.77 1.14 −1.82
P BF 47.4 88.19 8.62 −0.58 0.47
P AF 5.6 2.68 1.13 −0.38

Robot 4 U BF 53.6 88.43 9.11 −0.91 −0.42
U AF 6.2 3.22 −0.63 −0.63
P BF 51.1 85.52 21.20 3.17 1.63
P AF 7.4 4.14 1.32 −1.08

Robot 5 U BF 54.9 88.71 10.93 −0.64 −0.21
U AF 6.2 7.17 −1.14 −0.53
P BF 42.2 83.89 5.75 −0.85 −0.82
P AF 6.8 3.53 −0.85 0.04

Robot 6 U BF 48.1 87.32 6.03 1.60 0.82
U AF 6.1 4.91 1.58 0.47
P BF 47.5 82.95 11.90 −0.80 −0.51
P AF 8.1 6.72 −1.08 −0.38

1

3

4

6

2

7

8

5

Start/End 
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CW 

CCW

Y

X
O

1.5 m 

Fig. 8. (Colour online) Unseen path to test the performance of
robot calibrated with the UMBmark method or proposed method.
Path has been designed to allow the robot to move in a trajectory
consisting of straight paths in both CW and CCW directions.

While the radial error improvements in both the methods
are within ± 5% of each other, the experiments showed some
advantages in using the proposed method as compared to
the UMBmark method. First, the proposed method requires
a single straight path for calibration, which is believed to
be simpler to implement than the square path needed by
the UMBmark technique. The proposed method is also less
timely to complete, than the UMBmark method. Specifically,
the average time spent to perform full test using the proposed
method was approximately 10% of the average time needed
to conduct the UMBmark method. Further, since this method

–40

–30
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–10

0

–40             –30              –20               –10                0

X[mm]

Y
[m

m
]

Before Calibration

After Calibration-UMBmark Method

After Calibration-Proposed Method

Fig. 9. (Colour online) Positioning of robot before and after
calibration.

is built upon the symbolic form of robot kinematics, it can be
extended to calibrate other types of wheeled mobile robots
such as omnidirectional mobile robots.

In the next experiment, we programmed one of the
calibrated robots (using the two calibration tests outlined
earlier) to follow an unseen double square path. This path,
which has not been previously used for calibration in either
the UMBmark or the proposed method, is used to further
compare the workability of the methods. With reference
to Fig. 8, the path was designed to move the robot along
lines 1 to 8 and return it to the original point “O.” First,
the test was conducted without consideration of corrective
factors. Next, the test was repeated on the robot considering
the corrective factors obtained by the UMBmark method,
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or the proposed method. The experiment was repeated 10
times; Fig. 9 depicts the results. As shown in this figure,
the proposed method is slightly better than the UMBmark
method. Specifically, the mean error improvement indices
for the UMBmark method and the proposed method were
73.18 and 79.62%, respectively.

8. Conclusions
Odometry errors in mobile robots with differential drives are
inevitable. These errors originate from hard to completely
avoid imperfections such as unequal wheels diameters,
misalignment at joints, backlash, slippage in encoder
pulses, and much more. In this paper, we proposed a
method to reduce the odometry errors, and compared its
performance with the UMBmark, a commonly used approach
in calibration of differential drive mobile robots. The focus
was on correcting the systematic errors with an effective, yet
simple to implement method. Six prototype differential drive
mobile robots were constructed to evaluate the effectiveness
of the developed method. Experimental analyses, using
the prototype robots, showed that the method can remove
odometry errors by 80–90%, which is comparable with
the UMBmark method. Further tests using an unseen
path showed that a robot calibrated with the proposed
method produced slightly less position error than the case
whereby it was calibrated with the UMBmark method. The
normal distribution diagrams and the values obtained for
the skewness and kurtosis indices showed that most of data
groups satisfy the normal distribution criterion, especially
after calibration, to which both indices were bounded
between −1.82 and 1.58. Therefore, both calibration
methods, which were used to reduce the positioning error
of the robot, statistically performed well.

Overall, this paper, which is believed to make a further
contribution to the development of sensory systems and
techniques for positioning of differential drive mobile robots,
showed that the method of calibration in this paper is practical
and can lead to positioning improvement in wide applications
of mobile robots, and should be seriously considered as
a potential method for calibration of mobile robots with
differential drive mechanism. Future work should examine
the usefulness of this technique toward online calibration to
further improve the accuracy of mobile robot motions.

Appendix
For situations where the values of robot’s actual and nominal
parameters are not the same, i.e., α �= 0 or β �= 0 and,
Flat �= 1 or Flon �= 1, the nominal values in Eq. (15) must
be replaced with the actual ones, as shown by the following
equation:

[
θ̇L

θ̇R

]
=

⎡
⎢⎢⎢⎣

2

D̂L

cos(θ)
2

D̂L

sin(θ) − l̂

D̂L

2

D̂R

cos(θ)
2

D̂R

sin(θ)
l̂

D̂R

⎤
⎥⎥⎥⎦

⎡
⎢⎣

ẋ

ẏ

θ̇

⎤
⎥⎦. (A1)

With reference to Eq. (A1), D̂L and D̂R are the actual
values of left and right wheel diameters and l̂ represents

the actual wheelbase of robot. Using the UMBmark method,
the relationships between the actual and nominal values of
wheelbase as well as wheel diameters are given by Eqs. (8)
and (9). By placing Eqs. (8) and (9) into Eq. (A1), the
following equation is obtained:
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(A2)

From the work by Borenstein,20 we know that Da =
0.5(D̂R + D̂L). Thus,

1

D̂L

= (D̂R + D̂L)/D̂L

(D̂L + D̂R)
= D̂R/D̂L + 1

2Da

= Ed + 1

2Da

. (A3)

Replacing 1/D̂L in Eq. (A2) with its equivalent from
Eq. (A3), results in the following relation:

[
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]
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Alternatively, for the proposed method, Eq. (A1) can
be rewritten using the nominal values of wheel diameters,
wheelbase, and the corrective factors, Flat and Flon. This is
done in two stages. First, the angular velocity of the left
wheel is adjusted by multiplying it by the lateral corrective
factor (Flat). This will ensure that the robot stays along the
straight path. The corresponding relationship between the
robot trajectory variables and the wheels variables will then
become

[
θ̇L

θ̇R

]

=

⎡
⎢⎢⎣
FLat

(
2
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cos(θ)

)
FLat

(
2
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l
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l

⎤
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×

⎡
⎢⎣

ẋ

ẏ

θ̇

⎤
⎥⎦. (A5)

This modification, although allows the robot to stay on the
straight path, does not guarantee that it will reach the final
desired destination (point O in Fig. 4). A second modification
applied to Eq. (A5) is needed. This modification involves
multiplying the entire Jacobian matrix by the longitudinal

https://doi.org/10.1017/S0263574711001329 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711001329


Calibration of wheeled mobile robots 1039

corrective factor, Flon and can be expressed as follows:
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