Journal of Radiotherapy in Practice

cambridge.org/jrp

Original Article

Cite this article: Rabiei A, Yousefnia H, Zolghadri S, Shamsaei M. (2019) Preliminary dosimetric evaluation of ⁹⁰Y-BPAMD as a potential agent for bone marrow ablative therapy. *Journal of Radiotherapy in Practice* **18**: 70–74. doi: 10.1017/S146039691800047X

Received: 11 July 2018 Revised: 31 August 2018 Accepted: 2 September 2018 First published online: 23 October 2018

Key words:

absorbed dose; bone marrow ablation; BPAMD; ¹⁶⁶Ho-DOTMP; multiple myeloma; Yttrium-90

Author for correspondence: Samaneh Zolghadri, E-mail: szolghadri@aeoi.org.ir

© Cambridge University Press 2018.

Preliminary dosimetric evaluation of ⁹⁰Y-BPAMD as a potential agent for bone marrow ablative therapy

Ali Rabiei¹, Hassan Yousefnia², Samaneh Zolghadri² and Mojtaba Shamsaei¹

¹Energy Engineering and Physics Department, Amir Kabir University of Technology, Tehran, Iran and ²Material and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran

Abstract

Aim: Bone-seeking radiopharmaceuticals are potential therapeutic tools for bone marrow ablation in patients with multiple myeloma. In this procedure, estimation of radiation absorbed dose received by the target and non-target organs is one of the most important parameters that should be undertaken. This research revolves around the absorbed dose to human organs after ⁹⁰Y-BPAMD injection. Materials and methods: ⁹⁰Y-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid (⁹⁰Y-BPAMD) complex was successfully prepared under optimised conditions. The human absorbed dose of the complex was estimated based on the biodistribution data on rats using the radiation-absorbed dose-assessment resource method. The target to non-target absorbed dose ratios for the complex was compared with the ratios for ¹⁶⁶Ho-DOTMP, as the main radiopharmaceutical for bone marrow ablation. Results: As expected, the highest amounts of absorbed dose were observed in the bone surface and the bone marrow with 2.52 and 2.29 mGy/MBq, respectively. The red marrow to the most organ absorbed dose ratios for ⁹⁰Y-BPAMD are much higher than the ratios for ¹⁶⁶Ho-DOTMP. *Findings:* ⁹⁰Y-BPAMD has interesting characteristics compared with ¹⁶⁶Ho-DOTMP and can be considered as a high potential agent for bone marrow ablative therapy of the patient with multiple myeloma.

Introduction

Multiple myeloma is a plasma cell malignancy, mainly involving bone marrow, with the 5-year survival rate of <30%.^{1–3} However, chemotherapy is known as the standard method of treatment;⁴ radiation therapy and stem cell transplant are used as the other treatment methods for disease control.⁵ Stem cell transplant is the common procedure in multiple myeloma treatment that is used following radiation or chemotherapy.

In the technique called bone marrow ablation, all stem cells of the haematopoietic system are destroyed to follow the bone marrow transplantation for patients with multiple myeloma.⁶ Recently, some bone-seeking radiopharmaceuticals using bisphosphonates are developed for bone marrow ablation, offering a beneficial therapeutic option in patients with multiple myeloma.^{7,8}

However, bisphosphonates are known as the effective drugs for transportation of the diagnostic and therapeutic radionuclides to the bone site.⁹ New generation of bisphosphonates such as (4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl)acetic acid (BPAMD) are developed solving some requirements and restrictions of the first-generation phosphonates.¹⁰ Lately, the radiolabelled compounds of BPAMD have shown excellent biodistribution in animal model or human studies.^{11,12}

Among the different therapeutic radionuclides, Samarium-153 [¹⁵³Sm]¹³ and Holmiun-166 [¹⁶⁶Ho]⁷ with their high-energy β -particles have been used for bone marrow ablation in the patients with multiple myeloma. ¹⁶⁶Ho-DOTMP⁷ is used as the main radiopharmaceutical for this purpose. Yttrium-90 [⁹⁰Y] (E β -max = 2·25 MeV, $T_{1/2}$ = 2·7 d) is of enormous interest owing to its favourable decay characteristics and its availability in the form of ⁹⁰Sr-⁹⁰Y generator system, resulting in the preparation of radiopharmaceuticals with greater specific activity. ⁹⁰Y seems to be a better candidate for bone marrow ablation compared with ¹⁶⁶Ho, according to its high-energy β -particles.

⁹⁰Y is believed to be the most useful among the radionuclides that have been used for radiotherapeutic purposes.^{14 90}Y-radiopharmaceuticals are widely used for the treatment and management of different cancer types.¹⁵ However, some radiolabelled compounds of this radionuclide, including ⁹⁰Y-citrate and ⁹⁰Y-EDTMP, are used in clinical applications.^{16,17} These complexes suffer from the low stability in human serum resulting in the liver toxicity. Recently, ⁹⁰Y-BPAMD was prepared that showed interesting characteristics compared with the other ⁹⁰Y bone-seeking agents and even ¹⁶⁶Ho-BPAMD.¹⁸

In this study, with respect to the importance of absorbed dose in the bone marrow and other non-target organs, as a first step to evaluate the possibility of its usage, the absorbed dose to human organs after injection of ⁹⁰Y-BPAMD was estimated based on the biodistribution of rats data by radiation-absorbed doseassessment resource (RADAR) method. The resulting data were compared with ¹⁶⁶Ho-DOTMP as the only clinically used ¹⁶⁶Ho bone marrow ablative agent.

Materials and Methods

An electrochemical ⁹⁰Sr-⁹⁰Y generator "Kamadhenu" system from Isotope Technologies Dresden, ITD, Germany was used for radiolabelling purpose. BPAMD was obtained from ABX (Radeberg, Germany). The other chemical reagents and Whatman No. 2 paper were purchased from Merck (Darmstadt, Germany) and Whatman (Buckinghamshire, UK). A high-purity germanium (HPGe) detector coupled with a Canberra[™] (model GC1020-500SL) multichannel analyser and a Wallac 1220 Quantulus, Perkin-Elmer, ultra-low-level liquid scintillation spectrometer (Turku, Finland) were used for the assessment of γ and β impurities. Radio-chromatography was performed by using a Bioscan AR-2000 radio thin layer chromatography scanner instrument (Bioscan, Washington, DC, USA). The male Syrian rats weighing 180-220 g kept at routine day/night light program and under common rodent diet pellets were used for biodistribution studies.

Preparation and quality control of ⁹⁰Y-BPAMD

An electrochemical generator based on the secular equilibrium of ⁹⁰Sr–⁹⁰Y was used to attain ⁹⁰YCl₃ for radiolabelling purpose. The amounts of ⁹⁰Sr in ⁹⁰YCl₃ solution was specified by extraction paper chromatography technique according to the previous research.¹⁹ Radionuclidic purity and radiochemical purity of the solution were checked by an HPGe detector and instant thin layer chromatography (ITLC) method, respectively.

 90 Y-BPAMD was prepared according to the previously reported literature.¹⁸ Briefly, 1 mg of BPAMD was dissolved in 1 mL pure water and the aqueous solution was used for labelling studies. 60 µL (105 nmol) of the stock solution was added to the vial containing 370 MBq of 90 YCl₃. The pH of the reaction mixture was adjusted to 5 and the mixture was incubated for 45 minutes at 90–100°C. To remove the non-complexed 90 Y from the radiolabelled compound, the mixture was passed over the strong cation exchanger (Strata-X-C 60 mg). The radiochemical purity was checked by ITLC method using the NH₄OH:MeOH: H₂O (0·2:2:4) solvent system as the mobile phase.

Biodistribution assessment of the radiolabelled complex in male Syrian rats

Final ⁹⁰Y-BPAMD solution with approximately 5.55 MBq radioactivity was injected intravenously into the male Syrian rats through their tail veins. The animals were sacrificed at selected times after injection using the animal care protocols. The percentage of injected dose per gram (%ID/g) for different organs was calculated by dividing the activity amount of each tissue (A) to the injected activity and the mass of each organ.

Statistical analysis

Five mice were sacrificed for each time interval. All values were expressed as mean \pm SD and the data were compared using Student's *t*-test. Statistical significance was defined as p < 0.05.

Calculation of accumulated activity in human organs

The accumulated activity in human organs was determined according to the previous research performed by Yousefnia et al.²⁰ In summary, the non-decay corrected percentage-injected dose versus time was plotted for each animal organ. Although linear approximation was used between the two experimental points of times and the curves were extrapolated to infinity by fitting the tail of each curve to a monoexponential curve, the area under the curves were counted as the accumulated activity of animal organs. Then, the accumulated activity for human organs were determined by the extrapolation of this amount for animal organs using the proposed method of Sparks and Aydogan.²¹

Equivalent and effective absorbed dose calculation

The absorbed dose in human organs was calculated by RADAR formalism based on biodistribution data of the rats²² and in accordance with the other previously reported research.²¹ Briefly, the calculated accumulated activity was multiplied by the dose factors of source organs taken from the amount presented in OLINDA/EXM software.²³

The effective absorbed dose for each organ was computed by Equation (1):

$$E = \sum_{T} W_{T} H_{T} \tag{1}$$

where H_T is the equivalent absorbed dose for each organ and W_T is the tissue-weighting factor that represents a subjective balance between the different stochastic health risks.²⁴ W_T was obtained from the reported value in ICRP-103.²⁵

Results and Discussion

Preparation and quality control of ⁹⁰Y-BPAMD

The radionuclidic purity and radiochemical purity of 90 YCl₃ solution were calculated to be more than 99·99 and 99%, respectively. The amount of 90 Sr contamination in the solution was estimated to be equal to 1·05 ppm (Figure 1), which is within the permissible limit. Radiochemical purity of higher than 98% was observed for 90 Y-BPAMD complex (Figure 2).

Figure 1. Extraction paper chromatography of the ⁹⁰Y solution used for radiolabelling.

Table 1. The non-decay corrected %ID/g values after intravenously injection of ⁹⁰Y-BPAMD to the rats

		Time						
Organ	1 h	2 h	4 h	24 h	48 h	72 h		
Blood	0.31 ± 0.01	0.29 ± 0.01	0.16 ± 0.01	0.07 ± 0.00	0.00 ± 0.00	0.00 ± 0.00		
Urine	12.35 ± 0.42	9.95 ± 0.46	8.96 ± 0.42	3.07 ± 0.24	0.06 ± 0.00	0.05 ± 0.00		
Bladder	0.41 ± 0.02	0.68 ± 0.03	0.42 ± 0.02	0.28 ± 0.01	0.21 ± 0.01	0.09 ± 0.00		
Kidney	1.20 ± 0.01	1.15 ± 0.05	0.71 ± 0.03	0.24 ± 0.01	0.02 ± 0.00	0.00 ± 0.00		
Liver	0.19 ± 0.01	0.26 ± 0.01	0.30 ± 0.01	0.11 ± 0.00	0.06 ± 0.00	0.05 ± 0.00		
Spleen	0.11 ± 0.00	0.10 ± 0.00	0.17 ± 0.01	0.04 ± 0.00	0.01 ± 0.00	0.00 ± 0.00		
Lung	0.10 ± 0.00	0.12 ± 0.00	0.23 ± 0.01	0.19 ± 0.01	0.08 ± 0.00	0.07 ± 0.00		
Stomach	0.04 ± 0.00	0.09 ± 0.00	0.09 ± 0.00	0.12 ± 0.00	0.01 ± 0.00	0.01 ± 0.00		
Heart	0.18 ± 0.01	0.14 ± 0.00	0.12 ± 0.00	0.06 ± 0.00	0.00 ± 0.00	0.00 ± 0.00		
Intestine	0.03 ± 0.00	0.05 ± 0.00	0.10 ± 0.00	0.09 ± 0.01	0.01 ± 0.00	0.00 ± 0.00		
Bone	7.12 ± 0.33	7·73±0·31	8·23±0·38	7.07 ± 0.30	5.36 ± 0.23	3.94 ± 0.18		
Muscle	0.15 ± 0.01	0.14 ± 0.00	0.13 ± 0.00	0.02 ± 0.00	0.01 ± 0.00	0.00 ± 0.00		
Skin	0.01 ± 0.00	0.01 ± 0.00	0.02 ± 0.00	0.01 ± 0.00	0.01 ± 0.00	0.00 ± 0.00		

Biodistribution assessment of the radiolabelled complex in rats

Biodistribution of ⁹⁰Y-BPAMD in the rats was investigated up to 72 h post injection. The non-decay corrected %ID/g for the rat organs after the injection of the complex was demonstrated in Table 1. The biodistribution of the complex showed that the radioactivity would remove from blood circulation very fast and significantly excreted from the kidneys. No considerable accumulation was observed in the liver. Based on the obtained results, it is clearly concluded that the major portion of the injected activity of the complex is accumulated in the bones.

Dosimetric studies

Dosimetric evaluation of the complex in human organs was carried out by RADAR method based on biodistribution data in the rat organs. The equivalent and effective absorbed dose in human organs after intravenous injection were presented in Table 2.

Owing to the direct relationship between the absorbed dose and response in terms of cell killing/survival, this study was done with the aim of estimating the radiation absorbed dose in human organs after injection of ⁹⁰Y-BPAMD. For this purpose, the biodistribution data of male Syrian rats were used. However, it should be noted that the actual percentage of the administered dose of radiation that reaches the bone/bone marrow necessarily varies from subject to subject.

Besides, extrapolation between animals and humans may lead to overestimation or underestimation of the absorbed dose, but the previous studies have demonstrated the usefulness of animal biodistribution as a model for the absorbed dose estimations in humans.^{26,27} Estimation of the absorbed dose from small animals such as mice and rats is probably the most accurate procedure that has been used since the earliest days of nuclear medicine.²⁸

Table 2.	Equivalent	and effective	absorbed	dose d	elivered	into	human	organs
after inje	ction of 90Y	-BPAMD						-

Target organs	Equivalent absorbed dose in humans (mGy/MBq)	Wt ^a	Effective absorbed dose in humans (mSv/MBq)
Adrenals	0	0.12	0
Brain	0	0.01	0
Breasts	0	0.12	0
GB wall	0	0.12	0
LLI wall	0.006	0.12	0.0007
Small int	0.007	0.12	0.0008
Stomach wall	0.004	0.12	0.0005
ULI wall	0.009	0.12	0.0011
Heart wall	0.009	0.12	0.0011
Kidneys	0.20	0.12	0.024
Liver	0.089	0.04	0.0036
Lungs	0.106	0.12	0.0127
Muscle	0.047	0.12	0.0056
Ovaries	0	0.08	0
Pancreas	0	0.12	0
Red marrow	2.29	0.12	0.2748
Bone surf	2.52	0.01	0.0252
Spleen	0.030	0.12	0.0036
Testes	0	0.12	0
Thymus	0	0.12	0
Thyroid	0	0.04	0
UB wall	0.004	0.04	0.0002
Total body	0.215		0.361

Note: ^aTissue weighting factors according to international commission on radiological protection, ICRP-103 (2007).

Abbreviations: GB, gallbladder; LLI, lower large intestine; int, intestine; ULI, upper large intestine; UB Wall, urinary bladder wall.

As expected, the highest amounts of absorbed dose are observed in the bone surface and the bone marrow with 2.52 and 2.29 mGy/MBq, respectively, whereas the other organs receive insignificant absorbed dose. The bone marrow to other tissue absorbed dose ratios for 90 Y-BPAMD were calculated and presented in Table 3. For better comparison, the calculated ratios after injection of 166 Ho-DOTMP, as the only clinically used 166 Ho bone marrow ablative agent, to the patients with multiple myeloma are also given in Table 3.

As can be seen in Table 3, the red marrow to the most organ absorbed dose ratios for ⁹⁰Y-BPAMD are much higher than these ratios for ¹⁶⁶Ho-DOTMP. This means for a given dose to the bone marrow as the target organ, total body and other organs such as spleen, bone surface, brain etc. would receive lesser absorbed dose in the case of ⁹⁰Y-BPAMD utilisation. The absorbed dose ratios of red marrow:liver and red marrow:lung are

Table 3.	Bone	marrow	to no	n-target	absorbed	dose	ratios	for 90	Y-BPAMD	and
¹⁶⁶ Ho-DO	TMP			-						

Organs	90Y-BPAMD	¹⁶⁶ Ho-DOTMP
Adrenals	N.D. ^a	36-9
Brain	N.D.	36.9
Breasts	N.D.	39.8
GB wall	N.D.	39.8
LLI wall	381.7	36.9
Small int.	327.1	39.8
Stomach wall	572.5	39.8
ULI wall	254.4	39.8
Heart wall	254.4	39.8
Kidneys	11.5	11.5
Liver	25.7	39.8
Lungs	21.8	36.9
Muscle	48.7	39.8
Pancreas	N.D.	39.8
Red marrow	1	1
Bone surf	0.91	0.6
Spleen	76.3	39-8
Testes	N.D.	39-8
Thymus	N.D.	39-8
Thyroid	N.D.	36-9
UB wall	572·5	1.8
Total body	10.7	8.3
Reference	This work	7

Note: ^aN.D. refers to not defined.

Abbreviations: GB, gallbladder; LLI, lower large intestine; int, intestine; ULI, upper large intestine; UB Wall, urinary bladder wall.

greater for ¹⁶⁶Ho-DOTMP, rather than ⁹⁰Y-BPAMD. Therefore, for delivering a certain dose to the bone marrow, these two organs would receive lesser absorbed dose in the case of ¹⁶⁶Ho-DOTMP usage.

Conclusion

The radiolabelled 90 Y complex was prepared with high radiochemical purity (>98%, ITLC). The biodistribution of the complex in normal rats up to 72 h post injection indicated considerable accumulation in the bones. The highest amounts of absorbed dos are observed in the bone surface and the bone marrow with 2.52 and 2.29 mGy/MBq, respectively, while the other organs receive insignificant absorbed dose. The results indicate that for a given dose to the bone marrow as the target organ, the most non-target organs would receive lesser absorbed dose in the case of 90 Y-BPAMD utilisation rather than 166 Ho-DOTMP. Generally, the dosimetric data of 90 Y-BPAMD showed high red marrow to nontarget organs absorbed dose ratios and therefore can be considered as a potential agent for bone marrow ablative therapy; however, further biological studies are still needed.

Acknowledgements. None.

Ethical standards. All procedures contributing to this work comply with the ethical standards of the relevant national guidelines on the care and use of laboratory animals and has been approved by the NSTRI Committee.

References

- 1. Alexanian R, Dimopoulos M. The treatment of multiple myeloma. N Engl J Med 1994; 330: 484–489.
- Nishiyama Y, Tateishi U, Shizukuishi K et al. Role of ¹⁸F-fluoride PET/CT in the assessment of multiple myeloma: initial experience. Ann Nucl Med 2013; 27: 78–83.
- Cascini G L, Cuccurullo V, Tamburrini O et al. Nuclear medicine in multiple myeloma more than diagnosis. Nucl Med Rev Cent East Eur 2010; 13: 32–38.
- Cavo M, Gobbi M, Tura S. Peptichemio in multiple myeloma. (Preliminary results). Haematologica 1981; 66: 208–215.
- http://www.cancer.org/cancer/multiplemyeloma/detailedguide/multiplemyeloma-treating-by-stage. Accessed on 31st August 2018.
- Bayouth J E, Macey D J, Kasi L P et al. Pharmacokinetics, dosimetry and toxicity of Holmium-166-DOTMP for bone marrow ablation in multiple myeloma. J Nucl Med 1995; 36: 730–737.
- Breitz H B, Wendt R E, Stabin M S et al. ¹⁶⁶Ho-DOTMP radiationabsorbed dose estimation for skeletal targeted radiotherapy. J Nucl Med 2006; 47: 534–542.
- Wiesmann A, Einsele H, Kanz L, Dohmen B M. Complete remission after myeloablation with bone-seeking ¹⁸⁶Re-HEDP and high-dose melphalan followed by autologous stem cell transplantation in a patient with chemorefractory multiple myeloma. Bone Marrow Transplant 2005; 36: 89–90.
- Rabie A, Enayati R, Yousefnia H et al. Preparation, quality control and biodistribution assessment of ¹⁵³Sm-BPAMD as a novel agent for bone pain palliation therapy. Ann Nucl Med 2015; 29: 870–876.
- Fellnera M, Biesalski B, Bausbacher N et al. (68)Ga-BPAMD: PETimaging of bone metastases with a generator based positron emitter. Nucl Med Biol 2012; 39: 993–999.
- Fellner M, Baum R P, Kubícek V et al. PET/CT imaging of osteoblastic bone metastases with (68)Ga-bisphosphonates: first human study. Eur J Nucl Med Mol Imaging 2010; 37: 834.
- 12. Yousefnia H, Zolghadri S, Sadeghi H R et al. Preparation and biological assessment of ¹⁷⁷Lu-BPAMD as a high potential agent for bone pain palliation therapy: comparison with ¹⁷⁷Lu-EDTMP. J Radioanal Nucl Chem 2016; 307: 1243–1251.

- Macfarlane D J, Durrant S, Bartlett M L et al. ¹⁵³Sm EDTMP for bone marrow ablation prior to stem cell transplantation for haematological malignancies. Nucl Med Commun 2002; 23: 1099–1106.
- Vanhemert F J, Sloof G W, Schimmel K J M et al. Radiopharmaceutical management of ⁹⁰Y/¹¹¹In labeled antibodies: shielding and quantification during preparation and administration. Ann Nucl Med 2006; 20: 575–581.
- 15. Horovitz C T. Biochemistry of Scandium and Yttrium, Part 2: Biochemistry and Applications. New York: Springer, 2000.
- Ogawa K, Kawashima H, Shiba K et al. Development of [⁹⁰Y]DOTAconjugated bisphosphonate for treatment of painful bone metastases. Nucl Med Biol 2009; 36: 129–135.
- Környei J, Antalffy M, Baranyai L. Opportunities in bone and joint therapy in the mirror of radiopharmaceuticals. www.cigota.rs/sites/ default/files/abstract11.pdf. Accessed on 31st August 2018.
- Rabiei A, Shamsaei M, Yousefnia H et al. Development and biological evaluation of ⁹⁰Y-BPAMD as a novel bone seeking therapeutic agent. Radiochimica Acta 2016; 104: 727–734.
- Pandey U, Dhami P S, Jagesia P et al. Extraction paper chromatography technique for the radionuclidic purity evaluation of ⁹⁰Y for clinical use. Anal Chem 2008; 80: 801–807.
- Yousefnia H, Zolghadri S, Jalilian A R, Naseri Z. Preliminary absorbed dose evaluation of two novel ¹⁵³Sm bone-seeking agents for radiotherapy of bone metastases: comparison with ¹⁵³Sm-EDTMP. J Radiother Pract 2015; 14: 252–259.
- 21. Sparks R B, Aydogan B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. Sixth International Radiopharmaceutical Dosimetry Symposium. Oak Ridge, TN: Oak Ridge Associated Universities, 1996: 705–716.
- Stabin M G, Siegel J A. Physical models and dose factors for use in internal dose assessment. Health Phys 2003; 85: 294–310.
- Stabin M G, Sparks R B, Crowe E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005; 46: 1023–1027.
- 24. Brenner D J. Effective dose: a flawed concept that could and should be replaced. Br J Radiol 2008; 81: 521–523.
- 25. ICRP Publication 103. The 2007 recommendations of the international commission on radiological protection. Ann ICRP 2007; 37: 2–4.
- Bélanger M J, Krause S M, Ryan C et al. Biodistribution and radiation dosimetry of [18F]F-PEB in nonhuman primates. Nucl Med Commun 2008; 29: 915–919.
- Kesner A L, Hsueh W A, Czernin J et al. Radiation dose estimates for [18F]5-fluorouracil derived from PET-based and tissue-based methods in rats. Mol Imaging Biol 2008; 10: 341–348.
- Williams LE. Radiopharmaceuticals: Introduction to Drug Evaluation and Dose Estimation. ISBN 9781439810675, Florida, USA: CRC Press, 2010.