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Abstract

The acceleration dynamics of electrons in a laser wakefield accelerator is discussed, in particular the coupling of
longitudinal and transverse motion. This coupling effect is important for electrons injected with a velocity below the
laser pulse group velocity. It is found that the electron bunch is adiabatically focused during the acceleration and that a
finite bunch width contributes to bunch lengthening and growth of energy spread. These results indicate the importance
of a small emittance for the injected electron bunch.
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1. INTRODUCTION

Plasma-based electron acceleration methods~Esareyet al.,
1996! are attractive due to the high accelerating gradients
that a plasma can provide: the electric field strength can be
3 to 4 orders of magnitude larger than the maximum value
attainable in conventional accelerators~Umstadteret al.,
1996!. Resonant laser wakefield acceleration~LWFA! is
one of such schemes that use the extremely high electric
fields of a relativistic plasma wave to accelerate electrons.
The basic idea of resonant LWFA~Tajima & Dawson, 1976!
is to use the ponderomotive force~light pressure! of a laser
pulse with a duration shorter than the plasma period to
resonantly drive a high-amplitude plasma wave. The phase
velocity of this plasma wave, equal to the group velocity of
the laser pulse, is belowc, so that electrons can be trapped
and accelerated in the wake of the laser pulse. In this article,
we describe the acceleration dynamics of electrons in such a
plasma wave. After discussing some well-known results on
the longitudinal and transverse motion of accelerated elec-
trons ~Mora & Amiranoff, 1989; Mora, 1992; Andreev

et al., 1996!, we present an analysis of the coupling between
longitudinal and transverse dynamics and a short discussion
of the results.

For the description of the plasma wave we use the quasi-
static description~Umstadteret al., 1996! i.e., the scalar and
vector potentials~f andA! are assumed to depend only on
the comoving coordinatez 5 z 2 vgt and the transverse
coordinater4, wherevg denotes the group velocity of the
laser pulse, which defines theresonant energyggmc2, gg 5
~12 vg20c2!2102. Since the electrons move predominantly in
the forward direction~z-direction!, the approximationvvvv'
vg [ez can be used to evaluate the Lorentz force~Panofsky &
Wenzel, 1956!
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The approximation is correct if both the forward velocityvz
and the group velocityvg are close to the speed of lightc, but
the difference between them is much smaller~of order
c0gg

2!. The equations of motion~1!–~2! can be derived from
a Hamiltonian~Reitsmaet al., 2001!

H 5 mc2~g 2 C! 2 vg Pz ~3!
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for which~r4,P4!, and~z, Pz! form pairs of conjugate canon-
ical coordinates. The dimensionless quantityC, defined by

C 5
ef

mc2 2 vg
eAz

mc3 ~4!

is thewakefield potentialthat governs the electron dynamics.

2. LONGITUDINAL MOTION

Assuming6P46 ,, Pz ~paraxial approximation!, it is conve-
nient to expand the Hamiltonian in a Taylor series around
r45 0, P45 0. To leading order, this reducesH to a purely
one-dimensional Hamiltonian~Esarey & Pilloff, 1995!

H0 5 mc2~g0 2 C0! 2 vg Pz ~5!

with ~z, Pz! as canonical coordinates. In Eq.~5! the notations
g0 5 ~11 Pz

20m2c2!102 andC0~z! 5 C~r45 0,z! are used.
For convenience, the subscript-0 will be suppressed in the
remainder of this section.

In the linear wakefield regime, the plasma wave equation
reduces to a harmonic oscillator equation~Gorbunov &
Kirsanov, 1987!

Skp
2 1

d2

dz2DC 5 kp
2Fp, ~6!

wherekp
2 5 4pne20mc2 defines the plasma wave-number

kp, andFp is the dimensionless ponderomotive potential of
the laser pulse. The solution in the region behind the driving
laser pulse is

C~z! 5 E0 cos~kpz!,
]C

]z
~z! 5 2kp E0 sin~kpz! ~7!

where E0 is the dimensionless wakefield amplitude and
without loss of generality, particular choice of the wakefield
phase has been made.

The phase space diagram contains 3 types of orbits, as can
be seen in Figure 1, which shows the~z,g!-phase space

diagram forE0 5 1010, gg 5 50. As seen in Figure 1, there
are closed orbits inside the separatrix and open orbits both
above and below the separatrix. The orbits below the separ-
atrix describe the motion of electrons that are too slow to be
captured in the wave. The orbits above the separatrix corre-
spond to the motion of electrons that are out-running the
wave. The orbits inside the separatrix describe thesynchro-
tronoscillation of electrons that are trapped inside the wave.
The dynamics of high-energy electrons out-running the
plasma wave~orbits above separatrix! have been studied by
Cheshkovet al.~2000! and Chiuet al.~2000!, in the context
of a linear collider based on multi-stage laser wakefield
acceleration. In this regime, the transverse motion is effec-
tively decoupled and the analysis is considerably simplified.
Instead, in this article, we will analyze the dynamics of
electrons injected at relatively low energy from a compact
conventional electron source~orbits inside separatrix!, for
which the coupling of longitudinal and transverse dynamics
becomes important.

Stable equilibrium points~O-points! are found atz5nlp,
g 5 gg and unstable equilibrium points~X-points! at z 5
~n 1 102!lp, g 5 gg for all n [ Z. For orbits inside the
separatrix, one defines theturning pointsby the condition
]H0]Pz5 dz0dt5 0: at these points the backward phase slip
of the electron changes to forward slip or vice versa. In
Figure 1 these points are seen to be atg 5 gg. Points of
minimum and maximum energy, defined by]H0]z 5 0, are
found at z 5 nlp02 for all n [ Z. The minimum and
maximum values ofg on the separatrix are denotedgmax~min!:
these points are indicated as H and L in Figure 1. The values
of gmax~min! are

gmaxr 2gg 1 4E0gg
2 ~8!

gmin r E0 1
1

4E0

~9!

in the limit gg .. 1.
Orbits close to the O-point describe the motion of deeply

trapped electrons. Using thatPz is close tovgggmc and

Fig. 1. Phase diagram forH0 with O-point~O!, X-point ~X !, highest~H! and lowest~L! point of separatrix.
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z ,, lp one finds a harmonic oscillation with synchrotron
frequencyvs

d2z

dt2 1
c2

gg
3

d2C

dz2 ~0!z [ S d2

dt2 1 vs
2Dz 5 0. ~10!

Using the wakefield equation, one findsvs' ~E00gg
3!102vp,

wherevp 5 kpc denotes the plasma frequency. It is found
thatgg .. 1 impliesvs0vp ,, 1, i.e., for under-dense plasma
the motion of deeply trapped electrons in the comoving
frame is much slower than the motion of plasma electrons.
This justifies a posteriori the quasi-static approximation for
the description of the plasma wave.

Once they are accelerated, the electrons eventually prop-
agate faster than the wave, so the energy gain is limited by
phase slippage. The acceleration distance is equal tovgT,
where T denotes the time during which the electron can
remain in the accelerating region~i.e., half a synchrotron
period!. The maximum acceleration, distance is thedephas-
ing length Ld. Since for a large part of the acceleration, the
approximationg .. gg is valid, the phase slippage can be
taken as constant:

dz

dt
' c 2 vg '

c

2gg
2. ~11!

With this approximation, one findsvs ' vp02gg
2 for the

synchrotron frequency of orbits above the separatrix, which
indicates that the motion of electrons out-running the wave
in the comoving frame is even slower than the motion of
deeply trapped electrons. The dephasing length corresponds
to a phase slippage distance of half a plasma wavelength, so
with Eq. ~11! it is found that

Ld ' cEdt ' 2gg
2Edz 5 lpgg

2. ~12!

To illustrate the dynamics further, results of numerical
integration of the lowest-order equations of motion are
shown in Figure 2. Two different initial conditions inside the
separatrix have been chosen:~z,g! 5 ~23lp020,gg05!,

~23lp010,gg05! for E0 5 1010,gg 5 50. The time variable
is multiplied byvg to get the acceleration distanceLa, which
is expressed as a fraction of the dephasing length. From
Figure 2 the approximation of constant phase slippage is
seen to hold for a large part of the motion. It fails only during
a short time, when the electron rapidly slips backward. This
leads to typical sawtooth oscillations forz. Orbits near the
O-point have a shorter synchrotron oscillation period than
orbits close to the separatrix. The maximum energy scales
about linearly with the synchrotron period.

3. TRANSVERSE MOTION

In three-dimensional geometry, the wave equation is
~Gorbunov & Kirsanov, 1987!

Skp
2 1

]2

]z2D~kp
2 2 ¹4

2 !C 5 kp
2~kp

2 2 ¹4
2 !Fp. ~13!

Assuming that the ponderomotive potential can be written
as a productFp 5 Fz~z!F4~r4!, the solution forC is simply
C 5 Cz~z!F4~r4!, whereCz is equal toC in Eq. ~7!. In this
subsection, it is assumed that the laser transverse profile is an
axisymmetric Gaussian functionF4~r ! 5 exp~2r 20r0

2!.
The transverse electron motion follows from the second-

order expansionH ' H0 1 H2 of the Hamiltonian~Eq. 3!
with Reitsma~2002!

H2 5
1

2mg0

P4
2 2

1

2
mc2C2 r4

2 ~14!

where the functionC2 denotes the curvature of the potential
C in the vicinity of the propagation axis. The functionC2 is
given by

C2~z! 5
]2C~r,z!

]r 2 ~z, r 5 0! 5 2
2E0

r0
2 cos~kpz!. ~15!

The transverse forces are focusing in regions withC2 ,
0r cos~kpz! . 0 and defocusing in regions withC2 . 0r

cos~kpz! , 0. Only one-fourth of the plasma wavelength is

Fig. 2. Phase~left! and energy~right! as functions of acceleration distance for initial conditions~z,g! 5 ~23lp020,gg05! ~solid lines!
and~z,g! 5 ~23lp010,gg05! ~dashed lines!.

Accelerated electrons in laser wakefield acceleration 409

https://doi.org/10.1017/S0263034604040054 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034604040054


both focusing and accelerating, i.e., when cos~kpz! . 0 and
sin~kpz! , 0. Therefore, the maximum attainable energy
gmaxand minimum energygmin for electron trapping are not
on the separatrix of Figure 1, but on the orbit throughz 5
2lp04, g0 5 gg. Their values are given by

gmaxr 2gg 1 2E0gg
2 ~16!

gmin r
1

2SE0 1
1

E0
D ~17!

in the limit gg .. 1. In focusing regions,H2 is the Hamilto-
nian of a harmonic oscillator with time-dependent massg0m
and focusing strength2C2. The time dependence enters
through the dependence ofg0 andC2 on Pz andz, respec-
tively. The transverse oscillations are calledbetatronoscil-
lations. From

vb
2 5 2c2

C2

g0

5
2E0c2

g0 r0
2 cos~kpz! ~18!

one finds a condition for the laser pulse width

E0 ,, kp r0 ,, ! gg

E0

~19!

in order to satisfyvs ,, vb ,, vp, wheregmin , g0 , gmax

has been used. In this case, the betatron motion is much
slower than the motion of plasma electrons, so that the
wakefield is correctly described in the quasi-static approx-
imation. Also, the betatron oscillation is much faster than
the synchrotron oscillation, so that the~z, Pz!-dependence is
adiabatically slow and the areaax in ~x, Px! phase space

ax 5 CEPx dx ~20!

is an adiabatic invariant of the motion~similar foray!. Note
that the requirement that the longitudinal timescale is much
longer than the transverse timescale may fail during the
rapid backward slip of the electron~see Fig. 2!. In this case,
there is no adiabatic invariant.

4. COUPLING OF LONGITUDINAL AND
TRANSVERSE DYNAMICS

In this section, it is assumed that the time-scales of longitu-
dinal and transverse motion are sufficiently separated, so
that the adiabatic invariantsax and ay can be defined.
Defining x0, Px0 to be the betatron amplitudes for, respec-
tively, x andPx, one finds that the adiabatic invariant isax 5
px0Px0 ~similar foray!. The variation ofx0 andPx0 due to the
evolution ofz andPz on the slow time-scale is given by

x0
2 5

ax

pmc!
21

g0C2

, Px0
2 5

ax mc

p
M2g0C2, ~21!

which describes the coupling of longitudinal to transverse
motion, i.e., adiabatic focusing due to acceleration. To esti-
mate the magnitude of the focusing effect, consider injec-
tion with energygi , gg and extraction at energygf . gg.
The injection phase and the extraction phase are taken as
identical, so that the value ofC2 is the same. In this case, the
adiabatic focusing factor, defined as the ratio of initial to
final x0, equal to the ratio of final to initialPx0, is found to be
~gf 0gi !

104. With Eqs.~16!–~17! it is found that

gf

gi

#
gmax

gmin

' ~2E0gg!2. ~22!

ForE051010,gg550, this results in an upper limit of about
3.16 for the focusing factor. Note that acceleration leads to a
decrease of opening anglePx00g, given by~gf 0gi !

2304. A
plot of the adiabatic focusing factor forgg 5 50 is given in
Figure 3, where the value ofgf has been found by taking the
zero-order Hamiltonian~Eq. 5! as a constant of the motion.

By rewriting the second-order HamiltonianH2 in terms
of the adiabatic invariants, one finds the one-dimensional
Hamiltonian

Ha 5 H0 1 H2 5 mc2~g0 2 C0! 2 vg Pz 1
ac

2p !2C2

g0

~23!

that describes the coupling of transverse to longitudinal
motion, e.g., the effect of ther-dependence of the acceler-
ating field on the energy gain. The HamiltonianHa depends

Fig. 3. Adiabatic focusing ratio as a function of initial
energy forgg 5 50.
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on the adiabatic constanta 5 ax 1 ay and is defined only in
the focusing region, whereC2 , 0.

The influence of the transverse motion on the longitudi-
nal dynamics is illustrated in Figure 4, which shows phase
diagrams ofHa for a0pr0mc 5 0, 102, and 302. Also
indicated are contours of]Ha0]z 5 0 ~points of maximum
or minimum energy! and]Ha0]Pz5 0 ~turning points!. For
a . 0, energy maxima and minima are found aroundz 5 6
lp04, which are absent in the casea50. The turning points,
which are always atg0 5 gg for a 5 0, are seen to occur at
g0'gg~11s!102, where the approximations5~C0gg02!102

a0pr0mc ,, gg
2 has been used. In Figure 4, X-points are

seen to exist nearz 5 6 lp04, g0 5 gg. The area inside the
separatrix decreases with increasinga in such a way that
gmin increases witha andgmax decreases witha.

The influence of transverse motion on longitudinal dynam-
ics is further illustrated in Figure 5. This figure shows one
orbit for a 5 pr0mcand two orbits fora 5 0, chosen such
that one of them has the same maximum energy and the
other one has the same minimum energy. The main differ-
ence between thea 5 0-orbits and thea . 0-orbit is seen to
be in the low energy~g0 , gg! part, where the electron with
a finite value ofa has a larger backward slip in the wakefield.

As a consequence, for a collection of electrons~i.e., a
bunch! a finite spread ina effectively leads to bunch length
increase and possibly a growth of energy spread. It also
means that in the low-energy regime the electron bunch
cannot be described as a collection of “slices” labeled by the
longitudinal coordinate. In the high energy~g0 . gg! part,
thea . 0-orbit is barely different from the largea50-orbit,
indicating that the radial variation of the accelerating field
has only little effect on energy gain. This is because the
electron moves close to the axis as a result of strong adia-
batic focusing during the rapid backward slip—see also
Eq. ~21!.

To check the validity of the paraxial approximation, it is
instructive to look at some results of numerical integration
of the full equations of motion Eqs.~1!–~2!. These simula-
tion results are given in Figure 6, which showsx0Px0,
Ha0H, x0, Px0, z and g0 as functions of the acceleration
distance. The following initial conditions have been chosen:
~z,g0! 5 ~0,gg05!, ~ y, Py! 5 ~0,0!. For ~x, Px!, the cases
~0,mc02! ~a! and~0,mc! ~b! are compared. The wakefield
parameters areE0 5 1010, r0 5 lp, gg 5 50.

The quantityx0Px0 is seen to be nearly constant for
electrona, while there are some fluctuations for electronb.
This does not mean that there is not an adiabatic invariantax

for electronb, it only reflects thatax Þ x0Px0. The change of
x0Px0 is most pronounced during the rapid backward slip
of electronb, whenx0 reaches its maximum. The behavior
of Ha0H indicates that the second-order approximation
breaks down for electronb. This implies that the parabolic
approximation of the focusing potentialC is not satisfied,
SincePx0 ,, g0 during the whole acceleration.

There is a considerable difference in longitudinal dynam-
ics for the two electrons: electronb is seen to slip closer to
the defocusing regionsz , 2lp04, z . lp04 and reaches a
higher energy than electrona. The influence of phase slip-
page and acceleration on the betatron motion is seen in the
graphs ofx0 andPx0 as functions of acceleration distance.
The maximum ofx0 is at the point of minimum energy, the
maximum ofPx0 is at the point of maximum energy, indicat-
ing that the influence ofg0 on x0, Px0 dominates over the
influence ofC2.

Fig. 4. Phase diagrams forHa with a0pr0mc5 0 ~left!, 102 ~middle!, and 302 ~right!.

Fig. 5. Selected orbits fora 50 ~dashed lines! anda5pr0mc~solid line!.
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5. CONCLUSIONS

The coupling between longitudinal and transverse electron
dynamics described in this article has important conse-
quences for the design of a compact accelerator in which a
relatively low energy bunch from a conventional electron
source is injected into a single stage of resonant LWFA.
From the assumption that the time-scale of the transverse
~betatron! oscillation is much shorter than the time-scale of
the longitudinal dynamics, we have found that the bunch is
adiabatically focused. This focusing effect is strongest at
low injection energy and its main consequence is that the
longitudinal dynamics becomes close to one-dimensional as
soon as the electron’s energy has increased above the reso-
nant energyggmc2. The influence of the betatron motion on
longitudinal dynamics is most important at the injection of
the bunch, when the energy is still below the resonant
energy. The magnitude of this effect depends on the~largest!
value of the adiabatic invarianta, which is determined
primarily by the transverse emittancee of the injected

electron bunch. As shown in this article, the minimum
energy required for trapping in the plasma wave is higher for
larger values ofa, a spread ina effectively leads to bunch
lengthening and growth of energy spread, and the focusing
force becomes nonlinear for large values ofa. All these
results illustrate the importance of having a small transverse
emittance for the injected bunch: a small emittance mini-
mizes increase of bunch length and growth of energy spread,
and enables focusing to a small spot size to avoid nonlinear-
ities in the focusing force.
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