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SUMMARY
Human fingers possess mechanical characteristics, which
enable them to manipulate objects. In robotics, the study
of soft fingertip materials for manipulation has been going
on for a while; however, almost all previous researches
have been carried on hemispherical shapes whereas this
study concentrates on the use of hemicylindrical shapes.
These shapes were found to be more resistant to elastic
deformations for the same materials. The purpose of this
work is to generate a modified nonlinear contact-mechanics
theory for modeling soft fingertips, which is proposed as a
power-law equation. The contact area of a hemicylindrical
soft fingertip is proportional to the normal force raised to
the power of γcy, which ranges from 0 to 1/2. Subsuming
the Timoshenko and Goodier (S. P. Timoshenko and
J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw-
Hill, New York, 1970) pp. 414–420) linear contact theory
for cylinders confirms the proposed power equation. We
applied a weighted least-squares curve fitting to analyze
the experimental data for different types of silicone (RTV
23, RTV 1701, and RTV 240). Our experimental results
supported the proposed theoretical prediction. Results for
human fingers and hemispherical soft fingers were also
compared.

KEYWORDS: Grasping; Robotic hands; Novel applications
of robotics; Humanoid robots; Biomimetic robots.

Notations:

Following are the terms used frequently throughout this
work:

Symbols Definition Units

acy Half width contact of rectangular contact
area for hemicylindrical fingertips

mm

asph Radius of circular contact area for
hemispherical fingertips

mm

b Half depth contact of rectangular contact
area

mm

* Corresponding author. E-mail: somernacy@gmail.com

ccy Constant that depends on the size,
depth, and curvature of the
hemicylindrical fingertip

–

d Displacement of fingertip at the
contact zone at x = 0

mm

N Normal force N
n Stress exponent for nonlinear elastic

materials (strain-hardening factor)
–

u(x) Displacement in the contact zone due
to normal force at contact

mm

x, y Citizen coordinates –
γcy Exponent of the power-law equation

for soft hemicylindrical fingertips
contacts

–

γsph Exponent of the power-law equation
for soft hemispherical fingertips
contacts

–

σe Von-Mises stress MPa
σij , εij Stress and strain components in i and

j directions
MPa

σx, σy Stresses in the x and y axes
respectively.

MPa

x̃, z̃ Nondimensionalized coordinates
x̃ = x

acy
, z̃ = z

acy
.

–

ũi Nondimensionalized displacement in
ith direction

–

σ̃ij , ε̃ij Nondimensionalized stress and stain
components

–

1. Introduction
Soft fingers are commonly used as fingertips to provide
the means of interaction between prosthetic robotic hands
and the environment with which they interact. One of most
important mechanical characteristics of fingertips is softness,
considered as one of the major differences between robotic
fingertips and human fingertips. When manipulating an
object, softness plays a big role in the change of contact area
between the fingertip and the object. The soft-finger contact
model provides more realistic results in robotic grasping
and manipulation; the estimation of grasping forces requires
knowledge of stiffness and contact characteristics, including
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600 Contact mechanics for soft robotic fingers

the relationship between normal force and contact area of the
fingertip. These factors are considered as a key to dexterous
manipulation.1

More than a century ago, Hertz2 studied the growth of
contact area as a function of the applied normal force N based
on a linear elastic model. He conducted experiments using a
spherical glass lens against a planar glass plate. His results
showed how the radius of contact was proportional to the
normal force raised to the power of 1/3, which was consistent
with the analytical results based on the linear elastic model.
Timoshenko and Goodier3 studied the contact between two
parallel cylinders. Their results showed analytically the value
of contact width of the linear elastic cylinder which was
proportional to the normal force raised to the power of 1/2.
However, if we visualize an ideal hemicylindrical soft finger,
which assumes the entire contact area upon application of the
initial normal force, and a further increase in the normal force
that does not increase the contact area, then the exponent will
be 0 instead of 1/2. Of course, such an ideal soft finger may
not exist, but typical soft fingers will behave in-between the
two extremes. It is of interest to derive such a model to use
the results for optimal grasping and manipulation.

Schallamach4 and Cutkosky et al.5 explored the
performance of various kinds of rubbers in their research for
complaint materials that will provide ideal skin for artificial
robot fingers. Others have tried to gain insight from the
human body as done by Han et al.,6 who designed artificial
finger using data obtained from experiments on human
subjects. Xydas and Kao7,8 developed a power-law theory
for soft hemispherical fingertips. This power-law theory was
suggested for soft fingers, which behaved more like nonlinear
contacts. The results showed that the radius of contact (asph)
was proportional to the normal force (N) raised to the power
(γsph), which ranges from 0 to 1/3, i.e.

γsph = n

2n + 1
0 ≤ n ≤ 1. (1)

Experiments were conducted to validate the theory using
artificial soft fingers made of rubber and silicone. Kao and
Yang,9 based on the power-law theory for hemispherical soft-
finger contacts, derived the equation to describe the nonlinear
stiffness behavior of soft contacts.

Park et al.10 presented a hemisphere-shaped soft fingertip
for soft fingers and modeled a nonlinear force function of
a soft fingertip according to the deformation by considering
the force distribution in the contact surface. A tactile sensor
was used to measure the contact force distribution in the
contact surface and its total force. The proposed model
was considered for a one-dimensional (1D) finger contact.
Inoue and Hirai11 proposed a straightforward static elastic
model of a hemispherical soft fingertip undergoing large
contact deformation. They formulated a static elastic force
model with an elastic potential energy function based on
virtual springs inside a hemispherical soft. The equations
are functions of two variables: the maximum displacement
of the hemispherical fingertip and the orientation angle of a
contacting planar object. The elastic potential energy had a
local minimum in the proposed model.

Hosoda et al.12 studied a novel design of an
anthropomorphic soft fingertip with distributed receptors.
They explored ways to improve the discrimination of
materials by pushing and rubbing of objects. The fingertip
consisted of two silicone rubber layers of different hardnesses
containing two kinds of receptors: strain gauges and
polyvinylidene fluoride (PVDF) films. The structure of the
fingertip was similar to that of a human fingertip, involving a
bone structure, a body, a skin layer, and randomly distributed
receptors inside. Experimental results demonstrated the
discriminating ability of the fingertip.

Ficuciello13 adopted a port-Hamiltonian model of a robotic
hand with soft pads on fingertips. The viscoelastic behavior
of the contact was described in terms of energy storage and
dissipation.

Ho and Hirai,14 constructed a hybrid finite element model
to simulate the dynamic behavior of a sliding hemispherical
and hemicylindrical soft fingertips. They focused on the
stick-slip transition of slide, in which dynamically localized
displacements on the contact surface were reproduced. Their
experiments gave good validation to the proposed model.

In this paper, we study the nonlinear contact mechanics of
hemicylindrical soft fingers through theoretical modeling and
experimental validation. We derive a relationship between
the normal force and the half width contact area assuming
that the materials of anthropomorphic hemicylindrical soft
finger with different silicone-based materials (namely, RTV
23, RTV 1701, and RTV 240) are nonlinear elastics. Based on
the theory from Hutchinson,15 we experimentally determine
the growth of the contact area with respect to the normal force
for typical anthropomorphic hemicylindrical soft fingers.
It was found that hemicylindrical shape fingertips are
more practical as compared to hemispherical shape, since
smaller size hemicylindrical fingertips can afford the same
contact properties produced by larger size hemispherical
fingertips.

2. Theoretical Approach and Modeling
The main objective of this section is to derive a contact
mechanics model, including nonlinear materials, thus
representing more realistic soft fingers.

2.1. The linear elastic model: the Timoshenko and Goodier
contact model
Hertz2 provide the first satisfactory analysis of mechanical
contact of two elastic solids. He studied the growth of contact
area as a function of the applied normal force N, based on
the linear elastic model. He conducted experiments using a
spherical glass lens against a planar glass plate. The radius of
contact is proportional to the normal force raised to the power
of 1/3, which is consistent with the analytical results that he
derived based on the linear elastic model. Timoshenko and
Goodier3 studied the contact between two parallel cylinders
and founded analytically the value of half width contact for a
linear elastic cylinder acy, which is proportional to the normal
force N raised to the power of 1/2, i.e.

acy ∝ N
1
2 . (2)
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Fig. 1. (Colour online) (a) Model of a nonlinear elastic cylinder making contact with a surface, pushed by a normal force N (simplified
model); and (b) model of a hemicylindrical soft finger being pushed onto a rigid plane. The contact area is assumed to be rectangular.

2.2. The nonlinear elastic model
For incompressible nonlinear elastic materials, the
3D constitutive relation is given by the following
equations7,8,15,16:

εij =
(

σe

ks

)n
∂σe

∂σij

, (3)

σij = σe

∂

∂εij

(
σe

ks

)n

; (4)

the Von-Mises stress is

σe =
√

3

2
δij δij =

√
3

2

(
σij − 1

3
σkkδij

)(
σji − 1

3
σkkδji

)
,

(5)
and the strain components are

εij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
(6)

where ks is a constant with the stress unit, n is a strain
hardening factor (i.e. the stress exponent depending on the
material (n ≤ 1)), ∂ui

∂xj
is a derivative of ui with respect to

the j th orthogonal coordinate in Cartesian coordinates, and
ui is the infinitesimal displacement. In addition, the stress
equilibrium requires that

∂σij

∂xj

= 0. (7)

Considering a nonlinear elastic cylinder of radius Ro being
pushed onto a rigid plane, as shown in Fig. 1, and taking
the x and y axes in the direction of the semi-axes acy and

b respectively, and knowing the boundary conditions at
the surface of the rectangular in the Cartesian coordinates,
namely

σx = 0
σy = 0 for

x > acy

y > b
(nocontact), (8)

the displacement in the contact zone due to normal force can
be presented as

u(x) = d − (
Ro −

√
R2

o − x2
)

for x < acy (in contact),
(9)

where b is the half depth of contact, acy is the half width of
contact area, σx and σy denote the stresses in x and y axes
respectively, u is the displacement in the contact zone due to
normal force at the contact, and d is the displacement in the
contact zone at x = 0, as shown in the Fig. 1. Furthermore,
the force balance for the contact area requires that

N =
∫
A

σzzdA. (10)

In this work, dA is the rectangular contact area of
the cylindrical soft finger (assume the depth 2b remains
constant),

N =
b∫

−b

a∫
−a

σzz dx dy = 2b

a∫
−a

σzzdx, (11)

where σzz is the stress component normal to the contact
surface. Using the following dimensionless variables:

x̃ = x

acy
, (12)
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ũi = uiRo

a2
cy

, (13)

z̃ = z

acy
, (14)

where ui is given by Eq. (9). Substituting x̃ and ũ into Eq. (6),
we obtain

εij = acy

Ro

ε̃ij , (15)

where ε̃ij = 1
2 ( ∂ũi

∂x̃j
+ ∂ũj

∂x̃i
). From Eq. (3), after the

substitution of εij in Eq. (15) and σe in Eq. (5), one can
write,

σij ∼
(

acy

Ro

) 1
n

σ̃ij , (16)

where “∼” denotes that σij is proportional to ( acy

Ro
)

1
n σ̃ij via

dimensional analysis. Substituting Eqs. (12)–(14) and (16)
into Eq. (11), yields

N = 4b

acy∫
0

σzzdr ∼ 4b

(
acy

Ro

) 1
n

acy

1∫
0

σ̃zzdr̃. (17)

The integration of Eq. (17) is dimensionless. By grouping

all constant terms, we can write

N = c a
1
n
+1

cy = c a
1+n
n

cy

or

acy = ccyN
n

n+1 = ccyN
γcy, (18)

where γcy = n
n+1 is the exponent of the normal force, and ccy

is a constant that depends on the size and curvature of the
fingertip, as well as the material properties. Equation (18) is
the new power law that relates the growth of the half width
contact with the applied normal force for soft fingers. Note
that the equation is derived assuming a rectangular contact
area.

For linear elastic materials, the constant n is equal to 1.
Thus, Eq. (18) will be the Hertzian contact model for a
cylinder:

acy = ccyN
1
2 . (19)

Equation (19), a special case of Eq. (18) for linear elastic
materials in contact, is in agreement with the Timoshenko and
Goodier3 contact theory. In general, 0 ≤ n ≤ 1,15therefore
the exponent in Eq. (18) is

0 ≤ γcy ≤ 1

2
. (20)

If γcy = 0, the width of contact is constant and independent
of the normal force. This corresponds to the case of the ideal

Fig. 2. (Colour online) Mold design.

soft finger, where the full contact area is reached once the
contact is made, and subsequent increases in the normal force
do not increase the area of contact.

3. Experimentations

3.1. Material selection
The soft fingertips were made from three different types of
silicone (RTV 23, silicone RTV 1701, and silicone RTV
240), specifically suited for applications similar to do with
the present design. Some properties of the silicone used are
shown in a Table I.16

3.2. Manufacturing of Mold of Robotic Hand Fingertips
Molds for fingertips were prepared and manufactured using
rapid prototyping. In this research the mold is designed using
Solidwork as shown in the Fig. 2(a), and then manufactured it
from ABS solid plastic using a 3D Printer. The mold consists
of two parts, shown as an assembled view in Fig. 2(b).
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Table I. Silicone materials type for hemicylindrical finger tips with mechanical properties16.

Mixing Curing Tensile Shore A Elongation Tear Appearance
Silicone ratio time strength hardness at break strength when
type Hardener (%) (hours) (MPa) points (%) (N/mm) cured

RTV 23 (very soft) A 7 40 24 2.2 6 1000 8 Translucent
RTV 1701(middle) 1701-B 5 8 3.4 17–20 1180 17 White
RTV 240 (hard) B2 10 24 5.5 40 400 25 Translucent

Fig. 3. (Colour online) Experimental set up of the soft-finger contact
mechanics model.

3.3. Experimental validation of contact theory
of soft fingertips
The experimental set up used for the verification of the power-
law equation (Eq. (18)) is shown in Fig. 3. We used a Zwick
tensile tester to measure the force used to press the fingertip
on flat solid surface.17 Each fingertip was fixed on the vertical
moving jaw of the machine; when it comes in contact with
the flat surface, a normal force is generated and displayed
on the readout panel with an accuracy of (±0.01 N). The
area of contact is measured from finger imprints shown in
Fig. 4. All the artificial fingers used in the experiments have
cylindrical or spherical asperities. The shapes of contact areas
are rectangular for the hemicylindrical fingertips as shown in
Fig. 4(a), whereas the shapes of contact areas are circular for
the hemispherical fingertips as shown in Fig. 4(b). Multiple
finger imprints over a range of normal force from 0−100
N are printed, and the half width and radius contact are
measured with accuracy of ±0.1 mm. All experiments were
performed on a smooth surface to avoid possible distortion
of finger imprints due to any surface irregularities.

4. Algorithm of Weighted Least-Squares Fit for
Experimental Data
We used a least-squares curve-fitting algorithm to fit the
experimental data to provide an empirical relationship
between normal forces and areas of contact. A systematic
algorithm is developed and presented for doing the least-

Fig. 4. (Colour online) Samples of a finger imprint on recording
paper. The finger is coated with fine toner dust, which makes a clear
contact imprint on paper surface.

squares best fit with a well-defined weighting matrix for
various kinds of power equations.18,19 Taking the logarithmic
form of Eq. (18),

Lnacy = Ln ccy + γcyLnN (21)

with a total of i data sets of (acy, N ) from experiments,
Eq. (21) can be rearranged in the following matrix form
for least-squares fit:

y = Ax, (22)

where

y =

⎡
⎢⎢⎣

Lnacy1

Lnacy2
...

Lnacyi

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

1 LnN1

1 LnN2
...

...
1 LnNi

⎤
⎥⎥⎦ , x =

[
Ln ccy

γcy

]
. (23)

The least-squares solution of x in Eq. (22) can be obtained
using the Penrose–Moore generalized inverse that minimizes
the norm of errors in y, that is

x = A∗y, (24)

where superscript ∗ denotes the generalized inverse. The left
inverse is used in Eq. (23), i.e.

A∗ = (AT A)−1AT . (25)
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Table II. The experimental result for exponent γ and constant c by
using the weighted least-squares best fit for hemicylindrical and

hemispherical soft finger tips.

Hemicylindrical Hemispherical
fingertips fingertips

Type of silicone materials ccy γcy csph γsph

RTV 23 2.8779 0.2427 3.4036 0.2008
RTV 1701 2.2001 0.2712 2.8192 0.2212
RTV 240 1.4944 0.3147 2.2909 0.2441

Equation (24) minimizes the norm of squared errors in
y = ln N instead of N . In order to compensate for such
discrepancy, weighted least-squares fit is utilized in the
following form:

A∗ = (W A)∗ W y, (26)

where the weighting matrix is W = diag[ey1 . . . ey2] that
compensates for the logarithmic scale of the norm of squared
errors to be minimized.

5. Results and Discussions
After conducting all the experiments on hemicylindrical and
hemispherical fingertips, and applying the weighted least-
squares curve fitting, constants of the power law equation,
namely γ and c for both fingertip shapes, are obtained as
listed in Table II. It can be seen that values of γ for both cases
are within the range adopted in the theory, that is 0 ≤ γcy ≤ 1

2
and 0 ≤ γsph ≤ 1

3 .
Figure 5 shows the half contact width, acy, as a function

of the applied normal force, N. The curves indicate that the
half contact width is an exponential function of the normal

force N, whereas Fig. 6 shows the radius of contact, asph, as
a function of the applied normal force N.

The comparison between the hemicylindrical and
hemispherical fingertips shown in Figs. 5 and 6 indicates
that when loading both shapes with identical loads, the half
width contact of the hemicylindrical fingertip is less than the
radius of contact of the hemispherical fingertip. This area of
contact can be controlled easily in the case of hemicylindrical
fingertip by altering the length of the hemicylinder only,
whereas this is limited in the case of hemispherical tip due to
axis symmetry. In addition, it was found that hemicylindrical
shape fingertips are preferable as compared to spherical
shape fingertips, since the width can be maintained constant,
while the radius of curvature can be varied, thus yielding the
same contact properties as compared with those obtained for
larger size spherical fingertips. Furthermore, because silicone
of type RTV 240 is a harder material than other types of
silicone (RTV 1701 and RTV 23), the observations from the
least-squares-fit curve lead us to the conclusion that harder
materials tend to have higher exponent values. Normalization
of empirical curves can eliminate constant ccy from Eq. (18).
The experimental results for the human thumb and index
finger20 show that the human fingers behave like a nonlinear
elastic material21 with γcy ranging from 0.11 to 0.17. Data
taken from Schallamach’s work,22 which are illustrated in
Fig. 7, also support our theory. Experimental data for other
materials fall within 0 ≤ γcy ≤ 1/2. This is consistent with
the theoretical model that the exponent γcy is within the
upper bound γcy = 1/2 (for linear elastic materials) and the
lower bound γcy = 0 (which corresponds to the case of the
ideal soft finger). The results of the normalized curves for
various materials are plotted in Fig. 7, and are described by
the following equation:

(
acy

ccy

)
= Nγcy . (27)

Fig. 5. (Colour online) Results of experiments using silicone RTV 23, RTV 1701, and RTV 240 for hemicylindrical fingers (Ro = 7.6 mm,
b = 7.6 mm).
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Fig. 6. (Colour online) Results of experiments using silicone RTV 23, RTV 1701, and RTV 240 for hemispherical fingers (Ro = 7.6 mm).

The upper and lower bounds of the normalized contact
of the half width with respect to the normal force
are shown. The experimental results match well with
the theoretical derivation of the power law proposed in
Eq. (26).

In this study, we showed that the contact model in Eq. (18)
could be used for linear elastic contact as well as soft
(nonlinear elastic) contact. If the contact is harder and
behaves more like linear elastic materials, the exponent in
Eq. (19) will be closer to 1/2, reflecting the linear elastic
model predicted by Timoshenko and Goodier.3 Furthermore,
since the exponent is between 0 and 1/2, when this exponent
becomes larger (e.g. 1/2), the growth rate of the half

width is initially smaller but becomes larger than that of
the softer contacts with smaller γcy. On the contrary, a
softer finger initially has a rapid half width growth with a
subsequently reduced growth rate. This is consistent with the
anthropomorphic soft-finger model that we have proposed.
If two fingers having exponents of 1 and 2 are considered,
we can derive the rate of change of the normalized
contact of half width contact with respect to the normal
force as

d(acy/ccy)

dN
= γcyN

(γcy−1). (28)

Fig. 7. (Colour online) The normalized half width contact as a function of the normal force ( acy

ccy
) = Nγcy .
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Fig. 8. (Colour online) Comparison of different exponents in the power-law equation for hard finger (γ = 1
2 ) and soft silicone RTV 23

(γ = 0.2427) finger.

The rate of change is initially greater for the softer finger.
The intersection of the two rates can be found at

NC = e
−

(
Lnγcy1 −Lnγcy2

γcy1 −γcy2

)
. (29)

Equation (29) gives the critical normal force value NC , at
which the rate of change of the contact of the half width is
swapped between the two fingers of different exponents.

Figure 7 offers a comparison between two contacts with
different values of exponents at each finger harder materials
(the linear elastic model) γcy1

= 1/2 and softer materials
(viscoelastic soft finger) γcy2

= 0.0495. We found from Eq.

(29) that NC = 0.0059 N. This intersection is shown in Fig. 7.
When the normal force is applied, the initial rate of change
in acy is large, and then it is decreased asymptotically. Below
this intersection (i.e. N < NC), the rate of growth of the
contact of half width for the softer finger (γcy2

= 1/10) is
larger than the linear elastic finger (γcy1

= 1/2). Above this
intersection (i.e. N > NC), the rate of growth of the contact
of half width for the softer finger is smaller than that of
the linear elastic finger. As the soft finger becomes ideally
soft, the initial growth rate of the half width of contact is
infinite and then immediately reduces to zero, much like an
impulse function. For typical fingers, the critical point NC is
small. As a result, the region of N < NC occurs very quickly

Fig. 9. (Colour online) Comparison of different exponents in the power-law equation for hard finger (γ = 1
2 ) and soft silicone RTV

(γ = 0.2712) finger.
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Fig. 10. (Colour online) Comparison of different exponents in the power-law equation for hard finger (γ = 1
2 ) and soft silicone RTV

(γ = 0.3147) finger.

Fig. 11. (Colour online) Comparison of different exponents in the power-law equation for hard finger (γ = 1
2 ) and thumb finger (γ = 0.11).

Fig. 12. (Colour online) Comparison of different exponents in the power-law equation for hard finger (γ = 1
2 ) and index finger (γ = 0.17).
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Fig. 13. (Colour online) Comparison of different exponents in the power-law equation for hard finger (γ = 1
2 ) and viscoelastic finger

(γ = 0.0495).

upon the application of normal force. Figs. 8 to 13 show
the rate of change of the normalized half width contact with
respect to normal force for different types of hemicylindrical
fingertips.

6. Conclusions
A proposed contact-mechanics model for anthropomorphic
hemicylindrical soft fingers is proposed as a power-law
equation. That is, the half width of contact of a soft finger is
proportional to the normal force raised to the power of γcy,
which ranges from 0 to 1/2.

The general result, subsuming the Timoshenko and
Goodier3 contact theory, is in the form of a power equation.
The weighted least-squares fit is applied to analyze the
experimental data using the theory developed in this work.
It is found that the experimental results also match with the
range of the theoretical prediction.

It was found that hemicylindrical shape fingertips are
preferable over spherical shape fingertips for prosthetic
application, since the width can be maintained constant,
while the radius of curvature can be varied, thus yielding
the same contact properties as compared with those obtained
for larger size spherical fingertips.
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