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Abstract

The acceleration dynamics of electrons in a laser wakefield accelerator is discussed, in particular the coupling of
longitudinal and transverse motion. This coupling effect is important for electrons injected with a velocity below the
laser pulse group velocity. It is found that the electron bunch is adiabatically focused during the acceleration and that a
finite bunch width contributes to bunch lengthening and growth of energy spread. These results indicate the importance
of a small emittance for the injected electron bunch.
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1. INTRODUCTION etal, 1996, we present an analysis of the coupling between

. longitudinal and transverse dynamics and a short discussion
Plasma-based electron acceleration metti&dareyet al., of the results

1996 are attractive due to the high accelerating gradients For the description of the plasma wave we use the quasi-

that a plasma can provide: the electric field strength can bgtatic descriptioitUmstadteetal., 1996 i.e., the scalar and

3,{:0.4 c;)rlde_rs of magrt1_|tud(|a Iargelr th?nt;he ;nz?lml:mlvalu ector potential§¢ andA) are assumed to depend only on
attainable in conventional acceleratdtdmstadteret al, the comoving coordinaté = z — v4t and the transverse

1996. Resonant laser wakefield acceleratlmnuEA) IS coordinater,, wherevy denotes the group velocity of the

one of such schemes that use the extremely high elecml%ser pulse, which defines thesonant energy,me, v, =

fields of a relativistic plasma wave to accelerate electronscl_ v2/c2)‘,1/2 Since the electrons move pre?dominzgntly in
L " g .

The basic idea of resonant LWkAajima & Dawson, 1976 the forward directior(z-direction), the approximatiow ~

is to use the ponderomotive for¢éght pressurgof a laser v,&, can be used to evaluate the Lorentz fofBanofsky &
pulse with a duration shorter than the plasma period th?/enzel 1956

resonantly drive a high-amplitude plasma wave. The phase
velocity of this plasma wave, equal to the group velocity of
the laser pulse, is below so that electrons can be trapped
and accelerated in the wake of the laser pulse. In this article,
we describe the acceleration dynamics of electrons in such a = P v
. . z 9
plasma wave. After discussing some well-known results on ——~-eg=e— <<b - = AZ>. 2
N - dt a o
the longitudinal and transverse motion of accelerated elec-

trons (Mora & Amiranoff, 1989; Mora, 1992; Andreev The approximation is correct if both the forward veloaity
and the group velocityy are close to the speed of lightbut
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forwhich(r,,P,), and(¢, P,) form pairs of conjugate canon- diagram forE, = 1/10, y4 = 50. As seen in Figure 1, there
ical coordinates. The dimensionless quaniitydefined by  are closed orbits inside the separatrix and open orbits both
above and below the separatrix. The orbits below the separ-
ep eA, atrix describe the motion of electrons that are too slow to be
“m@ Yme @ captured in the wave. The orbits above the separatrix corre-
spond to the motion of electrons that are out-running the
is thewakefield potentiathat governs the electron dynamics. wave. The orbits inside the separatrix describesymechro-
tron oscillation of electrons that are trapped inside the wave.
The dynamics of high-energy electrons out-running the
plasma wavéorbits above separathixiave been studied by
Assuming|P,| < P, (paraxial approximation it is conve-  Cheshkowet al.(2000 and Chiuet al.(2000), in the context
nient to expand the Hamiltonian in a Taylor series arouncbf a linear collider based on multi-stage laser wakefield
r, =0,P, = 0. To leading order, this reducétto a purely  acceleration. In this regime, the transverse motion is effec-

v

2. LONGITUDINAL MOTION

one-dimensional HamiltoniafEsarey & Pilloff, 1995 tively decoupled and the analysis is considerably simplified.
Instead, in this article, we will analyze the dynamics of
Ho = mc?(yo — W) — vgP, (5) electrons injected at relatively low energy from a compact

conventional electron sourderbits inside separatrjxfor

with (£, P,) as canonical coordinates. In E§) the notations  which the coupling of longitudinal and transverse dynamics
Yo = (14 PZ/m?c?)¥2 andW¥,({) = ¥(r, = 0,{) are used. becomes important.
For convenience, the subscript-0 will be suppressed in the Stable equilibrium point€0-points are found af = na,,
remainder of this section. Y = ¥4 and unstable equilibrium poin{X-points) at{ =

Inthe linear wakefield regime, the plasma wave equatior(n + 1/2)A,,, ¥ = vy, for all n € Z. For orbits inside the
reduces to a harmonic oscillator equati@®orbunov &  separatrix, one defines therning pointsby the condition
Kirsanov, 1987 dH/9P, = d{/dt= 0: at these points the backward phase slip
of the electron changes to forward slip or vice versa. In
Figure 1 these points are seen to beyat y4. Points of
minimum and maximum energy, defined &k /o = 0, are
found at{ = ni,/2 for all n € Z. The minimum and
Wherekg = 4mne?’/mc? defines the plasma wave-number maximum values of on the separatrix are denot@gaxmin:
ko, and®, is the dimensionless ponderomotive potential ofthese points are indicated as H and L in Figure 1. The values
the laser pulse. The solution in the region behind the drivingf ymaxmin) are

2

(k§+ %)\If— kg Dy, (6)

laser pulse is
P Ymax—> 2Yg + 4Eo¥§ ®)
W({) = Egcogky), I () = —kpEosin(kp <) (7)
1
Ymin — Eo, + 4_EO (9)

where E; is the dimensionless wakefield amplitude and

without loss of generality, particular choice of the wakefield

phase has been made. in the limityg > 1.
The phase space diagram contains 3 types of orbits, as canOrbits close to the O-point describe the motion of deeply

be seen in Figure 1, which shows tf& y)-phase space trapped electrons. Using th& is close tovgygmc and

10
7/’79

Fig. 1. Phase diagram fok with O-point(O), X-point (X), highest(H) and lowes{L) point of separatrix.
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{ < A, one finds a harmonic oscillation with synchrotron (—3A,/10,y4/5) for E; = 1/10,y4 = 50. The time variable
frequencyws is multiplied byvq to get the acceleration distankcg, which
is expressed as a fraction of the dephasing length. From
Figure 2 the approximation of constant phase slippage is
seento hold for alarge part of the motion. It fails only during
a short time, when the electron rapidly slips backward. This
Using the wakefield equation, one finds~ (E; /y3)"?w,, leads to typical sawtooth oscillations for Orbits near the
wherew, = k,c denotes the plasma frequency. It is found O-point have a shorter synchrotron oscillation period than
thatyy > 1impliesws/w, < 1, i.e., for under-dense plasma orbits close to the separatrix. The maximum energy scales
the motion of deeply trapped electrons in the comovingabout linearly with the synchrotron period.
frame is much slower than the motion of plasma electrons.
This justif.ies., a posteriori the quasi-static approximation for3_ TRANSVERSE MOTION
the description of the plasma wave.

Once they are accelerated, the electrons eventually propn three-dimensional geometry, the wave equation is
agate faster than the wave, so the energy gain is limited byGorbunov & Kirsanov, 198
phase slippage. The acceleration distance is equa/Tpo
where T denotes the time during which the electron can
remain in the accelerating regidne., half a synchrotron
period). The maximum acceleration, distance is tlephas-
ing length Ly. Since for a large part of the acceleration, theAssuming that the ponderomotive potential can be written
approximationy > vy, is valid, the phase slippage can be as a product, = ®,({)®,(r,), the solution for¥ is simply

2

d
0)¢ = <W +w§>{= 0. (10

d2z 2 d?w
—_— + R —
dtz2 ' y3 dg?

82
<|<g + E)(kg—' — V)W = k2(KZ — V2) D, (13

taken as constant: ¥ =,()®, (r,), where¥, is equal to¥ in Eq. (7). In this
subsection, itisassumed thatthe laser transverse profile isan
d¢ c axisymmetric Gaussian functia (r) = exp(—r %/ré).
dr €T gg 1D The transverse electron motion follows from the second-

order expansiof{ ~ H, + H, of the Hamiltonian(Eq. 3
With this approximation, one findes ~ w,/2yZ for the ~ with Reitsma(2002
synchrotron frequency of orbits above the separatrix, which
indicates that the motion of electrons out-running the wave M, 1
in the comoving frame is even slower than the motion of
deeply trapped electrons. The dephasing length corresponds
to a phase slippage distance of half a plasma wavelength, sehere the functionw, denotes the curvature of the potential

1
= PZ— —mcW,r? 14
T R 2§ (14

with Eq. (12) it is found that ¥ in the vicinity of the propagation axis. The functigf is
given by
Lg =~ CJdt~ ZySIdf = ApY§. (12 92w (r,¢) 2E,
W,({) = 7 (L,r=0= ey cos(kyd). (15
0

To illustrate the dynamics further, results of numerical
integration of the lowest-order equations of motion are The transverse forces are focusing in regions With<
shown in Figure 2. Two different initial conditions inside the 0 — cosk,¢) > 0 and defocusing in regions with, > 0 —
separatrix have been choseif’,y) = (—31,/20,y4/5), cogkp¢) < 0. Only one-fourth of the plasma wavelength is

0.8
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Fig. 2. Phasdleft) and energyright) as functions of acceleration distance for initial conditiofisy) = (—31,/20,v4/5) (solid lineg
and({,y) = (—31,/10,y4/5) (dashed lines
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both focusing and accelerating, i.e., when@gg) >0and 4. COUPLING OF LONGITUDINAL AND
sin(k,{) < 0. Therefore, the maximum attainable energy TRANSVERSE DYNAMICS

Ymaxand minimum energy ., for electron trapping are not
on the separatrix of Figure 1, but on the orbit throdgh
—Ap/4,v0 = v4. Their values are given by

In this section, it is assumed that the time-scales of longitu-
dinal and transverse motion are sufficiently separated, so
that the adiabatic invarianta, and «, can be defined.
Defining Xq, Pyo to be the betatron amplitudes for, respec-

2
Ymax—> 2¥g + 2B yé (16) tively, xandP,, one finds that the adiabatic invarianbig=
1 1 X0 Pxo (similar fora, ). The variation ok, andP due to the
YVenin = E(E" + E) (17)  evolution of andP, on the slow time-scale is given by
0
. _— . . . . ay -1 a,mc
in the limit yq > 1. In focusing regionsk, is the Hamilto- xg = / , P%= =702, (21)
amcY yo¥, T

nian of a harmonic oscillator with time-dependent mggs
and focusing strength-¥,. The time dependence enters
through the dependence ¢f and¥, on P, and{, respec-
tively. The transverse oscillations are callestatronoscil-

which describes the coupling of longitudinal to transverse
motion, i.e., adiabatic focusing due to acceleration. To esti-
mate the magnitude of the focusing effect, consider injec-

lations. From tion with energyy; < y4 and extraction at energy > v,.
v, 2E.c? The injection phase and the extraction phase are taken as
wf = —c? X2 _ Lz cos(kp{) (18) identical, so that the value df, is the same. In this case, the
Yo Yofo adiabatic focusing factordefined as the ratio of initial to
_ . i final xo, equal to the ratio of final to initidP,g, is found to be
one finds a condition for the laser pulse width (y¢ /7)™, With Eqs.(16)(17) it is found that
Eo < kolo < \/z (19 Y Y (2B, y,)2 (22)
Eo Yi Ymin

in order to satisfyws < wg < wp, Whereymin < yo < ymax  FOrEo=1/10,y4=50, this results in an upper limit of about
has been used. In this case, the betatron motion is much 16 for the focusing factor. Note that acceleration leads to a
slower than the motion of plasma electrons, so that thelecrease of opening angRy,/y, given by (yt/y;) ¥4 A
wakefield is correctly described in the quasi-static approx-lot of the adiabatic focusing factor fog, = 50 is given in
imation. Also, the betatron oscillation is much faster thanFigure 3, where the value gt has been found by taking the
the synchrotron oscillation, so that thg P,)-dependenceis zero-order HamiltoniafEg. 5 as a constant of the motion.

adiabatically slow and the areq in (x, P;) phase space By rewriting the second-order Hamiltonidi, in terms
of the adiabatic invariants, one finds the one-dimensional
Hamiltonian
o j;dex (20)
aC q’z
is an adiabatic invariant of the motigsimilar for «,). Note Ha = Ho+ Hz =mC*(yo — Wo) —vgP; + 27V v (23

that the requirement that the longitudinal timescale is much

longer than the transverse timescale may fail during thehat describes the coupling of transverse to longitudinal
rapid backward slip of the electr@gsee Fig. 2. In this case, motion, e.g., the effect of thedependence of the acceler-
there is no adiabatic invariant. ating field on the energy gain. The Hamiltoniaf), depends

(ye /)"
2.5

2

1.5

)

0.5

0 /YZ Fig. 3. Adiabatic focusing ratio as a function of initial

5 10 15 20 25 30 35 40 energy forys - 50.
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Fig. 4. Phase diagrams f@#, with a/7romc= 0 (left), 1/2 (middle), and 32 (right).

on the adiabatic constaat= a, + ayand is defined only in ~ As a consequence, for a collection of electrdns., a
the focusing region, wherg, < 0. bunch a finite spread inv effectively leads to bunch length

The influence of the transverse motion on the longitudi-increase and possibly a growth of energy spread. It also
nal dynamics is illustrated in Figure 4, which shows phaseneans that in the low-energy regime the electron bunch
diagrams ofH, for a/mromc = 0, 1/2, and 32. Also  cannotbe described as a collection of “slices” labeled by the
indicated are contours @é#,/d{ = 0 (points of maximum longitudinal coordinate. In the high energy, > y,) part,
or minimum energyanddH,,/dP, = 0 (turning pointg. For  thea > 0-orbitis barely different from the large= 0-orbit,

a > 0, energy maxima and minima are found arodre + indicating that the radial variation of the accelerating field
Ap/4, which are absentin the cage= 0. The turning points, has only little effect on energy gain. This is because the
which are always ay, = y4 for o = 0, are seen to occur at electron moves close to the axis as a result of strong adia-
Yo=~7v4(1+0)Y?, where the approximatian= (¥yy4/2)¥?  batic focusing during the rapid backward slip—see also
a/mrome < y§ has been used. In Figure 4, X-points areEq.(21).

seen to exist nedf = + A,/4,vyo = v4. The area inside the To check the validity of the paraxial approximation, it is
separatrix decreases with increasimgn such a way that instructive to look at some results of numerical integration
Ymin INCreases withw andy,,,, decreases with. of the full equations of motion Eq$l)—(2). These simula-

The influence of transverse motion on longitudinal dynam-tion results are given in Figure 6, which showgsP,,
ics is further illustrated in Figure 5. This figure shows oneH,/H, Xq, Py, { andyq as functions of the acceleration
orbit for « = mromcand two orbits fore = 0, chosen such distance. The following initial conditions have been chosen:
that one of them has the same maximum energy and th@,yo) = (0,v4/5), (y,R) = (0,0. For (x,P,), the cases
other one has the same minimum energy. The main differ¢0,m¢/2) (a) and(0,mc) (b) are compared. The wakefield
ence between the = 0-orbits and ther > 0-orbitis seento parameters arg, = 1/10,r5 = Ap, y4 = 50.
be in the low energyy, < y4) part, where the electron with The quantityxqP,o is seen to be nearly constant for
afinite value ofx has a larger backward slip in the wakefield. electrona, while there are some fluctuations for electton
This does not mean that there is not an adiabatic invasiant
for electronb, it only reflects thaty, # XoPyo. The change of
XoPyxo is most pronounced during the rapid backward slip
of electronb, whenx, reaches its maximum. The behavior
of H,/H indicates that the second-order approximation
breaks down for electrob. This implies that the parabolic
approximation of the focusing potentidl is not satisfied,
SinceP,g < v, during the whole acceleration.

There is a considerable difference in longitudinal dynam-
ics for the two electrons: electrdnis seen to slip closer to
the defocusing regions<< —A,/4,{ > A,/4 and reaches a
higher energy than electran The influence of phase slip-
page and acceleration on the betatron motion is seen in the
graphs ofxg andP,q as functions of acceleration distance.

0.1 S~ -7 The maximum ok, is at the point of minimum energy, the
-0.25 0 0.25 C/)\p maximum ofP,, is at the point of maximum energy, indicat-
ing that the influence of, on xq, P, dominates over the
Fig. 5. Selected orbits for = 0 (dashed linesanda = 7rromc(solid line). influence of¥,.

10
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Fig. 6. Simulation results for initial condition&) (x, P) = (0,m¢/2) (solid lineg and(b) (x, P) = (0,mc) (dashed linesshowing
influence of betatron oscillation on longitudinal dynamics.

5. CONCLUSIONS electron bunch. As shown in this article, the minimum
energy required for trapping in the plasmawave is higher for

The coupling between longitudinal and transverse electroifarger values ofy, a spread inx effectively leads to bunch

dynamics described in this article has important conselengthening and growth of energy spread, and the focusing

quences for the design of a compact accelerator in which torce becomes nonlinear for large valuesaofAll these

relatively low energy bunch from a conventional electronresults illustrate the importance of having a small transverse

source is injected into a single stage of resonant LWFAemittance for the injected bunch: a small emittance mini-

From the assumption that the time-scale of the transverssizes increase of bunch length and growth of energy spread,

(betatron oscillation is much shorter than the time-scale ofand enables focusing to a small spot size to avoid nonlinear-

the longitudinal dynamics, we have found that the bunch isties in the focusing force.

adiabatically focused. This focusing effect is strongest at

low injection energy and its main consequence is that the

longitudinal dynamics becomes cIo_se to one-dimensional a8 EEFERENCES
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