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Equilibrium tilt of slippery elliptical rods in
creeping simple shear
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It is shown that shape anisotropy and intrinsic surface slip lead to equilibrium tilt
of slippery particles in a creeping simple shear flow, even for nearly shape-isotropic
particles with a cross-section that is close to circular provided the Navier-slip length is
sufficiently large. We study a rigid particle with an elliptical cross-section, and of infinite
extent in the vorticity direction, in simple shear. A Navier-slip boundary condition is
imposed on its surface. When a Navier-slip length parameter λ is infinite, an analytical
solution is derived for the Stokes flow around a particle tilting in equilibrium at an
angle (1/2) cos−1((1 − k)/(1 + k)) to the flow direction where 0 ≤ k ≤ 1 is the ratio of
the semi-minor to semi-major axes of its elliptical cross-section. A regular perturbation
analysis about this analytical solution is then performed for small values of 1/λ and
a numerical continuation method implemented for larger values. It is found that an
equilibrium continues to exist for any anisotropic particle k < 1 provided λ ≥ λcrit(k)
where λcrit(k) is a critical Navier-slip length parameter determined here. As the case
k → 1 of a circular cross-section is approached, it is found that λcrit(k) → ∞, so the range
of Navier-slip lengths allowing equilibrium tilt shrinks as shape anistropy is lost. Novel
theoretical connections with equilibria for constant-pressure gas bubbles with surface
tension are also pointed out.

Key words: particle/fluid flow

1. Introduction

In recent work Kamal, Gravelle & Botto (2020) have studied the motion of a thin rigid
graphene nanoplatelet with hydrodynamic slip in a simple shear at low Reynolds numbers.
They investigated the interesting observation that, at large Péclet numbers, interfacial slip
suppresses an expected periodic rotation, resulting in the particle being in equilibrium with
its principal axis tilted at a small angle with respect to the flow direction. Further studies of
this equilibrium tilt of nanoplatelets have since been carried out including an exploration
of finite Péclet number effects (Gravelle, Kamal & Botto 2021a,b). Earlier, Zhang, Xu &
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Qian (2015) explored the effect of surface slip on the so-called Jeffery orbits of rod-like
particles of elliptical cross-section, although that investigation was limited to relatively
small Navier-slip lengths and no equilibrium tilt was observed.

Kamal et al. (2020) remark that the observed tilt of the platelet is surprising in
view of the classical work on ellipsoidal particles in shear by Jeffery (1922) who finds
that a non-trivial rotation (the aforementioned Jeffery orbits) is generally expected to
ensue when the particle boundary is a no-slip surface. Jeffery’s work was extended by
Bretherton (1962) who studied more general axisymmetric particle shapes and introduced
an important determinant of the rotational dynamics known as the effective aspect ratio
keff which, it turns out, is relevant even when the particle surface admits slip. For no-slip
particles with elliptical cross-section and of infinite extent in the vorticity direction
keff = k where k is the ratio of the semi-minor to semi-major axes of the cross-section
(Zhang et al. 2015; Kamal et al. 2020).

The observation of equilibrium tilt of slippery nanoplatelets is indeed surprising if
one has in mind the work of Jeffery (1922) and Bretherton (1962). It is less surprising,
however, in view of work on equilibria for constant-pressure gas bubbles in creeping
slow viscous flows carried out shortly after Bretherton’s work by Richardson (1968).
Richardson addressed a significantly more challenging problem than that of Jeffery and
Bretherton: the nonlinear free-boundary problem of determining the shape, if it exists, of
a constant-pressure gas bubble, with surface tension active on its boundary, in equilibrium
in an ambient simple shear. The non-dimensional parameter governing such a system is a
capillary number, Ca say, that measures the flow strength relative to that of surface tension.
Remarkably, Richardson (1968) found analytical solutions to this free-boundary problem
and unveiled the equilibrium bubble shapes to be elliptical with a Ca-dependent aspect
ratio k = k(Ca) and tilting at a Ca-dependent angle φ = φ(Ca).

It need hardly be pointed out that gas bubbles and slippery particles are not the same,
which is no doubt why bubbles are never mentioned in the slippery particle literature. The
bubble problem is a two-phase fluid scenario while the notion of surface tension has no
physical relevance for rigid particles. Consequently, the nature of the normal stress balance
on the boundary of a rigid particle and a bubble are different. But consider a rigid particle
in a fluid of viscosity μ with the Navier-slip condition (Luo & Pozrikidis 2008)

λ

μ
(tiσijnj) = uiti (1.1)

on its boundary, where σij is the fluid stress tensor, λ is the Navier-slip length parameter
and ui, ti and ni are, respectively, the fluid velocity, unit tangent and fluid-inward normal
vector components at the boundary. In the limit λ→ ∞, this boundary condition becomes
one of vanishing shear stress. That is, the same tangential stress condition as must pertain
on the surface of a constant-pressure gas bubble. For equilibrium, both for a rigid particle
or a bubble, one additionally requires that the boundary is a streamline of the flow. So far,
then, the boundary conditions for the infinite-slip-length particle and constant-pressure
gas bubble are the same. For a rigid particle, its shape is known and imposition of some
far-field boundary condition then completes the problem statement. For the gas bubble, on
the other hand, the equilibrium shape is unknown and, for given far-field flow conditions,
has to be determined by further enforcement of a normal stress condition that any jump in
normal fluid stress across the bubble boundary must be balanced by surface tension. The
latter is what was done by Richardson (1968). Incidentally, it has since been shown that
initially elliptical gas bubbles, including compressible ones where the bubble gas pressure
obeys a given equation of state, remain elliptical under unsteady time evolution in a linear
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Equilibrium tilt of slippery elliptical rods in simple shear

ambient Stokes flow with their shape parameters obeying a set of ordinary differential
equations very much akin to the Jeffery equations relevant for evolving no-slip particles
(Crowdy 2003).

An intriguing feature of Richardson’s bubble solutions is that they exhibit an equilibrium
tilt angle for all values of the capillary number which, moreover, cover all possible aspect
ratios ranging from the shape-isotropic k = 1 case of a circular bubble to the k = 0 case of
a finite-length shear-free slit. At the same time, the problem of a slippery rod-like particle
with isotropic circular cross-section and with a Navier-slip condition (1.1) active on its
boundary is so simple as to afford an explicit mathematical solution from which it is easy
to deduce that the only solution for a torque-free circular particle equilibrium requires
λ = ∞. In other words, there is no admissible equilibrium for a slippery circular rod if the
Navier-slip length is finite (so that some frictional drag occurs at the surface). With this
in mind, as well as Richardson’s torque-free elliptical bubbles which also correspond to
λ = ∞, one is inclined to the belief that there is no equilibrium tilt of slippery particles in
a creeping simple shear unless they have an infinite Navier-slip parameter λ, that is, unless
their boundaries are shear-free.

Yet the recent observations (Kamal et al. 2020) of equilibrium tilt for nanoplatelets are
not consistent with that conclusion. Since nanoplatelets for which tilt has been observed
are ostensibly long and thin (Kamal et al. 2020; Gravelle et al. 2021a,b) one suspects
that significant shape anisotropy must play an important role in equilibrium tilt. Zhang
et al. (2015) have explored the effect of shape anisotropy and Navier slip on the unsteady
Jeffery orbits but they observed no tilting equilibria. Is it therefore only particles that
are sufficiently long and thin that are amenable to equilibrium tilt? And is the tilt angle
always small? Or is it possible that anisotropic particles of any aspect ratio can tilt in
equilibrium provided the slip is sufficiently strong, as suggested by the constant-pressure
bubble equilibria just discussed? It is clearly desirable to obtain a more complete picture
of how all these facts fit together, and that is the purpose of the present paper.

Motivated by the similarities between slippery particles and gas bubbles just elucidated,
we establish here that a rigid anisotropic rod-like particle of elliptical cross-section (i.e.
k < 1) and with infinite Navier-slip length λ also admits an equilibrium tilt angle φ which,
since there is now no notion of a capillary number, we think of as a function of the
particle aspect ratio, i.e. φ = φ(k). For brevity, we call these ‘elliptical particles’. Just
as Richardson (1968) did for a gas bubble, we find an analytical solution to this slippery
elliptical particle problem. It is important to note, however, that we cannot simply import
Richardson’s prior analysis because that relies critically on the normal stress jump on
the boundary being balanced by surface tension, a feature simply not shared with the
slippery particle problem where surface tension has no relevance. Richardson (1968)
finds that the bubble equilibria turn out to have elliptical cross-section, that is, the same
shape as our chosen class of rigid particles. We are therefore in a situation where we
conjecture in advance that, in solving the slippery elliptical particle problem, we will
retrieve Richardson’s flow field around his bubble, but it must now be derived as the
solution of a different boundary-value problem requiring a different solution scheme.
Details of such a scheme are given here. For λ = ∞, it leads to an analytical solution
to the slippery particle problem with equilibrium tilt angle φ related to the particle aspect
ratio k by

φ = φ0(k) = 1
2

cos−1
(

1 − k
1 + k

)
. (1.2)

This relation is found to coincide with that obtained by eliminating the parametric
dependence on Ca between the expressions for φ(Ca) and k(Ca) found for Richardson’s
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elliptical bubble equilibria, as anticipated. For slippery particles the result (1.2), and its
derivation, are new.

There are two benefits of having devised this new formulation of the infinitely-slippery
particle problem. First, it can be used to find broad classes of analytical solutions for such
particles having non-elliptical shape; those results will be presented elsewhere. Second,
and the focus here, the formulation lends itself to a perturbation analysis in 1/λ� 1 from
which we obtain the explicit first-order correction to the tilt angle (1.2) as

φ = φ0(k)− 1
2λ

B(ρ)
A(ρ)

+ O
(

1
λ2

)
, ρ = 1 − k

1 + k
, (1.3)

where

A(ρ) = 3ρ(1 − ρ2)

∫ 2π

0

sin(2φ0(k))− ρ sin(4φ0(k)+ 4θ)+ sin(2φ0(k)+ 4θ)
(1 + ρ2 − 2ρ cos(2θ + 2φ0(k)))5/2

dθ,

B(ρ) = −2
∫ 2π

0
|Z′

0(e
iθ )|2

(
Im[I0(eiθ )] − 1

4

)
dθ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(1.4)

and where explicit formulas for I0 and Z0 are given in (2.25) and (2.29). As discussed later,
these formulas provide evidence that the range of possible slip lengths for equilibrium tilt
shrinks as the isotropic case is approached. Then, for smaller λ, a numerical continuation
scheme is also described that allows calculation of the rest of the equilibrium solution
branch without difficulty. It is found that every anisotropic particle, even those close to
circular, has a critical slip length, λcrit, above which it will exhibit equilibrium tilt.

2. Mathematical formulation

It is convenient to use a complex variable formulation of two-dimensional Stokes flow.
Such an approach has been used by the author to obtain the Jeffery-type differential
equations governing the dynamics of no-slip curved rigid rods (Crowdy 2016) and we
will adapt that analysis. Richardson (1968) also used complex analysis, but features of his
scheme do not carry over to the rigid particle, as pointed out below. Using Re[·] and Im[·]
to denote taking real and imaginary parts of a complex quantity, any steady incompressible
Stokes flow (u, v) in a two-dimensional (x, y)-plane can be described by a biharmonic
streamfunction ψ written as

ψ(z, z̄) = Im[z̄f (z)+ g(z)], (u, v) =
(
∂ψ

∂y
,−∂ψ

∂x

)
, u − iv = 2i

∂ψ

∂z
, (2.1a–c)

where f (z) and g(z) are functions of z = x + iy. From the Stokes equations it can be shown
that the fluid pressure P, the vorticity ω = −∇2ψ and the fluid rate-of-strain tensor eij =
(1/2)(∂ui/∂xj + ∂uj/∂xi) are related to f (z) and g(z) by

4f ′(z) = P
μ

− iω, u − iv = −f (z)+ z̄f ′(z)+ g′(z), e11 + ie12 = zf ′′(z)+ g′′(z),

(2.2a–c)

where a prime symbol denotes a differentiation with respect to the argument of a function.
The complexified expression for the boundary fluid stress σij = −Pni + 2μeijnj is

− 2μi
dH
ds
, H ≡ f (z)+ zf ′(z)+ g′(z), (2.3)
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Figure 1. A slippery elliptical particle of aspect ratio k = (1 − ρ)/(1 + ρ) with boundary condition (1.1)
tilting at angle φ in simple shear with vorticity axis out of the plane. Streamlines, computed using the methods
of this paper, for ρ = 0.2 for ε = (2λ)−1 = 0, 0.4 and 0.61(≈ εcrit) are shown. The particle aligns with the
flow as surface friction is added.

where ds = (dz dz)1/2 is the differential arclength element, with arclength s increasing as
the boundary is traversed with fluid to the left. A derivation of all the above fundamental
relations is given in an appendix of Crowdy (2020). We want to find the relevant f (z) and
g(z) for Stokes flow in the region D shown in figure 1(a) exterior to a slippery elliptical
particle centred at the origin. For a far-field simple shear flow with (u, v) → ( y, 0), where
we have set the flow time scale by picking the far-field shear rate to be unity, we need

f (z) → i
4

z + O(1/z), g(z) → − i
4

z2 + O(1), as z → ∞. (2.4a,b)

In specifying (2.4a,b) the far-field fluid pressure is taken to vanish. The absence of any
logarithmic singularities in the far-field behaviour (2.4a,b) of f (z) and g(z) guarantees that
the particle will be free of any net force or torque, conditions necessary for equilibrium. An
additive degree of freedom associated with the transformations f (z) �→ f (z)+ c, g′(z) �→
g′(z)+ c̄ for any c ∈ C which leave invariant the expression for u − iv in (2.2b) has been
set by insisting on the absence of a constant term in the far-field behaviour of f (z).

The following conformal mapping transplants the unit disc |ζ | < 1 in a parametric
complex ζ -plane to the unbounded fluid region D exterior to the elliptical particle:

z = Z(ζ ) = a
ζ

+ bζ, a ∈ R, b = ρ e2iφ, (2.5)

with ζ = 0 corresponding to z = ∞. Let ∂D denote the elliptical boundary. Writing
ζ = eiθ it is easy to show that |ζ | = 1 corresponds to the boundary of an ellipse with
semi-major axis a + ρ and semi-minor axis a − ρ at angle φ to the positive real axis
so its aspect ratio k = (a − ρ)/(a + ρ); see figure 1. It is convenient to set the length
scale by choosing a = 1 so that ρ = (1 − k)/(1 + k). The particles will have different
cross-sectional areas for different ρ but any desired rescaling of the equilibria can be done
a posteriori. The Schwarz function S(z) of the boundary ∂D is the function, analytic in an
annular neighbourhood of ∂D, satisfying z̄ = S(z) when z ∈ ∂D. Since |ζ | = 1 on ∂D,

S(z) = Z(ζ ) = aζ + b̄
ζ
, for z ∈ ∂D, or for |ζ | = 1. (2.6)

Substituting for 1/ζ from (2.5) tells us S(z) is analytic in D except at infinity where

S(z) = b̄
(

Z(ζ )
a

− bζ
a

)
+ aζ = b̄

a
Z(ζ )+ ζ

(
a − |b|2

a

)
→ b̄

a
z + O(1/z), as z → ∞.

(2.7)
Now let

g(z) = −S(z)f (z)+ ĝ(z). (2.8)
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The appearance of ĝ(z) here differs from the bubble analysis of Richardson (1968) who
took the bubble pressure (and not the far-field pressure) to vanish and used the normal
stress balance to argue that ĝ(z) = 0. The rigid particle problem does not afford us this
luxury. But, fortunately, ĝ(z) is easy to determine. On ∂D,

ψ = Im[z̄f (z)+ g(z)] = Im[z̄f (z)− S(z)f (z)+ ĝ(z)] = Im[ĝ(z)] = 0, (2.9)

since ∂D must be a streamline, ψ vanishing on ∂D without loss of generality. As z → ∞,

g(z) = −S(z)f (z)+ ĝ(z) → − i
4

b̄
a

z2 + O(1)+ ĝ(z), (2.10)

implying, in order that g(z) satisfies (2.4b),

ĝ(z) → i
4

(
b̄
a

− 1
)

z2 + O(1), z → ∞. (2.11)

Since ĝ(z) is otherwise analytic in the fluid then, as a function of ζ , we deduce that

ĝ(z) = Ca2

ζ 2 + C̄a2ζ 2 := G(ζ ), C = i
4

(
b̄
a

− 1
)
. (2.12)

This satisfies both (2.9) and (2.11). Equation (2.8) implies that, at the boundary ∂D,

H = iγ zs + ĝ′(z), u + iv = −Γ zs + ĝ′(z), γ = 2 Im
[

f (z)
zs

]
Γ = 2 Re

[
f (z)
zs

]
,

(2.13a–d)

where we use the shorthand zs = dz/ds for the complexified unit tangent and we have used
the fact that dS/dz = zs/zs for z ∈ ∂D. Equations (2.3) and (2.13a) imply

− 2μi
dH
ds

= 2μ
(

dγ
ds

zs + γ zss

)
− 2μiĝ′′(z)zs, where zss = d2z

ds2 . (2.14)

On use of the streamline condition (2.9), as well as (2.3) and (2.14), we find

λ

μ
(tiσijnj) = λ

μ
Re

[
zs

(
−2μi

dH
ds

)]
= 2λ

(
dγ
ds

+ Im
[
ĝ′(z)zss

])
,

tiui = Re[zs(−Γ zs + ĝ′(z))] = −Γ + Re[ĝ′(z)zs].

⎫⎪⎬
⎪⎭ (2.15)

The Navier-slip condition (1.1) on the particle surface can therefore be written as

dγ
ds

= −Im[ĝ′(z)zss] + ε(−Γ + Re[ĝ′(z)zs]), ε = 1
2λ
. (2.16)

On integration with respect to s, this becomes

γ =
∫ s

0
{−Im[ĝ′(z)zs̃s̃] + ε(−Γ + Re[ĝ′(z)zs̃])} ds̃ + σ, (2.17)

where σ is a real constant. It follows from the chain rule that

dz
ds

= iζZ′(ζ )
|Z′(ζ )| ,

d2z
ds2 = − ζZ′(ζ )

|Z′(ζ )|2
(

1 + Re
[
ζZ′′(ζ )
Z′(ζ )

])
. (2.18a,b)
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Equilibrium tilt of slippery elliptical rods in simple shear

Putting these facts together (2.17) can be stated, at a boundary point ζ = eiθ , as

γ̃ (ζ ) = R(ζ )+ σ, with γ̃ (ζ ) ≡ −2|Z′(ζ )|Re
[

f (Z(ζ ))
ζZ′(ζ )

]
, (2.19)

R(ζ ) =
∫ θ

0

{
Im[ηG′(η)]

(
1

|Z′(η)|
(

1 + Re
[
ηZ′′(η)
Z′(η)

])
− ε

)
− εΓ̃ (η)|Z′(η)|

}
dφ, η = eiφ,

with Γ̃ (ζ ) ≡ 2|Z′(ζ )|Im
[

f (Z(ζ ))
ζZ′(ζ )

]
. (2.20)

For f (z) to be single-valued we need R(ζ ) to be single-valued around |ζ | = 1, or
∫ 2π

0

{
Im[ζG′(ζ )]

(
1

|Z′(ζ )|
(

1 + Re
[
ζZ′′(ζ )
Z′(ζ )

])
− ε

)
− εΓ̃ (ζ )|Z′(ζ )|

}
dθ = 0.

(2.21)
This solvability condition ensures the particle is free of net force and torque.

2.1. Analytical solution for ε = 0
When ε = 0, the dependence of R(ζ ) on f (z) disappears and (2.19) becomes

Re
[

f (Z(ζ ))
ζZ′(ζ )

]
= − 1

2|Z′(ζ )| (R0(ζ )+ σ) , for ζ = eiθ , (2.22)

where

R0(ζ ) =
∫ θ

0

{
Im[ηG′(η)]

(
1

|Z′(η)|
(

1 + Re
[
ηZ′′(η)
Z′(η)

]))}
dφ, η = eiφ. (2.23)

Since, for univalency, Z′(ζ ) /= 0 inside the unit ζ disc, and since ζZ′(ζ ) → −(a/ζ ) →
−z as z → ∞ or ζ → 0, it follows from the far-field requirement (2.4a) on f (z) that the
function whose real part is taken in (2.22) is an analytic function of ζ inside the unit disc.
Supposing σ known, (2.22) becomes a classical Schwarz problem in the unit disc for the
analytic function in square brackets in (2.22). The Poisson integral formula gives

f (z) = f (Z(ζ )) = ζZ′(ζ )(I0(ζ )+ i d), d ∈ R, (2.24)

where

I0(ζ ) = − 1
2πi

∮
|η|=1

dη
η

η + ζ

η − ζ

(
R0(η)+ σ

2|Z′(η)|
)
. (2.25)

To satisfy the far-field condition (2.4a) on f (z), we must pick d = −1/4 and arrange that
I0(0) = I′

0(0) = 0. Now I0(0) = 0 provided that the heretofore unspecified σ is chosen as

σ = −
(∮

|ζ |=1

dζ
ζ

R0(ζ )

|Z′(ζ )|
)/ (∮

|ζ |=1

dζ
ζ

1
|Z′(ζ )|

)
. (2.26)

This leaves no freedoms to enforce the requirement I′
0(0) = 0. But Z(−ζ ) = −Z(ζ ) and

we expect, on the grounds of the symmetry of the geometrical arrangement and the
background shear, that f (−z) = −f (z). This means, from (2.24), that I0(−ζ ) = I0(ζ ) and,
consequently, that I′

0(−ζ ) = −I′
0(ζ ) allowing us to infer that I′

0(0) = 0 automatically. All
requirements are then satisfied and the solution is fully determined provided only that
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the solvability condition (2.21) with ε = 0 can be satisfied: it is this that decides the
equilibrium tilt angle φ. On use of (2.12), with ε = 0, some algebra reduces (2.21) to

∫ 2π

0

ρ cos(2θ + 2φ)− cos 2θ
(1 + ρ2 − 2ρ cos(2θ + 2φ))3/2

dθ = 0. (2.27)

This crucial equilibrium condition can be satisfied by noticing that on setting ρ = cos 2φ
a trigonometric addition formula turns the integrand’s numerator into − sin 2φ sin(2θ +
2φ), rendering the integrand an exact differential of a 2π-periodic function whose integral
is then zero, as required. Thus ρ = cos 2φ provides solvability and the tilt angle is given by
(1.2). The corresponding f (z) is given by (2.24) with d = −1/4 and I0(ζ ) and σ specified
in (2.25) and (2.26), respectively; g(z) is then given by (2.8) and (2.12).

Kamal et al. (2020) discuss the nanoplatelet dynamics in terms of Bretherton’s effective
aspect ratio parameter, which they call ke, where dφ/dt ∝ k2

e cos2 φ + sin2 φ. Equilibrium
requires dφ/dt = 0 hence, on use of double-angle formulas, cos 2φ = (1 + k2

e)/(1 − k2
e)

which, on comparison with (1.2), shows that our results for infinitely slippery elliptical
particles (λ = ∞) would correspond to a pure imaginary ke = i

√
k.

2.2. First-order correction to equilibrium tilt angle for 0 < ε � 1
For ε � 1, we expect a regular perturbation,

f (z) = f0(z)+ εf1(z)+ · · · , ĝ(z) = ĝ0(z)+ εĝ1(z)+ · · · φ = φ0 + εφ1 + · · · ,
(2.28a–c)

where we rename the f (z), ĝ(z) and φ just found explicitly for ε = 0 as f0(z), ĝ0(z) and
φ0 and set b = ρ e2iφ0 . For modified tilt, the conformal mapping and Schwarz function
require O(ε) corrections:

Z(ζ ) = a
ζ

+ bζ + 2iεφ1bζ = Z0(ζ )+ εZ1(ζ ), Z0(ζ ) ≡ a
ζ

+ bζ, Z1(ζ ) ≡ 2iφ1bζ,

S(z) = S0(z)− 2iεb̄φ1

ζ
, S0(z) = aζ + b̄

ζ
.

⎫⎪⎪⎬
⎪⎪⎭

(2.29)

We are only interested here in determining φ1: this will emerge on substituting (2.28a–c)
into the solvability condition (2.21). It turns out only ĝ1(z) is needed for this, and that
is easy to find. For f (z) to have the same far-field behaviour as f0(z), we insist that f1(z)
is O(1/z) as z → ∞ then with g(z) = −S(z)f (z)+ ĝ(z) as in (2.8), on substitution of
(2.28a–c) and use of the streamline condition on the boundary, it can be shown that, to
within an unimportant constant,

ĝ1(z) = Ea2

ζ 2 + Ēa2ζ 2, E = b̄φ1

2a
. (2.30)

On expanding (2.21) for small ε, the equation emerging at O(ε), after considerable algebra
and using (2.30), is found to be A(ρ)φ1 + B(ρ) = 0 which gives (1.3) and (1.4).
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Figure 2. Equilibrium tilt angle φ as a function of ε. A branch of equilibria emanates from the ordinate axis
at φ0 = (1/2) cos−1(ρ) for every 0 < ρ < 1; the cases shown are (a) ρ = 0.2, 0.5, 0.7 and (b) ρ = 0.9. The
tangent lines φ − φ0 = −(A(ρ)/B(ρ))ε from the perturbation analysis at ε = 0 are shown (dashed): as ρ → 0
their gradient tends to −∞. Each solution branch hits φ = 0 (alignment with the shear) at ε = εcrit.

2.3. Numerical scheme for arbitrary ε
The above formulation leads naturally to an iterative numerical scheme for arbitrary ε > 0.
We can make an initial guess for φ and for the complex coefficients {Fn|n ≥ 1} in

f (z) = ia
4ζ

+
∑
n≥1

Fnζ
n. (2.31)

The solvability condition (2.21), together with the expressions (2.20), (2.26) and

f (z) = ζZ′(ζ )
(

I(ζ )− i
4

)
, I(ζ ) = − 1

2πi

∮
|η|=1

η + ζ

η − ζ

(
R(η)+ σ

2|Z′(η)|
)

dη
η
, (2.32)

then provide iterative updates on these initial guesses as part of a numerical continuation
scheme (Newton’s method) from ε = 0. The analytical solution for ε = 0 makes a
natural choice of initial guess, but taking φ = φ0 = (1/2) cos−1 ρ and initializing all the
coefficients {Fn|n ≥ 1} to be zero is also found to lead to ready convergence to solutions
over the range 0 < ρ ≤ 0.9 that have been calculated here.

Figure 2(a) shows the tilt angle φ as a function of ε for ρ = 0.2, 0.5 and 0.7. Crosses
on the ρ = 0.2 curve are solutions whose streamlines are shown in figure 1. Interestingly,
a non-trivial branch is found for each choice of aspect ratio k < 1, or equivalently, for any
anisotropic particle with ρ = (1 − k)/(1 + k) > 0. The tangent lines at ε = 0 computed
using (1.3)–(1.4) are also shown providing a consistency check on both the perturbation
analysis and the numerical algorithm. Each equilibrium branch is found to hit the ε
axis, where the major particle axis aligns with the background shear, at a critical value
εcrit defining a critical value λcrit = (2εcrit)

−1 of the Navier-slip length below which we
conjecture that an equilibrium no longer exists. The branch for ρ = 0.9, where the particle
has length 3.8 and thickness 0.2 and closely resembles a thin nanoplatelet, is shown
separately in figure 2(b) because it exists for such a large range of ε; we find εcrit ≈ 17.
It follows that λcrit = (2εcrit)

−1 ≈ 1/34 which is smaller than the particle thickness so
slip lengths of the order of its thickness will exhibit equilibrium tilt. This is consistent
with the observations of Kamal et al. (2020) for nanoplatelets. Figure 3(a) shows λcrit,
renormalized with respect to an effective radius

√
1 − ρ2 so that all particle cross-sectional
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Figure 3. (a) Critical slip length λcrit = (2εcrit)
−1 non-dimensionalized with respect to an effective radius for

which all particles have cross-sectional area π. Close-to-circular anisotropic particles (k → 1 or ρ → 0) tilt at
close to 45◦ but only exist for Navier-slip parameters large compared with their effective radius. (b) A(ρ) and
B(ρ) as functions of ρ.

areas are π, as a function of k = (1 − ρ)/(1 + ρ). For near-circular particles, or k
approaching 1, λcrit is seen to be significantly larger than the effective radius which is close
to unity. Indeed figure 2(a) shows that, as ρ → 0 (k → 1), εcrit decreases and the solution
branches tend to infinite negative slope as ρ → 0. The explicit formulas (1.4) reveal that
A(ρ) vanishes as ρ → 0 while B(ρ) tends to a non-zero constant – see figure 3(b) –
confirming this infinite negative gradient at ρ = 0 for a shape-isotropic circular particle.
This indicates the range of slip parameters for equilibrium tilt vanishes as ρ → 0, i.e.
εcrit → 0, λcrit → ∞, which is consistent with the aforementioned fact that analysis of a
circular rod reveals torque-free equilibrium only for λ = ∞ (ε = 0).

Our results furnish a more complete picture of how particle shape anisotropy works
in tandem with intrinsic surface slip to produce equilibrium tilt. The phenomenon is
not restricted to thin platelets: we have shown there is a delicate balance between shape
anisotropy and surface slip most readily observed for thin particles (because the values of
λcrit are lower) but not exclusive to them. We have focused on elliptical particles but our
work suggests that any particle that is not shape isotropic will have an intrinsic critical
Navier-slip parameter in creeping simple shear. Incidentally, weak inertial effects at small
but finite Reynolds numbers are also known to halt the expected Jeffery-type rotational
dynamics in favour of equilibrium tilt (Subramanian & Koch 2005). The results here imply
a different alternative mechanism: intrinsic surface slip. The dynamical interplay between
these two distinct physical effects is clearly of significant interest.

Another ramification of our work is that, since the solution to the rigid elliptical particle
problem with λ = ∞ has been shown to coincide with the capillary gas-bubble problem,
we can infer that the normal stress balance on the elliptical particle is effectively one given
by a fictional surface tension: that is, the normal stress on the rigid particle is a linear
function of the surface curvature (a fixed linear function for a given particle, but a different
linear function for different particles). On most of a long thin particle this normal stress
will be nearly constant, getting larger only near the particle edges where the curvature
gets large. For λ large but finite, it is reasonable to expect the normal stress will be close,
within O(1/λ), to that given by this ‘effective surface tension’. Previous authors (Singh
et al. 2014; Gravelle et al. 2021a) have studied similar edge effects for thin particles but
without this novel theoretical connection to surface tension in view.
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Equilibrium tilt of slippery elliptical rods in simple shear

It has been more common when studying slip to take the no-slip case λ = 0 (Jeffery
1922; Bretherton 1962) as the theoretical baseline and to gradually add slip. This paper
has made the case that it can be more enlightening to start in the no-shear-stress scenario,
or infinite Navier-slip length λ = ∞, and to gradually add friction.
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