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Abstract

Zhang [‘On hyperstability of generalised linear functional equations in several variables’, Bull. Aust.
Math. Soc. 92 (2015), 259–267] proved a hyperstability result for generalised linear functional equations
in several variables by using Brzdęk’s fixed point theorem. We complete and extend Zhang’s result. We
illustrate our results for general linear equations in two variables and Fréchet equations.
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1. Introduction

The stability of functional equations was proposed by Ulam [13] in 1940 and
was partially solved by Hyers [9] in 1941. Since then many mathematicians have
investigated this topic. We study hyperstability by asking: When is it true that a
function approximately satisfying a given functional equation must also be a solution
of the equation?

Throughout the paper, we assume that F,K ∈ {R,C}, where R and C are the sets of
all real numbers and complex numbers, respectively. We also assume that N and R+

are the sets of all positive integers and nonnegative real numbers, respectively. Suppose
that X and Y are normed spaces over the scalar fields F and K, respectively.

We are interested in the generalised linear functional equation (see [3, 4, 14])

M∑
i=1

Li f
( N∑

j=1

ai, jx j

)
= 0,

where f : X → Y , ai, j ∈ F, Li ∈ K \ {0} for i = 1, . . . , M and j = 1, . . . , N. We
assume that M ≥ 2 and N ≥ 2. This equation includes various well-known functional
equations, including:
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• the general linear equation: f (ax + by) = A f (x) + B f (y);
• the Fréchet equation: f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (x + z) +

f (y + z). (A generalised version of the Fréchet equation with constant coefficients
was studied by Brzdęk et al. [8] and Malejki [10].)

A further generalisation of the functional equation in this paper was proposed and
studied by Bahyrycz et al. [1].

Stability and hyperstability results for the aforementioned equations have been
investigated by many mathematicians (see, for example, [2, 12] and references
therein). The starting point of this work is Zhang’s result [14]. To state his result
(Theorem Z below), we recall the following condition on the matrix [ai, j]M×N .

Zhang’s condition.

(1) For each i ∈ {1, . . . ,M}, there exists j ∈ {1, . . . ,N} such that ai, j , 0.
(2) There exist i0 ∈ {1, . . . , M} and two different indices j1, j2 ∈ {1, . . . ,N} such that

ai0, j1 , 0, ai0, j2 , 0 and, for any i , i0, γ , 0, there is j ∈ {1, . . . , N} satisfying
ai, j , γai0, j.

Theorem Z. Suppose that [ai, j]M×N satisfies Zhang’s condition. Suppose further that
ϕ : (X \ {0})N → R+ and f : X → Y satisfy the inequality∥∥∥∥∥ M∑

i=1

Li f
( N∑

j=1

ai, jx j

)∥∥∥∥∥ ≤ ϕ(x1, . . . , xN) for all x1, . . . , xN ∈ X \ {0}.

Suppose that C ≥ 0. If either ϕ(x1, . . . , xN) := C
∑N

j=1 ‖x j‖
p where p < 0 or

ϕ(x1, . . . , xN) := C
∏N

j=1 ‖x j‖
p j where p1 + · · · + pN < 0, then

M∑
i=1

Li f
( N∑

j=1

ai, jx j

)
= 0 for all x1, . . . , xN ∈ X \ {0}.

Zhang’s proof of Theorem Z is based on Brzdęk’s fixed point theorem [7], but it is
not complete. In fact, for a sufficiently large integer t, it follows from Brzdęk’s fixed
point theorem that there exists a function ft defined on X \ {0} (not on X) such that

M∑
i=1

Li ft
( N∑

j=1

ai, jx j

)
= 0 for all x1, . . . , xN ∈ X \ {0}.

Since each ft is defined for nonzero elements in X, it follows that
M∑

i=1

Li ft
( N∑

j=1

ai, jx j

)
= 0

for all x1, . . . , xN ∈ X \ {0} with∑N
j=1 ai, jx j , 0 for all i = 1, . . . ,M.

By following the remaining part of Zhang’s proof, we see that f satisfies
M∑

i=1

Li f
( N∑

j=1

ai, jx j

)
= 0

for all x1, . . . , xN ∈ X \ {0} with∑N
j=1 ai, jx j , 0 for all i = 1, . . . ,M.
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The aim of this paper is to give a different proof of Theorem Z. Moreover, we use a
weaker assumption and obtain a hyperstability result for generalised linear functional
equations in several variables. We illustrate our result with two concrete examples,
namely, general linear equations and Fréchet equations.

2. Main results

To keep the notation simple, we allow the scalar multiplication from the right, that
is, xa = ax, where a is a scalar and x is a vector. In particular, if X := [xi, j] is an n × m
matrix whose entries are vectors and A := [a j,k] is an m × p matrix whose entries
are scalars, then X A = [x′i, j] is an n × p matrix whose entries are vectors such that
x′i, j := xi,1a1, j + · · · + xi,mam, j. We write diag(x1, . . . , xN) to denote the N × N diagonal
matrix [xi, j], where xi,i := xi for i = 1, . . . ,N, and write 1 for the N × N matrix whose
entries are all 1.

We first recall some facts from linear algebra.

Lemma 2.1. A vector space over an infinite field cannot be a finite union of proper
subspaces of itself.

In particular, we obtain the following result.

Lemma 2.2. Suppose that f , g1, . . . , gn : X→ F are linear functionals with the property
ker f \ ker gi , ∅ for i = 1, . . . , n. Then ker f \

⋃n
i=1 ker gi , ∅.

Without loss of generality, we always assume that A := [ai, j]M×N satisfies Zhang’s
condition with i0 = 1. (Otherwise, we can swap the first row and the (i0)th row.) Then
there exist (k1, . . . , kN), (c1, . . . , cN) ∈ (F \ {0})N and (b1, . . . , bN) ∈ FN such that:

(Z1)
∑N

j=1 a1, jk j = 0 ,
∑N

j=1 ai, jk j for all i = 2, . . . ,M;
(Z2)

∑N
j=1 a1, jb j = 1 and

∑N
j=1 ai, jc j , 0 for all i = 1, . . . ,M.

To see this, for each i ∈ {1, . . . ,M} and j ∈ {1, . . . ,N}, we define τi, π j : FN → F by

τi(t1, . . . , tN) := ai,1t1 + · · · + ai,N tN and π j(t1, . . . , tN) := t j

for (t1, . . . , tN) ∈ FN . By Zhang’s condition:

• ker τ1 \ ker τi , ∅ for i = 2, . . . ,M;
• ker τ1 \ ker π j , ∅ for j = 1, . . . ,N.

By Lemma 2.2, we choose (k1, . . . , kN) ∈ ker τ1 \
((⋃N

j=1 ker π j
)
∪

(⋃M
i=2 ker τi

))
(, ∅).

In particular, (Z1) holds. Since a1,1, . . . , a1,N are not all zero, there exist b1, . . . , bN ∈ F
such that

∑N
j=1 a1, jb j = 1. By Lemma 2.1, FN \

(( ⋃N
j=1 ker π j

)
∪

( ⋃M
i=1 ker τi

))
, ∅.

Then there exists (c1, . . . , cN) ∈ (F \ {0})N such that
∑N

j=1 ai, jc j , 0 for all i = 1, . . . ,M.
That is, (Z2) holds.

From now on, we assume that the vectors (k1, . . . , kN), (c1, . . . , cN) ∈ (F \ {0})N and
(b1, . . . , bN) ∈ FN satisfy Conditions (Z1) and (Z2).
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Lemma 2.3. Suppose that (x1, . . . , xN) ∈ XN and y ∈ X \ {0}. For each n ∈ N, let
y(n)

j := nc jy for j = 1, . . . ,N and

X(n) := A · diag(b1, . . . , bN) · 1 · diag(x1, . . . , xN)

+ A · diag(k1, . . . , kN) · 1 · diag(y(n)
1 , . . . , y(n)

N ),

Z(n) := A · diag(x1, . . . , xN) · 1 · diag(b1, . . . , bN)

+ A · diag(y(n)
1 , . . . , y(n)

N ) · 1 · diag(k1, . . . , kN).

Then the following statements are true.

(1) Both X(n) := [x(n)
i, j ] and Z(n) := [z(n)

i, j ] are M × N matrices.
(2) For each i = 2, . . . , M and j = 1, . . . , N, there exist two elements ui, j ∈ X and

vi, j ∈ X \ {0} such that x(n)
i, j = ui, j + nvi, j. In particular, limn→∞ ‖x

(n)
i, j ‖ =∞.

(3) For each i = 1, . . . , M and j = 1, . . . , N, there exist two elements u′i, j ∈ X and

v′i, j ∈ X \ {0} such that z(n)
i, j = u′i, j + nv′i, j. In particular, limn→∞ ‖z

(n)
i, j ‖ =∞.

(4) X(n) AT = (Z(n) AT )T , where BT is the transpose of B.
(5) If X(n) AT := [s(n)

i,i′ ], then s(n)
1,i′ =

∑N
j=1 ai′, jx j for i′ = 1, . . . ,M.

Proof. Parts (1) and (4) are obvious. To see (2), we note that

X(n) =


a1,1b1 · · · a1,NbN
...

. . .
...

aM,1b1 · · · aM,NbN



x1 · · · xN
...

. . .
...

x1 · · · xN

 +


a1,1k1 · · · a1,NkN
...

. . .
...

aM,1k1 · · · aM,NkN



y(n)

1 · · · y(n)
N

...
. . .

...

y(n)
1 · · · y(n)

N

 .
In particular, for i = 2, . . . ,M and j = 1, . . . ,N,

x(n)
i, j =

N∑
q=1

ai,qbqx j +

N∑
q=1

ai,qkqy(n)
j = ui, j + nvi, j,

where ui, j :=
∑N

q=1 ai,qbqx j and vi, j :=
∑N

q=1 ai,qkqc jy. By Condition (Z1), vi, j , 0.
To see (3), we note that

Z(n) =


a1,1 x1 · · · a1,N xN
...

. . .
...

aM,1 x1 · · · aM,N xN



b1 · · · bN
...

. . .
...

b1 · · · bN

 +


a1,1y(n)

1 · · · a1,Ny(n)
N

...
. . .

...

aM,1y(n)
1 · · · aM,Ny(n)

N



k1 · · · kN
...

. . .
...

k1 · · · kN

 .
In particular, for i = 1, . . . ,M and j = 1, . . . ,N,

z(n)
i, j =

N∑
q=1

ai,qb jxq +

N∑
q=1

ai,qk jy(n)
q = u′i, j + nv′i, j,

where u′i, j :=
∑N

q=1 ai,qb jxq and v′i, j :=
∑N

q=1 ai,qk jcqy. By Condition (Z2), v′i, j , 0.
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For (5), it follows from Conditions (Z1) and (Z2) that[
a1,1 · · · a1,N

]
· diag(b1, . . . , bN) · 1 =

[
1 · · · 1

]
,[

a1,1 · · · a1,N

]
· diag(k1, . . . , kN) · 1 =

[
0 · · · 0

]
.

Hence, [
s(n)

1,1 · · · s(n)
1,M

]
=

[
1 · · · 1

]
· diag(x1, . . . , xN) · AT

+
[
0 · · · 0

]
· diag(y(n)

1 , . . . , y(n)
N ) · AT

=

 N∑
j=1

a1, jx j · · ·

N∑
j=1

aM, jx j

 . �

We are now ready to present the main result, which strengthens Theorem Z.

Definition 2.4. We say that a function ϕ : (X \ {0})N → R+ satisfies Condition (∗) if

lim
n→∞

ϕ(u1 + nv1, . . . , uN + nvN) = 0

for all u1, . . . , uN ∈ X and v1, . . . , vN ∈ X \ {0}.

Theorem 2.5. Suppose that ϕ : (X \ {0})N → R+ and f : X → Y satisfy the inequality∥∥∥∥∥ M∑
i=1

Li f
( N∑

j=1

ai, jx′j
)∥∥∥∥∥ ≤ ϕ(x′1, . . . , x

′
N) for all x′1, . . . , x

′
N ∈ X \ {0}.

If ϕ satisfies Condition (∗), then

M∑
i=1

Li f
( N∑

j=1

ai, jx j

)
= 0 for all x1, . . . , xN ∈ X.

Proof. Let x1, . . . , xN ∈ X. Define two M × N matrices X(n) := [x(n)
i, j ] and Z(n) := [z(n)

i, j ]
as in Lemma 2.3. It follows from Condition (∗) and Lemma 2.3(2, 3) that:

• limn→∞ ϕ(x(n)
r,1 , . . . , x

(n)
r,N) = 0 for r = 2, . . . ,M;

• limn→∞ ϕ(z(n)
r,1 , . . . , z

(n)
r,N) = 0 for r = 1, . . . ,M.

In particular:

• limn→∞
∑M

i=1 Li f
(∑N

j=1 ai, jx
(n)
r, j

)
= 0 for r = 2, . . . ,M;

• limn→∞
∑M

i=1 Li f
(∑N

j=1 ai, jz
(n)
r, j

)
= 0 for r = 1, . . . ,M.

We write X(n) AT := [s(n)
i,i′ ] and Z(n) AT := [t(n)

i,i′ ]. Suppose that Y(n) := [ f (s(n)
i,i′ )] and

Y
(n)

:= [ f (t(n)
i,i′ )]. Suppose that L :=

[
L1 · · · LM

]
. It follows that

LY(n)LT = L(Y(n))T LT and (Y(n))T = Y
(n)
.
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Note that

lim
n→∞

Y(n)LT =



M∑
i=1

Li f
( N∑

j=1

ai, jx j

)
0
...
0


and lim

n→∞
(Y(n))T LT = lim

n→∞
Y

(n)
LT =


0
0
...
0

 .

Hence, L1

M∑
i=1

Li f
( N∑

j=1

ai, jx j

) = lim
n→∞

LY(n)LT = lim
n→∞

L(Y(n))T LT =
[
0
]
.

This completes the proof. �

The following result strengthens Theorem Z.

Theorem 2.6. Suppose that [ai, j]M×N satisfies Zhang’s condition. Further suppose that
ϕ : (X \ {0})N → R+ and f : X → Y satisfy the inequality∥∥∥∥∥ M∑

i=1

Li f
( N∑

j=1

ai, jx′j
)∥∥∥∥∥ ≤ ϕ(x′1, . . . , x

′
N) for all x′1, . . . , x

′
N ∈ X \ {0}.

Suppose that C ≥ 0. If either ϕ(x1, . . . , xN) := C
∑N

j=1 ‖x j‖
p where p < 0 or

ϕ(x1, . . . , xN) := C
∏N

j=1 ‖x j‖
p j where p1 + · · · + pN < 0, then

M∑
i=1

Li f
( N∑

j=1

ai, jx j

)
= 0 for all x1, . . . , xN ∈ X.

Proof. It suffices to prove that ϕ satisfies Condition (∗). Assume that x1, . . . , xN ∈ X
and y1, . . . , yN ∈ X \ {0}.
(1) Suppose that ϕ(x1, . . . , xN) := C

∑N
j=1 ‖x j‖

p. For each j = 1, . . . , N, we note that
limn→∞ ‖x j + ny j‖

p = limn→∞ |n|p‖x j/n + y j‖
p = 0. In particular,

lim
n→∞

ϕ(x1 + ny1, . . . , xN + nyN) = lim
n→∞

C
N∑

j=1

‖x j + ny j‖
p = 0.

(2) Suppose that ϕ(x1, . . . , xN) := C
∏N

j=1 ‖x j‖
p j . It follows that

lim
n→∞

ϕ(x1 + ny1, . . . , xN + nyN) = C lim
n→∞
|n|p1+···+pN

N∏
j=1

∥∥∥∥∥1
n

x j + y j

∥∥∥∥∥p j

= 0. �

The next corollary follows directly from Theorem 2.6 with ϕ identically equal to
zero. This corollary generalises [6, Lemma 4.7].
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Corollary 2.7. Suppose that [ai, j]M×N satisfies Zhang’s condition. If f : X → Y
satisfies

M∑
i=1

Li f
( N∑

j=1

ai, jx′j
)

= 0 for all x′1, . . . , x
′
N ∈ X \ {0},

then
M∑

i=1

Li f
( N∑

j=1

ai, jx j

)
= 0 for all x1, . . . , xN ∈ X.

3. Examples

We end the paper with some examples to illustrate our results and the proof
technique.

Example 3.1 (General linear equation). Let a, b ∈ F \ {0} and A, B ∈ K \ {0}. Suppose
that f : X → Y and ϕ : (X \ {0})2 → R+ satisfy

‖ f (ax1 + bx2) − A f (x1) − B f (x2)‖ ≤ ϕ(x1, x2) for all x1, x2 ∈ X \ {0}.

Let

A :=

a b
1 0
0 1

 .
This matrix satisfies Zhang’s condition with M = 3, N = 2 and i0 = 1. Put

(k1, k2) := (1/a,−1/b), (b1, b2) := (1/a, 0) and (c1, c2) := (1, 1).

Let x1, x2 ∈ X, y ∈ X \ {0} and n ∈ N. Set y(n)
1 := nc1y = ny and y(n)

2 := nc2y = ny. The
two matrices in Lemma 2.3 are

X(n) :=

 x1 x2

x1/a + ny/a x2/a + ny/a
−ny/b −ny/b

 and Z(n) :=

x1 + bx2/a + ny + bny/a −any/b − ny
x1/a + ny/a −ny/b
x2/a + ny/a −ny/b

 .
Then

X(n) AT = (Z(n) AT )T =

 ax1 + bx2 x1 x2

x1 + bx2/a + ny + bny/a x1/a + ny/a x2/a + ny/a
−any/b − ny −ny/b −ny/b

.
If ϕ satisfies Condition (∗), then it follows from Theorem 2.5 that

f (ax1 + bx2) = A f (x1) + B f (x2) for all x1, x2 ∈ X.

Remark 3.2. Piszczek [12] proved the hyperstability result for the function f in
Example 3.1 where ϕ(x1, x2) := ‖x1‖

p + ‖x2‖
p and p < 0 by using Brzdęk’s fixed point

theorem and concluded that

f (ax1 + bx2) = A f (x1) + B f (x2) for all x1, x2 ∈ X \ {0}.
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As already mentioned in the introduction of this paper in relation to the proof of
Theorem Z, the application of Brzdęk’s fixed point theorem can only conclude that

f (ax1 + bx2) = A f (x1) + B f (x2) for all x1, x2 ∈ X \ {0} with ax1 + bx2 , 0.

Recently, the authors of the present paper applied Brzdęk’s hyperstability result for a
Cauchy functional equation on a restricted domain [5] to obtain the same conclusion
as our Example 3.1 (see [11]).

Example 3.3 (Fréchet equation). Suppose that f : X → Y and ϕ : (X \ {0})3 → R+

satisfy

‖ f (x1 + x2 + x3) + f (x1) + f (x2) + f (x3) − f (x1 + x2) − f (x1 + x3) − f (x2 + x3)‖
≤ ϕ(x1, x2, x3) for all x1, x2, x3 ∈ X \ {0}.

Let

A :=



1 1 1
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1


.

This matrix satisfies Zhang’s condition with M = 7, N = 3 and i0 = 1. Put

(k1, k2, k3) := (2,−1,−1), (b1, b2, b3) := (1, 0, 0) and (c1, c2, c3) := (1, 1, 1).

Let x1, x2, x3 ∈ X, y ∈ X \ {0} and n ∈ N. Set y(n)
1 := nc1y = ny, y(n)

2 := nc2y = ny and
y(n)

3 := nc3y = ny. The two matrices in Lemma 2.3 are

X(n) :=



x1 x2 x3

x1 + 2ny x2 + 2ny x3 + 2ny
−ny −ny −ny
−ny −ny −ny

x1 + ny x2 + ny x3 + ny
x1 + ny x2 + ny x3 + ny
−2ny −2ny −2ny


and Z(n) :=



x1 + x2 + x3 + 6ny −3ny −3ny
x1 + 2ny −ny −ny
x2 + 2ny −ny −ny
x3 + 2ny −ny −ny

x1 + x2 + 4ny −2ny −2ny
x1 + x3 + 4ny −2ny −2ny
x2 + x3 + 4ny −2ny −2ny


.

Then

X(n) AT = (Z(n) AT )T

=


x1 + x2 + x3 x1 x2 x3 x1 + x2 x1 + x3 x2 + x3

x1 + x2 + x3 + 6ny x1 + 2ny x2 + 2ny x3 + 2ny x1 + x2 + 4ny x1 + x3 + 4ny x2 + x3 + 4ny
−3ny −ny −ny −ny −2ny −2ny −2ny
−3ny −ny −ny −ny −2ny −2ny −2ny

x1 + x2 + x3 + 3ny x1 + ny x2 + ny x3 + ny x1 + x2 + 2ny x1 + x3 + 2ny x2 + x3 + 2ny
x1 + x2 + x3 + 3ny x1 + ny x2 + ny x3 + ny x1 + x2 + 2ny x1 + x3 + 2ny x2 + x3 + 2ny

−6ny −2ny −2ny −2ny −4ny −4ny −4ny

.
If ϕ satisfies Condition (∗), then it follows from Theorem 2.5 that

f (x1 + x2 + x3) + f (x1) + f (x2) + f (x3) = f (x1 + x2) + f (x1 + x3) + f (x2 + x3)

for all x1, x2, x3 ∈ X.
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Bahyrycz et al. [2] gave the following hyperstability result for Fréchet equations.

Theorem BBPS. Suppose that f : X→ Y and ϕ : (X \ {0})3 → R+ satisfy the condition

‖ f (x1 + x2 + x3) + f (x1) + f (x2) + f (x3) − f (x1 + x2) − f (x1 + x3) − f (x2 + x3)‖
≤ ϕ(x1, x2, x3) for all x1, x2, x3 ∈ X \ {0}.

Suppose that ω : Z \ {0} → R+, where Z stands for the set of all integers, satisfies

ϕ(kx1, kx2, kx3) ≤ ω(k)ϕ(x1, x2, x3)

for all x1, x2, x3 ∈ X \ {0}. Suppose in addition that

M := {m ∈ Z \ {0} : ω(−2m) + 2ω(m + 1) + 2ω(−m) + ω(2m + 1) < 1} , ∅.

If infm∈M ϕ((2m + 1)x,−mx,−mx) = 0 for all x ∈ X \ {0}, then f satisfies the equation

f (x1 + x2 + x3) + f (x1) + f (x2) + f (x3) = f (x1 + x2) + f (x1 + x3) + f (x2 + x3)

for all x1, x2, x3 ∈ X.

We now compare our Example 3.3 and Theorem BBPS. Set X := R and
ϕ(x1, x2, x3) := |x1|/(|x2| + |x3|

2) for x1, x2, x3 ∈ X \ {0}. It is easy to see that ϕ satisfies
Condition (∗). Now we show that Theorem BBPS is not applicable for ϕ. In fact, for
m ∈ Z \ {0}, suppose that ω(m) is a nonnegative real number such that

ϕ(mx1,mx2,mx3) ≤ ω(m)ϕ(x1, x2, x3)

for all x1, x2, x3 ∈ X \ {0}. In particular, if we let x1 = x2 := 1 and x3 := 1/n, where
n ∈ N, then

1
1 + m/n2 ≤ ω(m)

1
1 + 1/n2 .

Taking n→∞ gives ω(m) ≥ 1 and henceM = ∅.
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domain’, in: Ulam Type Stability (eds. J. Brzdęk, D. Popa and Th. M. Rassias) (Springer, Cham,
2019), 217–229.

[11] T. Phochai and S. Saejung, ‘The hyperstability of general linear equation via that of Cauchy
equation’, Aequationes Math. 93 (2019), 781–789.

[12] M. Piszczek, ‘Remark on hyperstability of the general linear equation’, Aequationes Math. 88
(2014), 163–168.

[13] S. M. Ulam, Problems in Modern Mathematics, Science Editions (John Wiley, New York, 1964).
[14] D. Zhang, ‘On hyperstability of generalised linear functional equations in several variables’, Bull.

Aust. Math. Soc. 92 (2015), 259–267.

THEERAYOOT PHOCHAI, Department of Mathematics,
Faculty of Science, Khon Kaen University,
Khon Kaen 40002, Thailand
e-mail: theerayoot.p@kkumail.com

SATIT SAEJUNG, Department of Mathematics,
Faculty of Science, Khon Kaen University,
Khon Kaen 40002, Thailand
Research Center for Environmental and Hazardous Substance Management (EHSM),
Khon Kaen University, Khon Kaen 40002, Thailand
and
Center of Excellence on Hazardous Substance Management (HSM),
Patumwan, Bangkok 10330, Thailand
e-mail: saejung@kku.ac.th

https://doi.org/10.1017/S0004972720000556 Published online by Cambridge University Press

https://orcid.org/0000-0002-2115-9112
mailto:theerayoot.p@kkumail.com
https://orcid.org/0000-0003-3325-2864
mailto:saejung@kku.ac.th
https://doi.org/10.1017/S0004972720000556

	Introduction
	Main results
	Examples
	References

