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We consider slow–fast delayed systems and discuss pulsating periodic solutions, which are

characterised by specific properties that (a) the period of the periodic solution is close

to the delay, and (b) these solutions are formed close to a bifurcation threshold. Such

solutions were previously found in models of mode-locked lasers. Through a case study of

population models, this work demonstrates the existence of similar solutions for a rather

wide class of delayed systems. The periodic dynamics originates from the Hopf bifurcation

on the positive equilibrium. We show that the continuous transformation of the periodic

orbit to the pulsating regime is simultaneous with multiple secondary almost resonant Hopf

bifurcations, which the equilibrium undergoes over a short interval of parameter values. We

derive asymptotic approximations for the pulsating periodic solution and consider scaling

of the solution and its period with the small parameter that measures the ratio of the time

scales. The role of competition for the realisation of the bifurcation scenario is highlighted.

Key words: Population dynamics, bifurcation theory, singular perturbations, functional-

differential equations

1 Introduction

A delay is generally believed to be a destabilising factor in population dynamics mod-

els [25]. Increasing delay can lead to oscillations where the system with zero or small

delay exhibits a globally stable equilibrium. In particular, periodic pulsating solutions

characterised by the alternation of time intervals of almost complete extinction of some

species and outbursts in their number are typical for population dynamics (including

Lotka–Volterra, host-parasite, and susceptible-infective-recovered models), chemical kin-

etics, and laser dynamics [8, 12]. Further, such dynamics often include processes with

different time scales.

In many applications the period of the periodic pulsating solution and the delay

time do not correlate. Hutchinson’s delayed logistic model is a classical example of this

scenario [11]. However, for certain systems, solutions with a period τ, which is close to
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the delay time T , can play an important role. For instance, the prototype delayed model

that was proposed in [30] demonstrates stable periodic regimes with τ ≈ T for certain

parameters of the feedback. This model has applications in lasers [6, 9, 29], population

epidemics [37, 38], and malaria infection [26]. A related example is presented by the

Pyragas method for non-invasive stabilisation of unstable periodic solutions to ordinary

differential systems [10,18,34]. This technique uses a delayed feedback control proportional

to the difference x(t−T )−x(t) with T close to the period of the targeted periodic solution

x∗(t). The resulting stabilised periodic solution is close to x∗ and therefore has a period

τ ≈ T .

Mode-locked lasers present one further example of periodic dynamics with τ ≈ T ,

which is directly related to the subject of this work.

Mode locking of lasers [17] is used to produce periodic sequences of short optical

pulses at high repetition rates, which are suitable for various applications including

material processing, medical imaging, telecommunications [20, 21], optical sampling, mi-

crowave photonics, optical division multiplexing [7], and two-photon imaging [23]. The

optical spectrum of a mode-locked laser consists of a set of equally spaced narrow lines

corresponding to the longitudinal cavity modes characterised by fixed phase relationships

between them1. There are two main methods to produce mode-locked optical pulses, active

and passive mode-locking, and also a combination thereof called hybrid mode-locking. In

particular, a passively mode-locked laser is a self-oscillating system that does not require

the use of an external radio frequency modulation2. In the classical theory of a mode-

locked laser due to Haus [16], a slow evolution of the shape of the optical pulse circulating

in the cavity is described by a complex parabolic master equation of Ginzburg–Landau

type. The solution describing a solitary pulse is explicit and has a hyperbolic secant profile.

However, the Haus master equation is derived under the assumption of small gain and

loss per cavity round trip. An alternative multi-rate functional differential model, which

is free from this approximation, has been obtained from the travelling wave model in the

case of a ring geometry of the laser cavity in [41]. Under further natural assumptions,

such as the Lorentzian profile of the spectral filtering element, the functional differential

model simplifies to the delay differential system

γ−1Ȧ(t) = −A(t) +
√
κ exp

(
1
2

[
(1 − iηg)G(t− T ) − (1 − iηq)Q(t− T )

])
A(t− T ),

Q̇(t) = q0 − γqQ(t) − 1
Eq

(
1 − e−Q(t)

)
|A(t)|2,

Ġ(t) = g0 − γgG(t) − 1
Eg
e−Q(t)(eG(t) − 1)|A(t)|2,

(1.1)

where the complex-valued variable A is the electric field envelope at the entrance of the

absorber section; |A|2 represents the optical power (which is proportional to the density of

photons); the real-valued variables Q and G represent integral losses and gain, respectively

1 Achieving such phase relationships can be, at least qualitatively, viewed as a problem of

synchronisation of many non-linear coupled oscillators with frequencies close to multiples of a

fundamental frequency.
2 Passive mode-locking is commonly achieved by including a saturable absorber section into the

laser cavity.
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(Q and G are functions of the density of the electric charge carriers in the absorber section

and the active section of the laser, respectively); the delay T stands for the cold cavity

round-trip time; γ � 1 is the parameter of the Lorentzian profile of spectral filtering; the

other parameters are explained in [41–43]. This delay differential model is suitable for

describing mode-locking in a laser with large gain and losses, which is the situation typical

of semiconductor laser devices3. At the same time, the model is amenable to analytical

and numerical bifurcation analysis [1–3, 15, 19, 28, 31, 32, 40, 44]. The fundamental mode

locked regime is described by a periodic pulsating solution with a period τ ≈ T .

The subject of this paper is a case study of a rather broad class of population

models, which have a stable periodic pulsating solution with a period close to the

delay time. Our goal is to highlight those features of the systems that can support the

existence of such periodic solutions. These features are shared by the laser dynamics

model in [41] and the population models considered here. In particular, we are interested

in a bifurcation scenario associated with the formation of periodic pulses. We will use

asymptotic analysis as a tool for identifying and obtaining asymptotic approximations for

the periodic pulsating solution of period τ ≈ T .

More specifically, we consider models involving populations of species that evolve on

different time scales. The models include an explicit delay time T that can have different

nature and, therefore, can appear in different terms of the equations [36]; the maturity

delay is considered as the main example [4,13,45]. We are interested in periodic dynamics

presented by a limit cycle with the following properties:

(1) The period of the cycle is close to the delay time T ;

(2) The time trace of one component (which we call the A-component) of the cycle is

a sequence of identical short pulses, typically one pulse per period, separated by

intervals where the A-component is close to zero;

(3) The oscillations are self-excited, i.e., the cycle is either globally stable or has a large

basin of attraction, while the equilibrium with the zero A-component is unstable.

These properties will be formalised and quantified in terms of the parameter γ � 1 that

measures the ratio of the slow and fast time scales of the population processes involved

in the system. In particular, the period of the cycle is T + O(1/γ), the duration of the

pulse scales as 1/γ, while the pulse amplitude is asymptotically proportional to γ, and the

time average of each population tends to a finite positive limit value as γ increases.

In the systems that we consider, periodic solutions with the above properties are

formed near a transcritical bifurcation point (threshold) separating the domain where the

equilibrium with the zero A-component is stable from the domain where it is unstable and

coexists with the positive equilibrium. The cycle branches from the positive equilibrium via

a Hopf bifurcation and continuously transforms into periodic pulsations of the amplitude

O(γ) over a short interval of the parameter values. Therefore, we look at the bifurcations

that the equilibrium points undergo near the threshold. An asymptotic analysis of the

spectrum shows that there is a sequence of eigenvalues, which have almost the same real

part and the imaginary parts close to the multiples of the fundamental frequency 2π/T .

3 In the limit of small gain and losses per cavity round trip, one recovers the Haus hyperbolic

secant pulse shape in the delay differential model.
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Because of this, the positive equilibrium undergoes a cascade of almost simultaneous and

almost resonant Hopf bifurcations in an immediate vicinity of the threshold. This cascade

is simultaneous with the fast transition from a steady state to the periodic pulsating

dynamics with a period τ ≈ T .

We take advantage of the pulsating profile of the solution to derive an asymptotic

approximation to the pulses and determine their parameters using the method of matched

inner (fast) and outer (slow) expansions [22]. This method was successfully applied to

derive fixed-point conditions for the existence of pulsating solutions [14, 29, 38] and

their asymptotics [35, 42] for both lasers and population models (however, we do not

consider the existence problem here). Further, we obtain the law of scaling of pulses

with γ and an equation for the pulse profile by adapting the approach used in [41].

All the asymptotic formulae are compared with numerical simulations. We also note an

alternative perturbation technique of the fixed-point analysis based on averaging, which

was proposed in [5].

The paper is organised as follows. In Section 2, we introduce a population model,

perform a linear stability analysis of both the zero and positive steady states near the

threshold, and discuss the bifurcations that initiate the pulsating dynamics. Further, the

role of the competition for the realisation of the bifurcation scenario is highlighted. In

Section 3, we derive asymptotic approximations for the pulsating periodic solutions. The

last section contains further discussion and conclusions.

2 Bifurcation analysis

2.1 Model

We consider the system

γ−1A′ = −A + κG(t− T )A(t− T ) − μQA, (2.1)

γ−1
q Q′ = q0 − βQ− sAQ, (2.2)

G′ = g0 − αG− kAG, (2.3)

where the real variables A,Q,G are population densities of three species; T is the maturity

delay of the species A, see [36]; and all the parameters are positive4. The species A is a

predator for the prey G; the species Q competes with A.

The rate of population processes for the three species is assumed to be different with A

being the fastest species (with faster metabolism, higher reproductive rate, etc.), G being

the slowest species, and Q changing at an intermediate rate, that is 1 � γq � γ. Further,

the species A is assumed to be much faster than the species G, thus γ � 1. The species

G and Q can have comparable rates (γq ≈ 1) or Q can be much faster than G (1 � γq).

However, it is important to stress that the parameters γ and γq play different roles in the

following asymptotic analysis. Namely, our asymptotic formulae are obtained in the limit

of γ → ∞ while we keep γq fixed. In numerical simulations, we use γq ranging from 1

to γ.

4 The death rate of the species A is scaled to 1. The number of parameters can be further

reduced in a standard way by rescaling the phase variables and time.
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The species Q plays an important role, which will be clarified in further sections. In

particular, we will see that the system of the two equations (2.1) (with zero Q) and (2.3)

does not demonstrate pulsating dynamics near the threshold.

The species Q and G are assumed to be recruited through constant immigration in

equations (2.1)–(2.3). In further sections, we will show that similar systems with different

recruitment terms, including recruitment with constant birth rate, show similar pulsating

dynamics near the threshold. Also, delaying different terms has little effect on solutions

in our examples; for instance, replacing the delayed term G(t − T ) by G(t) in equations

(2.1)–(2.3) preserves the periodic pulsating dynamics.

We will discuss non-negative solutions only. Note that system (2.1)–(2.3), as well as all

the other systems considered in the paper, is positively invariant.

We associate the pulsating regime of system (2.1)–(2.3) near the point of the transcritical

bifurcation of equilibria with the Hopf bifurcations from the positive equilibrium. The

recruitment rate g0 of the prey G will be used as the bifurcation parameter.

2.2 Bifurcations at the equilibrium with A = 0

System (2.1)–(2.3) has an equilibrium with zero A,

Ao = 0, Qo =
q0

β
, Go =

g0

α
, (2.4)

for all positive g0, and a positive equilibrium either for g0 > g∗0 or for g0 < g∗0 , where the

threshold value g∗0 is defined by

κg∗0
α

− μq0

β
= 1. (2.5)

These two equilibria collide in a transcritical bifurcation for g0 = g∗0 . The positive

equilibrium near the threshold is defined by the asymptotic formulae

A∗ = ãδ + O(δ2), Q∗ =
q0

β
+ q̃δ + O(δ2), G∗ =

g∗0
α

+ g̃δ + O(δ2), (2.6)

where δ = g0 − g∗0 and the coefficients of the first order correction are given by

ã =
1

kg∗0
α

− αμsq0

κβ2

, q̃ =
1

αμ

κ
− kg∗0β

2

αsq0

, g̃ =
μ

κ
q̃.

We will assume that

kg∗0
α2

>
μsq0

κβ2
. (2.7)

In this case, the positive equilibrium exists for g0 > g∗0 and is stable near the threshold.

(If the opposite inequality holds, then the positive equilibrium exists for g0 < g∗0 and is

unstable near the threshold.)
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The eigenvalues of the linearisation of system (2.1)–(2.3) at the equilibrium (2.4) with

zero A are defined by the relations λ = −γβ < 0, λ = −α < 0 and

1 +
λ

γ
=

κg0

α
e−λT − μq0

β
. (2.8)

The solutions of equation (2.8) satisfy Re λ < 0 in a left neighbourhood of the threshold,

more precisely, for g0 < g∗0 = α(1 + μq0/β)/κ. Hence, the equilibrium (2.4) is stable below

the threshold, i.e., for g0 < g∗0 . Consequently, the positive equilibrium (2.6) is stable in a

small right neighbourhood of the threshold, i.e., for small δ = g0 − g∗0 > 0.

The equilibrium (2.4) undergoes a sequence of Hopf bifurcations in a small right

neighbourhood of the threshold g0 = g∗0 for large γ. To see this, first note that in the limit

γ = ∞ the solutions of the characteristic equation (2.8) have the form

λ = iωn, ωn =
2πn

T
, n = 1, 2, . . . ,

i.e., the equilibrium satisfies the necessary condition for infinitely many simultaneous Hopf

bifurcations at the threshold point g0 = g∗0 . Moreover, these bifurcations are in resonance

with each other as the frequencies ωn are all multiples of 2π/T . For finite γ, setting λ = iω

in (2.8) in order to satisfy the Hopf bifurcation condition, and rearranging, we obtain the

equations

ω

γ
= −κg∗0

α
tanωT , (2.9)

δ = g∗0

(
1

cosωT
− 1

)
> 0, (2.10)

which define the frequency of the cycle and the bifurcation value of the parameter

g0 = g∗0 + δ for each Hopf bifurcation from the equilibrium (2.4). Figure 1 illustrates

solutions of the transcendental equation (2.9). For γ � 1, the solutions of equations (2.9)

and (2.10) are approximated by the asymptotic formulae

ωn =
2πn

T

(
1 − α

κg∗0 γT
+

α2(
κg∗0 γT

)2

)
+ O

(
γ−3

)
, (2.11)

δn =
α2

2κ2g∗0

(
2πn

γT

)2

+ O
(
γ−3

)
(2.12)

with n = 1, 2, . . . Hence, the n-th Hopf bifurcation after the threshold has a frequency

close to 2πn/T and O(
√
γ) Hopf bifurcations occur within the distance of order 1/γ from

the threshold on the parameter g0 axis.

Following [24, 47], the spectrum of the zero equilibrium defined by equation (2.8) can

be called weak or pseudocontinuous spectrum. It is characterised by a specific scaling of

the real and imaginary parts of the eigenvalues λ = x + iγω with γ � 1, where x and

ω are of order 1. Using this scaling, we obtain from (2.8) an approximate relationship
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Figure 1. Solution of equation (2.9). The horizontal axis is ω. Every second intersection of the

straight line η = ω/γ and the function η = −κg∗0 tan(ωT )/α satisfies the condition (2.10). Here

γ = 100, T = 1.

Figure 2. Panel (a): Spectra of the zero equilibrium for g0 = 3.7497 and g0 = 3.7528. Numerical

values of the eigenvalues are shown by circles; lines are obtained from equation (2.13). Filled

circles correspond to unstable eigenvalues. Panel (b): Spectrum of the positive equilibrium of system

(2.1)–(2.3) after the first Hopf bifurcation (g0 = 3.75003), i.e., exactly one pair of complex conjugate

eigenvalues cross the imaginary axis from left to right. Solid line defined by (2.19) carries the weak

spectrum; dashed line (2.18) carries the strong spectrum. Parameters are as follows: γ = 1, 000,

γq = 10, κ = 0.6, μ = 0.5, α = 1, q0 = 2.5, β = 1, s = 1, k = 0.7, T = 1.

between the real and imaginary parts of the eigenvalues:

x(ω) =
1

2T

(
2 ln

(
g0

g∗0

)
− ln

(
1 +

(
αω

g∗0κ

)2
))

+ O(γ−1), (2.13)

which is dual to formulae (2.11) and (2.12). The curve (2.13) carrying the eigenvalues

simply moves to the right with increasing g0, see Figure 2(a).

2.3 Bifurcations at the positive equilibrium

As the bifurcation parameter g0 increases across the threshold, the positive equilibrium

(2.6) also undergoes a sequence of Hopf bifurcations, which we deem responsible for the
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Figure 3. Bifurcation diagrams obtained with numerical package DDE-BIFTOOL for system

(2.1)–(2.3) for two parameter sets. The vertical axis shows the maximum of the A-component of

a periodic solution. The PE line corresponds to the positive equilibrium. Branches H1–H7 (H1–H5

on panel (b)) correspond to the periodic solutions born via Hopf bifurcations on the positive

equilibrium. Stable branches are shown by solid lines and unstable branches are shown by dashed

lines. The branch H1 on panel (b) exhibits slight hysteresis near the threshold g∗0 . All the branches

connect to the branch of the positive equilibrium at Hopf bifurcation points at both ends.

creation and formation of the periodic pulsating solution. The first Hopf bifurcation with

the frequency close to 2π/T destabilises the positive equilibrium and creates a stable cycle

(see branch H1 in Figure 3). As the parameter g0 increases further, this cycle changes

its shape continuously into a pulsating periodic solution, see Figure 4. The amplitudes

of harmonics of the A-component A(t/τ) =
∑∞

n=1 An cos (2πnt/τ + φn) of the periodic

solution, where τ is the period of A, grow with g0, while the phase differences φk − φ1

almost vanish, see Figure 5. At the same time, the positive equilibrium undergoes a

cascade of secondary Hopf bifurcations with the frequencies of the higher harmonics. The

whole cascade of the Hopf bifurcations and the transformation of the cycle to a pulsating

solution happen in a small right neighbourhood of the threshold g0 = g∗0 , see Figure 5.

The characteristic equation for the positive equilibrium is

eTλ =
G∗κ (α + λ)

(
A∗sγq + βγq + λ

)
(A∗k + α + λ)

(
A∗sγq

(
1 + λ

γ

)
+

(
βγq + λ

) (
1 + λ

γ
+ Q∗μ

)) . (2.14)

Using asymptotic formulae (2.6) and the ansatz λ = iω for the eigenvalues of the

linearisation, we obtain the following asymptotic formulae for the frequency and the

bifurcation value of the parameter at each Hopf bifurcation point5:

ωn =
2πn

T

(
1 − α

κg∗0 γT

)
+ O

(
γ−2

)
, (2.15)

5 The term of order γ−2 in the expansion (2.15) is different from the corresponding term in the

expansion (2.11).
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Figure 4. Time trace of the periodic solution of system (2.1)–(2.3). Panel (a): The A-component.

Panel (b): The G-component (solid) and the Q-component (dashed). The A-component is almost zero

between the pulses. The Q-component almost reaches the equilibrium value q0/β = 2.5 between the

pulses of the A-component and drops almost to zero during the pulse because γq = 10 is relatively

large. The G-component drops fast during the pulse and then recovers slowly between the pulses.

The period of the solution is close to the delay T = 1. The following parameters were used: γ = 400,

γq = 10, κ = 0.6, g0 = 4, q0 = 2.5, α = 1, β = 1, s = 1, k = 0.7, T = 1. The threshold value is

g∗0 = 3.75.

Figure 5. The phase and amplitude of the Fourier coefficients for the A-component A(t/τ) =∑∞
n=1 An cos (2πnt/τ + φn) of the periodic solution along the branch H1 shown in Figure 3(a), where

τ is the period of solution.

δn =

(
2πn

γT

)2

(
β2g∗0κk − α2μq0s

)(
β2 +

(
2πn
Tγq

)2
)

2κ2g∗0β
2

(
μq0s− g∗0κk

(
β2+

(
2πn
Tγq

)2

α2+( 2πn
T )2

)) + O
(
γ−3

)
. (2.16)

We assume that, along with the relation (2.7), the conditions

μq0s > g∗0κk

⎛
⎜⎝β2 +

(
2π
Tγq

)2

α2 +
(

2π
T

)2

⎞
⎟⎠ and γq >

α

β
(2.17)

are satisfied. Under these conditions, relation (2.16) implies δ = g0−g∗0 > 0 for n = 1, 2, . . .

That is, according to equations (2.7) and (2.16), conditions (2.17) ensure that the positive
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Figure 6. Spectrum of the positive equilibrium and curves (2.19), (2.18) for g0 = 3.7509 (panel (a))

and g0 = 3.7648 (panel(b)). Notation and other parameters are the same as in Figure 2(b).

equilibrium undergoes the Hopf bifurcations with the frequencies close to the multiples

2πn/T of 2π/T for n = 1, 2, . . . as g0 increases across the threshold.

The spectrum of the positive equilibrium can be divided into two parts, which have

different asymptotic properties with respect to the large parameter γ, cf. [24]. The strong

spectrum consists of the eigenvalues λ = x + iω + O(γ−1), which originate from the limit

γ = ∞. Equation (2.14) implies the following approximate implicit relationship between

the real and imaginary parts for these eigenvalues:

G2
∗κ

2
(
(α + x)2 + ω2

) ((
γq (A∗s + β) + x

)
2 + ω2

)(
(α + A∗k + x) 2 + ω2

) ((
γq (A∗s + β + βμQ∗) + μQ∗x + x

)
2 + (μQ∗ω + ω) 2

) = e2Tx.

(2.18)

The weak spectrum is characterised by the asymptotic relationship λ = x + iγω and

satisfies the approximate relationship

x (ω) =
1

2T
ln

(
G2

∗κ
2

G2
∗κ

2 + ω2

)
. (2.19)

With increasing g0, branches of the curve (2.19) ‘open’. Simultaneously, weak eigenvalues

with smaller imaginary part leave this curve, cross imaginary axis producing the Hopf

bifurcations described by equations (2.15) and (2.16), and become a part of the strong

spectrum (2.18), see Figures 2(b) and 6.

In Table 1, the asymptotic values of ωn and δn given by formulae (2.15) and (2.16) are

compared with the numerical values obtained for γ = 600, γq = 40, κ = 0.6, μ = 0.5,

α = 1, q0 = 2.5, β = 1, s = 1, k = 0.7, T = 1. Using these parameters for numerical

continuation, we observe 24 branches of periodic solutions. Table 1 features the first six

branches. The accuracy of the asymptotic formulae decreases with increasing n.

We have conducted a number of further numerical simulations with different para-

meter sets satisfying conditions (2.7) and (2.17), and observed bifurcation diagrams and

oscillating periodic solutions similar to those presented in Figures 3 and 4.
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Table 1. Comparison of the asymptotic and numerical values of δn, ωn for the following set

of parameters: γ = 600, γq = 40, κ = 0.6, μ = 0.5, α = 1, q0 = 2.5, β = 1, s = 1, k = 0.7,

T = 1

δn = g0 − g∗0 ωn

n Asymptotic Numerical Error (%) Asymptotic Numerical Error (%)

1 1.1177 × 10−5 1.1170 × 10−5 0.06 6.2785 6.2785 < 10−4

2 4.6817 × 10−5 4.6896 × 10−5 0.17 12.5571 12.5571 < 10−4

3 1.1665 × 10−4 1.1731 × 10−4 0.56 18.8356 18.8356 1.60 × 10−4

4 2.3632 × 10−4 2.3903 × 10−4 1.13 25.1141 25.1140 3.57 × 10−4

5 4.2773 × 10−4 4.3593 × 10−4 1.88 31.3927 31.3925 6.18 × 10−4

6 7.1905 × 10−4 7.3993 × 10−4 2.82 37.6712 37.6708 9.45 × 10−4

2.4 The role of competition

Here, we briefly discuss the critical role of the species Q, which competes with the

fast species A, in creating the pulsating periodic dynamics via the bifurcation scenario

described above.

In order to highlight the role of the Q-species, we compare the dynamics of system

(2.1)–(2.3) with that of the dynamics of the system

γ−1A′ = −A + κG(t− T )A(t− T ), (2.20)

G′ = g0 − αG− kAG, (2.21)

which is obtained by setting Q = 0 in equation (2.1) and dropping equation (2.2). Dynamics

of system (2.20), (2.21) is essentially the same as dynamics of system (2.1)–(2.3) with zero

immigration rate q0 = 0 of the Q-species.

System (2.20), (2.21) has two equilibrium points

A = 0, G =
g0

α
; A =

κ(g0 − g∗0 )

k
=

κδ

k
, G =

1

κ
,

which collide in the transcritical bifurcation at the threshold value

g∗0 =
α

κ
(2.22)

of the bifurcation parameter g0. Like in the case of the three-dimensional systems (2.1)–

(2.3), the equilibrium with zero A is stable below the threshold and unstable above the

threshold, while the equilibrium with non-zero A is positive and stable above the threshold,

i.e., for g0 > g∗0 (without any additional assumptions about the parameters of equations

(2.20) and (2.21)). The unstable equilibrium undergoes the cascade of Hopf bifurcations at

the bifurcation points, and with the frequencies, defined by relations (2.9) and (2.10) and

satisfying the asymptotic formulae (2.11) and (2.12). However, the positive equilibrium

remains stable for all g0 > g∗0 , and the system exhibits the equilibrium dynamics rather

than a periodic dynamics above the threshold. The reason is that the equilibrium with
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non-zero A undergoes the cascade of Hopf bifurcations below the threshold that is in

the parameter domain g0 < g∗0 where this equilibrium has a negative A-component and

is unstable, rather than above the threshold where the equilibrium is positive and stable.

Indeed, substituting the ansatz λ = iω in the characteristic equation

γ−1(λ + κg0)λ + (1 − e−λT )λ + κg0 − αe−λT = 0 (2.23)

of the linearisation of the system at the equilibrium with non-zero A, we obtain the

asymptotic formula

δ = − α

2κ

(
2πn

γT

)2
(

1 +

(
2πn

αT

)2
)

+ O(γ−3),

where the negative sign of δ = g0 − g∗0 indicates that the Hopf bifurcation occurs below

the threshold. Equation (2.23) implies

(ω2 + κ2g2
0)(1 + ω2γ−2) = ω2 + α2

for λ = iω, which is only possible for g0 � g∗0 = α/κ, that is below the threshold,

thus proving stability of the positive equilibrium. Clearly (2.23) cannot have real positive

eigenvalues for g0 > g∗0 either.

3 Scaling with γ: Approximate solution

3.1 Separation of slow and fast stages

In order to analyse and approximate the asymptotic behaviour of the pulsating periodic

solution for large γ, we adapt the approach proposed by New and Haus for modelling

optical systems in [16, 27] by partial differential equations and an extension of this

approach to delay differential models of mode-locked semiconductor lasers developed

in [41].

Consider a pulsating periodic solution of equations (2.1)–(2.3). We divide the period

into two stages, the short fast stage tb � t � te containing the pulse and the slow stage

te � t � tb + τ, during which A is close to zero. Here τ ≈ T is the period of the solution,

tb is the moment when a pulse begins, te is the moment when the pulse ends, te − tb � 1.

We then further introduce a partition tb < t′b < t′e < te of the fast stage into three

sub-intervals. During the interval [tb, t
′
b] the variable A grows from a small value ε to a

large value ε−1, it stays larger than ε−1 over the interval [t′b, t
′
e], and decreases back to the

small value ε over the interval [t′e, te] (to be specific, ε = ε(γ) scales with γ in such a way

that ε(γ) → 0 and −γ−1 ln ε(γ) → 0 as γ → ∞). We assume that A grows exponentially

on [tb, t
′
b] as eγλ1t and exponentially decreases as eγλ2t on [t′e, te] with λ1 > 0 > λ2. These

assumptions will be shown to lead to a self-consistent answer for the pulse (in particular

the values of λ1 and λ2 are evaluated below). Further, they imply that

G(tb) ≈ G(t′b), Q(tb) ≈ Q(t′b),

∫ te

tb

A(θ) dθ ≈
∫ t′e

t′b

A(θ) dθ (3.1)
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for large γ (that is, the left and right sides of each relation in (3.1) have the same

limit as γ → ∞). This allows us to identify tb with t′b and te with t′e in the asymptotic

approximations below.

Finally, we assume that the period of the periodic solution scales with γ as

τ = T

(
1 +

c

γT

)
+ O(γ−2), (3.2)

which again proves to lead to consistent asymptotic approximations.

3.2 Area of the pulse

During the phase [t′b, t
′
e] of the pulse of A, the terms AQ and AG in the Q and G equations

are large compared to the other terms, which therefore can be neglected. Hence, during

this phase, equations (2.2) and (2.3) can be approximated by the following equations:

γ−1
q Q′ = −sAQ,

G′ = −kAG.

Integrating these equations and using the approximations (3.1), we obtain for the full fast

stage [tb, te]:

Q(t) = Q(t′b)e
−γqs

∫
t
t′
b
A(θ) dθ ≈ Qbe

−γqsP (t), G(t) = e
−k

∫
t
t′
b
A(θ) dθ ≈ Gbe

−kP (t), (3.3)

where Qb = Q(tb), Gb = G(tb) and

P (t) =

∫ t

tb

A(θ) dθ. (3.4)

In particular, for the values G(te) = Ge, Qe = Q(te) at the moment t = te, we have

Ge = Gbe
−kp, Qe = Qbe

−γqsp, (3.5)

where

p =

∫ te

tb

A(θ) dθ.

On the other hand, integrating equation (2.1) over the fast stage and using the fact that

A is close to zero at the moments tb and te, we obtain the approximate equation

p = κ

∫ te−T

tb−T

G(θ)A(θ) dθ − μ

∫ te

tb

Q(θ)A(θ) dθ. (3.6)

The exponential form of the pulse that we assumed on the subintervals [tb, t
′
b] and [t′e, te]

of the fast stage and the estimate τ−T = O(γ−1) for the small difference between the period

and the delay, which follows from (3.2), imply that
∫ te−T

tb−T
G(θ)A(θ) dθ ≈

∫ te−τ

tb−τ
G(θ)A(θ) dθ.

Hence, the integrals in the right-hand side of equation (3.6) are essentially integrals over

the fast stage for two successive pulses. Therefore, using the periodicity of the solution
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and relations (3.3), we can rewrite equation (3.6) approximately as

p = κ

∫ te−τ

tb−τ

G(θ)A(θ) dθ − μ

∫ te

tb

Q(θ)A(θ) dθ

=

∫ tb

te

(
κGbe

−kP (θ) − μQbe
−γqsP (θ)

)
A(θ) dθ.

Further, using equation (3.4), A(θ) dθ = dP (θ); hence,

p =
κGb

k
(1 − e−kp) − μQb

γqs
(1 − e−γqsp). (3.7)

During the slow stage, the terms AQ and AG are small compared to the other terms in

the Q and G equations. Neglecting these terms results in the linear equations

γ−1
q Q′ = q0 − βQ,

G′ = g0 − αG.

Integrating these equations over the slow stage [te, tb + τ] and combining the integrals

g0 − αGb = (g0 − αGe)e
−α(tb+τ−te) ≈ (g0 − αGe)e

−αT ,

q0 − βQb = (q0 − βQe)e
−γqβ(tb+τ−te) ≈ (q0 − βQe)e

−γqβT

with equation (3.5), we obtain

Gb =
g0(1 − e−αT )

α(1 − e−αT−kp)
, Qb =

q0(1 − e−γqβT )

β(1 − e−γqβT−γqsp)
. (3.8)

Hence, equation (3.7) implies the fixed-point condition

p =
κg0(1 − e−αT )(1 − e−kp)

kα(1 − e−αT−kp)
− μq0(1 − e−γqβT )(1 − e−γqsp)

γqsβ(1 − e−γqβT−γqsp)
=: η(p). (3.9)

The right-hand side η(p) is zero at zero, has the derivative κg0/α−μq0/β > 1 at zero, and

converges to a constant as p → ∞, see Figure 7(a). Therefore, equation (3.9) has a positive

root. Under further assumptions, the positive root is unique. For instance, the uniqueness

is guaranteed whenever we increase the parameter γq keeping all the other parameters in

equation (3.9) fixed. In particular, the positive root is unique in all the examples below.

The conclusion is that the integral of the A-component over a period converges to a

positive root p∗ of equation (3.9) as γ → ∞ (with other parameters fixed).

Figure 7(b) compares the value p(γ) of this integral with its limit value p∗. The integral

has been evaluated numerically for 40 values of γ from the interval 100 � γ � 4, 000 by

direct simulation of equations (2.1)–(2.3). The power law fit

φ(γ) = p̂∗ + bγ−ν

was used to obtain the estimate p̂∗ of the limit value p∗ of the integral. For the parameter

set in Figure 7b, the error between the numerical estimate p̂∗ and the analytic value of

p∗ = 0.492 obtained from equation (3.9) satisfies |p∗ − p̂∗| < 10−3.
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Figure 7. Panel (a) shows the solution of equation (3.9). Panel (b) shows the dependence of the

integral of A-component of system (2.1)–(2.3) over one period on γ. The power law fit is shown by

the solid line. The horizontal asymptote p = p̂∗ coincides with analytic value p∗ shown on panel

(a). Here, κ = 0.6, μ = 0.5, α = 1, q0 = 1, β = 1, s = 2, k = 1, T = 1, γq = 100, g0 = 2.6.

We conclude that in the limit of γ tending to infinity, the component A of the periodic

solution converges to the periodic sequence of delta functions (Dirac comb),

A → p∗

∞∑
n=−∞

δ(t− nT ), (3.10)

which has the period T equal to the delay. The component G grows according to the

equation G′ = g0 − αG from the value Ge = Gbe
−kp∗ to the value Gb defined by equation

(3.8), i.e.,

G(t) =
g0

α
−

(g0

α
− Ge

)
e−α(t−nT ), nT < t < (n + 1)T ,

between the pulses of A, and drops back to the value Ge during the pulse. Similarly, the

component Q is as approximated between the pulses as

Q(t) =
q0

β
−

(
q0

β
− Qe

)
e−γqβ(t−nT ), nT < t < (n + 1)T .

The interval g∗0 < g0 < g∗0 + ε of the parameter values, over which the cycle born via Hopf

bifurcation on the positive equilibrium transforms to the pulsating solution, collapses to

the threshold, that is ε → 0, as γ grows to infinity. In other words, the pulsating solution

described by equation (3.10) can be found ‘immediately’ beyond the threshold for large γ.

3.3 Pulse shape

The above approximation does not provide information about the fast stage of the solution

such as the profile of the pulse or the deviation of the period from the delay T . In order

to obtain such information, one can adapt the approach of Haus and its modifications,

see [16, 41]. We briefly outline a possible approach without going into much detail. This

approach gives us the law of scaling of the pulse shape and the period with γ.
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Using the periodicity of the solution and the asymptotic formula (3.2) for the period,

we can rewrite equation (2.1) as

γ−1A′(t) + A(t) + μQ(t)A(t) = κG(t + cγ−1)A(t + cγ−1).

Integrating this equation from tb over a part of the fast stage tb � t � te, using the

approximations (3.1) and P (tb + cγ−1) ≈ 0, and taking into account that A(tb) ≈ 0, we

obtain an approximate equation

γ−1A(t) +

∫ t

tb

A(θ) dθ + μQb

∫ t

tb

e−γqsP (θ)A(θ) dθ = κGb

∫ t+cγ−1

tb+cγ−1

e−kP (θ)A(θ) dθ.

As A = P ′, we obtain, similarly to equation (3.7),

γ−1P ′(t) + P (t) +
μQb

γqs
(1 − e−γqsP (t)) =

κGb

k
(1 − e−kP (t+cγ−1)), (3.11)

where Gb, Qb are defined by equation (3.8) with p = p∗ being a positive root of equation

(3.9). Introducing the fast and reversed time scale θ = −γt, and changing the variable

P̄ (θ) = P (t− cγ−1), we rewrite equation (3.11) as

−P̄ ′(θ) + P̄ (θ) +
μQb

γqs
(1 − e−γqsP̄ (θ)) =

κGb

k
(1 − e−kP̄ (θ−c)), (3.12)

where Gb, Qb are defined from equations (3.7) and (3.8). A single pulse of the pulsating

periodic solution is, therefore, described by a solution of equation (3.12) satisfying the

boundary conditions

P̄ (−∞) = p∗, P̄ (∞) = 0. (3.13)

Note that both 0 and p∗ are equilibrium points of equation (3.12). Therefore, conditions

(3.13) define a heteroclinic orbit of this equation. More precisely, if P̃ denotes the

heteroclinic solution of equation (3.12) satisfying equation (3.13), and Ã = P̃ ′, then a

pulse of the periodic solution of system (2.1)–(2.3) is approximated by the formula

A(t) = γÃ(−γt) = γP̃ ′(−γt) (3.14)

for large γ. Hence, according to this approximation, the amplitude of the pulse scales

linearly with γ, the width of the pulse is inverse proportional to γ, and the period is

approximated by equation (3.2).

Linearising system (3.12) at 0 and p∗, we obtain

−P ′(θ) + (1 + μQb)P (θ) = κGb P (θ − c) (3.15)

and

−P ′(θ) + (1 + μQe)P (θ) = κGeP (θ − c), (3.16)

respectively, where Qe, Ge are defined by (3.5) with p = p∗. The characteristic equation of

linearisation (3.15) is

−λ + 1 + μQb = κGb e
−λc. (3.17)
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Figure 8. A typical spectrum of equations (3.17) and (3.18) when condition (3.19) is satisfied. The

notation is the same as in Figure 2.

The characteristic equation of equation (3.16) has a similar form

−λ + 1 + μQe = κGe e
−λc. (3.18)

We will assume that

κGb − μQb − 1 < 0, κGe − μQe − 1 < 0. (3.19)

These conditions can be associated with New’s stability criterion [27], which ensures

stability of the background of the pulses, that is, in our context, stability with respect to

small perturbations of the A-component at the beginning and at the end of the slow stage

when A is close to zero. Relations (3.19) imply that each of equations (3.17) and (3.18)

has two real roots of different signs. A typical spectrum of these equations is shown in

Figure 8. Here, all the complex eigenvalues have a negative real part, which is less than

the real negative eigenvalue. In such a case, both equilibrium points P̄ = 0 and P̄ = p∗ of

equation (3.12) are saddles with a one-dimensional unstable manifold and a codimension 1

stable manifold. Therefore, for a specific value of the parameter c, which can be considered

as a bifurcation parameter in equation (3.12), the unstable manifold of the equilibrium

point p∗ can connect to the stable manifold of the zero equilibrium forming a heteroclinic

orbit. The value of c, for which the heteroclinic orbit is formed, defines the period of

the solution of system (2.1)–(2.3) according to the asymptotic formula (3.2), and the

heteroclinic orbit P̃ defines the profile of the pulse according to (3.14). Figure 9 illustrates

how the heteroclinic orbit and the corresponding c can be found by the shooting method.

Further, the heteroclinic solution P̃ (θ) converges to the equilibrium p∗ exponentially as

eλ
e
+θ in the limit θ → −∞, where λe+ is the positive real root of equation (3.18); and, to

the zero equilibrium as eλ
b
−θ in the limit θ → ∞, where λb− is the negative real root of

equation (3.17). Hence, equation (3.14) implies that the pulse of A has similar exponential

tails. Specifically, A grows exponentially as e−γλb−t at the beginning of the fast stage and

decays as e−γλe+t at the end of the fast stage. This result is consistent with the exponential
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Figure 9. We adopt the shooting method in order to find parameter c in equation (3.12). The three

curves correspond to three trajectories starting near the equilibrium p∗ = 1.486 with different values

of c. Other parameters are Gb = 2.906, Qb = 2.5, k = 0.7, γq = 10, s = 1, μ = 0.5, and κ = 0.6. Note

that with this set of parameters, equation (3.12) has an additional positive equilibrium p† = 0.146

that is an asymptotically stable focus. For one exact value c = c∗ (0.537 < c∗ < 0.538) there exists a

heteroclinic orbit of (3.12) connecting the equilibria p∗ and 0. This orbit describes the shape of the

pulse, and the value c∗ defines the period of the pulsating solution. For c < c∗, trajectories starting

near p∗ belong to the basin of attraction of the positive equilibrium p†; for c > c∗, such trajectories

become negative and go to negative infinity.

growth assumptions that we made earlier about the pulse. In particular, the assumed

exponential asymptotics of the pulse tails hold with λ1 ≈ −λb− and λ2 ≈ −λe+ (cf. p. 12).

The above exponential asymptotics of the pulse tails have been derived for the phase

when G and Q change fast. The same asymptotics can be obtained directly from equa-

tion (2.1) for the beginning and the end of the slow stage when G and Q change slowly.

Indeed, replacing A(t−T ) with A(t+ cγ−1) according to (3.2), setting G = Ge, Q = Qe for

the beginning of the slow stage and G = Gb, Q = Qb for the end of the slow stage, and

using the exponential ansatz A = A0e
−γλt corresponding to the fast evolution of A results

in the same characteristic equations (3.17) and (3.18). Thus, the exponential asymptotics

at the slow and fast stages match.

Figure 10 compares a pulse of the periodic solution of system (2.1)–(2.3) with the

approximation obtained from the heteroclinic orbit of equation (3.12).

3.4 Approximation for γq � 1

The parameter γq controls the rate of the population processes for the species Q. Denote

by p̃ the unique positive root of the equation

p =
κg0(1 − e−αT )(1 − e−kp)

kα(1 − e−αT−kp)

(cf. (3.9)). If we increase the value of γq keeping the parameters in the right-hand side of

equations (2.1)–(2.3) fixed, then p∗, Gb,e, Qb,e approach the following values:

p∗ ≈ p̃, Gb ≈
g0(1 − e−αT )

α(1 − e−αT−kp̃)
, Ge ≈ Gbe

−kp̃, Qb ≈ q0/β, Qe ≈ 0.
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Figure 10. Black solid curve represents a single pulse of the A-component of the periodic pulsating

solution of system (2.1)–(2.3) with the following parameters: g0 = 4, k = 0.7, q0 = 2.5, s = 1,

T = 1, α = 1, β = 1, γ = 400, κ = 0.6, μ = 0.5, γq = 100. Dashed curve is the derivative of

the heteroclinic solution of equation (3.12) satisfying the boundary conditions (3.13). This solution

exists for c = 0.3736 that was found using the shooting method, see Figure 9. Grey solid curve is the

derivative of the heteroclinic solution of the approximating equation (3.20) connecting the saddle

equilibrium point p̃ = 1.6968 and the stable focus at zero. This curve oscillates near the focus and

fails to approximate the leading edge of the pulse (left tail).

Further, equation (3.12) for the pulse profile can be approximated by the equation

−P̄ ′(θ) + P̄ (θ) =
κGb

k
(1 − e−kP̄ (θ−c)), (3.20)

which has the equilibrium points P̄ = 0 and P̄ = p̃. Since Qe ≈ 0, the characteristic

equation of the linearisation of equation (3.20) at the equilibrium P̄ = p̃ approximates

(3.18). However, the characteristic equation −λ + 1 = κGb e
−λc of the linearisation at

zero is different from (3.17). For example, one can show that if κGbc < 1, then the zero

equilibrium of equation (3.20) is stable; at the same time, the first relation in equation (3.19)

ensures that zero is a saddle for equation (3.12). This situation is illustrated in Figure 10.

The heteroclinic orbit, which connects the saddle point p̃ with the stable zero equilibrium

of equation (3.20) approximates the pulse well for the main part of the fast stage, but

fails to approximate the pulse tails. The heteroclinic orbit of equation (3.12) gives a better

approximation.

3.5 Pulses with unstable background

Pulsating periodic solutions with a period close to T can be obtained also when one

of the conditions (3.19), or both of them, is violated. According to the classification of

New [27], such pulses have unstable background. For example, consider the case when

κGb − μQb − 1 > 0, κGe − μQe − 1 < 0. (3.21)

Here, the main role is played by the characteristic equation

−λ + 1 + μQ̂(t̂) = κĜ(t̂) e−λc, 0 � t̂ � T (3.22)
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with t = tb − t̂ varying over the slow stage, where

Ĝ(t̂) =
g0

α
+ eαt̂

(
Gb −

g0

α

)
, Q̂(t̂) =

q0

β
+ eγqβt̂

(
Qb −

q0

β

)
,

and c is considered as a parameter again. To be definite, assume that for each t̂, equa-

tion (3.21) has two real roots λ−(t̂) < λ+(t̂) that depend continuously on t̂ and satisfy the

relations

λ−(t̂) < λ+(t̂) < 0 for 0 � t̂ < to; λ−(t̂) < 0 < λ+(t̂) for to < t̂ � T , (3.23)

which are compatible with (3.21). Further, suppose that Re λ < λ−(t̂) for all the complex

roots. Then, the zero equilibrium P̄ = 0 of equation (3.12) is stable, while the equilibrium

P̄ = p∗ has a one-dimensional unstable manifold. Assuming that this unstable manifold

belongs to the basin of attraction of zero, it contains a heteroclinic orbit that defines

the pulse profile during the fast stage. This orbit is robust with respect to variations of

the parameter c. Therefore, c (and the period (3.2)) cannot be identified as an isolated value

for which the heteroclinic solution is formed (as it was the case for pulses with stable

background satisfying (3.19) where the heteroclinic orbit connected saddle equilibria).

Instead, c is determined by the evolution of A during the slow stage, when A is small, and

the periodic solution satisfies the approximate equation

−γ−1 A

dt̂
= −A + κĜ(t̂)A(t̂− γ−1c) − μQ̂(t̂)A.

The zero equilibrium of this equation exhibits the delayed loss of stability so that

A ≈ A(0)eγλ+(t̂) approaches zero very closely over an interval of time [0, to] when λ+(t̂) < 0

(see (3.23)) and then returns to its initial value A(T ) = A(0) over the interval [to, T ]. This

allows us to predict that for the pulsating periodic solution of equations (2.1)–(2.3), in the

limit γ → ∞, one has ∫ T

0

λ+(t̂) dt̂ = 0. (3.24)

Since λ+ = λ+(t; c) depends on c, condition (3.24) selects c and defines the period (3.2).

It should be noted that condition (3.24) was not satisfied in the numerical simulations

that we performed. The reason is that A gets extremely close to zero and becomes

affected by numerical noise between the pulses. The effect can be understood if we replace

equation (2.1) with the following equation:

γ−1A′ = −A + κG(t− T )A(t− T ) − μQA + η

containing a small immigration term η > 0. This modification makes sense from the

modelling perspective too because it precludes A from becoming as small as e−γ between

the pulses. For this equation (coupled with equations (2.2) and (2.3)), the period depends

on both γ and η as we confirmed numerically. However, one can predict that the pulsating

periodic solution with a period τ ≈ T should disappear in the limit γ → ∞ with a fixed

η. On the other hand, if η decreases with γ as fast as e−γ , pulses with the period defined

by equations (3.2) and (3.24) can exist.
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4 Conclusion

We have explored a class of pulsating periodic regimes, which can evolve due to the

delay, the non-linearity, and the slow–fast structure in delay differential systems. These

solutions have a period close to the delay and are characterised by a specific scaling of

the pulse width and height with the parameter γ � 1 measuring the ratio of the fast

and slow time scales. Further, the periodic pulses are formed close to some threshold

value of the bifurcation parameter, at which a zero equilibrium undergoes the transcritical

bifurcation and a positive equilibrium appears. Through a case study of a population

model, which involves a fast predator and a slow prey, we have shown that the formation

of periodic pulses is simultaneous with a cascade of multiple, almost simultaneous resonant

Hopf bifurcations that occur in the immediate vicinity of the threshold on the positive

equilibrium. Using the asymptotic analysis at zero, we have obtained explicit relationships

between the parameters, which ensure this scenario (such as (2.7) and (2.17)). In particular,

we have highlighted the role of competition and shown that the pulses with the associated

Hopf bifurcations appear when the fast species competes with another species; in the

absence of competition, pulses do not form near the threshold6.

The same analysis can be applied to a wider class of population models. In particular,

we obtained counterparts of relationships (2.7), (2.16), and (2.17) for several variants of

model (2.1)–(2.3) with different growth terms. We then confirmed numerically the same

bifurcation scenario leading to the formation of pulses near the threshold. In one variation

of the model, the constant immigration and linear death terms q0 − βQ and g0 − αG in

equations (2.2) and (2.3) have been replaced with the logistic terms, Q(q0 − βQ) and

G(g0 − αG), respectively. In another variant of the model,

γ−1A′ = κG(t− T )A(t− T ) − τA− μQA− fA2,

γ−1
q Q′ = νGQ− βQ− sAQ− rQ2,

G′ = g0 − αG− kAG− mQG,

the A and Q species both predate on G, and the intraspecific competition is included.

Interestingly, the counterpart of condition (2.7) for this system requires μs > fr in order

to guarantee that the positive equilibrium undergoes the cascade of Hopf bifurcations in

a small neighbourhood of the threshold. The relation μs > fr means that interspecific

competition between the species A and Q is stronger than intraspecific competition. In

the classical competing species model, this condition ensures the competitive exclusion

scenario; the opposite inequality μs < fr implies the coexistence scenario.

Using the method of matched asymptotic expansions at the slow and fast stages of the

dynamics, we have obtained an approximation to the pulsating solution, which provides

an accurate prediction of the area of the pulse. Furthermore, a modification of the method

of Haus has allowed us to obtain asymptotics of the period and the pulse shape as γ → ∞.

This shape is described by a heteroclinic solution of a scalar delay equation that depends

only on three parameters. The heteroclinic orbit connects two saddle equilibrium points,

each having a one-dimensional unstable manifold.

6 It is worth noting that the model in [30] also has a predator–prey structure. The pulses in

this model, or in the models considered in this work, are not related to switching between stable

branches of a critical manifold of a singularly perturbed system.
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Similar periodic pulsating solutions have been previously found in the laser model (1.1)

and its variations [40,41]. The main advance of this work is a detailed asymptotic analysis

of the pulses and linear stability analysis near the bifurcation point. These analyses can

be extended to lasers. Some differences between population and laser models arise from

the fact that population systems are positively invariant, and the pulsating regime in this

setting is positive. On the other hand, the pulsating variable A in the laser model (1.1)

is complex valued. Also, different types of non-linearities in population and laser models

result in different power laws for the scaling of pulses with γ.

Due to positive invariance, the transcritical bifurcation with the associated zero eigen-

value is an important ingredient of the bifurcation scenario described in this work. It

is interesting to compare this scenario with the Eckhaus and modulational instabilities,

which are well known in the context of spatially distributed systems and have been

recently studied for systems containing large delays [33,46]. The evolution of the pseudo-

continuous spectrum of the zero equilibrium shown in Figure 2(a) is similar to the picture

associated with the Eckhaus instability. The ‘parabola’ carrying the pseudocontinuous

spectrum moves as a whole to the unstable half-plane as the bifurcation parameter in-

creases. Furthermore, as in the Eckhaus scenario [39], we observe the appearance of

multiple unstable periodic solutions, which then stabilise via secondary bifurcations lead-

ing to co-existence of multiple periodic attractors, see Figure 3. On the other hand,

the evolution of the spectrum of the positive equilibrium that intersects the zero equi-

librium in the transcritical bifurcation reminds the modulation instability scenario, in

which the ‘parabola’ carrying the pseudocontinuous spectrum develops two humps that

cross the imaginary axis, while the vertex of the parabola at zero is not moving [33].

Interestingly, although similar humps are observed in Figure 6, they are formed through

a different mechanism. Namely, eigenvalues with smaller imaginary part that belong to

the pseudocontinuous spectrum get absorbed by the strongly stable spectrum as the

bifurcation parameter increases. This interaction of the pseudocontinuous and strongly

stable spectra results in the formation of humps and, further, in stabilisation of the

positive equilibrium for higher values of the bifurcation parameter. However, a com-

mon feature of all the above scenarios is that eigenvalues with smaller imaginary part

cross the imaginary axis from the stable to the unstable domain before eigenvalues with

larger imaginary part do. Hence, all these scenarios can be viewed as long-wavelength

instabilities.
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