
Canad. Math. Bull. Vol. 65 (4), 2022, pp. 845–859
http://dx.doi.org/10.4153/S0008439521000989
© Canadian Mathematical Society, 2021

On pull-backs of the universal connection
Kristopher Tapp

Abstract. Narasihman and Ramanan proved in [Amer. J. Math. 83(1961), 563–572] that an arbitrary
connection in a vector bundle over a base space B can be obtained as the pull-back (via a correctly
chosen classifying map from B into the appropriate Grassmannian) of the universal connection in the
universal bundle over the Grassmannian. The purpose of this paper is to relate geometric properties
of the classifying map to geometric properties of the pulled-back connection. More specifically,
we describe conditions on the classifying map under which the pulled-back connection: (1) is fat
(in the sphere bundle), (2) has a parallel curvature tensor, and (3) induces a connection metric with
nonnegative sectional curvature on the vector bundle (or positive sectional curvature on the sphere
bundle).

1 Introduction

Let B denote an n-dimensional compact Riemannian manifold, letK ∈ {R,C,H}, and
let k ∈ Z+. To classify the Kk-vector bundles over B, one considers the Grassmannian
of k-dimensional K-linear subspaces in K

N , denoted Gk(KN), for sufficiently large
N. The universal vector bundle over Gk(KN) has total space {(σ , V) ∣ σ ∈ Gk(KN),
V ∈ σ} and projection map (σ , V) ↦ σ . It is well-known that every K

k-bundle over
B is the pull-back of this universal vector bundle via some classifying map φ ∶ B →
Gk(KN), and that the homotopy class of φ determines the isomorphism class of the
pulled-back bundle.

This universal vector bundle has a natural connection defined such that
the covariant derivative of a section t ↦ (σ(t), V(t)) equals the section t ↦
(σ(t), ( d

d t V(t))σ(t)), where “ d
d t ” denotes the usual derivative of a path of vectors

in the Euclidean space K
N , and the superscript denotes the orthogonal projection

onto the subspace. Narasimhan and Ramanan proved in [8] (see also [12]) that for
sufficiently large N, this connection is universal in the sense that every connection
in the pulled-back bundle over B can be obtained as a pullback of this universal
connection by correctly choosing φ within the homotopy class representing the
bundle. This theorem has seen many abstract applications within mathematics and
physics, but to the best of our knowledge, it has never been used to prove or disprove
the existence of connections in vector bundles with specific desirable geometric
properties.
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Let φ ∶ B → Gk(KN) be an explict classifying map, let πE ∶ E → B denote the
pulled-back bundle, let ∇ denote the pulled-back connection, and let R∇ denote its
curvature tensor. Let π1 ∶ E1 → B denote the sphere-bundle over B formed from all
unit-length vectors in E.

The first property we will study is fatness, which was defined by Weinstein in [17]
and studied by many authors (see [18] for a survey). To define fatness, it is useful
to select a metric on B and a rotationally symmetric “fiber metric” on K

k . Together
with ∇, these choices induce a unique connection metric on E (and thus also on E1).
The connection ∇ called fat if the sectional curvatures of all π1-vertizontal planes are
positive. Our terminology is slightly nonstandard: we are calling a connection in a
vector bundle fat when the induced connection in the sphere bundle has the property
that Weinstein calls fat. This fatness condition turns out not to depend on the choice
of base metric or fiber metric, so fatness is a property only of the connection.

In Section 2, we will describe the general condition on φ under which ∇ is fat.
In the special case where k = 1 and either K = C (so that φ ∶ B → CP

N−1) or K = H

(so that φ ∶ B → HP
N−1), fatness turns out to be equivalent to φ(B) having bounded

Wirtinger angles, defined as follows:

Definition 1.1 Let K ∈ {C,H} and let J denote
(1) {J} if K = C, where J denotes the standard almost complex structure on CP

N

and
(2) {I, J , K} if K = H, where {I, J , K} denotes a local coordinate expressions for the

standard almost quaternionic structure on HP
N .

Let S ⊂ KP
N be an immersed submanifold, p ∈ S and X ∈ TpS. The Wirtinger angle,

θ(X) ∈ [0, π/2], is the maximum angle that a vector in span
R
{JX ∣ J ∈ J}makes with

TpS. If θ(X) < π/2 for all X ∈ TS, then S is said to have bounded Wirtinger angles.

Theorem 1.1 If k = 1 and K ∈ {C,H}, then ∇ is fat if and only if φ is an immersion
with bounded Wirtinger angles.

There are several well-studied conditions that imply bounded Wirtinger angles.
For example, an immersion is called complex (when K = C) or quaternionic (when
K = H) if θ is constant at zero. More generally, a submanifold ofCPN orHP

N is called
slant if θ is constant, or semi-slant if its tangent bundle decomposes into two sub-
bundles on which θ is constant respectively at zero and at another value. In Section 5,
we will survey some of the literature related to these conditions.

Going the other direction, there are several known obstructions to fat connections.
For example, a trivial bundle can not admit a fat connection [17], which implies that:

Corollary 1.2 A homotopically trivial immersed submanifold of CPN or HP
N could

not have bounded Wirtinger angles.

Among H-bundles over S4, only the Hopf bundle admits a fat connection [3],
which implies:
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Corollary 1.3 For any N > 0, there is at most one element of π4(HP
N) that admits

an immersed representative φ ∶ S4 → HP
N with bounded Wirtinger angles.

In fact, if N is large enough to ensure universality, then there is exactly one such
element. Similarly, among circle bundles over the flag F6 = SU(3)/T2, there is an
infinite family which admit fat connections (corresponding to the positively curved
Aloff Wallach spaces) and there are two which do not (the trivial bundle and the W1,0
bundle); see [18]. Thus:

Corollary 1.4 For sufficiently large N, there are infinitely many homotopy classes of
maps F6 → CP

N which admit an immersed representatives with bounded Wirtinger
angles, and two which do not.

We are not aware of any work specifically addressing the possible homotopy classes
of submanifolds of KP

N with bounded Wirtinger angles, but the above discussion
suggests that this question is both natural and subtle.

Next, we will study conditions on φ under which∇ is parallel or radially symmetric:

Definition 1.2 A connection ∇ is called parallel if the covariant derivative of its
curvature tensor vanishes; that is, DZ R∇(X , Y)W = 0 for all p ∈ B, all X , Y , Z ∈ TpB
and all W ∈ Ep = π−1

E (p). The connection is called radially symmetric if this condition
holds when Z = X; that is, if DX R∇(X , Y)W = 0 for all p ∈ B, all X , Y ∈ TpB and all
W ∈ Ep .

Notice that these conditions depend on both the connection and on the choice of
metric on the base space. We therefore assume for the remainder of this section that φ
is an immersion and that B has the pull-back metric. This added assumption sacrifices
universality, since there is no reason to expect that a given metric on B and a given
connection can be simultaneously achieved from a single classifying map φ.

Strake and Walschap proved that if B has positive sectional curvature, then any
radially symmetric connection in any vector bundle over B will induce a connection
metric with nonnegative sectional curvature on the vector bundle [15]. However, all
known examples of radially symmetric connections are parallel, and parallel connec-
tions appear to be rare. For example, Guijarro et al. proved in [5] that an R

k vector
bundle over a compact simply connected irreducible symmetric space with a parallel
connection must be isomorphic to an associated bundle. Since associated bundles
trivially admit submersion metrics of nonnegative curvature, this result seems to limit
ones ability to obtain topologically new examples of nonnegatively curved vector
bundles using parallel connections (at least over symmetric base spaces). For R

2-
bundles, radially symmetric is equivalent to parallel [13], but for higher rank bundles,
the gap between these hypotheses is not well understood.

Let II denote the second fundamental form of φ(B) and let S denote the shape
operator, so that for p ∈ B, X , Y ∈ TpB ≅ φ∗(TpB) and η ⊥ φ∗(TpB), we have
⟨Sη X , Y⟩ = ⟨II(X , Y), η⟩.

Theorem 1.5 If k = 1 and K ∈ {C,H}, then ∇ is parallel if and only if

⟨S(JX)⊥Y − S(JY)⊥X , Z⟩ = 0
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for all p ∈ B, X , Y , Z ∈ TpB ≅ φ∗(TpB) and all J ∈ span{J}, where “⊥” denotes the
component orthogonal to φ∗(TpB). Furthermore, ∇ is radially symmetric if and only if
the above condition is true in the special case Z = X.

In particular, if φ(B) is totally geodesic, then ∇ is parallel. But in this case, φ(B)
is a symmetric space and the bundle is an associated bundle, as we will explain in
Section 3.

There are examples in which∇ is parallel even though φ(B) is not totally geodesic.
Specifically, if k = 1 and φ(B) is complex/quaternionic, then ∇ is fat (as explained
above) and also parallel (because (JX)⊥ = (JY)⊥ = 0). The case K = H is less inter-
esting here because quaternionic implies totally geodesic. But in the caseK = C, there
are many examples of complex submanifolds of CPN−1 which are not totally geodesic.

The final property of the connection ∇ which we wish to interpret in terms of the
geometry of the classifying map φ is the following inequality:

For all p ∈ B, all X , Y ∈ TpB, and all W , V ∈ Ep ,
⟨(DX R∇)(X , Y)W , V⟩2 ≤ kB(X , Y) ⋅ ∣R∇(W , V)X∣2 ,(1.1)

where kB denotes the unnormalized sectional curvature of B. This inequality was
proven in [15] to be a necessary condition for ∇ (together with the given metric on B)
to induce a connection metric with nonnegative sectional curvature on E. Further, if
this inequality is strictly satisfied (for all orthonormal choices of X , Y , V , W), then it
was proven in [16] that ∇ induces a connection metric of nonnegative curvature in E
and of positive curvature in E1.

This inequality relates the two previously discussed properties of a connection: its
left side vanishes if and only if∇ is radially symmetric, while on its right side,∇ is fat if
and only if the expression ∣R∇(W , V)X∣2 is strictly positive for orthonormal X , W , V
[15, equation (11)]. Thus, a fat radially symmetric connection over a positively curved
base space will satisfy the inequality strictly, and will therefore induce a connection
metric of nonnegative curvature on E and of positive curvature on E1.

Our translation of Inequality (1.1) becomes particularly simple for C
1 and

H
1-bundles:

Theorem 1.6 If k = 1 and K ∈ {C,H}, then Inequality (1.1) is satisfied if and only
if the following inequality is satisfied for all p ∈ B, X , Y ∈ TpB ≅ φ∗(TpB) and all
J ∈ span{J}:

⟨S(JX)⊥Y − S(JY)⊥X , X⟩2 ≤ kB(X , Y) ⋅ ∣proj(JX)∣2 ,(1.2)

where “proj” denotes the orthogonal projection onto φ∗(TpB). Further, Inequality (1.1)
is strictly satisfied (for orthonormal X , Y , W , V) if and only if Inequality (1.2) is strictly
satisfied (for orthonormal X , Y and unit-length J).

Inequality (1.2) is clearly satisfied if the following quantities are both sufficiently
close to zero for all p ∈ B:
• ∣S(p)∣ = max{∣Sη X∣ ∣ X ∈ φ∗(TpB), η ⊥ φ∗(TpB), ∣X∣ = ∣η∣ = 1} and
• θ(p) = max{θ(X) ∣ X ∈ φ∗(TpB)}.
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In fact, the closer one of these quantities is to zero, the further the other one can move
away from zero while still satisfying the inequality:

Corollary 1.7 Assume that the metric on KP
N−1 is normalized to have maximal

sectional curvature 1. If ∣S(p)∣2 < 1
16 tan2 θ(p)+8 for all p ∈ B, then Inequality (1.2) is

strictly satisfied, so ∇ induces a connection metric of nonnegative curvature on E and of
positive curvature on E1.

Corollary 1.7 gives a potential new way to find positively curved metrics on unit
sphere bundles, so it perhaps merits further study.

Notice that B must have positive curvature in order for Inequality (1.1) or Inequality
(1.2) to be strictly satisfied. This is also true of the inequality of Corollary 1.7 for
the following reason. In the case θ = 0, the inequality of Corollary 1.7 becomes
∣S(p)∣2 < 1/8; Equation (4.1) in the proof of Corollary 1.7 will show that this is exactly
the bound that ensures that B has positive curvature. As θ(p) → π/2, the required
upper bound on ∣S(p)∣2 goes to 0.

2 Calculations for the pull-back connection

In this section, we assume that K = R and that φ ∶ B → Gk(RN) is an isometric
immersion. Our goal is to describe R∇ and DR∇ in terms of the classifying map φ.

We require some notation. Let H ⊂ K ⊂ G equal the triple O(N − k) ⊂ O(k) ×
O(N − k) ⊂ O(N). Let h ⊂ k ⊂ g denote their Lie algebras. Let g0 be the biinvariant
metric on G = O(N) defined as g0(X , Y) = 1

2 trace(X ⋅ Y T) for all A, B ∈ g. We will
sometime write ⟨A, B⟩0 to mean g0(A, B) and write ∣A∣20 to mean g0(A, A). We
endow Gk(RN) = G/K with the normal homogeneous metric induced by g0. Denote
m = k⊖ h and p = g⊖ k, where “⊖” denotes the g0-orthogonal complement, so
g = h⊕m⊕ p. Let h ∶ G → G/K = Gk(RN) denote the projection, which is a
Riemannian submersion with respect to the above-mentioned metrics.

Let p ∈ B, and choose g ∈ G such that h(g) = φ(p). Let T ⊂ p denote the subspace
such that h∗(dLg(T)) = φ∗(TpB). For any Z ∈ TpB, let Z̃ ∈ T denote the unique vec-
tor such that h∗(dLg(Z̃)) = φ∗Z. Let ĨI ∶ T ×T→ p⊖T denote the lift of the second
fundamental form, II, of φ(B). In other words, h∗(dLg(ĨI(X̃ , Ỹ))) = II(φ∗X , φ∗Y)
for all X , Y ∈ TpB.

Proposition 2.1

(1) ∇ is fat if and only if [X̃ , α]T ≠ 0,
(2) ∇ is parallel if and only if ⟨[X̃ , ĨI(Z̃ , Ỹ)] − [Ỹ , ĨI(Z̃ , X̃)] , α⟩0 = 0, and
(3) Inequality (1.1) is satisfied if and only if the following is satisfied:

⟨[X̃ , ĨI(X̃ , Ỹ)] − [Ỹ , ĨI(X̃ , X̃)] , α⟩2 ≤ kB(X , Y) ⋅ ∣[X̃ , α]T∣
2

0
(2.1)

for all p ∈ B, all X , Y , Z ∈ TpB and all nonzero decomposable α ∈ m ≅ so(k) ≅ Λ2(Rk).

Notice that the validity of these conditions do not depend on the choice of
g ∈ h−1(φ(p)), even though some of the individual terms do.
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As we will explain later in this section, α represents the plane spanned by W and V,
and Inequalities (1.1) and (2.1) match each other term-for-term in the obvious manner,
from which parts (1) and (2) of the proposition follow. Thus, all that is really required
to prove Proposition 2.1 is to describe R∇ and DR∇ in terms of φ. The remainder of
this section is devoted to this task.

It is already clear that we intend to work in the setting of principal bundles, rather
than vector bundles. The total space of the universal principal O(k)-bundle over
Gk(RN) is the collection of “frames,” i.e., ordered sets of k orthonormal vectors inR

N :

Fk(RN) = O(N)/O(N − k).

Let π ∶ Fk(RN) → Gk(RN) denote the projection map, which sends each frame to its
span.

This universal principal bundle, O(k) ↪ Fk(RN) π→ Gk(RN), can be re-described
as the following homogenous bundle:

K/H ↪ G/H π→ G/K .(2.2)

Notice that π becomes a Riemannian submersion when G/H and G/K are endowed
with the normal homogeneous metrics induced by g0. LetV andH denote the vertical
and horizontal distributions of π. We will refer to H as the “universal connection”
because:

Lemma 2.2 H is a principal connection in the principal bundle; in fact, it equals the
universal connection constructed in [8].

Proof. Notice that K = H × O(k), so H is normal in K, and K/H = O(k). Since H
commutes with O(k), the right-O(k)-action on G/H is well-defined and isometric.
Thus, the base space, G/K, of π can be identified with (G/H)/O(k). Under this
identification, π is simply the quotient map from G/H to (G/H)/O(k). In summary,
the right O(k)-action on G/H preserves each π-fiber (and therefore preserves V)
and is isometric (so it also preserves H). Thus, H is invariant under this principal
O(k)-action, which makes it a principal connection.

Notice that the left G-action on itself induces a transitive isometric G-action on
G/H which sends π-fibers to π-fibers and therefore preserves H and V. Thus, to
verify that H is the same as the universal connection constructed in [8], which
has this same homogeneity property, it suffices to check a single point, which is
straightforward. ∎

Consider the chain of Riemannian submersions

G
f→ G/H = Fk(RN) π→ G/K = Gk(RN),

and denote h = π ○ f . Let ωH denote the connection form of H, which is an
o(k)-valued 1-form on Fk(RN). Let ΩH denote its curvature form, which is an
o(k)-valued 2-form on Fk(RN).

Let g ∈ G be arbitrary, and denote q = f (g) ∈ Fk(RN). Recall that Lg ∶ G → G
induces an isometry Fk(RN) → Fk(RN) which preserves V and H. Therefore,

Hq = { f∗(dLg X) ∣ X ∈ p} and Vq = { f∗(dLg V) ∣ V ∈ m}.
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Notice that for any V ∈ m ≅ o(k), we have

ωH( f∗(dLg V)) = V ,(2.3)

simply because the action fields for the principal right O(k)-action on Fk(RN) are
projections via f∗ of left-invariant fields on G.

Lemma 2.3 For all X , Y ∈ p, we have: ΩH( f∗(dLg X), f∗(dLg Y)) = 1
2 [X , Y]m.

Proof. We first consider the special case g = e (the identity of G). In this case, let t ↦
g(t) denote the geodesic in G with g(0) = e and g′(0) = X. Let t ↦ Y(t) = dLg(t)Y
denote the left-invariant extension of Y along this geodesic. Notice that t ↦ ( f ○ g)(t)
is a π-horizontal geodesic in Fk(RN), and that t ↦ Ŷ(t) = f∗(Y(t)) is a π-horizontal
extension of f∗Y along this horizontal geodesic. Therefore, the O’Neill tensor, A, of π
at the point q satisfies:

A( f∗X , f∗Y) = (Ŷ ′(0))V = ( f∗(Y ′(0)))V = 1
2
( f∗[X , Y])V = 1

2
f∗ ([X , Y]m) .

Now, we return to the case where g ∈ G is arbitrary. The previous formula implies:

A( f∗(dLg X), f∗(dLg Y)) = 1
2

f∗ (dLg ([X , Y]m)) ∈ V f (g) .

Together with equation (2.3), this gives:

ΩH( f∗(dLg X), f∗(dLg Y)) = ωH(A( f∗(dLg X), f∗(dLg Y)))

= 1
2
[X , Y]m .

(2.4)

∎

Let πP ∶ P → B be the principal O(k)-bundle obtained as the pull-back via φ
of the universal frame bundle. Explicitly, P = {(p, a) ∈ B × Fk(RN) ∣ φ(p) = π(a)}
with projection πP(p, a) = p. Let φ ∶ P → Fk(RN) denote the corresponding bundle
homomorphism, defined as φ(p, a) = a.

Let ω denote the connection form of the principal connection in P obtained as
the pull-back via φ of the universal connection in the universal frame bundle. Let Ω
denote the curvature form of ω. Thus, ω is an o(k)-valued 1-form on P, and Ω is an
o(k) valued 2-form on P.

Let πE ∶ E → B denote the vector bundle associated to P. Explicitly, E = P ×O(k) R
k .

Let ∇ the connection in E associated to ω, and let R∇ denote its curvature tensor. Let
p ∈ B. We introduce the following notation.

Definition 2.1 For any x ∈ π−1
P (p) and U ∈ Rk , we let x ◇U ∈ Ep = π−1

E (p) denote
the image of (x , U) under the projection P ×R

k → E.

Let X , Y ∈ TpB be orthonormal, and let W , V ∈ Ep be orthonormal. For simplicity,
we initially assume that φ(p) = h(e) ∈ Gk(RN). Let a = f (e) ∈ Fk(RN), and let
ã = (a, p) ∈ P. Notice that Rk can be identified with the fiber Ep via the map which
sends Û ∈ Rk to U = ã ◇ Û ∈ Ep . Let Ŵ , V̂ ∈ Rk be associated with W , V ∈ Ep in this
way. There exists a unique α ∈ o(k) such that α ⋅ Ŵ = V̂ , α ⋅ V̂ = −Ŵ , and α ⋅ Û = 0 for
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all Û ∈ Rk orthogonal to span{Ŵ , V̂}, where the dots denote matrix multiplication.
We claim that

⟨β ⋅ Ŵ , V̂⟩ = ⟨β, α⟩0 for all β ∈ o(k).(2.5)

To see this, just choose an ordered orthonormal basis of Rk beginning with Ŵ , V̂ ,
and then express α, β in terms of the corresponding standard basis for o(k).

For any Z ∈ TpB, we let Z ∈ Tã P denote its πP-horizontal lift, and we let Z̃ ∈ p
denote the unique vector such that h∗Z̃ = φ∗Z. In the following calculation, the
maximum is taken over all unit-length Z ∈ TpB:

∣R∇(W , V)X∣ = max⟨R∇(W , V)X , Z⟩ = max⟨R∇(X , Z)W , V⟩
= max⟨Ω(X , Z) ⋅ Ŵ , V̂⟩ = max⟨Ω(X , Z), α⟩0

= max⟨ΩH(φ∗X , φ∗Z), α⟩0 =
1
2

max⟨[X̃ , Z̃]m , α⟩0

= 1
2

max⟨[X̃ , Z̃], α⟩0 =
1
2

max⟨[X̃ , α], Z̃⟩0 =
1
2
∣[X̃ , α]T∣0 .

The last equality uses that φ is an isometric immersion, so maximizing over all unit-
length Z ∈ TpB is the same as maximizing over all unit-length Z̃ ∈ T. Recall that where
T ⊂ p is the subspace such that h∗(T) = φ∗(TpB). In summary,

∣R∇(W , V)X∣ = 1
2
∣[X̃ , α]T∣0 .(2.6)

It remains to express the expression ⟨(DZ R∇)(X , Y)W , V⟩ in terms of the geom-
etry of φ. For this, let t ↦ c(t) denote the geodesic in B with c(0) = p and c′(0) = Z.
Let t ↦ c(t) denote its πP-horizontal lift beginning at ã ∈ P. We can write c(t) =
(c(t), β(t)) where t ↦ β(t) is the π-horizontal lift of t ↦ φ(c(t)) to Fk(RN) begin-
ning at β(0) = a. Let t ↦ g(t) be the h-horizontal lift to G of t ↦ φ(c(t)) beginning
at g(0) = e. Define W(t) = c(t) ◇ Ŵ ∈ Ec(t) and V(t) = c(t) ◇ V̂ ∈ Ec(t). Notice that
V(t) and W(t) are parallel because c(t) is horizontal.

Let X(t) and Y(t) denote the parallel extensions of X , Y along t ↦ c(t). Let X(t)
and Y(t) denote the πP-horizontal lifts of these fields along t ↦ c(t). Let X̃(t) and
Ỹ(t) denote the h-horizontal lifts along t ↦ g(t) of the fields t ↦ φ∗X(t) and t ↦
φ∗Y(t). Notice that

R∇(X(t), Y(t))W(t) = c(t) ◇ (Ω(X(t), Y(t)) ⋅ Ŵ) ∈ Ec(t) .

In the following calculation, we will use D
d t to denote covariant differentiation with

respect to ∇, and d
d t to denote the usual differentiation of a path of vectors in the

Euclidean spaces Rk and o(k), and prime (′) to denote covariant differentiation with
respect to the Levi Civita connection in (G , g0). With this notation, we have

⟨(DZ R∇)(X , Y)W , V⟩ = ⟨ D
dt
∣
t=0

c(t) ◇ (Ω(X(t), Y(t)) ⋅ Ŵ) , V⟩

= ⟨c(0) ◇ ( d
dt
∣
t=0

Ω(X(t), Y(t)) ⋅ Ŵ) , V⟩
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= ⟨( d
dt
∣
t=0

Ω(X(t), Y(t))) ⋅ Ŵ , V̂⟩

= ⟨ d
dt
∣
t=0

Ω(X(t), Y(t)), α⟩
0

= ⟨ d
dt
∣
t=0

ΩH(φ∗X(t), φ∗Y(t)), α⟩
0

= 1
2
⟨ d

dt
∣
t=0

[dL−1
g(t)X̃(t), dL−1

g(t)Ỹ(t)]m , α⟩
0

= 1
2
⟨ [ d

dt
∣
t=0

dL−1
g(t)X̃(t), Ỹ]

m

+ [X̃ , d
dt
∣
t=0

dL−1
g(t)Ỹ(t)]

m

, α⟩
0
.

To interpret these terms, let {E i} denote an orthonormal basis of p, and let {E i(t)}
denote their left-invariant extensions along g(t); that is, E i(t) = dLg(t)E i . Then,

d
dt
∣
t=0

dL−1
g(t)Ỹ(t) = d

dt
∣
t=0

∑⟨dL−1
g(t)Ỹ(t), E i⟩0E i =

d
dt
∣
t=0

∑⟨Ỹ(t), E i(t)⟩0E i

= ∑⟨Ỹ ′(0), E i⟩0E i +∑⟨Ỹ , E′i(0)⟩0E i

= Ỹ ′(0) + 1
2 ∑⟨Ỹ , [Z̃ , E i]⟩0E i

= Ỹ ′(0) − 1
2 ∑⟨E i , [Z̃ , Ỹ]⟩0E i

= Ỹ ′(0) − 1
2
[Z̃ , Ỹ].

Since t ↦ Y(t) is a parallel vector field along the geodesic t ↦ c(t) in B, we have
Ỹ ′(0) = ĨI(Z̃ , Ỹ) + Ah(Z̃ , Ỹ), where Ah denotes the O’Neill tensor of h. In summary,

[X̃ , d
dt
∣
t=0

dL−1
g(t)Ỹ(t)]

m

= [X̃ , Ỹ ′(0) − 1
2
[Z̃ , Ỹ]]

m

= [X̃ , ĨI(Z̃ , Ỹ) + Ah(Z̃ , Ỹ) − 1
2
[Z̃ , Ỹ]]

m

= [X̃ , ĨI(Z̃ , Ỹ)]m .

The last equality follows from the fact that X̃ ∈ p while Ah(Z̃ , Ỹ) ∈ k and [Z̃ , Ỹ] ∈ k
(because k ⊂ g is a symmetric pair). We similarly have that

[Ỹ , d
dt
∣
t=0

dL−1
g(t)X̃(t)]

m

= [Ỹ , ĨI(Z̃ , X̃)]m .

Therefore, since α ∈ m, we have

⟨(DZ R∇)(X , Y)W , V⟩ = 1
2
⟨[X̃ , ĨI(Z̃ , Ỹ)] − [Ỹ , ĨI(Z̃ , X̃)] , α⟩0 .(2.7)
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Proof of Proposition 2.1 By [15, equation (11)], ∇ is fat if and only if
∣R∇(W , V)X∣ > 0 for all p ∈ B, nonzero X ∈ TpB and all orthonormal W , V ∈ Ep
(this condition depends only on ∇, even though a metric on B must be chosen in
order for the expression R∇(W , V)X and its norm to be defined). Also notice that
∇ is parallel if and only if ⟨DZ R∇(X , Y)W , V⟩ = 0 for all p ∈ B, X , Y ∈ TpB and
orthonormal W , V ∈ Ep . Also notice that Inequality (1.1) is satisfied if and only if it is
satisfied for all orthonormal choices of X , Y , W , V .

Proposition 2.1 now follows from equations (2.6) and (2.7). Recall that in these
equations, W , V were assumed to be orthonormal, and α ∈ m was selected to repre-
sent span{W , V} in the sense of equation (2.5). In fact, the nonzero decomposable
elements of o(k) ≅ Λ2(Rk) are exactly the elements which represent planes in this
manner. ∎

3 Totally geodesic classifying maps

In this section, we assume that K = R and that the classifying map φ ∶ B → Gk(RN)
is a totally geodesic isometric imbedding. By Proposition 2.1, this implies that ∇
is parallel. If, additionally, B has positive sectional curvature, then ∇ induces a
connection metric of nonnegative curvature on E [15].

Since Gk(RN) contains many totally geodesic submanifolds (which have not yet
been fully classified) including many with positive curvature, this might appear to be a
hopeful source for topologically new examples of vector bundles which admit metrics
of nonnegative curvature. But we will explain in this section why no new examples can
be obtained in this way.

First notice that B is a symmetric space because it is a totally geodesic submanifold
of the symmetric space Gk(RN) = G/K (here, as before, H ⊂ K ⊂ G denotes the triple
O(N − k) ⊂ O(k) × O(N − k) ⊂ O(N)). More precisely, B = G′/K′ where G′ ⊂ G
and K′ = G′ ∩ K. Let ρ′ ∶ K′ → O(k) denote the composition of the inclusion map
into K with the projection onto the first factor. The following was observed by Rigas
in [9].

Proposition 3.1 (Rigas) The bundle πE ∶ E → B is isomorphic to the associated bundle
G′ ×ρ′ R

k → G′/K′.

Proof. Let ρ ∶ K → O(k) denote the projection onto the first factor. The universal
principal bundle O(k) ↪ Fk(RN) → Gk(RN) was re-described in equation (2.2) as
the homogenous bundle K/H ↪ G/H → G/K . This homogeneous bundle can again
be re-described as the associated bundle K/H ↪ G ×ρ (K/H) → G/K . This implies
that the universal vector bundle over Gk(RN) can be re-described as R

k ↪ G ×ρ
R

k → G/K. Consider the following commutative diagram, in which the right arrows
denote the natural inclusion maps:

G′ ×ρ′ R
k ,,,,→ G ×ρ R

k

---.
---.

G′/K′
φ,,,,→ G/K
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the bundle on the right is the universal vector bundle over Gk(RN) = G/K, so the
bundle on the left is isomorphic to the pull-back bundle πE ∶ E → B, as desired. ∎

In conclusion, if the classifying map φ ∶ B → Gk(RN) is a totally geodesic isometric
imbedding, then ∇ is parallel, but in this case the bundle is isomorphic to an asso-
ciated bundle, which trivially admits a submersion metric of nonnegative sectional
curvature.

4 The cases of C1 and H1 bundles

The primary technical difficulty in applying Proposition 2.1 is that “bracketing with α”
is difficult to interpret geometrically in general. However, in this section, we will
provide a very natural geometric interpretation in the special case where k = 1 and
K ∈ {C,H} (so that φ ∶ B → CP

N−1 or φ ∶ B → HP
N−1). Theorems 1.1, 1.5, and 1.6 will

follow from this interpretation.
Even though we assumed in the Section 2 that K = R, almost all of the calculations

generalize in the obvious way to the casesK ∈ {C,H}. The only exception involves the
manner in which α was chosen to represent a particular plane in the fiber. Recall that
we were given arbitrary orthonormal vectors W , V ∈ Rk , and we were able to choose
α ∈ o(k) to represent the plane span{W , V} in the sense that

⟨β ⋅ W , V⟩ = ⟨β, α⟩0 for all β ∈ o(k).

To generalize this proof to the case K = C (respectively K = H), we would be given
arbitrary R-orthonormal vectors W , V ∈ Kk , and we would need to choose α ∈ u(k)
(respectively α ∈ sp(k)) so ⟨β ⋅ W , V⟩R = ⟨β, α⟩0 for all β ∈ u(k) (respectively
β ∈ sp(k)). Unfortunately, this is not generally possible unless we additionally assume
that W ⊥ span{JV ∣ J ∈ J}.

However, when k = 1, there is no trouble with choosing α as desired. In fact, the
choice α = V ⋅ W works, and all of the calculations in the previous section go through.

More specifically, when k = 1 and K = C (so that φ ∶ B → CP
N−1), the chain

H ⊂ K ⊂ G from Section 2 becomes SU(N − 1) ⊂ S(U(1) ×U(N − 1)) ⊂ SU(N),
and m = u(1) is spanned by a unique (up to sign) unit-length vector α ∈ m. It is not
hard to see that for any q ∈ G/K = CP

N−1, the map adα ∶ p→ p (which sends X̃ to
[α, X̃]) induces an involution of Tq(CPN−1) that is well-defined in the sense that it
is independent of the choice of g ∈ h−1(q) through which the lift X̃ is defined as in
Proposition 2.1. In fact, this is one natural way in which to define the standard almost
complex structure on CP

N−1. Therefore, in Proposition 2.1, bracketing with α can be
interpreted as applying the almost-complex structure J.

When k = 1 and K = H (so that φ ∶ B → HP
N−1), the chain H ⊂ K ⊂ G from

the previous section becomes Sp(N − 1) ⊂ Sp(1) × Sp(N − 1) ⊂ Sp(N). Identify
J = {I, J , K} with an oriented orthonormal basis of m = sp(1) = Im(H). For any q ∈
G/K = HP

N−1, the triple of maps adI , adJ , adK ∶ p→ p induces a triple of involutions
of Tq(HP

N−1) which satisfy the familiar properties of an almost quaternionic
structure. Changing to a different g ∈ h−1(q)has the effect of conjugating to a different
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oriented orthonormal basis of m, so the family of triples:

{{adI , adJ , adK} ∣ {I, J , K} is an oriented orthonormal basis of m}

determines a well-defined family of triples of involutions of TqHP
N−1. This is one way

to define the natural almost quaternionic structure onHP
N−1. Recall that on an almost

quaternionic manifold, a choice of basis {I, J , K} for the almost quaternionic struc-
ture generally only exists locally, which is reflected in the dependence on g ∈ h−1(q)
described above. In any case, bracketing with all possible α ∈ m can be interpreted in
Proposition 2.1 as applying all possible elements of span{J}.

Proof of Theorem 1.1 Recall that ∇ is fat if and only if ∣R∇(W , V)X∣ > 0 for all
p ∈ B, nonzero X ∈ TpB and all orthonormal W , V ∈ Ep . If φ is not an immersion,
then there exits p ∈ B and X ∈ TpB such that φ∗X = 0, which implies that
R∇(W , V)X = 0 for any choice of W , V . Thus, ∇ is not fat.

Next assume that φ is an immersion, and choose the pull-back metric for B. Let
α ∈ m represent the plane span{W , V} in the sense of equation (2.5). Let J ∈ span{J}
represent α as described previously in this section. By equation (2.6),

2 ∣R∇(W , V)X∣ = ∣[X̃ , α]T∣ 0 = ∣(JX)φ∗(Tp B)∣ ≥ ∣X∣ ⋅ cos(θ(X)),

so ∇ is fat if and only if θ(X) < π/2 for all nonzero X ∈ TM. ∎

Proof of Theorem 1.5 The connection ∇ is parallel if and only if the following
equals zero for all p ∈ B, X , Y , Z ∈ TpB and W , V ∈ Ep :

2⟨(DZ R∇)(X , Y)W , V⟩ = ⟨[X̃ , ĨI(Z̃ , Ỹ)] − [Ỹ , ĨI(Z̃ , X̃)] , α⟩0

= ⟨[α, X̃] , ĨI(Z̃ , Ỹ)⟩0 − ⟨[α, Ỹ] , ĨI(Z̃ , X̃)⟩0

= ⟨JX , II(Z , Y)⟩ − ⟨JY , II(Z , X)⟩
= ⟨S(JX)⊥Y , Z⟩ − ⟨S(JY)⊥X , Z⟩
= ⟨S(JX)⊥Y − S(JY)⊥X , Z⟩ ,

where α ∈ m represent the plane span{W , V} in the sense of equation (2.5), and
J ∈ span{J} represents α as described previously in this section. Furthermore, ∇ is
radially symmetric if and only if the above is true in the special case Z = X. ∎

Theorem 1.6 follows immediately from the calculations of the previous two proofs.
It remains only to prove Corollary 1.7.

Proof of Corollary 1.7 The inequality of Theorem 1.6 is

⟨S(JX)⊥Y − S(JY)⊥X , X⟩2 ≤ kB(X , Y) ⋅ ∣proj(JX)∣2 .

The terms of this inequality at a point p ∈ B are bounded as follows:

⟨S(JX)⊥Y − S(JY)⊥X , X⟩2 ≤ 4∣S(p)∣2 sin2 θ(p).
kB(X , Y) = k

KP
N (X , Y) + ⟨II(X , X), II(Y , Y)⟩ − ∣II(X , Y)∣2

≥ k
KP

N (X , Y) − 2∣S(p)∣2
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≥ 1/4 − 2∣S(p)∣2 .(4.1)
∣proj(JX)∣2 ≥ cos2 θ(p).

Thus, the inequality is satisfied if

4∣S(p)∣2 sin2 θ(p) ≤ (1/4 − 2∣S(p)∣2) cos2 θ(p),

which can be re-expressed as

∣S(p)∣2 ≤ 1
16 tan2 θ(p) + 8

. ∎

5 Well studied classes of immersions into CP
N and HP

N

Theorems 1.1, 1.5, and 1.6 empower one to construct connections with certain natural
geometric properties in K

1-vector bundles over B (with K ∈ {C,H}) by constructing
immersions of B into KP

N−1 that satisfy certain hypotheses. There is a large body
of literature on immersed submanifolds of projective spaces with natural properties.
Some of these properties overlap the hypotheses required by our theorems. In this
section, we review some of the literature and discuss its relevance to the search for
nice connections in K

1 bundles.
As mentioned previously, if φ is an isometric complex/quaternionic immersion,

then∇ is fat and parallel. If additionally B has positive curvature, then Inequality (1.2)
in Theorem 1.6 is strictly satisfied, so ∇ induces a connection metric of nonnegative
curvature in E and of positive curvature in E1. Since these are strong conclusions,
it is worthwhile to begin by surveying some of the relevant literature on isometric
complex/quaternionic immersions. We start with the case K = C.

Calabi’s rigidity theorem from [1] says that if f1 , f2 ∶ B → CP
N are both isometric

complex immersions, then there exists a unitary transformation U of CPN such that
f2 = U ○ f1. Calabi further classified all isometric complex imbeddings of CPn(c1)
into CP

N(c2), where c1 , c2 denote the constant holomorphic curvature. For any fixed
n, he proved there exists a countably infinite family of imbeddings, f i ∶ CPn(c/i) →
CP

N i (c), where i ∈ Z+ and N i = (n+i)!
n!i ! − 1. The map f i is sometimes called the ith

Veronese imbedding. It is not totally geodesic if i > 1. Each f i induces a parallel
fat connection in the pulled-back C

1-bundle over CP
n , and the total space, E1

i , of
the corresponding circle-bundle inherits a connection metric of positive sectional
curvature.

These examples are not new. The main result of [5] implies that any vector
bundle over the symmetric space CP

n = SU(n + 1)/S(U(1) ×U(n)) with a parallel
connection must be isomorphic to an associated bundle, which means it has the
form SU(n + 1) ×ρ C→ CP

n for some representation ρ ∶ S(U(1) ×U(n)) → U(1).
There is a one parameter family of such representations coming from powers of
the determinant of A ∈ U(n) ≅ S(U(1) ×U(n)): ρ j(A) = det(A) j . The total space of
each circle bundle therefore has the following form for some j ∈ Z+:

E1
j = SU(n + 1) ×ρ j U(1),(5.1)

which can be shown to be diffeomorphic to the lens space S2n+1/Z j .
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Nakagawa and Takagi in [7] classified the isometric complex imbeddings of all
other compact simply connected irreducible Hermitian symmetric space into CP

N .
For each such space, they obtained a countably infinite families of imbeddings
analogous to the Veronese imbeddings. Notice that CPn is the only such space with
positive curvature, so no new examples of connection metrics with positive curvature
in circle bundles could be obtained by pulling back the universal connection via these
imbeddings. As above, these pulled-back connections are parallel and fat, and the
bundles are associated bundles.

More recently, Di Scala, Ishi, and Loi studied isometric complex immersions of
the form f ∶ B → CP

N(1), where B is a homogeneous Kähler manifold [4]. They
proved that f must be an imbedding and that B must be simply connected. Moreover,
they conjectured that (some rescaling of) any simply connected homogeneous Kähler
manifold, B, whose associated Kähler form is integral must admit an isometric
complex imbedding into CP

N(1) for some N. This conjecture would imply that over
each such space there exists a C1-bundle that admits a parallel fat connection.

There is no classification of the isometric complex immersions f ∶ B → CP
N(1)

for which B has positive or nonnegative sectional curvature, except under added
hypotheses. For example, If B complex dimension ≥ 2 and sectional curvature > 1/8,
then Ros and Verstraelen proved that f (B) must be totally geodesic [11]. If B has
positive sectional curvature and has holomorphic curvature ≥ 1/2, then Ros proved
that f must be a one of a list of standard imbeddings [10]. If B has nonnegative
sectional curvature and has complex codimension less than its complex dimension,
then Shen obtained a similar conclusion [14]. But without any added hypotheses, no
classification is known. Any new example would be interesting, especially if B had
positive sectional curvature, for then the pulled back circle bundle over B would
inherit positive sectional curvature as well.

There are other conditions on immersions (more general than the com-
plex/quaternionic condition) that imply bounded Wirtinger angles. For example,
an immersion φ ∶ B → KP

N is called called slant if θ is constant, or semi-slant if its
tangent bundle decomposes into two sub-bundles on which θ is constant, respectively
at zero and at another value. Slant submanifolds were defined by Chen, who summa-
rized the early results in his book [2]. The pull-back of any proper slant (or semi-slant)
immersion would yield a K1 bundle with a fat connection. The literature on slant and
semi-slant submanifolds consists primarily of rigidity results. However, Maeda et al. in
[6] constructed examples of slant submanifolds of CPN , including families of proper
slant imbeddings of CPn into CP

N which generalize the Veronese imbeddings.
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