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Abstract

Seed lot heterogeneity is often evaluated through the range between germination percentages
of four seed samples, considering normal and binomial approximations for calculating the tol-
erated range (S). In this paper, an exact test for the germination count range (R) is derived
based on the hypergeometric and the binomial probability model for germination count.
Through Monte Carlo simulations, the empirical distribution of R is built to evaluate the
quantiles of the exact distributions. Moreover, a power analysis is performed by simulation.
Sample size and germination rate effects are evaluated. In lots with a high germination
rate, the proposed test based on the hypergeometric model is about 20% more powerful
than the test based on the S-value. A table containing the critical values is presented and
recommended to be used in off-range heterogeneity testing.

Introduction

A seed lot is characterized by a set of variables such as the number of pure seeds, normal and
abnormal seedlings, the number of dead and dormant seeds and the number of seeds damaged
by insects. In seed analysis, the standard procedure for germination testing is to use four sam-
ples (replicates) of 100 seeds each, as recommended by the International Seed Testing
Association (ISTA, 2017). In order to assure the germination test reliability, a seed lot is
expected to have an acceptable level of heterogeneity, which is evaluated through the in-range
heterogeneity test with the H-value and the off-range heterogeneity test with the R-value.

According to Piepho et al. (2018), it is important to measure and quantify that variation
between seed samples because, if the four replicates results would vary significantly more
than expected, this would indicate that something went wrong with the germination test,
for example that the seeds in one sample died but not in the others, and the test would
have to be repeated.

The test for the off-range heterogeneity between seed samples consists of evaluating the
maximum difference between germination percentages and to compare it with a tolerated value
(S), calculated considering the theoretical variance of the binomial distribution and a critical quan-
tile of the studentized range (q), as proposed by Miles (1963). In a formal way, consider p1, p2,…,
pm as realizations of the germination percentage of m independent samples containing n seeds
each. Then, compare R =max ( pi)−min ( pi) to S = q

�������������
n−1�p(1− �p)

√
, where �p = m−1 ∑m

i=1 pi.
When R≥ S, the samples are considered heterogeneous and further sampling should be done.
Note that this approach requires assuming that all the pi are independent and identically distrib-
uted as Normal variables with mean np and variance np(1− p), at least approximately.

In a germination test, seed samples of similar size (n) are drawn from the seed lot without
replacement, and the number of normal seedlings is computed. In this case, the theoretical
probability distribution is not binomial(n, p), but hypergeometric(N, K, n), where K is the
number of normal seedlings of the seed lot containing N seeds. This result was previously
identified (Piepho et al., 2018; Laffont et al., 2019). When searching for genetically modified
events in seed lots, a similar test procedure is adopted. According to Herman and Robbins
(2013), for large seed lots, a binomial distribution is typically assumed, but for seed lots for
which the tested sample is a substantial proportion of the overall seed lot, a hypergeometric
distribution is typically assumed.

In this paper, a test based on the exact probability distribution of the germination count
range is presented and evaluated by Monte Carlo simulation.

Materials and methods

The exact test

Consider a seed lot of size N from which K seeds form normal seedlings. In a germination test,
m samples of size n each are drawn from that seed lot without replacement, generating the
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random variables X1, X2,…, Xm that represent the number of nor-
mal seedlings (germination count). Let us assume that all the Xi

are independent and identically distributed according to the
hypergeometric model with parameters N, K and n. Now take the
order statistics X(1) =min (X1, X2, …, Xm) and X(m) = max (X1, X2,
…, Xm) as random variables with distribution functions FX(1) and
FX(m) , respectively. Let us define the variable R = X(m)−X(1) as the
range of germination count for the m samples being evaluated.
Under the null hypothesis that X(1) and X(m) share the same dis-
tribution parameters (N, K, n), the exact probability distribution
function of R can be derived (Arnold et al., 2008), as follows:

PR R = 0|N,K, n( )

=
∑n
x=0

PX m( )X 1( ) X m( ) = x,X 1( ) = x
( )

=
∑n
x=0

PX X = x( )[ ]m

(1)

and

PR R= r|N,K,n( )

=
∑n
x=0

PX m( )X 1( ) X m( ) =x+r,X 1( ) =x
( )

=
∑n
x=0

PX X≤x+r( )−PX X≤x−1( )[ ]m
− PX X≤x+r( )−PX X≤x( )[ ]m
− PX X≤x+r−1( )−PX X≤x−1( )[ ]m
+ PX X≤x+r−1( )−PX X≤x( )[ ]m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
IR R=1,2, .. .,n( )

(2)
where IR( ⋅ ) is an indicator function and

PX(X=x|N ,K ,n)=
K
x

( )
N−K
n−x

( )

N
n

( ) (3)

Fig. 1. (a) Exact probability distributions of the germination count range (R) built under hypergeometric(N, K, n) and binomial(n, p) models for germination count,
based on four samples. Mark ticks on the x-axis indicate the discrete values of R. (b) Empirical probability distribution of the germination count range considering
the hypergeometric distribution for germination count. (c) Empirical probability distribution of the germination count range considering the binomial distribution
for germination count.
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Expectation and variance of the range are given in Supplementary
Appendix A, while Supplementary Appendix B gives the codes in R
for the probability mass function and the cumulative distribution.

The exact test consists of calculating the one-sided P-value
for the realization r = x(m)− x(1) as PR(R . r) = 1−∑r

i=0
PR(R = i). In this sense, if the P-value does not exceed the nom-
inal level of significance α, the seed samples are considered off-
range heterogeneous.

Evaluation by simulation and computing

Once there is a relation between the hypergeometric and the bino-
mial models, the distribution of R is built considering the bino-
mial probability mass function for the random variable X, here

defined as the number of normal seedlings observed in a seed
sample. In fact, when N≫ n, it can be shown that

PX(X = x|N , K , n) � n
x

( )
px(1− p)n−x (4)

where p≅ K/N is the probability of success (normal seedling).
The quantiles of R obtained with both exact distributions were

compared with the sample quantiles from empirical distribution
functions F̂R built through Monte Carlo simulation processes,
one for each base distribution. Ten thousand series of size
m = 4 (seed samples) were generated for hypergeometric (800,
640, 100) and binomial (100, 0.8) counts, from which 10,000
estimates of R were obtained in order to calculate the empirical
probability mass.

Fig. 2. Critical values (5% significance) of the germination count range between four seed samples calculated using the exact probability distributions based on the
hypergeometric(N, K, n) and binomial(n, p) models, and the S-values (ISTA, 2017). Variations according to (a) the sample size (n) and (b) the germination rate ( p).

Fig. 3. Power analysis of the tests for the germination count range based on the exact probability distributions derived from the hypergeometric and binomial
models, and assuming the Normal distribution for calculating the S-value.
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The effects of sample size (n) and germination rate ( p) on the
sensitivity of the critical values of R were evaluated by comparing
the 0.95 quantiles of the exact distributions with the S-value cal-
culated according to Miles (1963), with 5% nominal significance.

The power of the tests was also calculated by simulating 10,000
values of germination count range according to the base distribu-
tion models, that is, hypergeometric and binomial. The range of
germination percentages was simulated considering the Normal
distribution, with which the S-values were calculated at 5% signifi-
cance. Formally, consider the respective cumulative distribution
functions, FR(Hyp) and FR(Bin) under the following paramet-
rization: m = 4, N = 800, n = 100, P = 0.55 and 0.95. And take ri
as the i-th (i = 1, 2, …, 10,000) simulated value of range under
the null hypothesis (lot homogeneity). An increment parameter
δ varying from 0 to 25 was added to the simulated range values
in order to evaluate the null hypothesis rejection rate (test’s
power), that is,

Power(d) = 1
10, 000

∑
i

I[PR(R . ri + d) ≤ a] (5)

The statistical procedures, simulations and general computing were
performed with the software R version 3.4.3 (www.r-project.org).
The codes are available with the author.

Results and discussion

The exact probability distributions of the germination count range
are presented in Fig. 1, considering the hypergeometric and the
binomial models as the base distribution for the germination
count of four samples of size n = 100 drawn from a seed lot of
different sizes (N = 400, 800, 1600), with a fixed germination
rate ( p = K/N = 0.8). In Fig. 1a, the approximation to the exact
distribution obtained with the binomial model can be verified
as lot size increases. When the seed sample size gets close to
the lot size, the theoretical distribution gets more skewed to the
right, as observed by Laffont et al. (2019). Figure 1b,c shows the
Monte Carlo distributions overlapping the theoretical distribu-
tions of R.

Table 1. Critical valuesa of the germination count range between four samples
of n seeds each drawn without replacement from the seed lot of size (N ) with
the germination rate (K/N ) varying from 0.50 to 0.95

N K/N

Seeds per sample (n)

30 40 50 60 100 200

200 0.50 9 10 11 – – –

0.55 9 10 11 – – –

0.60 9 10 11 – – –

0.65 9 10 11 – – –

0.70 8 9 10 – – –

0.75 8 9 10 – – –

0.80 7 8 9 – – –

0.85 6 7 8 – – –

0.90 5 6 7 – – –

0.95 4 4 5 – – –

400 0.50 10 11 12 13 16 –

0.55 9 11 12 13 16 –

0.60 9 11 12 13 15 –

0.65 9 10 11 12 15 –

0.70 9 10 11 12 14 –

0.75 8 9 10 11 14 –

0.80 8 9 10 10 13 –

0.85 7 8 9 9 11 –

0.90 6 6 7 8 9 –

0.95 4 5 5 6 7 –

800 0.50 10 11 12 13 17 22

0.55 10 11 12 13 17 22

0.60 10 11 12 13 17 22

0.65 9 11 12 13 16 21

0.70 9 10 11 12 16 20

0.75 8 10 11 12 15 19

0.80 8 9 10 11 14 18

0.85 7 8 9 10 12 16

0.90 6 7 7 8 10 13

0.95 4 5 5 6 7 10

2000 0.50 10 11 13 14 18 24

0.55 10 11 13 14 18 24

0.60 10 11 12 14 17 24

0.65 9 11 12 13 17 23

0.70 9 10 12 13 16 22

0.75 8 10 11 12 15 21

0.80 8 9 10 11 14 19

0.85 7 8 9 10 13 17

0.90 6 7 8 8 11 15

0.95 4 5 5 6 8 11

(Continued )

Table 1. (Continued.)

N K/N Seeds per sample (n)

30 40 50 60 100 200

>4000 0.50 10 11 13 14 18 25

0.55 10 11 13 14 18 25

0.60 10 11 12 14 18 25

0.65 9 11 12 13 17 24

0.70 9 10 12 13 16 23

0.75 9 10 11 12 16 22

0.80 8 9 10 11 14 20

0.85 7 8 9 10 13 18

0.90 6 7 8 8 11 15

0.95 4 5 6 6 8 11

aBased on the exact distribution of the germination count range and 5% significance.
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Tolerated values (S ) of germination percentages between four
samples were calculated and rounded up (transformed) to ger-
mination count values in order to compare them with the 0.95
quantiles of the exact distributions. Figure 2a shows the effect
of sample size (n) on the estimates of S and critical values of R
in seed lots with germination rates of 0.55 and 0.95, respectively.
The critical values obtained using the hypergeometric distribution
were the most sensitive on detecting sample heterogeneity,
especially for n > 50. The S-values were similar to the critical
values obtained with the binomial model, as expected, since the
first statistics assumes the binomial variance. For n = 100, the
hypergeometric-based estimates are one seed lower. For n = 200,
they are four seeds lower. From 50 to 200 seeds per sample, the
critical values increase, in average, twice. This is also the average
effect of the germination rate (from 55 to 95% germination) on
the critical values for a given sample size.

The effect of the lot germination rate ( p) on S and the 0.95
quantiles of the exact distributions are shown in Fig. 2b. The
same behaviour was observed by Laffont et al. (2019), who calcu-
lated 0.975 quantiles, which stand for two-sided P-values.
However, when testing for off-range heterogeneity through the
germination range, only the right side of the distribution is of
interest. That is why the critical values presented here have the
whole nominal significance (0.05) to the right side. The authors
also observed that the S-values are more conservative than
the exact quantiles. In average, the difference between the
hypergeometric-based values is one seed lower. Piepho et al.
(2018) observed that using the hypergeometric model can lead
to significantly improved results in heterogeneity testing, espe-
cially in all applications where the sample size is low and the
percentage value is very high or very low.

In terms of the power of the tests, the germination rate has a
considerable effect (Fig. 3). All of them are more powerful
when the seed lot has high physiological potential. For example,
in average, the germination range between four samples of size
n = 100 drawn from a lot of size N = 800 with 95% germination
is equal to four seeds. To detect a significant (P-value < 0.05)
range increased by five seeds (range = 9 seeds) with the
hypergeometric-based test, the power is equal to 0.96, which is
greater than the power of the binomial-based (0.84) or the
S-value (0.66). Increases of seven seeds in range promote power

above 0.98 for all tests. However, in a seed lot of 55% germination,
the power would be much lower, around 0.3, 0.3 and 0.2, respect-
ively. In the case of the low germination rate, using the S-value is
not recommended, as it presented approximately 10% less power
than the exact tests. In lots with the high germination rate, the
proposed test based on the hypergeometric model is about 20%
more powerful than the test based on the S-value. In fact, the pro-
posed test is generally more powerful than the other two.

Finally, the critical values with 5% significance calculated using
the hypergeometric-based model for several combinations of lot
size, germination rate and sample size are given in Table 1,
which is recommended to be used in off-range heterogeneity test-
ing. Note that variations in germination rate and sample size
affect significantly the critical values.

Supplementary material. To view supplementary material for this article,
please visit: https://doi.org/10.1017/S0960258520000112.
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