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Nonlinear transition mechanism on a blunt cone
at Mach 6: oblique breakdown
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Direct numerical simulations (DNS) were carried out to investigate laminar-turbulent
transition for a blunt (right) cone (7◦ half-angle) at Mach 5.9 and zero angle of
attack. First, (linear) stability calculations were carried out by employing a high-order
Navier–Stokes solver and using very small disturbance amplitudes in order to capture the
linear disturbance development. Contrary to standard linear stability theory (LST) results,
these investigations revealed a strong ‘linear’ instability in the entropy-layer region for a
very short downstream distance for oblique disturbance waves with spatial growth rates
far exceeding those of second-mode disturbances. This linear instability behaviour was
not captured with conventional LST and/or the parabolized stability equations (PSE).
Secondly, a nonlinear breakdown simulation was performed using high-fidelity DNS.
The DNS results showed that linearly unstable oblique disturbance waves, when excited
with large enough amplitudes, lead to a rapid breakdown and complete laminar-turbulent
transition in the entropy layer just upstream of the second-mode instability region.
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1. Introduction

The understanding of laminar-turbulent transition for hypersonic boundary layers is still
far behind that of low-speed (incompressible) flows. Most of the current understanding of
high-speed transition is on the early onset that is governed by linear stability theory (LST,
Mack 1969). Very limited insight is available for the nonlinear transition region, which
can cover a significant part of the downstream transition process (see for example Laible,
Mayer & Fasel 2009; Marineau et al. 2014; Hader & Fasel 2019).

Particularly elusive has been the transition process in the nose region of blunted cones.
This topic is often referred to in the literature in connection with ‘transition reversal’
(see for example Stetson 1979, 1983). Stetson found that the instability process in the
entropy layer in the nose region of blunted cones plays a key role in the early (upstream)
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Figure 1. Transition Reynolds number (ReTR) vs nose-tip Reynolds number (Renose) based on the nose radius
(rnose); reproduced from Jewell & Kimmel (2016); (•, red) case considered in this paper and Re1 is the unit
Reynolds number used for the numerical investigations.

transition in conventional (‘noisy’) wind tunnels and that the transition Reynolds number
consistently increases with nose bluntness, until a critical value is reached beyond which
the transition Reynolds number abruptly decreases (figure 1), which he called ‘transition
reversal’. However, even for smaller nose radii, before transition reversal, he observed
that transition was caused not by second-mode disturbances, but rather by a growth of
disturbances in the entropy-layer region (‘entropy-layer instability’).

Subsequent theoretical investigations of the effect of nose bluntness for right cones
using LST (see for example Dietz & Hein 1999; Lei & Zhong 2012; Rosenboom, Hein &
Dallmann 2013) revealed that increasing nose bluntness monotonically shifts the critical
Reynolds number (and consequently the transition location) further downstream, no matter
how large the nose radius is. Thus, transition reversal could not be captured by LST.

More recently, Jewell et al. (2018) repeated the experiments by Stetson (1983) in the
same tunnel for a right cone with a 7◦ opening half-angle, and also carried out stability
calculations using the STABL parabolized stability equations (PSE) code (Jewell &
Kimmel 2016; Jewell et al. 2018). They confirmed all of the relevant findings of the
original experiments by Stetson (1983), and, more importantly, showed that PSE also
did not provide any trend towards capturing transition reversal and/or indicate that the
entropy-layer instability is playing an important role. Paredes, Choudhari & Li (2019a);
Paredes et al. (2019b) suggested that considering non-modal disturbances, instead of
modal, may explain the transition onset in the entropy layer as observed in experiments
of Stetson (1983) and in the recent experiments by Kennedy et al. (2019). Paredes et al.
(2019a,b) found larger N-factors (integrated growth rates) for the non-modal disturbances
than were obtained by conventional modal (normal mode) stability analyses. However,
these studies provided no conclusive evidence that non-modal analyses could explain
entropy-layer transition, as even non-modal N-factors did not reach sufficiently large
values to lead to transition.

The investigations discussed in the present paper are based on the assumption that
considering the nonlinear disturbance development may be key for explaining the
entropy-layer transition that has been observed in experiments. From numerous past
investigations of hypersonic transition using DNS, we found that in addition to considering
the ‘linear’ modal disturbance development, including the nonlinear effects, is crucially
important for capturing the relevant transition mechanisms in high-speed wind tunnel
experiments (see for example Laible et al. 2009; Hader & Fasel 2019).

Therefore, in the investigations of entropy-layer transition discussed in this paper, we
have focused on the nonlinear disturbance development for a cone with a moderate
nose bluntness. Of the classical candidates of nonlinear mechanisms (fundamental,
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Figure 2. Schematic of the blunt-cone geometry.

subharmonic, oblique), emphasis was placed on the so-called ‘oblique breakdown’
discovered by Fasel, Thumm & Bestek (1993) for a Mach 1.6 flat-plate boundary layer,
which was confirmed using nonlinear PSE by Chang & Malik (1994). This nonlinear
breakdown mechanism was later found to also be relevant for a straight cone at Mach
3.5 (Laible et al. 2009) and a flat plate at Mach 3 (Mayer, Von Terzi & Fasel 2011a).

Wind-tunnel experiments (Stetson 1983; Kennedy et al. 2019) have shown that for
blunted cones entropy-layer transition, and in particular transition reversal, occurs within
a relatively short downstream extent close to the nose region. From our previous
investigations, we have learned that oblique breakdown is an extremely rapid and powerful
nonlinear mechanism that can lead to transition over a very short downstream distance
(Fasel et al. 1993; Laible et al. 2009; Mayer et al. 2011a; Mayer, Wernz & Fasel
2011b), in fact, much more rapidly than for fundamental or subharmonic resonance.
Furthermore, preliminary stability investigations using ‘linear’ DNS (with small amplitude
disturbances) showed amplification only for oblique disturbances (see § 5). Therefore,
oblique breakdown (with respect to entropy-layer instability) was an obvious candidate to
be considered first for investigating the possible role of nonlinear effects on entropy-layer
transition. For the results discussed in the present paper, the same case from the Air Force
Research Laboratory (AFRL) experiments (Jewell et al. 2018) was chosen that was also
investigated by Paredes et al. (2019a,b) using their non-modal analysis, based on which
they concluded that non-modal (as opposed to modal) instabilities may be the key to
understanding the transition process observed in the experiments.

In the present paper, results are also presented for the linear regime. However, the linear
stability results were obtained using DNS rather than traditional LST or PSE. For the
DNS stability investigations, extremely small disturbance amplitudes are used, so that the
nonlinear effects become negligible. Thus, all of the so-called ‘non-parallel flow effects’
are included in the DNS and no assumptions regarding the disturbance form are required.
It should be noted that the boundary layer in the nose region is strongly non-parallel due
to the entropy-layer formation in that region.

2. Geometry and flow conditions

For the numerical investigation presented here, the geometry and the flow conditions of
the experiments at the AFRL Mach 6 High-Reynolds Number Facility were used (Jewell
et al. 2018). The geometry (see figure 2) is a 7◦ half-angle straight (right) cone with a nose
radius of rnose = 1.524 mm (0.06 in) corresponding to the 3 % bluntness case from Jewell
et al. (2018). The flow conditions are summarized in table 1, and the case chosen is marked
in figure 1 with a red dot. The fluid is considered to be a perfect gas with a constant Prandtl
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Parameter Value

Stagnation pressure, p0 2105 psi
Stagnation temperature, T0 611 K
Mach number, M 5.9
Unit Reynolds number, Re1 91.5 × 106 m−1

Table 1. Flow conditions.

number (Pr = 0.71) and a constant ratio of specific heats (γ = 1.4), and the viscosity is
calculated using the standard Sutherland’s law (no low-temperature correction).

3. Simulation strategy

For the simulations presented here, a three-step strategy was employed that has been
successfully used previously for stability investigations and ‘controlled’ breakdown DNS
for different geometries and flow conditions (see for example Laible et al. 2009; Hader &
Fasel 2019). Step 1 consists of a precursor calculation to obtain the steady base flow around
the entire geometry (including the nose) using either a finite-volume code developed in
our CFD laboratory by Gross & Fasel (2008) or CFD++ (Chakravarthy et al. 1998). In
step 2, a new base flow is calculated in a smaller subdomain using a high-order-accurate
finite-difference code, which was also developed in our laboratory by Laible et al. (2009).
In step 3, the actual stability and transition simulations are carried out in the same
subdomain as for step 2 using the same high-order finite-difference code.

4. Base flow

Contours of Mach number and the density of the laminar base flow (figure 3) show the
formation of a bow shock around the nose of the cone, resulting in a strong entropy
layer. The inset in figure 3 indicates the entire size of the cone geometry as used in the
experiments of Jewell & Kimmel (2016). The area shaded with dark grey in figure 3
highlights the extent of the subdomain used for the stability and transition simulations
presented here. A comparison of the boundary-layer thickness determined at the location
where the total enthalpy reaches 99.5 % of the total free stream enthalpy (ht(δ99.5) =
0.995ht∞) and the entropy-layer thickness (δS) calculated using (ΔS(δS) = 0.25ΔSwall,
�S = cpln(T/T∞) − Rgln( p/p∞) where cp and Rg are the specific heat and gas constant
of the fluid, respectively), as also used by Paredes et al. (2019b), is shown in figure 4.
Close to the nose, the entropy layer is very thick compared with the boundary layer.
The entropy-layer thickness rapidly decreases in the downstream direction but is not
‘swallowed’. The edge Mach number (Me see figure 4) is drastically reduced compared
with free stream Mach number due to the strong shock. For the entire computational
domain, it remains well below Me = 4.

5. Linear and nonlinear stability investigations

5.1. Linear stability investigations
For a blunt flat plate at M = 2.5, Dietz & Hein (1999) found amplified entropy-layer
instabilities. Results from a LST analysis using our in-house developed linear stability
solver (parallel flow assumptions, Haas 2020) for the geometry and flow conditions
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Figure 3. Contours of Mach number (M) and density (ρ) normalized with the free-stream density (ρ∞), and
the cone geometry as used in the original experiments with the dark grey shaded area highlighting the size of
the computational domain used here.
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Figure 4. Development of the boundary layer and entropy-layer thickness (δ), and the edge Mach number in
the downstream direction.

considered here (table 1) are shown in figure 5. The location of the inflow and outflow
boundaries of the computational domain that was used for the highly resolved ‘controlled’
breakdown DNS are highlighted in figure 5. No unstable disturbance waves in the
computational domain considered here were found from the LST analysis. Note that in
the same region unstable disturbance waves were also not found in the PSE analysis by
Jewell et al. (2018). Therefore, ‘linear’ stability investigations were carried using DNS
introducing small amplitude disturbances into the computational domain. Simulations by
Husmeier & Fasel (2007) showed that for a blunt cone at M = 8 the flow field was most
receptive to continuously forced disturbances in the entropy layer. Thus, for this ‘linear’
stability investigation, total energy perturbations were introduced into the entropy layer
using a volume-forcing approach. Low resolution (in the azimuthal direction) calculations
were carried out for a wide range of frequencies and azimuthal wavenumbers. The spatial
growth rates extracted from these calculations are provided in figure 6(a). Close to the
inflow of the computational domain, a region of substantial growth over a very short
downstream distance for oblique waves (kc > 0) of all the frequencies considered here
can be observed (figure 6a). This very large linear growth was neither captured with LST
nor with PSE, likely due to the assumptions required in LST and PSE. The maximum
growth rates were obtained for an azimuthal wavenumber of kc ≈ 300. Due to the large
growth rates of these unstable disturbances, relatively large N-factors (up to approximately
20) are reached over a short downstream distance as can be observed in figure 6(b). The
‘linear’ results clearly indicate that only oblique waves are amplified, while the flow is
stable for axisymmetric waves (figure 6).

5.2. Nonlinear stability investigations
The linear stability investigations have shown that oblique disturbances are amplified while
axisymmetric ones are not. Therefore, fundamental or subharmonic resonance are likely
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Figure 5. Growth rates from LST (A. Haas, private communication) for a wide range of frequencies ( f ) and
azimuthal wavenumbers (kc). The grey planes indicate the location of the inflow and outflow boundary of the
computational domain used for the highly resolved DNS.
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Figure 6. (a) Growth rates and (b) N-factors from ‘linear’ stability investigations using low amplitude DNS for
a wide range of forcing frequencies and azimuthal wavenumbers with slices of constant frequency at f = 50,
f = 200, f = 350 and f = 500 kHz.

not relevant in the computational domain considered here and for these flow conditions
and nose bluntness. Consequently, the possibility of an oblique breakdown (Fasel et al.
1993) was investigated in detail. To allow for a possible future comparison with numerical
investigations of the same geometry and flow conditions by Paredes et al. (2019a,b), a
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Figure 7. Instantaneous pressure disturbances ( p′) normalized with twice the dynamic pressure, where U∞
is the freestream velocity, at the wall for three different forcing amplitudes (A0).

pair of oblique disturbance waves with f = 250 kHz and an azimuthal wavenumber of
kc = 50 was chosen. This disturbance wave was found to have large linear amplification
rates (see figure 6) in our stability investigations using DNS. While Paredes et al.
(2019a,b) investigated the possibility of non-modal growth leading to transition, the very
large linear amplification rates obtained from DNS are exploited here to rapidly trigger
nonlinear interactions and a subsequent oblique breakdown. In order to find out if oblique
breakdown can be initiated with the selected disturbance waves, an oblique breakdown
onset study was carried out by forcing a pair of oblique disturbance waves (f = 250
kHz, kc = ±50) with successively increasing amplitudes. The instantaneous pressure
disturbances on the surface of the cone in figure 7 show that for a forcing amplitude of
A0 = 1 × 10−6 (figure 7, top) the disturbances are amplified after reaching the wall and
the sinusoidal nature of the disturbances suggests that this is a purely ‘linear’ amplification.
Increasing the forcing amplitude to A0 = 1 × 10−5 (figure 7, middle) results in a distortion
of the sinusoidal waveform of the instantaneous disturbance signal that is caused by
nonlinear effects. When forced with a sufficiently large amplitude (A0 = 5 × 10−5), a
strong nonlinear distortion of the disturbance signal can be observed. This suggests that
an oblique breakdown (Fasel et al. 1993) may be a relevant nonlinear mechanism.

6. Oblique breakdown

In the simulation set-up for the nonlinear transition investigation by Paredes et al. (2019b),
non-modal disturbances (obtained from linear non-modal analysis, and ‘blown-up’ to
large ‘nonlinear’ amplitudes) are forced at the inflow boundary of their computational
domain. Thus, the nonlinear development resulting from that particular forcing is specific
to what is imposed at the inflow as a boundary condition, in their case, a pair of
non-modal oblique disturbances with kc = 50, f = 250 kHz (Note that in Paredes et al.
(2019b) the azimuthal wavenumber is denoted with m). In contrast, our simulation set-up
was motivated by the landmark ‘controlled’ boundary-layer transition experiments by
Schubauer & Skramstad (1948), which validated the LST for the primary instability.
Furthermore, it is motivated by the subsequent ‘controlled’ transition experiments by
Klebanoff, Tidstrom & Sargent (1962), which set the stage for the development of the
secondary instability theory for incompressible boundary layers. In these experiments,
local but ‘controlled disturbances’ of specified frequencies and amplitudes were introduced
(via a ‘vibrating ribbon’). Thus, in these landmark experiments, the receptivity of the flow
with respect to the ‘actuator’ (vibrating ribbon) was included in the flow response. These
‘controlled’ transition experiments laid the foundation for the understanding of low-speed
boundary-layer transition.
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The simulations discussed in our paper are set up in the spirit of these landmark
low-speed ‘controlled’ transition experiments as hypersonic experimental equivalents have
not yet been carried out. Towards this end, in our simulations, the disturbances are
deliberately not forced at the inflow, but rather, as in the above mentioned experiments,
locally (in our case in the entropy layer) using ‘controlled disturbances’ (with respect
to amplitude, frequency and azimuthal wavenumber), so that the ‘actuator’ receptivity
to the employed forcing is also included. Therefore, the resulting nonlinear transition
mechanisms are not driven by imposed streamwise modes at the inflow boundary as
in Paredes et al. (2019b), but rather, the oblique transition mechanisms are allowed to
‘play out freely’ without any bias, and the streamwise modes are nonlinearly generated
and can participate in the nonlinear transition process. It should be noted that a local
‘controlled’ disturbance generation as used in the present simulations could be realized in
future high-speed transition experiments.

With the forcing parameters determined as discussed above, a highly resolved so-called
‘controlled’ oblique breakdown DNS was carried out. Towards this end, a pair of oblique
disturbance waves with a frequency of f = 250 kHz and an azimuthal wavenumber of
kc = ±50 were introduced into the entropy layer with an amplitude of A0 = 5 × 10−5.
The computational domain for this simulation was focused on a region close to the blunted
nose of the cone geometry (see figure 3). In the streamwise direction, the computational
domain was resolved with nx = 6800 grid points with the inflow boundary located at
x = 0.025 m and the outflow at x = 0.125 m. The grid spacing was refined in the
downstream direction in order to resolve all relevant length scales near the downstream
end of the domain where the nonlinear breakdown stages will be reached. The shock-fitted
grid extends up to the shock location which was obtained from precursor calculations.
A total of nη = 698 grid points clustered near the wall and in the entropy layer were
used in the wall-normal direction. The computational domain in the azimuthal direction
(0 rad ≤ ϕ ≤ π/50 rad) was resolved with nϕ = 199 grid points (100 Fourier modes). For
the wall-normal direction, grid convergence studies were carried (not presented here for
brevity) to ensure that the boundary layer and the entropy layer were sufficiently resolved.
An a priori estimate of the wall units was obtained with the turbulent skin-friction
estimates (White 2006). Based on these estimates, the grid line distribution was designed
such that in the wall-normal direction Δy+ ≈ 1 was obtained in the entire computational
domain, and Δx+ < 5 was used in the refined region in the downstream direction where
nonlinear breakdown was expected based on the oblique breakdown onset calculations
(see § 5).

Contours of the instantaneous temperature disturbance in the symmetry plane from the
nonlinear oblique breakdown DNS are shown in figure 8. For reference, the entropy-layer
(δS) and boundary-layer (δ99.5) thicknesses of the laminar base flow are also provided
in figure 8. The oblique disturbance waves initially propagate along the entropy layer
(figure 8a). The spatial forcing function used for the volume force was a so-called
‘monopole’ in the streamwise and the wall-normal direction. This shape is initially
‘imprinted’ on the disturbance waves but shortly downstream of the forcing location the
disturbance waves adjust and exhibit an elongated shape ‘slanted’ upwards (figure 8a). A
detailed view of the entropy-layer structures downstream of the forcing location (figure 8b)
shows that the main structures are developing above the boundary layer. The ‘tails’ of
these structures begin to penetrate the boundary layer (figure 8b) and then quickly become
stretched in the streamwise direction due to the reduced flow speed inside of the boundary
layer (figure 8c). While the structures comprising positive temperature disturbance values
remain nearly unchanged, the structures that penetrated into the boundary layer (negative
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Figure 8. Contours of the instantaneous temperature disturbance (T ′) normalized with the free-stream
temperature (T∞) in the symmetry plane.
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Figure 9. Isosurfaces of the instantaneous three-dimensional temperature disturbances in the turbulent
breakdown region.

temperature disturbances) quickly merge and contaminate the entire boundary layer
(figure 8d). Farther downstream, the ‘tail’ of the large structures in the entropy layer
descends into the boundary layer and smaller scales are generated (figure 8d), indicating
that the flow is progressing deeper into the nonlinear breakdown regime. Towards the end
of the computational domain, the flow exhibits a breakdown to very small structures that
are characteristic for a turbulent boundary layer. Remnants of the entropy-layer structures
can still be observed even long after the nonlinear stages of the laminar-turbulent transition
process have been reached. Thus, these ‘coherent’ structures persist far into the late
stages of the transition process and into the turbulent boundary layer. The instantaneous
three-dimensional structures of the late stages of the nonlinear transition process in figure 9
confirm that the coherent structures in the entropy layer prevail downstream into the late
nonlinear transition stages. The negative temperature disturbances are layered between the
wall and the positive temperature disturbances in the entropy layer.

The downstream development of the pressure disturbance amplitude extracted at the wall
(figure 10a) and the maximum pressure disturbance amplitude (figure 10b) provide insight
into which nonlinear interactions are dominating the transition process. For convenience,
the notation (n, m) which is a shorthand notation for (n × fforced, m × kc,domain), where
fforced is the frequency of the forced disturbance wave and kc,domain is the smallest
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Figure 10. Downstream development of the pressure disturbance amplitude at the wall ( p′
wall) (a), and the

maximum pressure disturbance amplitude (b).

azimuthal wavenumber resolved in the computational domain has been adopted here
(for details see Hader & Fasel 2019). For the results presented here, the normalization
parameters are fforced = 250 kHz and kc,domain = 50. The development of the pressure
disturbance amplitude at the wall (figure 10a) indicates that initially all modes are decaying
downstream of the forcing location until a strong exponential (linear in the log plot) growth
sets in, quickly leading to very large amplitudes for a wide range of disturbance waves
at x ≈ 0.087. Thereupon the oblique forced mode (1, 1) and all nonlinearly generated
modes reach peak values. Thereafter, surprisingly, the disturbances decay until x ≈ 0.095
m, from whereon all disturbance waves experience strong amplification, in particular the
higher frequencies and azimuthal wavenumbers (indicated with grey lines, figure 10). The
modes highlighted in colour (figure 10) are the so-called ‘signature modes’ of the oblique
breakdown (Fasel et al. 1993), thus providing evidence that oblique breakdown is indeed
the dominant nonlinear mechanism. These observations are the same for the development
of the maximum pressure disturbance amplitudes (figure 10b). The most notable difference
is that the amplification of the forced mode (1, 1) at the wall (figure 10a) sets in farther
upstream (at approximately x ≈ 0.05 m) compared with the development of the maximum
pressure disturbance amplitude (at approximately x ≈ 0.07 m, figure 10b).

As can be observed in figure 10(b), the streamwise mode (0,2), as well as the other
signature modes of oblique breakdown, are generated as a consequence of a nonlinear
interaction of the oblique modes (1,1) and (1,−1) which are the only ‘controlled’
disturbances introduced into the flow due to the simulation set-up as discussed above.
This is in contrast to the numerical investigations of Paredes et al. (2019b), where the
streamwise modes were already introduced at the inflow of the computational domain by
using disturbances obtained from a non-modal stability calculation.

The azimuthal wavenumber of the forced oblique waves was kc = 50, resulting in a
steady streamwise mode (0, 2) with kc = 100. In the non-modal analysis by Paredes et al.
(2019b), a steady streamwise mode with kc = 100 exhibits the largest N-factor. In the
DNS for the ‘controlled’ oblique breakdown, not only steady streamwise modes but also
a wide range of other modes are nonlinearly generated, in particular also the so-called
‘signature modes’ (see figure 10), which in turn can lead to other levels of nonlinear
interactions. Therefore, it is difficult to establish an unambiguous link between the
nonlinearly generated steady streamwise modes observed in the present oblique breakdown
DNS and the steady streamwise modes obtained from the transient growth analysis by
Paredes et al. (2019b). Our simulations seem to indicate that the nonlinear breakdown
is not only associated with the secondary instability of the steady streamwise modes, as
described by Berlin, Lundbladh & Henningson (1994) for incompressible flows, but is
rather also caused by the rapid and strong nonlinear interactions with all the other unsteady,
nonlinearly generated disturbances (see figure 10).
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Figure 11. Contours of the time-averaged Stanton number (Ch) on the surface of the cone (a), and
development of the Stanton number in the downstream direction (b).

Contours of the time-averaged Stanton number on the surface of the cone are displayed
in figure 11(a). Towards the end of the computational domain, streaks of increased Stanton
number (‘hot streaks’) begin to develop. The streak spacing in the azimuthal direction is
Δϕ = 2π/100 or exactly 100 streaks around the circumference of the cone. The streak
spacing corresponds to the azimuthal wavenumber of the steady streamwise mode (0,2),
which is nonlinearly generated by interaction of the forced oblique modes (1, ±1). Farther
downstream these streaks merge in the azimuthal direction resulting in an increased
Stanton number around the entire circumference of the cone, indicating that the flow has
progressed deep into the nonlinear breakdown regime. The development of the Stanton
number in the downstream direction extracted at different azimuthal locations is displayed
in figure 11(b), where the laminar and turbulent estimates for a sharp cone (shifted in the
downstream direction to the virtual cone origin of a perfectly sharp cone) are provided
for reference. The Stanton number extracted along the streaks (ϕ = 0, ϕ = π/100 rad)
shows a rapid deviation from the laminar estimate towards the turbulent value around
x ≈ 0.09 m. The Stanton number extracted at an azimuthal location between the streaks
(figure 11(b), ϕ = π/50 rad) exhibits a delayed deviation from the laminar value. At
x ≈ 0.11 m, the Stanton number has approached turbulent values at all azimuthal locations,
and is later exceeding them (‘overshoot’) for some spanwise locations.

To provide a qualitative comparison to Schlieren images shown in Kennedy et al. (2019),
contours of ‘pseudo-schlieren’ are plotted in the symmetry plane in figure 12. As for
the instantaneous temperature disturbance contours (figure 8), the entropy-layer thickness
(δS) and the boundary-layer thickness (δ99.5) are also provided in figure 12. The shape
of the structures in the entropy layer that was observed in the instantaneous contours
of the temperature disturbance (see figure 8) can also be seen in the ‘pseudo-schlieren’
(figure 12). As these ‘slanted’ structures propagate in the downstream direction their ‘tail’
begins to penetrate the boundary layer (figure 12b). The previously ‘quiet’ boundary layer
is then quickly contaminated with the disturbances from the entropy layer and breakdown
to small scales can be observed (figure 12d). This is followed by a rapid transition of the
boundary layer while the coherent entropy-layer structures persist even in the late stages
of the laminar-turbulent transition process (figure 12f ). The small scales observed in the
contours of the magnitude of the density gradient in figure 12( f ) again confirm that the
nonlinear stages of transition have been reached, and the flow is approaching turbulence.

The question arises how far transition has progressed towards fully turbulent flow. This
can be addressed by analysing the van Driest transformed velocity profiles from the
time-averaged flow field for different downstream and azimuthal locations (figure 13).
The viscous sublayer and the log-layer are given as reference as a black dashed line
and a dash-dotted line, respectively, in figure 13. The azimuthal locations at which the
profiles were extracted correspond to a location cutting through the streaks (ϕ = 0 rad) and
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Figure 12. Qualitative comparison of the Schlieren images taken from Kennedy et al. (2019) (a,c,e) with
‘pseudo-schlieren’ (normalized magnitude of the density gradient, where Lref = 1 m is the reference length
scale used here) obtained from the oblique breakdown DNS (b,d, f ).
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Figure 13. Van Driest transformed velocity (u+
c ) profiles from the oblique breakdown simulations.

between the streaks (ϕ = π/100 rad). At x = 0.06 m, the van Driest profiles (figure 13)
at the two different azimuthal locations are indistinguishable from one another, thus the
flow is most likely still laminar at this location. The profiles deviate from one another at
x = 0.082 m (figure 13) without any noticeable development of a log-layer. The profiles in
the symmetry plane begin to approach the log-layer at x = 0.1 m, while the profile between
the streaks still appears to be laminar. Shortly downstream at x = 0.11 and x = 0.12 m
(figure 13), the profiles at both azimuthal directions show the development of a log-layer,
indicating that in this case the laminar-turbulent transition process is extremely rapid,
resulting in a very short transition region. Here, the transition region is defined as the
distance from the location where the Stanton number begins to deviate from its laminar
value to where it has reached a sustained turbulent value. This rapid transition is in contrast
to the findings for ‘controlled’ breakdown DNS for sharp straight and flared cones (see for
example Laible et al. 2009; Hader & Fasel 2019) where the transition region covered large
portions of the geometry.
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T ′
/T∞ –1

1

Figure 14. Instantaneous isosurfaces of Q = 100 000 coloured with contours of the instantaneous
temperature disturbance.

The instantaneous flow structures from the oblique breakdown simulation are visualized
in figure 14 using Q-isocontours coloured with the contours of the instantaneous
temperature disturbance. The isocontours of the Q-criterion confirm that the flow is
laminar (no vortical structures) for a large downstream portion of the computational
domain, followed by an explosive breakdown to turbulence towards the downstream
end of the computational domain. The close-ups in figure 14 provide details of the
laminar-turbulent breakdown process. The top down view (figure 14) shows the formation
of staggered lambda vortices. At the downstream end of the computational domain, the
flow has broken down to small scales, providing further evidence the boundary layer has
reached the late stages of the transition process and the onset of turbulent flow.

7. Conclusions

Direct numerical simulations were employed to investigate the linear and nonlinear
stability regimes in the entropy layer of a blunt cone at Mach 5.9. The linear stability
investigations revealed that oblique waves for a wide range of frequencies and azimuthal
wavenumbers experience significant growth (much larger compared with the second-mode
growth rates) over a very short downstream distance in the nose region. These instabilities
were not captured with conventional stability tools, such as LST, possibly due to the
‘non-parallel’ effects that may not be negligible in the region just downstream of the
blunt nose. In spite of the very short downstream distance for which these modes are
amplified, the large growth rates result in large N-factors (integrated growth rates).
A low resolution (in azimuthal direction) onset study for the oblique breakdown showed
that, due to the very large growth rates of these linear disturbances, amplitudes sufficient
for a rapid nonlinear breakdown can be reached over a very short downstream distance.
Thereupon, a high resolution ‘controlled’ oblique breakdown simulation was carried out
where oblique disturbance waves were continuously, locally forced in the entropy layer at
larger amplitudes, which lead to rapid transition. The results indicate that the flow has
progressed deep into the nonlinear transition regime towards turbulent flow. Coherent
structures were observed in the entropy layer that persisted even after the boundary
layer became turbulent. Qualitative similarities of the pseudo-schlieren images from the
oblique breakdown DNS presented here and the Schlieren images by Kennedy et al. (2019)
indicate that nonlinear oblique breakdown may indeed be a relevant (nonlinear) transition
mechanism in these experiments. Therefore, the results presented here provide evidence
that in conventional (‘noisy’) wind tunnels, including the nonlinear mechanisms may be
key for explaining the transition process for blunt cones.
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