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Flow instability in the non-orthogonal swept attachment-line boundary layer is
addressed in a linear analysis framework via solution of the pertinent global (BiGlobal)
partial differential equation (PDE)-based eigenvalue problem. Subsequently, a simple
extension of the extended Görtler–Hämmerlin ordinary differential equation (ODE)-
based polynomial model proposed by Theofilis et al. (2003) for orthogonal flow, which
includes previous models as special cases and recovers global instability analysis
results, is presented for non-orthogonal flow. Direct numerical simulations have been
used to verify the analysis results and unravel the limits of validity of the basic flow
model analysed. The effect of the angle of attack, AoA, on the critical conditions
of the non-orthogonal problem has been documented; an increase of the angle of
attack, from AoA = 0 (orthogonal flow) up to values close to π/2 which make
the assumptions under which the basic flow is derived questionable, is found to
systematically destabilize the flow. The critical conditions of non-orthogonal flows at
0 6 AoA 6 π/2 are shown to be recoverable from those of orthogonal flow, via a
simple algebraic transformation involving AoA.
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1. Introduction
Plane stagnation flows are commonly employed models to describe flow in the

vicinity of the leading edge of cylinders and aerofoils in the limit of vanishing
curvature. Plane stagnation point flow, formed when a uniform flow impinges on a flat
plate at right angles to the surface, is described by the classic (orthogonal, unswept)
Hiemenz (1911) boundary layer, which is an exact solution of the incompressible
continuity and Navier–Stokes equations (Schlichting 1979). Customarily, Hiemenz flow
is defined on the plane Oxy, where x is the chordwise and y is the wall-normal
spatial direction, the free-stream velocity component being −V∞, as schematically
depicted in figure 1. Stagnation line flow arises when a constant free-stream velocity
component, W∞, is also introduced along the spanwise direction, represented by the
z-axis in figure 1 and resulting in a fully three-dimensional boundary layer, which
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FIGURE 1. Schematic representation of the non-orthogonal swept attachment-line boundary-
layer flow where QSTD is the potential flow velocity vector discussed by Stuart (1959),
Tamada (1979) and Dorrepaal (1986), QSH is that used by Hall et al. (1984), while Q3D is
that corresponding to the general case discussed herein.

is also an exact solution of the incompressible equations of motion. This so-called
infinite swept attachment-line boundary-layer flow is widely accepted as a model
describing incompressible flow in the vicinity of the windward face of swept cylinders
and aerofoils at high Reynolds numbers (Rosenhead 1963). The limitations of this flow
model are encountered when compressibility or curvature are introduced. Stagnation
line flow, in which the sweep angle Λ may be defined through the external free-stream
velocity components, Λ ≡ arctan (W∞/V∞), is antisymmetric as far as the chordwise
boundary-layer velocity component is concerned, and symmetric as regards the wall-
normal and spanwise velocity components inside the boundary layer. The symmetry
of orthogonal plane stagnation flows is broken when a non-zero chordwise free-stream
velocity component U∞ exists and defines the angle of attack, AoA ≡ arctan (U∞/V∞).
Non-orthogonal stagnation point flow, defined by the existence of U∞,V∞ 6= 0 and
W∞ = 0, has independently been rediscovered in a space of 30 years by Stuart (1959),
Tamada (1979) and Dorrepaal (1986), and will be referred to as STD flow in what
follows. Non-orthogonal stagnation-line flow arises on account of three non-zero free-
stream velocity components, U∞,V∞,W∞ 6= 0, as schematically shown in figure 1. A
compressible non-orthogonal stagnation-line flow model valid at small Mach numbers
has been first presented by Lasseigne & Jackson (1992). More realistic models of
boundary-layer flow in the vicinity of swept leading edges have been studied by Lin &
Malik (1997), who introduced curvature effects in the incompressible orthogonal swept
attachment-line boundary layer, while compressible laminar steady states pertinent to
orthogonal stagnation flows have been obtained by direct numerical simulation (DNS)
in the neighbourhood of swept cylinders of circular (Collis & Lele 1999), elliptic
(Xiong & Lele 2007) and parabolic (Mack, Schmid & Sesterhenn 2008) cross-sections.

The vast majority of both theoretical and experimental work as regards instability
of plane stagnation flows has been performed in the orthogonal limit. In the following
discussion we only summarize facts related to the present work; an extensive
discussion may be found in Pérez (2012). Early experimentation (Gray 1952) detected
boundary-layer transition on swept wings with laminar aerofoils, which was found
to move toward the attachment-line direction when the sweep angle was increased.
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Linear global instability of a non-orthogonal incompressible swept attachment line 133

The associated instability was attributed to a cross-flow mechanism (Gaster 1967;
Pfenninger & Bacon 1969) while Poll (1979) postulated that there exists a clear
distinction between attachment-line and cross-flow instabilities, for which viscous
and inviscid processes are responsible, respectively. In addition, in the experiments
of both Pfenninger & Bacon (1969) and Poll (1979) a critical Reynolds number,
Re ≈ 245, was obtained when finite-amplitude perturbations were used to drive the
transition process. This value corresponds to the lowest value of the Reynolds number
below which no linear instability exists (see Joslin 1996). Modelling of attachment-line
instability in the limit of orthogonal stagnation point flow, AoA = Λ = 0, commenced
with the classic works of Görtler (1955) and Hämmerlin (1955). These authors
postulated that linear perturbations inherit the symmetries of the basic flow, for which
the chordwise velocity component inside the boundary layer is a linear function of
the chordwise coordinate, while the wall-normal perturbation velocity component is
only a function of the wall-normal spatial coordinate. A stable mode was obtained
with this formulation. Later, Wilson & Gladwell (1978) showed that there exist two
types of linear stability modes in stagnation point flow; those that decay algebraically
in the wall-normal direction and others that decay exponentially. They argued that
the former disturbances must be excluded for physicals reasons and showed that
exponentially decaying modes are always stable, in line with the earlier predictions.
Still within the realm of linear theory, Brattkus & Davis (1991) discussed an expansion
of arbitrary disturbances in Hermite polynomials of the chordwise coordinate; they
obtained linear stable flows in which the modes postulated by Görtler–Hämmerlin
(GH) were the least damped. Finally, Lyell & Huerre (1985) addressed both linear
and nonlinear instability of plane stagnation point flow and showed that, while linearly
stable this flow can become nonlinearly unstable to three-dimensional perturbations, a
result which was later corroborated in the DNS of Spalart (1988). Regarding linear
instability of orthogonal plane stagnation line flow, the work of Hall, Malik & Poll
(1984) extended the unswept Hiemenz basic flow model for stagnation point flow to
incorporate a constant spanwise velocity component. The GH model for the linear
perturbations, extended to the third, spanwise perturbation velocity component was
incorporated in the analysis, which showed that the incompressible stagnation line
flow becomes linearly unstable for a critical Reynolds number Re ≈ 583.1, a result
confirmed experimentally in the same work and also by solving the initial-value
problem for linear perturbations (Theofilis 1993); work in this context was completed
by the solution of the corresponding spatial stability eigenvalue problem (EVP)
(Theofilis 1995). Criminale, Jackson & Lasseigne (1994), recognizing the impossibility
of treating the stability problem by normal modes having one-dimensional amplitude
functions in the general case in which no special structure on their dependence on
the spatial coordinates is assumed, also addressed the initial-value problem in the
inviscid limit; they found that two-dimensional plane stagnation flow is stable, as
opposed to its three-dimensional counterpart in which linear instability may develop.
The first three-dimensional DNS of incompressible stagnation-line flow by Spalart
(1988) delivered a number of important results. First, stagnation-point flow was found
to be nonlinearly stable. Second, the GH structure of the most unstable eigenmodes
was recovered in a DNS initialized by noise. Finally, finite-amplitude perturbations
delivered a critical Reynolds number of Re ≈ 245, that is substantially lower than that
delivered by linear stability theory. In this manner, both the experimental results of
Pfenninger & Bacon (1969) and Poll (1979) and the theoretical predictions of Lyell &
Huerre (1985) regarding nonlinear instability of unswept flow were fully confirmed.
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Global linear instability analysis was also first performed in the orthogonal limit.
Lin & Malik (1996) were the first to go beyond the apparently restrictive GH
Ansatz assumption and perform a modal linear stability analysis of the incompressible
stagnation-line flow without being conditioned by this hypothesis. The leading GH
eigenmodes of the earlier local analyses were recovered as the most amplified global
modes, while additional eigenmodes were discovered, which are less amplified than
that discovered by Hall et al. (1984). Lin & Malik (1997) went on to analyse by
global linear stability theory the effect of streamwise curvature and concluded that it
stabilizes the flow, thus offering additional motivation to analyse the stability of plane
stagnation flows first. Theofilis et al. (2003) also performed global instability analysis
and DNS of the incompressible swept Hiemenz flow, fully confirming the existence of
the sequence of the global modes predicted by Lin & Malik (1996), and proposed a
polynomial model to describe the chordwise dependence of the amplitude functions of
these modes. The polynomial model converts the partial differential equation (PDE)-
based global linear instability analysis EVP into an ordinary differential equation
(ODE)-based one, without loss of physical information in the linear regime. Bertolotti
(1999) dealt with the problem of connection between attachment-line instabilities and
stationary cross-flow vortices, the latter observed in the DNS of Spalart (1988), using
a parabolized stability equations formulation, and showed that these two classes of
disturbances are connected to each other. Recently Mack et al. (2008), using DNS-
based global stability analysis of the compressible swept leading-edge flow around
a parabolic body, confirmed that a connection between attachment-line and cross-
flow modes exists also in compressible flow. Evidence is thus amassed against the
separation between attachment-line and stationary cross-flow modes, postulated in
earlier descriptions of stagnation-line flow instabilities. The global instability analysis
problem in compressible swept attachment-line boundary-layer flow was first solved by
Theofilis, Fedorov & Collis (2006), who also presented an ODE-based EVP model, the
results of which compared favourably with the global EVP solutions in the subsonic
regime. More recently, Mack et al. (2008) and Mack & Schmid (2010) studied the
global stability of flow in the leading-edge region of a swept blunt cylindrical body of
infinite span in compressible flow using DNS-based global stability analysis. As well
as confirming the connection between attachment-line and cross-flow modes, these
authors also identified acoustic branches of instability and found evidence of the
presence of non-modal instability effects in compressible orthogonal stagnation-line
flows.

Finally, receptivity and non-modal linear instability analyses have also been
performed in the orthogonal stagnation line flow limit. Receptivity has been addressed
by Floryan & Dallmann (1990), who studied the effect of wavy-surface roughness on
linear amplification of modal perturbations satisfying the GH Ansatz in incompressible
flow and found that this type of roughness generates streamwise vorticity. Xiong
& Lele (2007), building upon and extending the vorticity amplification theory of
Sutera (1965), addressed the effect of length scales of free-stream turbulence on the
distortion and linear amplification of unsteady disturbances inside the swept Hiemenz
boundary layer, and arrived at a parameter relating the free-stream and the inherent
boundary-layer scales as being the determining parameter to describe this phenomenon.
Collis & Lele (1999) also investigated surface roughness, but concentrated on its
effect in a region of a parabolic cylinder body where stationary cross-flow vortices
are generated and showed that curvature and non-parallel effects were the major
counteracting competitive mechanisms in order to predict the initial amplitude of the
stationary cross-flow vortices. Non-modal effects of incompressible stagnation line
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Linear global instability of a non-orthogonal incompressible swept attachment line 135

flows were addressed in several efforts during the last decade. Obrist & Schmid (2003)
showed that the modes predicted by linear stability theory can exhibit strong transient
growth for polynomial orders higher than zero, while Guégan, Schmid & Huerre
(2008) identified optimal disturbances for the spatial stability problem.

Substantially less is known regarding stability of the non-orthogonal stagnation
flows. In the incompressible regime Floryan (1992) introduced a perturbation model
satisfying an extension of the GH Ansatz to describe linear stability of the (stagnation
point) STD flow, as well as a class of perturbations which did not assume this Ansatz;
he found both classes to be linearly stable. Lasseigne & Jackson (1992) employed
local theory to the compressible non-orthogonal stagnation line problem at low Mach
and constant Prandtl numbers in order to investigate temperature and suction effects
near the attachment line. These authors proposed a self-similarity solution for the
basic flow based on the STD model, and used the GH Ansatz to describe the most
unstable modal perturbations. Although a priori the presence of AoA 6= 0 prohibits the
imposition of symmetries along the chordwise direction, an angle-independent version
of the stability system was recovered by a suitable scaling with the angle of attack. In
subsequent work Lasseigne, Jackson & Hu (1992) used the same basic flow model to
study the effect of suction and heat transfer on the stagnation line region and found
that suction and cooling stabilizes the flow, while to the opposite effect is caused by
blowing and heating.

The present contribution addresses the following open issues in incompressible
stagnation-line flow. First, a model for the basic state describing this flow is derived.
This model is an extension of the STD flow and is identical with that proposed
by Lasseigne & Jackson (1992), if the limit of zero Mach number is taken in the
latter work. Second, stability of incompressible non-orthogonal stagnation line flows is
addressed from a global modal linear instability analysis perspective, by solving the
BiGlobal EVP pertinent to this flow for the first time, in order to study the effect
of the angle of attack on the known linear stability results of swept Hiemenz flow,
as well as on those of plane non-orthogonal stagnation-point flow (Floryan 1992).
Third, in the spirit of earlier work on the plane stagnation-line flow, an ODE model
is derived to describe the instability of plane non-orthogonal stagnation-line flow. It
includes and extends the models of Floryan (1992) and of Lasseigne & Jackson (1992)
in the incompressible limit, and is shown to recover the instability results offered by
the solution of the partial-derivative EVP, at a fraction of the cost of the latter, without
loss of physical information. Parametric studies varying the Reynolds number and the
spanwise wavenumber at several discrete values of 0 6 AoA 6 π/2 have been used to
obtain the neutral values of non-orthogonal flows as a function of angle of attack. All
EVP results are validated by DNSs and demonstrate destabilization of the flow with
increasing angle of attack, up to the highest values of the latter parameter examined.
Finally, the critical conditions of non-orthogonal plane stagnation flow are related with
those of its orthogonal counterpart by a simple algebraic transformation.

The STD basic flow model is extended to include sweep and solved in § 2. The
equations governing the global linear stability problem are derived and solved in § 3.
Validation results, obtained independently by DNS, are also obtained in this section.
Section 4 presents the polynomial model which recovers the global instability analysis
results of § 3, as well as the neutral curves as a function of the angle of attack.
Based on the observations made on the preceding sections, § 4.2 proposes a theoretical
scaling of the instability results with the angle of attack. A short discussion in § 5
closes the presentation.
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2. Problem definition and basic flow computation
A schematic representation of the problem geometry and the incoming flow

conditions are shown in figure 1. The x-axis is taken to be along the chordwise
spatial direction, y is the normal direction to the body surface and the z-axis is along
the spanwise direction. No pressure gradients are present along the spanwise direction,
and the effect of wall curvature is neglected. The oblique potential flow vector, Q3D,
far from the wall has a constant component W∞ in the spanwise direction, while its
direction is defined by the angles Λ≡ arctan(W∞/V∞) and AoA≡ arctan(U∞/V∞).

A similarity solution is proposed here for oblique stagnation-line flow with a sweep
component. This model is based on the solution for the (two-dimensional) unswept
problem (W∞ = 0) that was independently proposed by Stuart (1959) and Tamada
(1979) and, in a most complete form, by Dorrepaal (1986). Common to all three
works is the consideration of a linear combination of orthogonal stagnation and shear
flows. Under this assumption, the two-dimensional streamfunction is decomposed into
a normal component corresponding to the Hiemenz solution describing the orthogonal
limit (Hiemenz 1911) and a tangential component:

ψ(x, y)= xνf (y)+ νg(y), (2.1)

where x and y are dimensionless variables scaled by ∆ = (ν/S)1/2, ν is the kinematic
viscosity and S = (∂Ue/∂x)x=0 is the local strain rate at the boundary layer of
the orthogonal basic flow. The tangential and normal velocity components are then
obtained from

u(x, y)= xS1f ′(y)+ S1g′(y), v(y)=−S1f (y). (2.2)

Note that the non-orthogonality only affects the tangential velocity component, while
the wall-normal velocity is formally identical with that of the orthogonal flow. A
spanwise velocity component is introduced when W∞ 6= 0. It is assumed that the
spanwise velocity component depends only on the wall-normal direction y. Scaling
velocities with W∞, the Reynolds number Re = W∞∆/ν is introduced and, in a
manner consistent with the orthogonal swept stagnation line formulation, the complete
form of the basic flow is written as

U(x, y)= x

Re
f ′(y)+ 1

Re
g′(y), V(y)=− 1

Re
f (y), W(y)= w̄(y). (2.3)

Introducing these expressions into the Navier–Stokes momentum equations, since
continuity is satisfied by definition (see (2.2)) delivers the following system of ODEs.

Normal component:

f ′′′(y)+ f (y)f ′′(y)− f ′ (y)2+ sin (α)2 = 0, (2.4a)
f (0)= f ′(0)= 0, f ′(∞)= sin(α). (2.4b)

Tangential component:

g′′′(y)+ f (y)g′′(y)− f ′(y)g′(y)+ A sin (α)1/2 cos(α)= 0, (2.5a)
g(0)= g′(0)= 0, g′′(∞)= cos(α). (2.5b)

Spanwise component:

w̄′′(y)+ f (y)w̄′(y)= 0 (2.6a)
w̄(0)= 0, w̄(∞)= 1. (2.6b)

In the previous expressions, primes denote differentiation with respect to y,
A ≈ 0.647900 is the displacement thickness (Dorrepaal 1986) and (−2 tanα) is the
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slope of the streamline ψ = 0 on the outer potential flow. In the limit α = π/2 the
well-known swept Hiemenz flow is obtained. The angle of attack AoA and the angle α
are related via,

AoA= tan−1 (−2 tanα)+ π
2
. (2.7)

An angle-independent version of the system (equations (2.4)–(2.6)) can be recovered
by introducing the scaled wall-normal variable η = ay, where a = √sinα, and the
following change of variables,

f (y)= aF(η), (2.8a)

g′(y)= cosα
a

H(η), (2.8b)

w̄(y)= E(η). (2.8c)

The resulting system of equations for the basic flow, independent of α, is

F′′′(η)+ F(η)F′′(η)− F′ (η)2+1= 0, (2.9a)

F(0)= F′(0)= 0, F′(∞)= 1. (2.9b)

H′′(η)+ F(η)H′(η)− F′(η)H(η)+ A= 0, (2.9c)

H(0)= 0, H′(∞)= 1. (2.9d)

E′′(η)+ F(η)E′(η)= 0, (2.9e)

E(0)= 0, E(∞)= 1. (2.9f )

The relative scale factors of normal and tangential components can be obtained by
replacing the previous equations on (2.2) and taking the limit for large y. Therefore,
the tangential component is scaled by S sinα and the normal component is scaled by
S cosα.

The ODE system governing the basic flow (equations (2.4)–(2.6)) was solved
numerically using a shooting method. Estimates for the second derivatives of functions
f and g at the wall are required, and can be obtained from the asymptotic
expressions of f and g for small y: f ′′(0) = C sin (α)3/2 and g′′(0) = D cosα, where
C = 1.232588 = f ′′ (0)α=π/2 and D = 1.406544, as discussed by Dorrepaal (1986). The
shooting method was used to obtain solutions between the wall and a relatively
large value of y, where the functions have reached their asymptotic behaviour; the
latter are then extended analytically until the end of the computational domain.
Extensive validation of the basic flow has been performed, including the recovery
of the orthogonal swept Hiemenz basic flow in the limit of α = π/2 and asymptotic
results provided by Dorrepaal (1986) at small and large y values. The location of
the stagnation point on the xy plane for different values of α was computed as a
validation check. As demonstrated by Dorrepaal (1986), the stagnation point shifts
from x = 0 towards the direction of the incoming flow as the angle α decreases from
α = π/2. The stagnation point location obtained numerically by the present algorithm
is compared in table 1 with the theoretical values of the reference work at different
values of the angle α. The streamlines and isocontours plot of wall-normal velocity
component are presented in figures 2(a) and 2(b) for two different angles, namely
α = π/2 and α = π/3.
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FIGURE 2. (Colour online) Streamlines and normal velocity component of the basic flow
at two angles: (a) α = π/2 (orthogonal flow) and (b) α = π/3. The displacement of the
stagnation point is shown in the inset of panel (b). This displacement shift corresponds to the
value corresponding value presented in table 1.

α (deg.) Present results Dorrepaal (1986)

70 0.426 0.429
50 1.089 1.094
30 2.793 2.795

TABLE 1. Comparison of the present basic flow solution against the reference work of
Dorrepaal (1986). Shown is the streamwise coordinate x of the streamline ψ = 0.

3. Three-dimensional linear instability analysis of non-orthogonal plane
stagnation-line flow

Two complementary methodologies for the analysis of linear instability are
employed, namely a partial-derivative-based EVP, usually referred to as the BiGlobal
instability problem, and DNSs. The independence of the instability results on the
methodology employed is used as cross-validation. Temporal linear stability analysis
considers the evolution of small-amplitude perturbations superposed upon a steady
basic flow. The smallness of the perturbations permits the linearization of the
Navier–Stokes equations around the reference basic flow, neglecting the second-order
nonlinearities between the perturbation components. Linear instability analysis for the
present problem considers a three-component basic flow velocity vector (2.3) which
is inhomogeneous in two out of the three spatial directions, i.e. no dependence exists
on the spanwise coordinate z. This permits the introduction of Fourier modes in order
to describe the behaviour of the perturbations along the z-direction. In the context
of a linear analysis, the individual spanwise modes, characterized by the wavenumber
β = 2π/Lz with Lz a spanwise wavelength, are mutually independent and the linear
stability problem can be studied for each β separately.

3.1. BiGlobal modal linear instability theory
The BiGlobal instability EVP, as described in detail by Theofilis (2003, 2011), is
applied here to the problem at hand. The general solution of the equations of motion is
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decomposed as

Q(x, y, z, t)= Qb(x, y)+ ε Re
{
Qp(x, y) exp (i (βz−Ωt))

}
, (3.1)

where Qb(x, y) = (U,V,W) is the basic flow defined in (2.3), Qp(x, y) =(
û, v̂, ŵ, p̂

)
(x, y) is the vector of two-dimensional disturbance amplitude functions,

ε � 1 is the amplitude of the perturbation and Ω a complex frequency: Re {Ω} and
Im {Ω} are the phase velocity and the growth or damping rate of the perturbation,
respectively. Substitution of the decomposition (3.1) into the incompressible continuity
and Navier–Stokes equations and linearization around the basic state on account of the
smallness of ε yields

Dxû+Dxv̂ + iβŵ= 0, (3.2)[
N − (DxU)

]
û− (DyU

)
v̂ −Dxp̂=−iΩ û, (3.3)

− (DyV
)

û+ [N − (DyV
)]
v̂ −Dyp̂=−iΩv̂, (3.4)

− (DxW) û− (DyW
)
v̂ −N ŵ− iβp̂=−iΩŵ. (3.5)

where N = (1/Re) (D2
x +D2

y − β2
)−UDx − VDy − iβW , Dx = ∂/∂x and Dy = ∂/∂y.

This system defines a two-dimensional generalized EVP for the temporal evolution
of three-dimensional perturbations when complemented by appropriate boundary
conditions. No-slip condition is imposed at the wall to the velocity components, along
with a compatibility condition for the pressure. Vanishing of all the perturbation
components is imposed in the far-field. Along the chordwise direction a linear
extrapolation at |x| →∞ (Theofilis et al. 2003) and pressure compatibility conditions
are imposed. More specifically, the second derivative of the disturbances along the
chordwise direction was set equal to zero, ∂2q̂/∂x2 = 0. Although the application of
these boundary conditions to unbounded flows often leads to the appearance of a
numerical boundary layer in which the results are not physical, their effect can be
minimized in two ways: (a) extending the computational domain, i.e. displacing the
boundaries away from the stagnation point; and (b) increasing the resolution at the
boundaries, e.g. by using a stretching function that clusters points in those regions.
The values of the parameters used in the computations (size domain and number of
points) were chosen after a study of convergence considering the two points exposed
above. For these parameters, the amplitude functions of the more unstable modes, as
well as their growth rates, are practically unaffected by the boundary conditions.

3.1.1. Numerical solution, verification and validation
The EVP (3.2)–(3.5) is discretized in a coupled manner using the

Chebyshev–Gauss–Lobatto (CGL) collocation grid along both the x- and y-directions.
A linear mapping of the CGL grid is used along the x-direction, while an algebraic
mapping is used to cluster points in the vicinity of the wall with the aim of better
resolving the strong gradients in the boundary layer; the details of the transformation
are discussed by Theofilis et al. (2003). A spectral collocation method is used for
the evaluation of the differentiation matrices inside of the linear operator. A shift-
and-invert implementation of the Arnoldi algorithm is employed in order to recover a
window of the eigenspectrum centred around the shift parameter σ . Consequently, the
Arnoldi algorithm is applied to the problem

ÂX = µX where Â= (A− σB)−1B, µ= 1
Ω − σ . (3.6)
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FIGURE 3. Typical spectra at Re= 800, β = 0.255 and three angles, α = 90◦ (orthogonal
flow), α = 45◦ and α = 30◦.

The linear algebra work is performed using two alternatives, dense linear-algebra
library routines and the sparse Multifrontal Massively Parallel Sparse direct Solver
(MUMPS) package (Amestoy et al. 2001), the latter first successfully employed to
global linear instability problems by Crouch, Garbaruk & Magidov (2007).

A first validation case of the present numerical solution is performed by revisiting
the orthogonal case of Lin & Malik (1996) at Re = 800 and β = 0.255. Convergence
of the eigenvalues is attained using 64 collocation nodes in either the chordwise and
wall-normal directions, and a computational domain x ∈ [−200, 200] and y ∈ [0, 150].
Changes in the domain length affect the eigenvalues beyond the seventh significant
figure. Convergence of the leading eigenvalues is also attained using a domain smaller
in the x-direction, as well as a smaller number of discretization points. However,
a large domain in the x-direction eases the comparison with the direct numerical
computations to be presented below in this section, and all subsequent computations in
this paper are performed using this domain size. Further validations of the BiGlobal
EVP are performed by comparing its results with those delivered by DNSs of the
problem at hand. These validations are presented in §§3.3.1 and 3.3.2.

3.2. Characteristics of the eigenspectrum and eigenfunctions
Prior to comparing the linear instability results provided by the BiGlobal EVP and the
DNS, it is instructive to expose some fundamental properties of the eigenspectrum and
the corresponding eigenfunctions associated with the non-orthogonal swept attachment-
line flow, as compared with their orthogonal counterparts.

Figure 3 shows the eigenspectrum corresponding to three different angles: α = 90◦

(orthogonal flow), α = 45◦ and α = 30◦ at a single set of parameters, Re = 800, β =
0.255. The orthogonal case is the same as that was used in the validation test
discussed in § 3.1.1. An analogous eigenspectrum structure appears for any of the
combinations of parameters examined. The leading family of eigenvalues that was
identified in the case of orthogonal stagnation-line flow by Lin & Malik (1996),
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FIGURE 4. Perspective view of the real parts of the disturbance eigenfunctions of the GH
linear eigenmode, as obtained by numerical solution of the BiGlobal EVP, corresponding to
Re= 800, β = 0.255 at α = 45◦.

comprising symmetric (S1, S2, etc.) and antisymmetric modes (A1, A2, etc.), is also
recovered here. In the case of non-orthogonal stagnation flow, the division of modes in
symmetric and antisymmetric is not strictly applicable, as the symmetry properties are
not preserved. However, the location of the eigenmodes in the spectra, as well as some
qualitative properties of the eigenfunctions, can be traced from the orthogonal case as
the angle α is decreased from α = 90◦ (or AoA increased from 0◦), and therefore this
notation will be preserved in what follows.

The first mode of this family was postulated by Görtler (1955) and Hämmerlin
(1955) to have a linear dependence in the chordwise direction in the case of
orthogonal flow, and is commonly referred to in the literature as the GH mode or
the S1 mode. As is the case in orthogonal flow, the GH mode dominates at any
parameter combination in the range analysed, and consequently neutral curves of the
non-orthogonal flow may be obtained by reference to this eigenmode alone. Two
additional branches of eigenmodes are present, but they are irrelevant to the linear
modal instability, due to their stable behaviour. The splitting in the tail of the third
eigenvalue branch, observable towards higher damping rates in figure 3, is known to
be the result of finite-precision arithmetic and a fixed maximum permissible resolution
on the hardware utilized.

In the orthogonal case, it was found that there is a relation between the position
of a mode on its branch and the order of the polynomial model representing the
amplitude function behaviour along the chordwise direction. This relation is not exact
in the non-orthogonal case, i.e. eigenfunctions for mode GH are not exactly linear
functions of x, but it serves as a first approximation, especially as α→ 90◦. Figure 4
shows the amplitude functions corresponding to the mode GH at Re= 800, β = 0.255,
α = 45◦ highlighted in figure 3. The chordwise velocity component û is approximately
linear with x and the other two velocity components, v̂ and ŵ, are independent of this
coordinate.

3.3. Cross-validation of instability analysis results using DNS
Verification and validation of the non-orthogonal global linear stability EVP is
completed by comparisons against results delivered by DNSs, utilizing a spatial DNS
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FIGURE 5. Maximum over y of the r.m.s. integrated over z of disturbance velocity
components at Re = 750, β = 0.25 and α = 60◦, with (a) t = 0 and (b) t = 7000. Panel
(b) is obtained by DNS from an initial noise (a).

code originally written by Lundbladh et al. (1994), as modified by Obrist (2000). The
same approach has been successfully used in validating results in the orthogonal limit
(Theofilis et al. 2003) where the modifications made in order to solve the problem
at hand are described. Further modifications are necessary here in order to introduce
a non-orthogonal basic flow. The computational domain x ∈ [−150, 150], y ∈ [0, 150]
is considered, using (192 × 97 × 16) collocation points along the x, y and z spatial
directions, respectively. A fringe region extending 10 % of the chordwise domain
extension is placed at each side of the computational domain to prevent reflections
of the perturbations. Advective and diffusive Courant–Friedrichs–Lewy (CFL) numbers
are taken equal to 0.08 and 0.5, respectively. Two test cases are considered, discussed
in what follows.

3.3.1. The Spalart test in non-orthogonal flow
The most unstable linear perturbations are recovered from the temporal evolution of

random perturbations superposed upon on the basic flow, at several combinations of
the Reynolds number and wavenumber parameters, of which results at Re= 1000, β =
0.2, α = 60◦ are discussed in some detail next. Figure 5 shows the spatial development
with x of the r.m.s. (root mean square of velocities integrated over z) of the velocity
components pertaining to the leading eigenmode, after the introduction of noise at
time t = 0. As can be seen, there exists a region around the stagnation point where
the modal energy distribution of the most unstable mode is recovered from the initial
noise perturbation. As seen in figure 4, the chordwise perturbation velocity component
depends nearly linearly on x, while the other two velocity components are practically
independent of x, as predicted by the classic Görtler–Hämmerlin Ansatz. Further
discussion of this point will be offered in § 4.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

35
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.354


Linear global instability of a non-orthogonal incompressible swept attachment line 143

α (deg.) ci,2D−EVP × 10−3 ci,DNS × 10−3 Relative error (%)

80 4.636 4.624 0.26
70 5.292 5.292 0.01
60 6.052 6.060 0.13
50 6.236 6.296 0.96
40 4.336 4.324 0.28
30 −3.380 −3.356 0.71

TABLE 2. Growth rates of the leading GH eigenmode for oblique cases predicted by
the BiGlobal linear stability theory, ci,2D−EVP and by DNS, ci,DNS, for a range of angles.
β = 0.25, Re= 750.

3.3.2. Recovery of amplification rates
The amplification or damping rate of modal perturbations may be obtained using the

DNS code (e.g. Rodrı́guez & Theofilis 2010), through

Ωi = ln E(β, t + δt)− ln E(β, t)

21t
, (3.7)

where E(β, t)= (1/2L′)
∫ Ly

0 dy
∫ L′
−L′(1/2)ûû dx is the modal energy, û is the disturbance

velocity vector, L′ is a streamwise domain extent, excluding the influence of the fringe
region, and 1t the CFL-controlled time step.

Table 2 compares the growth rates of the leading GH eigenmode predicted by
BiGlobal EVP ci,2DEVP = Ωi,2DEVP/β with those extracted from the DNS, ci,DNS =
Ωi,DNS/β, for Re= 750 and a variety of α values.

In these DNSs, the choice of the axial extent L′ = 200 used in the chordwise
direction was based on a convergence study for the growth rate and the amplitude
functions while a spanwise extension of the domain z ∈ [−8π, 8π] was employed in
order to accommodate two periods of the fundamental wavelength associated with
β = 0.25. The simulations are initialized with the amplitude functions corresponding
to the GH mode obtained in the solution of the BiGlobal EVP, scaled to have a
maximum kinetic energy equal to A= 10−10.

This cross-verification builds confidence on the integrity of the results obtained
by numerical solution of the EVP (3.2)–(3.5). However, instead of embarking upon
parametric studies of instability by numerical solution of the partial-derivative EVP
or by DNS, the question is addressed next whether it is possible to simplify the full
system of equations describing linear stability by a polynomial model analogous with
that proposed by Theofilis et al. (2003) for the orthogonal case; attention is turned to
this issue next.

4. An ODE-based polynomial model for three-dimensional linear disturbances
in non-orthogonal stagnation-line flows

The question is now addressed whether global instability of incompressible non-
orthogonal stagnation line flow can be described by a model which takes into
account the potentially existing polynomial nature of the leading eigenmodes along
the chordwise spatial direction. Models expanding the eigenmodes of non-orthogonal
flow into polynomials of the chordwise coordinate have been employed in an ad
hoc manner by Floryan (1992) in incompressible and by Lasseigne & Jackson (1992)
in compressible non-orthogonal stagnation line flow, while Brattkus & Davis (1991)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

35
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.354


144 J. M. Pérez, D. Rodríguez and V. Theofilis

Present work Lasseigne &
Jackson (1992)

Floryan (1992)

Ansatz exp (i (βz−Ωt)) exp
(
i
(
aβz+ a2ωt

))
sin (βz) exp (σ t)

Im [eigenvalue] Ωi a2ω/Re σ

Re [eigenvalue] Ωr 0 0
Wavenumber β aβ β
Eigenfunction Not scaled Scaled with α Not scaled

TABLE 3. Scalings of the present ODE system compared with alternatives in the literature.

and Theofilis et al. (2003), respectively, showed that local and global stability of
orthogonal incompressible flow can be described by a polynomial model reducing the
stability problem to a system of ODEs. Guided by the latter work, the amplitude
functions of three-dimensional disturbances are assumed to take the form

Qp(x, y)=
∞∑

k=0

q̂k (y) xk, (4.1)

where q̂k(y) =
(
û, v̂, ŵ, p̂

)
(y) is the vector of one-dimensional disturbance amplitude

functions.
Substituting (4.1) into the incompressible continuity and Navier–Stokes equations

and linearizing around the basic flow (2.3) the following system of equations for an
arbitrary order K > 1 is obtained:

(k + 1) ûk+1 + v̂′k + iβ ŵk = 0, (4.2)

−Re p̂k+1 + (k + 2) (k + 1) ûk+2 +
(
L + iReΩ − (k + 1) f ′

)
ûk

− θk f ′′ v̂k−1 −
(
(k + 1) g′ûk+1 + g′′v̂k

)= 0, (4.3)

−Re p̂′k + hk (k + 2) (k + 1) v̂k+2 + hk

(
L + iReΩ − (k − 1) f ′

)
v̂k

− hk (k + 1) g′v̂k+1 = 0, (4.4)
−iReβ p̂k + hk (k + 2) (k + 1) ŵk+2 + hk

(
L + iReΩ − k f ′

)
ŵk

− hk Rew′v̂k − hk (k + 1) g′ŵk+1 = 0, (4.5)

where L =D2+ fD −β2− iβ Rew, D = d/dy, D2 = d2/ddy2, θ0 = 0, θk = 1 (∀k > 1),
h0 = 1 and hk = k (∀k > 1).

Model equations for the disturbances in the non-orthogonal case proposed in the
past in the literature can be recovered as particular cases of (4.2)–(4.5). For clarity, the
Ansatz and scalings used in the present case and in the other two related works in
the literature are summarized in table 3. First, in order to compare with Lasseigne &
Jackson (1992) in the limit of zero Mach number, a low chordwise polynomial order
must be considered. Concretely, using k = 0 in (4.2), (4.4) and (4.5) and k = 1 in (4.3),
one obtains

û1 + v̂′0 + iβ ŵ0 = 0, (4.6)

0= v̂′1 + iβ ŵ1, (4.7)(
L + iReΩ − f ′

)
û0 = g′û1 + g′′v̂0 + Re p̂1, (4.8)(

L + iReΩ − 2 f ′
)

û1 − f ′′v̂0 = g′′v̂1, (4.9)
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L + iReΩ + f ′

)
ξ̂0 = g′ξ̂1 + g′′ŵ1 + iβRew′ŵ0 + ReS v̂0, (4.10)

0= (L + iReΩ) ξ̂1 − iβRew′ŵ1 − ReS v̂1, (4.11)

where S = (w′′ + w′ D
)
. The first two equations correspond to the mass conservation

equation, the following two are the x-momentum conservation and the last two
equations are the vorticity equations obtained from the y- and z-momentum equations,
with ξ̂k = −i βv̂k + ŵ′k. Note that, although this system is not closed due to the
presence of v̂1 and ŵ1, Lasseigne & Jackson (1992) have based their analyses on
system (4.6)–(4.11), with all terms on the right-hand side taken equal to zero. The
degree to which this hypothesis is valid in the incompressible limit is examined in
what follows by reference to the global instability analysis results.

Floryan (1992) used the GH model in the non-orthogonal plane stagnation flow
in order to model the functional dependence of the perturbations with the chordwise
direction. This model is equivalent to that proposed by Lasseigne & Jackson (1992)
in the limit of zero Mach number and to the model described in (4.6)–(4.11) when
all of the terms on the right-hand side, corresponding to higher truncation orders,
are neglected. Both Floryan (1992) and Lasseigne & Jackson (1992) considered real
eigenvalues only, corresponding to stationary perturbations. This hypothesis was based
on the earlier work of Wilson & Gladwell (1978) on the stability of plane orthogonal
stagnation flows which predicted that, owing to the absence of a sweep component
in the basic flow, the leading instability was stationary. By taking Ω to be complex
in the present case, the leading instability eigenmode is permitted to have non-zero
frequency.

Finally the extended Görtler–Hämmerlin model for three-dimensional disturbances
described by Theofilis et al. (2003) is recovered directly from (4.2)–(4.5) in the limit
at α = π/2,

(k + 1) ûk+1 + v̂′k + iβ ŵk = 0, (4.12a)

−Re p̂k+1 + (k + 2) (k + 1) ûk+2 +
(
L + iReΩ − (k + 1) f ′

)
ûk − θk f ′′ v̂k−1 = 0

(4.12b)
−Re p̂′k − hk (k + 2) (k + 1) v̂k+2 + hk

(
L + iReΩ − (k − 1) f ′

)
v̂k = 0 (4.12c)

−iReβp̂k + hk (k + 2) (k + 1) ŵk+2 + hk

(
L + iReΩ − kf ′

)
ŵk − hk Rew′v̂k = 0.

(4.12d)

Further, in the orthogonal case two families of solutions can be identified:
symmetric solutions, for even powers of p̂, and antisymmetric solutions, for odd
powers of p̂, as described by Theofilis et al. (2003). This classification is no longer
valid in the non-orthogonal case, and all powers must be included in the expansion for
all variables. The first concern is to demonstrate convergence of the above series with
k. Convergence of this expansion for the disturbances was demonstrated by Theofilis
et al. (2003) in the orthogonal case, where three-dimensional disturbances were
classified in symmetric and antisymmetric families. Some aspects must be taken into
account when choosing the truncation order of the series. The lower-order coefficients
depend on the higher-order coefficients at any given truncation order. Consequently,
the truncation of expansion (4.1) is only justified if the coefficients associated with the
terms neglected are effectively negligible numerically, compared with those retained.
Finally, it should be remarked that the truncation of the system of equations (4.12)
does not correspond exactly to the system of equations considered by Theofilis et al.
(2003). In the latter case, the truncation order is taken so that the number of equations
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Truncation order, K GH A1
cr ci(×102) cr ci(×102)

0 0.3568818305 0.48279122 — —
1 0.3578462058 0.57797198 0.3554227537 0.21141593
2 0.3578462058 0.57797198 0.3573506523 0.40070171
3 0.3578462057 0.57797198 0.3573506519 0.40070172
4 0.3578462063 0.57797197 0.3573506523 0.40070171

(3.2)–(3.5) 0.3578462113 0.57797207 0.3573489537 0.40053579

TABLE 4. Effect of truncation order of the convergence of the solution of the
one-dimensional EVP (4.2)–(4.5) for α = 70◦, Re= 775.0 and β = 0.245.

is equal to the number of variables for the corresponding symmetric or antisymmetric
case, while in the present work a single system of equations is solved.

Table 4 shows the eigenvalues c corresponding to the eigenmodes GH and A1,
obtained as solutions of system (4.2)–(4.5) for different truncation orders, compared
with the solution of the BiGlobal EVP at α = 70◦, Re = 775.0 and β = 0.245. The
results show that the GH eigenvalue is converged up to the seventh decimal place
when the series are truncated at order K = 1, highlighting the approximately linear
dependence of the disturbance shapes on the x-direction. In addition, as GH mode is
nearly symmetric, the truncation at order K = 0 already delivers a good approximation
to the eigenvalue. The opposite happens when considering the A1 eigenmode, for
which the truncation at K = 0 does not deliver a physical eigenvalue; the truncation
at order K = 1 delivers an eigenvalue converged up to the second decimal place;
and the eigenvalue for the truncation at K = 2 is accurate up to the fourth decimal
place.

Figure 6 shows the relative contribution of each polynomial term on the total kinetic
energy of the GH mode at Re = 775, β = 0.245 and α = 70◦. Scaling the amplitudes
for the k = 0 (x-independent) contribution to be equal to one, the contribution of term
k = 1 responsible for the linear dependence is O(10−5). Contributions of higher-order
terms are below 10−12. This observation suggests that even while the polynomial
expansion (4.1) cannot be reduced exactly to a linear function, the truncation at K = 1
already accounts for most of the physical behaviour and delivers consistent linear
stability results.

The question addressed next is whether a change of α has an effect on the
qualitative and quantitative agreement between the numerical solutions of the full
global linear stability EVP (3.2)–(3.5) and those obtained by solving the model
EVP (4.2)–(4.5). Results of the respective systems are obtained at different α values,
keeping the pair of (Re, β) parameters constant. Out of several such comparisons
made, a representative result is shown in figure 7. On the basis of this and analogous
results not presented here the following conclusions may be drawn. First, the very
good agreement shown earlier at a given angle α between numerical solutions of
the full and the reduced EVP is maintained when the angle α is changed. Second,
the hierarchy of leading eigenmodes known from the orthogonal flow is also present
when the angle α is varied; the non-orthogonal analogue of the GH mode is always
the dominant eigenmode. Third, a given spanwise wavenumber/wavelength at a given
Reynolds number experiences amplification beyond that of the orthogonal flow as
the angle α is reduced from 90◦, while all modes are stabilized below a certain
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FIGURE 6. Kinetic energy of the polynomial term, Kk =
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û2
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)
/2, of the GH mode

for α = 70◦, Re= 775.0, β = 0.245 and 64 CGL nodes. Energy was scaled to unity.
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FIGURE 7. Amplification rate ci of the leading eigenmodes against α at Re= 800 and
β = 0.255.

value of α; in the concrete example shown the maximum amplification rate at
a fixed (Re = 800, β = 0.255) is obtained at αmax ≈ 58.16◦, while at this (Re, β)
parameter combination the flow is found to be linearly stable below α ≈ 34.1◦.
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FIGURE 8. Neutral curves of non-orthogonal stagnation-line flow. Curves correspond, from
right to left, to α = 90◦ (10◦) 30◦.

α (deg.) Global EVP ODE K = 1 ODE K = 4
Rec βc Rec βc Rec βc

90 583.36 0.287 583.10 0.286 583.10 0.286
80 578.55 0.285 578.65 0.284 578.55 0.285
70 565.35 0.278 565.24 0.277 565.35 0.278
60 542.89 0.266 542.64 0.266 542.89 0.266
50 510.41 0.251 510.35 0.250 510.38 0.252
40 467.71 0.229 467.50 0.229 467.48 0.230
30 412.41 0.203 412.31 0.202 412.45 0.202

TABLE 5. Dependence of the critical parameters (Re, β) on the angle α. The results of
BiGlobal EVP and ODE systems with truncation orders K = 1 and K = 4 are shown.

4.1. The effect of α on the neutral curves and critical conditions
Exploiting the agreement between numerical solutions of systems (3.2)–(3.5) and
(4.2)–(4.5) the neutral curves of non-orthogonal flow are obtained by focusing on
the latter system and the leading GH eigenmode; the results, calculated with 48 CGL
nodes and steps of 1Re = 0.5 and 1β = 0.001 in the Reynolds and wavenumber
parameters respectively, are shown in figure 8. Linear interpolation between these
results yields the critical parameters shown in table 5. This table compares the
critical parameters obtained as the solution of the ODE system (4.2)–(4.5) for the
truncation orders K = 1 and K = 4, with those obtained by solving the BiGlobal
EVP. The excellent agreement in all cases strengthens the statement that the ODE
model (4.2)–(4.5) at a reasonable truncation level, K = 1, suffices to deliver accurate
predictions for the leading eigenmode and the critical conditions of non-orthogonal
flow.

A second conclusion that can be drawn from these results is that a decrease of the
angle α (an increase of AoA) has a destabilizing effect on the flow. At the same time,
increasingly longer-wavelength perturbations become unstable as the angle α decreases
(AoA increases).
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4.2. The α-independent linear critical conditions
The previous discussion is completed by paying closer attention to the trends observed
regarding the dependence of the critical parameters on α as its value is decreased
from the orthogonal flow. Concretely, a simple relation is sought relating the critical
parameters at a given value of α (or AoA) with those of orthogonal flow. In § 2
a formulation for the non-orthogonal stagnation flow was given that, through the
introduction of the scaled wall-normal variable η = ay, delivers an α-independent
set of equations. Using this formulation, the three components of velocity can be
written as

U(x, η)= 1/Re xa2F′(η)+ 1/Re cos(α)/a H(η), (4.13)
V(η)=−1/Re aF(η), (4.14)
W(η)= E(η). (4.15)

On the other hand, the results presented in § 4.1 show that the linear expansion of
the disturbances along the x-direction

Qp(x, η)= q̂0(η)+ δq̂1(η)x (4.16)

suffices to capture accurately the leading eigenvalue. Coefficient δ is a parameter that
will be determined when matching terms in the disturbance equations, as follows.

Introducing (4.13)–(4.15) and (4.16) in the linearized Navier–Stokes equations,
collecting terms on different powers of x, and defining δ = a, one arrives at the
following system.

Continuity equation:

×(x0) : û1 + v̂′0 + iβ̃R̃e ŵ0 = 0, (4.17)

×(x1) : ŵ1 = 0, (4.18)

x-momentum equation:

×(x0) : (L̃ + F′)û0 =− cos(α)/a2Hû1 − R̃ep̂1 − cos(α)/a2H′v̂0, (4.19)

×(x1) : (L̃ + 2F′)û1 + F′′v̂0 = 0, (4.20)

×(x2) : v̂1 = 0 (4.21)

y-momentum equation:

×(x0) : (L̃ − F′)v̂0 + R̃ep̂′0 =− cos(α)/a2Hv̂1, (4.22)

×(x1) : L̃ v̂1 + R̃e p̂1 = 0 (4.23)

z-momentum equation:

×(x0) : L̃ ŵ0 + R̃eE′v̂0 + iβ̃R̃ep̂0 =− cos(α)/a2Hŵ1, (4.24)

×(x1) : L̃ ŵ1 + R̃e E′v̂1 + iβ̃R̃ep̂1 = 0. (4.25)

In the previous system of ODEs, primes denote differentiation with respect to η

and L̃ = −iΩ̃R̃e − F∂/∂η + iEβ̃R̃e − ∂2/∂η2 + β̃2. The new variables R̃e = Re/a,
β̃ = β/a and Ω̃ =Ω/a have been introduced in order to obtain a system of equations
analogous to (4.6)–(4.11) but in which the angle α does not appear explicitly in the
terms on the left-hand side. The only terms that depend on α are those of the form
cos(α)/a2, and are negligible if α→ π/2. Moreover, from the system of equations
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FIGURE 9. Critical Reynolds and β numbers versus α: (a) critical Reynolds number versus α;
(b) critical β number versus α; (c) critical frequency, Ωr, versus α.

it follows that v̂1 = ŵ1 = p̂1 = 0, resulting in all of the terms on the right-hand side
vanishing and leading to a system of equations for the disturbances analogous with
that used by Lasseigne & Jackson (1992).

The main result of this derivation is that the linear instability results in non-
orthogonal flow, corresponding to the leading GH mode, can be recovered accurately
using an α-independent system of equations with parameters R̃e and β̃, and then
scaled to the corresponding physical values of Re and β. In particular, the critical
conditions, e.g. critical Reynolds number Rec, critical spanwise wavenumber βc and
critical frequency Ωcr for any non-orthogonal case defined by α, can be obtained
directly from the results for the orthogonal stagnation line flow by

Rec(α)= Rec(α = π/2)
√

sinα ≈ 583.1
√

sinα, (4.26a)

βc(α)= βc(α = π/2)
√

sinα ≈ 0.286
√

sinα, (4.26b)

Ωr,c(α)=Ωr,c(α = π/2)
√

sinα ≈ 0.109
√

sinα. (4.26c)

Figure 9 compares the critical conditions as a function of α shown in table 5, with
the theoretical scaling (4.26), showing a very good agreement. It should be remarked
that in the previous derivations within this section it was assumed that the angle α is
close to π/2; however, the present results show that the proposed scaling holds true for
a wide range of angles. Another interesting consequence is that all of the eigenvalues
presented as c =Ω/β (figure 3 and tables 2 and 4) do not depend directly on α and
are valid for different angles as far as the values of R̃e and β̃ are preserved.

5. Summary
Linear stability analysis of the non-orthogonal incompressible attachment-line

boundary-layer flow has been investigated. A combination of two-dimensional non-
orthogonal basic flow (proposed by Stuart (1959), Tamada (1979) and Dorrepaal
(1986)) and swept boundary-layer flow was considered as basic flow. BiGlobal stability
analysis, in which no assumptions with respect to the symmetry of the perturbations
have been made, was performed and delivered results in very good agreement with
those obtained by independently performed DNSs.

A polynomial model in the spirit of analogous work in the orthogonal limit
(Theofilis et al. 2003) but without assumption on the solution symmetries has been
proposed in order to describe the leading eigenmodes, generalizing those of earlier
analyses (Floryan 1992; Lasseigne & Jackson 1992) its results being justified by
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comparison with those of global instability analysis and DNS. The polynomial model
transforms the PDE-based global EVP into an ODE-based EVP, the results of which
were shown to agree very well with those of the more general methodologies.
The computational efficiency advantage offered by the ODE-based model, permitted
calculating the neutral curves of non-orthogonal flow at several values of 0 < α 6 π/2
(0 6 AoA < π/2). As was done in earlier work in an ad hoc manner, the critical
conditions of non-orthogonal flow were related to those of orthogonal flow via a
simple algebraic transformation; the present work provided the missing justification in
the incompressible regime by reference to global linear instability and DNS results.

Present results show that a decrease in α (an increase in AoA) from the orthogonal
case leads to a linear destabilization of the flow. This observation might raise the
question of the validity of the results as α→ 0. In this paper, the STD non-orthogonal
attachment-line flow model, that verifies the Navier–Stokes equations for all α, is
taken as a canonical flow field. Identification of the canonical model with a particular
application and its corresponding α value is beyond the scope of this paper. In this
regard, the experimental data obtained by (Poll 1979) in the case of orthogonal flow is
the only known confirmation that the swept Hiemenz model to which the STD model
reduces at α = π/2 is relevant to the attachment-line application. Further experimental
efforts are desirable in this respect.
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