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In the present article, we show that there exists a critical number that stabilizes the Reissner–

Mindlin–Timoshenko system with frictional dissipation acting on rotation angles. We identify

two speed characteristics v2
1 := K/ρ1 and v2

2 := D/ρ2, and we show that the system is

exponentially stable if and only if

v
2
1 = v

2
2 .

For v2
1 �= v2

2 , we prove that the system is polynomially stable and determine an op-

timal estimate for the decay. To confirm our analytical results, we compute the nu-

merical solutions by means of several numerical experiments by using a finite difference

method.

Key words: Reissner-Mindlin-Timoshenko system, wave propagation speed, exponential sta-

bility, optimal decay, finite difference.

Dedicated to Prof. Marcelo Moreira Cavalcanti on the occasion of his 60th Birthday.

1 Introduction

The main objective of this article is to prove a result that characterizes ex-

ponential stability for the Reissner–Mindlin–Timoshenko system taking into ac-

count two frictional damping terms acting on the equations of the rotational

angles.
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We investigate at theoretical and numerical levels questions related to the exponential

and polynomial stability of the Reissner–Mindlin–Timoshenko system given by

ρ1ωtt −K(ψ + ωx)x −K(ϕ+ ωy)y = 0, (1.1)

ρ2ψtt − Dψxx − D

(
1 − μ

2

)
ψyy − D

(
1 + μ

2

)
ϕxy +K(ψ + ωx) + d1ψt = 0, (1.2)

ρ2ϕtt − Dϕyy − D

(
1 − μ

2

)
ϕxx − D

(
1 + μ

2

)
ψxy +K(ϕ+ ωy) + d2ϕt = 0, (1.3)

in Ω × IR+. Here ρ1 = ρh, ρ2 = ρh3

12
, where ρ is the (constant) mass per unit of surface

area, h is the (uniform) plate thickness, μ is Poisson’s ratio (0 < μ < 1/2), D = Eh3

12(1−μ2)
is

the modulus of flexural rigidity, K = kEh
2(1+μ)

is the shear modulus, where E is the Young’s

modulus and k is the shear correction. Moreover, di, i = 1, 2, are positive constants and the

functions ω, ψ and ϕ depend on (x, y, t) ∈ Ω×IR+ and denote the transverse displacement

of the plate and the rotational angles of a filament of the plate, respectively. More precise

details of the physical derivation of this hyperbolic system (for the undamped case) can

be found in [17, 18]. In this case, in contrast to the analogous 1-D case, two rotational

angles as well as the transverse displacement of a filament of the elastic structure are

included in the mathematical modelling of a thin plate.

The initial data is given by

ω(x, y, 0) = ω0(x, y), ωt(x, y, 0) = ω1(x, y), in Ω, (1.4)

ψ(x, y, 0) = ψ0(x, y), ψt(x, y, 0) = ψ1(x, y), in Ω, (1.5)

ϕ(x, y, 0) = ϕ0(x, y), ϕt(x, y, 0) = ϕ1(x, y), in Ω, (1.6)

where Ω ⊂ IR2 is a bounded domain with boundary Γ = Γ 1 ∪ Γ 2, where Γ1 and Γ2 are

non–empty. We adopt the following boundary conditions as in [9]:

ω = 0, on Γ × IR+, (1.7)

ψ = 0,

(
1 − μ

2

(
ϕx + ψy

)
, ϕy + μψx

)
· ν = 0, on Γ1 × IR+, (1.8)

ϕ = 0,

(
ψx + μϕy,

1 − μ

2

(
ϕx + ψy

))
· ν = 0, on Γ2 × IR+, (1.9)

and throughout this work, we will consider Ω ⊂ IR2 as the rectangular configuration

given by

Ω := [0, L1] × [0, L2], with L1, L2 > 0,

with boundary given by

Γ1 := {(x, y) : 0 < x < L1, y = 0, L2},
Γ2 := {(x, y) : 0 < y < L2, x = 0, L1},

satisfying Γ := Γ 1 ∪ Γ 2.
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There is a substantial literature concerning the mathematical models of oscillations

in elastic structures of plates type. The most well known is due to Lagnese [18]. In his

monograph, he addressed the question of uniform and strong stability of purely elastic

plates due to boundary feedback. Lagnese proved that problem (1.1)–(1.3) with di = 0,

i = 1, 2 and boundary feedback conditions is exponentially stable, without any restrictions

on the coefficients of the system. Analogous results were also obtained by Muñoz Rivera

and Portillo Oquendo [20], where they considered boundary conditions of memory type.

In this case, they proved that the solutions of the system is exponentially stable provided

that the kernels have exponential behaviour, and are polynomially stable for kernels of

polynomial type. Similar dissipations have been used by M. Santos [28], where the author

considered a Timoshenko model in Ω ⊂ IRn.

For the cases when damping mechanisms act on the whole domain, we should note the

work of Fernándes Sare [9], where he considered the equations (1.1)–(1.3). He proved, using

a resolvent criterion that the Reissner–Mindlin–Timoshenko system is not exponentially

stable independent of any relations between the coefficients of the system, making this

case different from the analogous 1-D case. However, in a recent work due to Campelo

et al. [8], the authors showed that the Reissner–Mindlin–Timoshenko system has two

speeds of wave propagation, which play an important role in the stabilization of this

system (see also Section 3).

On the other hand, the impact of thermal coupling on the strong stability of a

Reissner–Mindlin–Timoshenko plate has been studied by Grobbelaar-Van Dalsen in her

papers [10–12] and references therein. In [10], she considered a structural 3-D acoustic

model with a 2-D plate interface and proved strong asymptotic stability for the radially

symmetric case. A similar result was later obtained in [12] for a rotationally symmetric

Reissner–Mindlin–Timoshenko plate with hyperbolic heat conduction due to Cattaneo.

To this end, both articles employed Benchimol’s spectral criterion. In [11], she proved a

polynomial decay rate of t−
1
4 in the rotationally symmetric case for the Reissner–Mindlin–

Timoshenko system coupled to the classical Fourier heat conduction under Dirichlet

boundary conditions on ω and θ (θ temperature given by the Fourier law), as well as free

boundary conditions on ψ and ϕ. Other important contribution in linear thermo-elasticity

for the Reissner–Mindlin–Timoshenko system was given by Pokojovy [25]. He considered

the stability of his model by incorporating various kinds of damping in the interior of the

plate both with and without the radial symmetry assumption.

Here, we ask

• Is it possible to get the exponential decay when the Reissner–Mindlin–Timoshenko

system given by (1.1)–(1.9) is damped by two feedback laws?

• Do speeds of wave propagations of the Reissner–Mindlin–Timoshenko system play

some role in getting the exponential decay with only two dissipative mechanisms?

It is well known that in the 1-D case, if there exist two dissipative mechanisms, we

always get exponential stability, whether the speeds of wave propagation are equal or

not (see [16, 27]). Of course, since the Reissner–Mindlin–Timoshenko equations (1.1)–

(1.3) constitute a conservative three-by-three hyperbolic system [13], if we consider three

frictional damping terms, that is, we consider terms d0ωt, d1ψt and d2ϕt, we always get
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the exponential stability, irrespective of any relation between the coefficients. Moreover,

numerical experiments indicate that on combining one dissipation on the transverse

displacement (denoted by ω) and one dissipation on a rotational angle (ϕ or ψ) we get

the exponential stability without any dependence between the coefficients. In this case,

the mathematical proofs remain to be done.

Inspired by several results in the literature on stability of the 1-D dissipative Timoshenko

system by taking only one dissipative mechanism (see, for example, [1, 3, 21, 22, 29, 30])

and also in recent work due to Campelo et al. [8], the main objectives of this paper are

to answer the above questions. To the best of our knowledge, Campelo et al. [8] were

the first one to show that the classical Reissner–Mindlin–Timoshenko system has two

speeds of wave propagations (see calculation on page 159 [8]). In that case, the equality

between speeds constitutes a new paradigm, which plays an important role in stabilization

of the Reissner–Mindlin–Timoshenko system when few dissipative mechanisms act [8].

Of course, there are several criticisms about the non-physicality of the equality of wave

speeds in order to get the exponential decay in the cited cases. Indeed, with v21 = K/ρ1

and v22 = D/ρ2 and taking them to be equal we arrive at

k =
2

1 − μ
, (1.10)

and this equality is not feasible because k < 1 and μ < 1/2. However, this condition

constitutes an important mathematically sound condition for stabilization issues of beams

and plates.

In a previous analysis, through several numerical experiments using finite differences

methods (see Section 6), we reached positive results confirming our conjectures. Motivated

by this setting, we study the asymptotic behaviour of the system (1.1)–(1.9).

Concerning the mathematical analysis, the method that we use to determine the asymp-

totic behaviour is based on Gearhart–Herbst–Prüss–Huang Theorem for dissipative sys-

tems [14, 26].

Theorem 1.1 Let S(t) = eAt be a C0-semigroup of contractions on a Hilbert space H. Then

S(t) is exponentially stable if and only if

ρ(A) ⊇ {iλ : λ ∈ IR} ≡ iIR, (1.11)

and

lim|λ|→∞||(iλI −A)−1||L(H) <∞, (1.12)

hold, where ρ(A) is the resolvent set of the differential operator A.

On the other hand, to show the polynomial stability and the optimality of its rate, we

use the result due to Borichev and Tomilov [6].

https://doi.org/10.1017/S0956792517000092 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000092


230 A. D. S. Campelo et al.

Theorem 1.2 Let S(t) be a bounded C0-semigroup on a Hilbert space H with generator A
such that iIR ⊂ ρ(A). Then

1

|λ|α ‖(iλI −A)−1‖L(H) � C, ∀λ ∈ IR ⇔ ‖S(t)A−1‖L(H) �
c

t1/α
. (1.13)

The mathematical structure of the article is organized as follows. In Section 2, we discuss

the existence, regularity and uniqueness of global solutions of (1.1)–(1.9). To for this, we

use the semigroup techniques. In Section 3, we identify the speeds of wave propagation

and we show that if these speeds are different, then the semigroup associated with the

system (1.1)–(1.9) loses exponential stability. In Section 4, we study the exponential decay

of the semigroup associated with the system (1.1)–(1.9). At this point, it is important

to emphasize that exponential stability occurs under the assumption of equality between

the speeds of wave propagation. In Section 5, we show that in general the semigroup

associated with the system (1.1)–(1.9) is polynomially stable and we present an optimal

decay rate. Finally, in Section 6, numerical results by using a finite difference method on

a rectangular domain are obtained to confirm our analytical results.

2 Semigroup setting

In this section, we will show that the system (1.1)–(1.9) is well posed using the semigroup

techniques. Let us denote by

H := H1
0 (Ω) × L2(Ω) ×H1

Γ1
(Ω) × L2(Ω) ×H1

Γ2
(Ω) × L2(Ω), (2.1)

the Hilbert space with internal product given by

(U,V )H = ρ1

∫
Ω

u2v2 d(x, y) + ρ2

∫
Ω

u4v4 d(x, y) + ρ2

∫
Ω

u6v6 d(x, y)

+ K

∫
Ω

(u3 + u1
x)(v

3 + v1x) d(x, y) +K

∫
Ω

(u5 + u1
y)(v

5 + v1y) d(x, y)

+ D

∫
Ω

u3
xv

3
x d(x, y) + D

∫
Ω

u5
yv

5
y d(x, y)

+ D

(
1 − μ

2

) ∫
Ω

(u3
y + u5

x)(v
3
y + v5x) d(x, y)

+ Dμ

∫
Ω

u3
xv

5
y d(x, y) + Dμ

∫
Ω

u5
yv

3
x d(x, y), (2.2)

and norm given by

||U||2H = ||(u1, u2, u3, u4, u5, u6)T ||2H = ρ1

∫
Ω

|u2|2 d(x, y) + ρ2

∫
Ω

|u4|2 d(x, y)

+ ρ2

∫
Ω

|u6|2 d(x, y) +K

∫
Ω

|u3 + u1
x|2 d(x, y) +K

∫
Ω

|u5 + u1
y|2 d(x, y)
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+ D

∫
Ω

|u3
x|2 d(x, y) + D

∫
Ω

|u5
y|2 d(x, y) + D

(
1 − μ

2

) ∫
Ω

|u3
y + u5

x|2 d(x, y)

+ Dμ

∫
Ω

u3
xu

5
y d(x, y) + Dμ

∫
Ω

u5
yu

3
x d(x, y), (2.3)

where U = (u1, u2, u3, u4, u5, u6)′, V = (v1, v2, v3, v4, v5, v6)′ and

H1
Γi

(Ω) := {ψ ∈ H1(Ω) | ψ = 0 on Γi}, i = 1, 2.

Then using Korn and Poincaré inequalities it follows that || · ||H is equivalent to

the usual norm in H (see [9] for details). If we write U = (ω,ωt, ψ, ψt, ϕ, ϕt)
′ and

U0 = (ω0, ω1, ψ0, ψ1, ϕ0, ϕ1)
′ then the equations (1.1)–(1.9) can be rewritten as follows:

dU

dt
= AU, for t > 0, (2.4)

U(0) = U0, (2.5)

where A : D(A) ⊂ H → H is the operator defined formally by

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Id 0 0 0 0
K
ρ1
Δ 0 K

ρ1
∂x 0 K

ρ1
∂y 0

0 0 0 Id 0 0

− K
ρ2

∂x 0 B1 − d1

ρ2
Id D

ρ2

(
1+μ

2

)
∂2
xy 0

0 0 0 0 0 Id

− K
ρ2

∂y 0 D
ρ2

(
1+μ

2

)
∂2
xy 0 B2 − d2

ρ2
Id

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the operators Bi(i = 1, 2) are given by

B1 =
D

ρ2

[
∂2
x +

(
1 − μ

2

)
∂2
y

]
− K

ρ2
Id,

B2 =
D

ρ2

[(
1 − μ

2

)
∂2
x + ∂2

y

]
− K

ρ2
Id,

Id is the identity operator, and

D(A) =
{
U = (ω,W,ψ,Ψ, ϕ, Φ)′ ∈ H | ω,ψ, ϕ ∈ H2(Ω), W ∈ H1

0 (Ω), Ψ ∈ H1
Γ1

(Ω),

×Φ ∈ H1
Γ2

(Ω)

with

(
1 − μ

2

(
ϕx + ψy

)
, ϕy + μψx

)
· ν = 0, on Γ1

and

(
ψx + μϕy,

1 − μ

2

(
ϕx + ψy

))
· ν = 0, on Γ2

}
,

where ν = (ν1, ν2)
′ denotes the outer unit normal vector to Γ .

In the next theorem, we assume that Γ1 is non-empty, Γ1 ∩Γ2 is empty and ∂Ω is either

C2 or piecewise C2 with all of the cusps being of angle of at least π/2 [18].
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Theorem 2.1 The operator A generates a C0-semigroup S(t) of contraction on H. Thus,

for any initial data U0 ∈ H, the problem (1.1)–(1.9) has a unique mild solution U ∈
C0([0,∞),H). Moreover, if U0 ∈ D(A), then U is a classical solution of (1.1)–(1.9), i.e.,

U ∈ C1([0,∞),H) ∩ C0([0,∞),D(A)).

Proof Simple calculations give us

Re(AU,U)H = −d1

∫
Ω

|Ψ |2 d(x, y) − d2

∫
Ω

|Φ|2 d(x, y) � 0, (2.6)

from where it follows that A is a dissipative operator. Thus, thanks to the Lax–Milgram

Theorem (see [7]), resolvent equation AU = F , for any F ∈ H, admits a unique solution

U ∈ D(A). Therefore, we deduce that 0 ∈ ρ(A), where ρ(A) is the resolvent set of A.

Then by the resolvent identity, for small λ > 0, we have R(λI − A) = H (see Theorem

1.2.4 in [19]). Finally, thanks to the Lumer–Phillips Theorem (see [24], Theorem 1.4.3),

the operator A generates a C0-semigroup of contractions eAt on H.

�

Now, we introduce the energy functional of system (1.1)–(1.3) that plays an important

role in stabilization setting as

E(t) :=
1

2

∫
Ω

[
ρ1|ωt|2 + ρ2|ψt|2 + ρ2|ϕt|2 +K|ψ + ωx|2 +K|ϕ+ ωy|2

+ D|ψx|2 + D|ϕy|2 + D

(
1 − μ

2

)
|ψy + ϕx|2 + 2Dμψxϕy] d(x, y), for t � 0. (2.7)

It is immediate that the energy functional (2.7) is a monotone non-increasing function

of the time t. Indeed, we have the following Proposition:

Proposition 2.2 Let (ω,ωt, ϕ, ϕt, ψ, ψt) be the classical solution of (1.1)–(1.9). Then, the

instantaneous rate of change of energy of the system with respect to time t is given by

d

dt
E(t) = −d1

∫
Ω

ψ2
t d(x, y) − d2

∫
Ω

ϕ2
t d(x, y) � 0, ∀t � 0. (2.8)

Proof As usual, we can find that if we multiply formally the equations in (1.1), (1.2) and

(1.3) by ωt, ψt and ϕt, respectively, then performing integration by parts one has the

conclusion of the proposition. �

From (2.8), since di > 0 for some i = 1, 2, we obtain the energy dissipation law

E(t) � E(0), ∀t � 0. (2.9)

It is clear that if d1 = d2 = 0 we obtain the energy conservation law

E(t) = E(0), ∀t � 0. (2.10)
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3 Lack of exponential decay

In this section, we show the lack of exponential decay of the Reissner–Mindlin–

Timoshenko system (1.1)–(1.9) for the rectangular domain under condition in (3.8). In

order to do this, we use Theorem 1.1 in the following manner: we will argue by con-

tradiction, that is, we will show that there exists a sequence of values (λn) ⊂ IR with

limn→∞ |λn| = ∞ and Un = (ωn,Wn, ψn,Ψn, ϕn, Φn)
′ ∈ D(A) for Fn = (f1n, f2n, f3n, f4n, f5n,

f6n)
′ ∈ H, n ∈ IN, such that

(iλnI −A)Un = Fn, (3.1)

where (Fn)n is bounded in H but ‖Un‖H tends to infinity. So, rewriting the spectral

equation in terms of its components we have

iλnωn −Wn = f1
n , (3.2)

iλWn −
K

ρ1
(ψn + ωnx)x −

K

ρ1
(ϕn + ωny)y = f2

n , (3.3)

iλnψn −Ψn = f3
n , (3.4)

iλnΨn −
D

ρ2

[
ψnxx +

(
1 − μ

2

)
ψnyy +

(
1 + μ

2

)
ϕnxy

]
+
K

ρ2
(ψn + ωnx) +

d1

ρ2
Ψn = f4

n , (3.5)

iλnϕn − Φn = f5
n , (3.6)

iλnΦn −
D

ρ2

[(
1 − μ

2

)
ϕnxx + ϕnyy +

(
1 + μ

2

)
ψnxy

]
+
K

ρ2
(ϕn + ωny) +

d2

ρ2
Φn = f6

n . (3.7)

Now, we are in a position to establish the principal result of this section.

Theorem 3.1 Let us suppose that

v21 = v22 . (3.8)

Then the semigroup associated with the system (1.1)–(1.9) is not exponentially stable.

Proof Let us take Fn = (0, sin(δλ1x) sin(δλ2y), 0, 0, 0, 0)′ with

λj = λj,n :=
nπ

δLj
, j = 1, 2, n ∈ IN, δ :=

√
ρ1

K
.

Finally, we define

λn :=

√
λ2

1 + λ2
2. (3.9)
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Taking into account the above notation, the equations (3.2)–(3.7) can be rewritten as

− λ2
nρ1ωn −K(ψn + ωnx)x −K(ϕn + ωny)y = ρ1 sin(δλ1x) sin(δλ2y), (3.10)

− λ2
nρ2ψn − D

[
ψnxx +

(
1 − μ

2

)
ψnyy +

(
1 + μ

2

)
ϕnxy

]
+K(ψn + ωnx)

+ iλnd1ψn = 0, (3.11)

− λ2
nρ2ϕn − D

[(
1 − μ

2

)
ϕnxx + ϕnyy +

(
1 + μ

2

)
ψnxy

]
+K(ϕn + ωny)

+ iλnd2ϕn = 0. (3.12)

Because of the boundary conditions we can take solution of type

ωn(x, y) = A sin(δλ1x) sin(δλ2y),

ψn(x, y) = B cos(δλ1x) sin(δλ2y),

ϕn(x, y) = C sin(δλ1x) cos(δλ2y),

where A, B, C depend on λn and will be determined explicitly in what follows. Note

that this choice is compatible with the boundary conditions (1.7)–(1.9). Then, taking into

account the definition of λn given by (3.9) and δ, the system (3.10)–(3.12) is equivalent to

finding A, B and C such that

Kδλ1B +Kδλ2C = ρ1, (3.13)

Kδλ1A+

[
−λ2

n

(
ρ2 − D

ρ1

K

)
− D

(
1 + μ

2

)
δ2λ2

2 +K + iλnd1

]
B

+ D

(
1 + μ

2

)
δ2λ1λ2C = 0, (3.14)

Kδλ2A+ D

(
1 + μ

2

)
δ2λ1λ2B +

[
−λ2

n

(
ρ2 − D

ρ1

K

)
+

−D
(

1 + μ

2

)
δ2λ2

1 +K + iλnd2

]
C = 0. (3.15)

From (3.13) we have

C := Cn =
δ

λ2
− λ1

λ2
B. (3.16)

Substituting (3.16) into (3.14) and (3.15), respectively, we get

Kδλ1A+

[
−λ2

n

(
ρ2 − D

ρ1

K

)
− D

(
1 + μ

2

)
δ2λ2

n +K + iλnd1

]
B

= −D
(

1 + μ

2

)
δ3λ1, (3.17)

https://doi.org/10.1017/S0956792517000092 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000092


Stability of weakly dissipative Reissner–Mindlin–Timoshenko plates 235

and

Kδλ2A−
[
−λ2

n

(
ρ2 − D

ρ1

K

)
− D

(
1 + μ

2

)
δ2λ2

n +K + iλnd2

]
λ1

λ2
B

= −
[
−λ2

n

(
ρ2 − D

ρ1

K

)
− D

(
1 + μ

2

)
δ2λ2

1 +K + iλnd2

]
δ

λ2
. (3.18)

Multiplying, respectively, equations (3.17) and (3.18) by λ2 and −λ1 and summing up

the product result we obtain[
−λ2

n

(
ρ2 − D

ρ1

K

)
− D

(
1 + μ

2

)
δ2λ2

n +K + iλnd1

]
λ2B

+

[
−λ2

n

(
ρ2 − D

ρ1

K

)
− D

(
1 + μ

2

)
δ2λ2

n +K + iλnd2

]
λ2

1

λ2
B

=

[
−λ2

n

(
ρ2 − D

ρ1

K

)
− D

(
1 + μ

2

)
δ2λ2

1 +K + iλnd2

]
δ
λ1

λ2

− D

(
1 + μ

2

)
δ3λ1λ2,

from where we obtain

B := Bn =

[
−λ2

nD
(
ρ2

D
− ρ1

K

)
− D

(
1+μ

2

)
δ2λ2

n +K + iλnd2

]
δλ1

−λ4
nD

(
ρ2

D
− ρ1

K

)
− D

(
1+μ

2

)
δ2λ4

n +Kλ2
n + iλn(d1λ

2
2 + d2λ

2
1)
. (3.19)

Substituting B given by (3.19) into (3.17), we get

A := An = −D
K

(
1 + μ

2

)
δ2 − Q1(λn)Q2(λn)

Q3(λn)
, (3.20)

where

Q1(λn) = −λ2
n

(
ρ2 − D

ρ1

K

)
− D

(
1 + μ

2

)
δ2λ2

n +K + iλnd1,

Q2(λn) = −λ2
n

(
ρ2 − D

ρ1

K

)
− D

(
1 + μ

2

)
δ2λ2

n +K + iλnd2,

Q3(λn) = K

[
−λ4

nD
(ρ2

D
− ρ1

K

)
− D

(
1 + μ

2

)
δ2λ4

n +Kλ2
n + iλn(d1λ

2
2 + d2λ

2
1)

]
.

From (3.16), (3.19) and (3.20) we can conclude that

An →
D

K

(ρ2

D
− ρ1

K

)
, Bn → 0, Cn → 0, (3.21)

when n→ ∞. Then using the definition of ||Un||H and the hypotheses (3.8), we have

||Un||2H � ρ1

∫
Ω

|Wn|2 d(x, y) = ρ1

∫
Ω

|λnAn sin(δλ1x) sin(δλ2y)|2 d(x, y)

= ρ1|λnAn|2
L1L2

4
→ ∞,
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as n → ∞. Therefore, from Theorem 1.1 we conclude that the semigroup S(t) associated

with the system (1.1)–(1.9) does not have exponential decay. �

4 Exponential stability

In this section, we establish some properties of the asymptotic behaviour of the energy

associated with the Reissner–Mindlin–Timoshenko system (1.1)–(1.9) on a rectangular

domain. In particular, we show that the system is exponentially stable when the speeds

of wave propagation are equal, that is, v21 = v22 . To do this, first we show, following

Theorem 1.1, that the resolvent is uniformly bounded over the imaginary axis. Then, let us

consider the product in H of U = (ω,W,ψ,Ψ, ϕ, Φ)′ ∈ D(A) with the resolvent equation

of A, that is

iλ||U||2H − (AU,U)H = (F,U)H.

Then taking the real part and using the inequality (2.6), we obtain

d1

∫
Ω

Ψ 2 d(x, y) + d2

∫
Ω

Φ2 d(x, y) � ||U||H||F||H, (4.1)

where F = (f1, f2, f3, f4, f5, f6)′ ∈ H. Now, taking account of the resolvent system in

terms of the coefficients, we obtain

iλω −W = f1, (4.2)

iλρ1W −K(ψ + ωx)x −K(ϕ+ ωy)y = f2, (4.3)

iλψ −Ψ = f3, (4.4)

iλρ2Ψ − D

(
ψxx +

1 − μ

2
ψyy +

1 + μ

2
ϕxy

)
+K(ψ + ωx) + d1Ψ = f4, (4.5)

iλϕ− Φ = f5, (4.6)

iλρ2Φ− D

(
1 − μ

2
ϕxx + ϕyy +

1 + μ

2
ψxy

)
+K(ϕ+ ωy) + d2Φ = f6, (4.7)

where λ ∈ IR. Our starting point is to show that iIR∩σ(A) = �, where σ(A) is the spectrum

of A. Using the Lax–Milgram Theorem (see [7]) we have that 0 ∈ ρ(A) therefore A−1 is

bounded and it is a bijection between H and the domain D(A). Since D(A) has compact

embedding into H it follows that A−1 is a compact operator, which implies that the

spectrum of A is discrete.

Lemma 4.1 With the above notation we have

iIR ⊂ ρ(A). (4.8)

Proof To prove (4.8), it suffices to show that A has no imaginary eigenvalue. Let us

reason by contradiction. Let us suppose that there exists an imaginary eigenvalue iλ with

eigenvector U = (ω,W,ψ,Ψ, ϕ, Φ)′ ∈ D(A) with ||U||H = 1 such that AU − iλU = 0.
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From (2.6), we have Ψ = Φ = 0. Then, from (4.4) and (4.6), with f3 = f5 = 0, we get

ψ = ϕ = 0. Now, from (4.5) and (4.7), with f4 = f6 = 0, and using Poincaré’s inequality,

we conclude that ω = 0. Consequently, from (4.2), with f1 = 0, it follows that W = 0.

Therefore, U = 0, but this is a contradiction. �

Remark. In particular this result implies that the semigroup is strongly stable, that is

S(t)U0 → 0 as t → ∞, where S(t) := eAt is the C0-semigroup of contractions on Hilbert

space H and U0 is the initial data.

Now, we will prove that the Reissner–Mindlin–Timoshenko system is exponentially

stable for the condition v21 = v22 . This proof involves some auxiliary lemmas.

Lemma 4.2 There exists a positive constant M, such that

D

∫
Ω

|ψx|2 d(x, y) + D

∫
Ω

|ϕy|2 d(x, y) + D

(
1 − μ

2

) ∫
Ω

|ψy + ϕx|2 d(x, y)

+ Dμ

∫
Ω

ψxϕy d(x, y) + Dμ

∫
Ω

ϕyψx d(x, y)

�
K

|λ|2
∫
Ω

|ψ + ωx|2 d(x, y) +
K

|λ|2
∫
Ω

|ϕ+ ωy|2 d(x, y) +M||U||H||F||H, (4.9)

for |λ| > 1 large enough.

Proof Multiplying equation (4.5) by ψ and integrating on Ω, we get

iλρ2

∫
Ω

Ψψ d(x, y)︸ ︷︷ ︸
:=I1

−D
∫
Ω

ψxxψ d(x, y) − D

(
1 − μ

2

) ∫
Ω

ψyyψ d(x, y)

− D

(
1 − μ

2

)∫
Ω

ϕxyψ d(x, y) − Dμ

∫
Ω

ϕxyψ d(x, y)

+ K

∫
Ω

(ψ + ωx)ψ d(x, y) + d1

∫
Ω

Ψψ d(x, y) =

∫
Ω

f4ψ d(x, y).

Substituting ψ given by (4.4) into I1, performing a integration by parts and using the

boundary conditions (1.7)–(1.9), one has that

D

∫
Ω

|ψx|2 d(x, y) + D

(
1 − μ

2

) ∫
Ω

|ψy|2 d(x, y) + D

(
1 − μ

2

) ∫
Ω

ϕxψy d(x, y)

+ Dμ

∫
Ω

ϕyψx d(x, y) = ρ2

∫
Ω

|Ψ |2 d(x, y) −K

∫
Ω

(ψ + ωx)ψ d(x, y)

− d1

∫
Ω

Ψψ d(x, y) +

∫
Ω

f4ψ d(x, y) + ρ2

∫
Ω

Ψf3 d(x, y). (4.10)

On the other hand, multiplying equation (4.7) by ϕ, integrating by parts on Ω and
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using (4.6), we get

D

(
1 − μ

2

) ∫
Ω

|ϕx|2 d(x, y) + D

∫
Ω

|ϕy|2 d(x, y) + D

(
1 − μ

2

) ∫
Ω

ψyϕx d(x, y)

+ Dμ

∫
Ω

ψxϕy d(x, y) = ρ2

∫
Ω

|Φ|2 d(x, y) −K

∫
Ω

(ϕ+ ωy)ϕ d(x, y)

− d2

∫
Ω

Φϕ d(x, y) +

∫
Ω

f6ϕ d(x, y) + ρ2

∫
Ω

Φf5 d(x, y). (4.11)

Summing equations (4.10) and (4.11), and using Young’s inequality, we get

D

∫
Ω

|ψx|2 d(x, y) + D

∫
Ω

|ϕy|2 d(x, y) + D

(
1 − μ

2

) ∫
Ω

|ψy + ϕx|2 d(x, y)

+ Dμ

∫
Ω

ψxϕy d(x, y) + Dμ

∫
Ω

ϕyψx d(x, y)

�

(
ρ2 +

d2

|λ| +
K

4

) ∫
Ω

|Ψ |2 d(x, y) +

(
ρ2 +

d2

|λ| +
K

4

) ∫
Ω

|Φ|2d(x, y)

+
K

|λ|2
∫
Ω

|ψ + ωx|2 d(x, y) +
K

|λ|2
∫
Ω

|ϕ+ ωy|2 d(x, y)

+
K

|λ|

∫
Ω

|f3||ψ + ωx| d(x, y) +
K

|λ|

∫
Ω

|f5||ϕ+ ωy| d(x, y)

+
d1

|λ|

∫
Ω

|Ψ ||f3| d(x, y) +
d2

|λ|

∫
Ω

|Φ||f5| d(x, y) +

∫
Ω

|f4||ψ| d(x, y)

+

∫
Ω

|f6||ϕ| d(x, y) + ρ2

∫
Ω

|Ψ ||f3| d(x, y) + ρ2

∫
Ω

|Φ||f5| d(x, y), (4.12)

where ε is a small positive constant. Then, from the above inequality and from (4.1) we

conclude the proof of the lemma. �

The next lemma gives the important relation between the coefficients for obtaining the

necessary and sufficient condition for exponential stability.

Lemma 4.3 There exists a positive constant M such that any solution of system (1.1)–(1.9)

satisfies

K

2

∫
Ω

|ψ + ωx|2 d(x, y) +
K

2

∫
Ω

|ϕ+ ωy|2 d(x, y)

� λ

∣∣∣∣Dρ1

K
− ρ2

∣∣∣∣
∫
Ω

|W ||ψx + ϕy| d(x, y) +M||U||H||F||H, (4.13)

for |λ| > 1 large enough.
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Proof Multiplying equation (4.5) by (ψ + ωx), integrating by parts on Ω and using (4.4),

we have

iλρ2

∫
Ω

Ψωx d(x, y) + D

∫
Ω

ψx(ψ + ωx)x d(x, y)

+ D

(
1 − μ

2

)∫
Ω

ψy(ψ + ωx)y d(x, y)

+ D

(
1 − μ

2

)∫
Ω

ϕx(ψ + ωx)y d(x, y) + Dμ

∫
Ω

ϕy(ψ + ωx)x d(x, y)

− D

∫
Γ2

(
ψx + μϕy,

1 − μ

2

(
ϕx + ψy

))
· ν(ψ + ωx) dΓ2

+ K

∫
Ω

|ψ + ωx|2 d(x, y) = ρ2

∫
Ω

|Ψ |2 d(x, y) + ρ2

∫
Ω

Ψf3 d(x, y)

− d1

∫
Ω

Ψ (ψ + ωx) d(x, y) +

∫
Ω

f4(ψ + ωx) d(x, y). (4.14)

On the other hand, multiplying equation (4.7) by (ϕ+ ωy) integrating by parts on Ω

and using (4.6), we have

iλρ2

∫
Ω

Φωy d(x, y) + D

(
1 − μ

2

) ∫
Ω

ϕx(ϕ+ ωy)x d(x, y)

+ D

∫
Ω

ϕy(ϕ+ ωy)y d(x, y) + D

(
1 − μ

2

) ∫
Ω

ψy(ϕ+ ωy)x d(x, y)

+ Dμ

∫
Ω

ψx(ϕ+ ωy)yd(x, y) +K

∫
Ω

|ϕ+ ωy|2d(x, y)

− D

∫
Γ1

(
1 − μ

2
(ϕx + ψy), ϕy + μψx

)
· ν(ϕ+ ωy) dΓ1

= ρ2

∫
Ω

|Φ|2 d(x, y) + ρ2

∫
Ω

Φf5 d(x, y)

− d2

∫
Ω

Φ(ϕ+ ωy) d(x, y) +

∫
Ω

f6(ϕ+ ωy) d(x, y). (4.15)

Summing up the results obtained and taking into account the boundary conditions

(1.7)–(1.9), we arrive at

iλρ2

∫
Ω

Ψωx d(x, y) + iλρ2

∫
Ω

Φωy d(x, y) +K

∫
Ω

|ψ + ωx|2 d(x, y)

+ K

∫
Ω

|ϕ+ ωy|2 d(x, y) + D

∫
Ω

ψx(ψ + ωx)x d(x, y) + D

∫
Ω

ϕy(ϕ+ ωy)y d(x, y)︸ ︷︷ ︸
:=I2

+ D

(
1 − μ

2

) ∫
Ω

ψy(ψ + ωx)y d(x, y) + D

(
1 − μ

2

) ∫
Ω

ϕx(ϕ+ ωy)x d(x, y)

+ D

(
1 − μ

2

) ∫
Ω

ϕx(ψ + ωx)y d(x, y) + D

(
1 − μ

2

)∫
Ω

ψy(ϕ+ ωy)x d(x, y)
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+ Dμ

∫
Ω

ϕy(ψ + ωx)x d(x, y) + Dμ

∫
Ω

ψx(ϕ+ ωy)y d(x, y) = ρ2

∫
Ω

|Ψ |2 d(x, y)

+ ρ2

∫
Ω

|Φ|2 d(x, y) + ρ2

∫
Ω

Ψf3 d(x, y) + ρ2

∫
Ω

Φf5 d(x, y) − d1

∫
Ω

Ψ (ψ + ωx) d(x, y)

− d2

∫
Ω

Φ(ϕ+ ωy) d(x, y) +

∫
Ω

f4(ψ + ωx) d(x, y) +

∫
Ω

f6(ϕ+ ωy) d(x, y).

Now, from (4.3), we have

K

∫
Ω

(ψ + ωx)xψx d(x, y) +K

∫
Ω

(ϕ+ ωy)yϕy d(x, y)

= −iλρ1

∫
Ω

W (ψx + ϕy) d(x, y) −K

∫
Ω

(ϕ+ ωy)yψx d(x, y)

− K

∫
Ω

(ψ + ωx)xϕy d(x, y) −
∫
Ω

f2(ψx + ϕy) d(x, y). (4.16)

Substituting (4.16) into I2, we get

iλρ2

∫
Ω

Ψωx d(x, y)︸ ︷︷ ︸
:=I3

+ iλρ2

∫
Ω

Φωy d(x, y)︸ ︷︷ ︸
:=I4

−iλDρ1

K

∫
Ω

W (ψx + ϕy) d(x, y)

+ K

∫
Ω

|ψ + ωx|2 d(x, y) +K

∫
Ω

|ϕ+ ωy|2 d(x, y)

− D(1 − μ)

∫
Ω

ϕy(ψ + ωx)x d(x, y) − D(1 − μ)

∫
Ω

ψx(ϕ+ ωy)y d(x, y)

+ D

(
1 − μ

2

)∫
Ω

ψy(ψ + ωx)y d(x, y) + D

(
1 − μ

2

)∫
Ω

ϕx(ϕ+ ωy)x d(x, y)

+ D

(
1 − μ

2

)∫
Ω

ϕx(ψ + ωx)y d(x, y) + D

(
1 − μ

2

)∫
Ω

ψy(ϕ+ ωy)x d(x, y)

= ρ2

∫
Ω

|Ψ |2 d(x, y) + ρ2

∫
Ω

|Φ|2 d(x, y) + ρ2

∫
Ω

Ψf3 d(x, y) + ρ2

∫
Ω

Φf5 d(x, y)

− d1

∫
Ω

Ψ (ψ + ωx) d(x, y) − d2

∫
Ω

Φ(ϕ+ ωy) d(x, y) +
D

K

∫
Ω

f2(ψx + ϕy) d(x, y)

+

∫
Ω

f4(ψ + ωx) d(x, y) +

∫
Ω

f6(ϕ+ ωy) d(x, y). (4.17)

Now, substituting ω given by (4.2) into I3 and I4, and using (4.4) and (4.6), we have

I3 + I4 = iλρ2

∫
Ω

W (ψx + ϕy) d(x, y) − ρ2

∫
Ω

W (f3
x + f5

y) d(x, y)

− ρ2

∫
Ω

f1
xΨ d(x, y) − ρ2

∫
Ω

f1
yΦ d(x, y). (4.18)
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Substituting (4.18) into (4.17) and after simplifications, we obtain

K

∫
Ω

|ψ + ωx|2 d(x, y) +K

∫
Ω

|ϕ+ ωy|2 d(x, y) + D

(
1 − μ

2

) ∫
Ω

|ψy − ϕx|2 d(x, y)

= iλ

(
Dρ1

K
− ρ2

)∫
Ω

W (ψx + ϕy) d(x, y) + ρ2

∫
Ω

|Ψ |2 d(x, y) + ρ2

∫
Ω

|Φ|2 d(x, y)

+ ρ2

∫
Ω

Ψf3 d(x, y) + ρ2

∫
Ω

Φf5 d(x, y) + ρ2

∫
Ω

f1
xΨ d(x, y) + ρ2

∫
Ω

f1
yΦ d(x, y)

+ ρ2

∫
Ω

W
(
f3
x + f5

y

)
d(x, y) − d1

∫
Ω

Ψ (ψ + ωx) d(x, y) − d2

∫
Ω

Φ(ϕ+ ωy) d(x, y)

+
D

K

∫
Ω

f2ψx d(x, y) +
D

K

∫
Ω

f2ϕy d(x, y) +

∫
Ω

f4(ψ + ωx) d(x, y)

+

∫
Ω

f6(ϕ+ ωy) d(x, y).

Then, using Young’s inequality, it follows that

K

2

∫
Ω

|ψ + ωx|2 d(x, y) +
K

2

∫
Ω

|ϕ+ ωy|2 d(x, y)

� |λ|
∣∣∣∣Dρ1

K
− ρ2

∣∣∣∣
∫
Ω

|W ||ψx + ϕy| d(x, y)

+

(
ρ2 +

d2
1

2K

) ∫
Ω

|Ψ |2 d(x, y) +

(
ρ2 +

d2
2

2K

)∫
Ω

|Φ|2 d(x, y)

+ ρ2

∫
Ω

|Ψ ||f3| d(x, y) + ρ2

∫
Ω

|Φ||f5| d(x, y) + ρ2

∫
Ω

|f1
x||Ψ | d(x, y)

+ ρ2

∫
Ω

|f1
y ||Φ| d(x, y) + ρ2

∫
Ω

|W ||f3
x + f5

y | d(x, y) +
D

K

∫
Ω

|f2||ψx|d(x, y)

+
D

K

∫
Ω

|f2||ϕy| d(x, y) +

∫
Ω

|f4||ψ + ωx)| d(x, y) +

∫
Ω

|f6||ϕ+ ωy| d(x, y). (4.19)

Now, using the inequality (4.1) we have the conclusion of the lemma. �

Lemma 4.4 There exists a positive constant M, such that

ρ1

∫
Ω

|W |2 d(x, y) �
1

4

∫
Ω

|Ψ |2 d(x, y) +
1

4

∫
Ω

|Φ|2 d(x, y) +

(
K +

1

|λ|2
)∫

Ω

|ψ + ωx|2d(x, y)

+

(
K +

1

|λ|2
)∫

Ω

|ϕ+ ωy|2d(x, y) +M||U||H||F||H, (4.20)

for |λ| > 1 large enough.

Proof Multiplying equation (4.3) by ω and integrating on Ω, we get

iλρ1

∫
Ω

Wω d(x, y)︸ ︷︷ ︸
:=I7

−K
∫
Ω

(ψ + ωx)xω d(x, y) −K

∫
Ω

(ϕ+ ωy)yω d(x, y) =

∫
Ω

f2ω d(x, y).
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Substituting ω given by (4.2) into I7 and integrating by parts, we have

ρ1

∫
Ω

|W |2 d(x, y) −K

∫
Ω

|ψ + ωx|2 d(x, y) −K

∫
Ω

|ϕ+ ωy|2 d(x, y)

+ K

∫
Ω

(ψ + ωx)ψ d(x, y) +K

∫
Ω

(ϕ+ ωy)ϕ d(x, y) = −ρ1

∫
Ω

Wf1 d(x, y)

−
∫
Ω

f2ω d(x, y).

Then, using Young’s inequality, we get

ρ1

∫
Ω

|W |2d(x, y) �
1

4

∫
Ω

|Ψ |2 d(x, y) +
1

4

∫
Ω

|Φ|2 d(x, y)

+

(
K +

1

|λ|2
) ∫

Ω

|ψ + ωx|2 d(x, y) +

(
K +

1

|λ|2
)∫

Ω

|ϕ+ ωy|2 d(x, y)

+
1

|λ|

∫
Ω

|f3||ψ + ωx| d(x, y) +
1

|λ|

∫
Ω

|f5||ϕ+ ωy| d(x, y)

+ ρ1

∫
Ω

|W ||f1| d(x, y) +

∫
Ω

|f2||ω| d(x, y).

Therefore, using (4.1) we have the conclusion of the lemma. �

Now, we are in the position to prove the main result of this article.

Theorem 4.5 The semigroup associated with the Reissner–Mindlin–Timoshenko system

(1.1)–(1.9) is exponentially stable if and only if v21 = v22 .

Proof From Lemmas 4.2–4.4, we can conclude that

||U||2H � M||U||H||F||H, ∀U ∈ D(A),

from where it follows that

||U||H � M||F||H, ∀U ∈ D(A).

Using Prüss’s result [26], one has the conclusion of the theorem. �

5 Polynomial decay and its optimal estimate

In the Section 3, we have seen that the Reissner–indlin–Timoshenko system is not

exponentially stable when v21 = v22 . Then, taking into account this assumption, we will

show that in general the Reissner–Mindlin–Timoshenko system goes to zero polynomially

as 1/
√
t.

Theorem 5.1 Let us suppose that v21 = v22 . Then the semigroup associated with the Reissner–

Mindlin–Timoshenko system (1.1)–(1.9) is polynomially stable, that is, there exists a positive
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constant C such that

||S(t)U0||H �
C√
t
||U0||D(A), ∀U0 ∈ D(A).

Moreover, this rate of decay is optimal, in the sense that decay must be slower than t−
1

2−ε

for any ε > 0.

Proof From (4.9), we have

D

∫
Ω

(
|ψx|2 + |ϕy|2

)
d(x, y) �

Kε

|λ|2
∫
Ω

|ψ + ωx|2 d(x, y) +
Kε

|λ|2
∫
Ω

|ϕ+ ωy|2 d(x, y)

+ C1||U||H||F||H, (5.1)

where C1 is a positive constant. Now, from (4.13), we obtain

K

2

∫
Ω

(
|ψ + ωx|2 + |ϕ+ ωy|2

)
d(x, y) � |λ|

∣∣∣∣Dρ1

k
− ρ2

∣∣∣∣
∫
Ω

|W ||ψx + ϕy| d(x, y)

+ M||U||H||F||H. (5.2)

Using Young’s inequality it follows that

K

2

∫
Ω

(
|ψ + ωx|2 + |ϕ+ ωy|2

)
d(x, y) � C2|λ|

∫
Ω

|W |2 d(x, y)

+ C2|λ|
∫
Ω

(
|ψx|2 + |ϕy|2

)
d(x, y) +M||U||H||F||H,

(5.3)

where C2 is a positive constant. Substituting (5.3) into (5.1), we obtain

D

∫
Ω

(
|ψx|2 + |ϕy|2

)
d(x, y) �

2C2ε

|λ|

∫
Ω

|W |2 d(x, y)

+
2C2ε

|λ|

∫
Ω

(
|ψx|2 + |ϕy|2

)
d(x, y) +M||U||H||F||H. (5.4)

Combining Lemmas 4.2–4.4 with inequality (5.4), then choosing ε > 0 small enough it

follows that there exists a positive constant C , such that

||U||2H � C|λ|2||U||H||F||H,

for |λ| > 1 large enough and, consequently, we have

1

|λ|2 ||U||H � C||F||H,

which is equivalent to

||(λI −A)−1||L(H) � C|λ|2.

https://doi.org/10.1017/S0956792517000092 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000092


244 A. D. S. Campelo et al.

Then using Theorem 1.2 one gets the first conclusion of the theorem. To prove that the

rate is optimal we use the same ideas as in the proof of Theorem 3.1 and the details can

be omitted here. The proof is now complete. �

6 Numerical approach

In this section, we consider a numerical scheme using finite differences and we reproduce

numerically the analytical results established on exponential decay for the Reissner–

Mindlin–Timoshenko system. We are concerned mainly with the lack of exponential

decay reached in Section 3. That is to say, if (3.8) holds, then the dissipative system of

Reissner–Mindlin–Timoshenko system treated here is not exponentially stable.

6.1 A fully discrete finite-difference scheme and its properties

Given I, J, N ∈ IN, we set Δx =
L1

I + 1
, Δy =

L2

J + 1
and Δt =

T

N + 1
, and we introduce

the grids

x0 = 0 < x1 = Δx < · · · < xI = IΔx < xI+1 = (I + 1)Δx = L1, (6.1)

y0 = 0 < y1 = Δy < · · · < yJ = JΔy < yJ+1 = (J + 1)Δy = L2, (6.2)

t0 = 0 < t1 = Δt < · · · < tN = NΔt < tN+1 = (N + 1)Δt = T , (6.3)

with xi = iΔx, yj = jΔy and tn = nΔt for i = 0, 1, 2, . . . , I + 1, j = 0, 1, 2, . . . , J + 1 and

n = 0, 1, 2, . . . , N + 1.

In numerical setting our problem consists of finding (ωn
i,j , ψ

n
i,j , ϕ

n
i,j) satisfying the follow-

ing numerical scheme:

ρ1∂t∂tω
n
i,j = K∂x∂xω

n
i,j +K

∂x + ∂x
2

ψni,j +K∂y∂yω
n
i,j +K

∂y + ∂y
2

ϕni,j , (6.4)

ρ2∂t∂tψ
n
i,j = D∂x∂xψ

n
i,j + D

1 − μ

2
∂y∂yψ

n
i,j + D

1 + μ

2

(
∂y + ∂y

2

∂x + ∂x
2

)
ϕni,j

− K

2
(ψni+1/2,j + ψni−1/2,j + ψni,j+1/2 + ψni,j−1/2)

− K
∂x + ∂x

2
ωn
i,j − d1

∂t + ∂t
2

ψni,j , (6.5)

ρ2∂t∂tϕ
n
i,j = D∂y∂yϕ

n
i,j + D

1 − μ

2
∂x∂xϕ

n
i,j + D

1 + μ

2

(
∂x + ∂x

2

∂y + ∂y
2

)
ψni,j

− K

2
(ϕni+1/2,j + ϕni−1/2,j + ϕni,j+1/2 + ϕni,j−1/2)

− K
∂y + ∂y

2
ωn
i,j − d2

∂t + ∂t
2

ϕni,j , (6.6)

for all i = 1, 2, . . . , I j = 1, 2, . . . , J and n = 1, 2, . . . , N. To simplify our numerical
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calculations, we consider the homogeneous boundary conditions given by

ωn
0,j = ωn

I+1,j = uni,0 = ωn
i,J+1 = 0, ∀n = 1, 2, . . . , N, (6.7)

ψn0,j = ψnI+1,j = ψni,0 = ψni,J+1 = 0, ∀n = 1, 2, . . . , N, (6.8)

ϕn0,j = ϕnI+1,j = ϕni,0 = ϕni,J+1 = 0, ∀n = 1, 2, . . . , N, (6.9)

and initial conditions given by

ω0
i,j = ω(xi, yj , 0), ω1

i,j = ω0
i,j + Δtωt(xi, yj , 0), ∀i = 1, . . . , I, j = 1, . . . , J, (6.10)

ψ0
i,j = ψ(xi, yj , 0), ψ1

i,j = ψ0
i,j + Δtψt(xi, yj , 0), ∀i = 1, . . . , I, j = 1, . . . , J, (6.11)

ϕ0
i,j = ϕ(xi, yj , 0), ϕ1

i,j = ϕ0
i,j + Δtϕt(xi, yj , 0), ∀i = 1, . . . , I, j = 1, . . . , J. (6.12)

The numerical operators used in (6.4)–(6.6) are given by

∂xω
n
i,j :=

ωn
i+1,j − ωn

i,j

Δx
, ∂xω

n
i,j :=

ωn
i,j − ωn

i−1,j

Δx
, ∂yω

n
i,j :=

ωn
i,j+1 − ωn

i,j

Δy
,

∂yω
n
i,j :=

ωn
i,j − ωn

i,j−1

Δy
, ∂tω

n
i,j :=

ωn+1
i,j − ωn

i,j

Δt
, ∂tω

n
i,j :=

ωn−1
i,j − ωn

i,j

Δt
,

∂x + ∂x
2

ωn
i,j :=

ωn
i+1,j − ωn

i−1,j

2Δx
,

∂y + ∂y
2

ωn
i,j :=

ωn
i,j+1 − ωn

i,j−1

2Δy
,

∂t + ∂t
2

ωn
i,j :=

ωn+1
i,j − ωn−1

i,j

2Δt
, ∂x∂xω

n
i,j :=

ωn
i+1,j − 2ωn

i,j + ωn
i−1,j

Δx2
,

∂y∂yω
n
i,j :=

ωn
i,j+1 − 2ωn

i,j + ωn
i,j−1

Δy2
, ∂t∂tω

n
i,j :=

ωn+1
i,j − 2ωn

i,j + ωn−1
i,j

Δt2
,

with the same approximations to the functions ψ and ϕ on the mesh. Here, we are

denoting by ωn
i,j , ϕ

n
i,j and ψni,j the numerical approximations to the exact solutions ω,ψ and

ϕ respectively, evaluated on the mesh. More precisely, we have ωn
i,j ≈ ω(xi, yj , tn), ψ

n
i,j ≈

ψ(xi, yj , tn) and ϕni,j ≈ ϕ(xi, yj , tn). Also ψni−1/2,j and ψni+1/2,j denote the average of ψni,j at

the points (xi−1, yj , tn), (xi, yj , tn) and (xi+1, yj , tn), (xi, yj , tn), respectively. Similar meanings

hold for ψni,j−1/2 and ψni,j+1/2. Using this discretization, we obtain the approximation given

by

ψ(xi, yj , tn) ≈
ψni+1,j + 2ψni,j + ψni−1,j

4
+
ψni,j+1 + 2ψni,j + ψni,j−1

4
. (6.13)

Numerical discretization like (6.13) avoids a numerical anomaly known as the locking

phenomenon of shear force (see [33] and references contained therein). More precisely,

it avoids an over-estimation on rigidity coefficient b = EI . Moreover, the numerical

scheme presented here is consistent and explicit in sense of the definitions given by
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Jovanović and Süli [15] and also by Süli and Mayers [31] (see also Wright [32,33]) and its

computational implementation requires knowledge of the approximations at time levels tn
and tn−1 in order to approximate the numerical solutions at time level tn+1. It is expected

that the stability criterion obeys the restriction given by Δt � 2/ωmax, where ωmax is the

high frequency of the Reissner–Mindlin–Timoshenko system (for references on this issue

see [2, 32, 33]), but the proof is still to be done. However, for the purposes of numerical

convergence, we fix the thickness h and we choose Δt� Δx for Δx = Δy.

6.2 Discrete energy

In this section, we prove that the numerical scheme (6.4)–(6.12) has a property of consist-

ency that makes it a useful method in the study of asymptotic behaviour of dissipative

systems. With this aim in mind, we present a first property concerning the energy of our

method.

The total energy to the numerical equations (6.4)–(6.12) at the time step tn will be

computed using the expression

En :=
ΔxΔy

2

I∑
i=0

J∑
j=0

[
ρ1

(
ωn+1
i,j − ωn

i,j

Δt

)2

+ ρ2

(
ψn+1
i,j − ψni,j

Δt

)2

+ ρ2

(
ϕn+1
i,j − ϕni,j

Δt

)2

+ D
ψn+1
i+1,j − ψn+1

i,j

Δx

ψni+1,j − ψni,j

Δx
+ D

(
1 − μ

2

)
ψn+1
i,j+1 − ψn+1

i,j

Δy

ψni,j+1 − ψni,j

Δy

+ D

(
1 − μ

2

)
ϕn+1
i+1,j − ϕn+1

i,j

Δx

ϕni+1,j − ϕni,j

Δx
+ D

ϕn+1
i,j+1 − ϕn+1

i,j

Δy

ϕni,j+1 − ϕni,j

Δy

+ K

(
ωn+1
i+1,j − ωn+1

i,j

Δx
+
ψn+1
i+1,j + ψn+1

i,j

2

)(
ωn
i+1,j − ωn

i,j

Δx
+
ψni+1,j + ψni,j

2

)

+ K
ψn+1
i,j+1 + ψn+1

i,j

2

ψni,j+1 + ψni,j

2

+ K

(
ωn+1
i,j+1 − ωn+1

i,j

Δy
+
ϕn+1
i,j+1 + ϕn+1

i,j

2

)(
ωn
i,j+1 − ωn

i,j

Δy
+
ϕni,j+1 + ϕni,j

2

)

+ K
ϕn+1
i+1,j + ϕn+1

i,j

2

ϕni+1,j + ϕni,j

2

+ D

(
1 + μ

2

) (
ψn+1
i+1,j+1 − ψn+1

i,j

2Δx

ϕni+1,j+1 − ϕni,j

2Δy
+
ψn+1
i,j+1 − ψn+1

i+1,j

2Δx

ϕni+1,j − ϕni,j+1

2Δy

+
ϕn+1
i+1,j+1 − ϕn+1

i,j

2Δx

ψni+1,j+1 − ψni,j

2Δy
+
ϕn+1
i,j+1 − ϕn+1

i+1,j

2Δx

ψni+1,j − ψni,j+1

2Δy

)]
. (6.14)

We note that En is the discrete version of the continuous energy (2.7). Moreover, one can

show that En decreases for any di > 0, i = 1, 2 and that it is constant for di = 0, i = 1, 2.

Instead of computing the time derivative of the energy we can use summation by parts.

The discrete energy En is an important numerical instrument to certify our analytical

results concerning the stabilization of dissipative Reissner–Mindlin–Timoshenko system

established in previous sections.
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Next, we establish the discrete counterpart of the Proposition 2.2. In that direction, we

say that the numerical scheme (6.4)–(6.8) is qualitatively stable with respect to discrete

rate of change of the energy En for all step sizes Δx, Δy and Δt (see Definition 1.1 on

page 43 of [4]).

Theorem 6.1 (Discrete energy) Let (ωn
i,j , ϕ

n
i,j , ψ

n
i,j) be a solution of the finite difference

scheme (6.4)–(6.8) with di � 0 i = 1, 2. Then for all Δt, Δx and Δy, the discrete rate of

change of energy of the numerical scheme (6.4)–(6.8) at the instant of time tn is given by

En − En−1

Δt
= −d1Δx

J∑
j=1

(
ϕn+1
i,j − ϕn−1

i,j

2Δt

)2

− d2Δx

J∑
j=1

(
ψn+1
j − ψn−1

j

2Δt

)2

� 0, (6.15)

for all n = 1, . . . , N,N + 1.

Proof The proof is too long and we omit it here. Analogously to continuous case, we

use the multipliers at discrete level given by ( ∂t+∂t
2
ωn
i,j), ( ∂t+∂t

2
ϕni,j) and ( ∂t+∂t

2
ψni,j) and we

organize the results in order to make up the difference En − En−1. �

The above theorem says that En is non-increasing regardless of any relation between

mesh parameters. That is to say, the CFL condition is not necessary to get the decreasing

of En. On the other hand, it is not assured that En preserves the positivity property

and then the discrete energy En is not signed in general. In order to prove the positivity

property, it is necessary to have the stability criterion as necessary condition. See for

example Negreanu and Zuazua [23].

6.3 Numerical simulations

In this section, we focus on the numerical scheme (6.4)–(6.12) and its energy En to

illustrate by means of the numerical experiments the analytical results established in

previous sections.

We emphasize that we are not concerned with issues of numerical convergence between

exact solution and numerical solution and the respective rate of convergence. The accuracy

of the numerical scheme (6.4)–(6.12) can be seen through of the energy conservation law.

Indeed, taking di = 0, i = 1, 2 in (6.15) we obtain that En = E0, n = 1, . . . , N + 1.

For simulations in Figure 1, we use the following main data: L1 = L2 = 1, T = 4,

thickness h = 0.015, E = 21 × 104 N/m2, ρ = 7, 850 kg/m3, k′ = 5/6 and μ = 0.29. The

initial conditions are given by

ω(xi, yj , 0) = ψ(xi, yj , 0) = ϕ(xi, yj , 0) = 0, (6.16)

ωt(xi, yj , 0) = sin

(
ν

πxi
L1

)
sin

(
ν

πyj
L2

)
, ∀ν ∈ IN, (6.17)
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ν ν

ν ν

Figure 1. Plots of the numerical energy En. The energy conservation law (2.10) and its discrete

counterpart are compatible according to two first graphs. The last two graphs show that the energy

En is like an exponential function e−ωtn for ω > 0.

ψt(xi, yj , 0) = cos

(
ν

πxi
L1

)
sin

(
ν

πyj
L2

)
, ∀ν ∈ IN, (6.18)

ϕt(xi, yj , 0) = sin

(
ν

πxi
L1

)
cos

(
ν

πyj
L2

)
, ∀ν ∈ IN. (6.19)

In the computational mesh, we use Δx = Δy = 0.03125 and Δt = 0.00195 such that

Δt/Δx = 0.0624.

6.3.1 Undamped and fully damped cases

The Figure 1 shows that the energy behaviour in time tn in two situations: undamped

(di = 0, i = 1, 2) and full damping cases. For the fully damped case, we consider three

internal frictional dissipations in the system, that is, we consider terms d0ωt, d1ψt and d2ϕt,

for d0, d1 and d2 to be positive constants. In the first one, the energy En is constant for

all tn and this property is a measure of the accurate of the numerical scheme (6.4)–(6.12).

In the simulations given Figure 1, we use different speeds of wave propagation.
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Figure 2. Discrete time versus discrete energy for dissipative Reissner–Mindlin-Timoshenko plates

when v2
1 �= v2

2 . The curve decays at time tn and in Table 1 we assumed the rate equal to 1/2 for

polynomial decay. In these cases, in order to get the optimal rate of decay, we refine the mesh size

by taking Δ = Δx = Δy ∈ {1/40, 1/60, 1/80, 1/100} and Δt = 1/2048.

6.3.2 Damping on two rotational angles

The next numerical experiments show a fast or slow decay according to whether v21 − v22
is equal to zero or not, respectively (see Figures 2 and 3). That is to say, if v21 = v22 we

obtain the exponential decay (see Theorem 4.5). On the other hand, for v21 = v22 , decay is

not exponential. (see Theorem 3.1). In both cases we calculate, from a code performed

with Matlab, the decay rates in order to give an accurate measure of exponential or

polynomial decay for energy. To be precise, we calculate the decay rates from the data

given by (logEn, tn) in order to obtain an exponential rate and from the data (logEn, log tn)

in order to obtain a polynomial decay. As we can see in Table 1, for the exponential

decay case (v21 = v22), we observed the rate decreases and approaches −2 as we refine the

step size h. On the other hand, when v21 = v22 , we can see that the rate goes to −0.5, this

result corroborates with the estimate obtained in the Section 5. For these cases, the data

for discrete energy were normalized, i.e., we take En/E0. Moreover, in this case for initial

data we consider ω(xi, yj , 0) = ψ(xi, yj , 0) = ϕ(xi, yj , 0) = ωt(xi, yj , 0) = ψt(xi, yj , 0) =

ϕt(xi, yj , 0) = 10(xi + 1)3x3
i (yj + 1)3y3

j (see [5]).
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Table 1. Decay rates

Δ = 1/40 Δ = 1/60 Δ = 1/80 Δ = 1/100

v2
1 �= v2

2 −0.2548 −0.3744 −0.4644 −0.5295

v2
1 = v2

2 −1.0591 −1.5827 −1.9480 −2.1535

Figure 3. Discrete time versus discrete energy for dissipative Reissner–Mindlin–Timoshenko plates

when v2
1 = v2

2 . The curve decays over time tn and the decay rate approaches 2.15. This is an expected

result for standard finite difference schemes.

7 Conclusions and outlook

Taking into account the literature on Timoshenko beams, it is well known that the

relationship between the speeds of wave propagation plays an important role in the

asymptotic behaviour of solutions of weakly dissipative Timoshenko systems. For example,

if we consider the Timoshenko system with a dissipative mechanism being present only

on the equation for the rotation angle, Soufyane [30] and Muñoz Rivera and Racke [22]

proved that the Timoshenko system is exponentially stable if and only if ρ1/k = ρ2/b.

In this paper, we proved a similar result for the Reissner–Mindlin–Timoshenko system

for the case where we have frictional dissipations on the equations of the rotational
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angles. Analogously to the one-dimensional case we conclude that if the speeds of wave

propagation are equal, then the energy of solutions of system decreases exponentially.

This result has been observed in the numerical experiments, by calculations on decay rates

presented in Table 1.

On the other hand, considering a frictional damping working only on the vertical

displacement for the model of Timoshenko beams, Almeida Júnior et al. [1] proved that

the system is exponentially stable if and only if the speeds of wave propagation are equal.

As previously mentioned, Campelo et al. [8] proved an analogous result to the Reissner–

Mindlin–Timoshenko system with frictional damping acting only on the displacement

equation.

It is increasingly clear that the two-dimensional model of Reissner–Mindlin–

Timoshenko preserves some qualitative properties of the one-dimensional model of

Timoshenko. At this point, knowing that research involving problems of Timoshenko

beams is better consolidated, we design new questions and perspectives of dissipative

models of Reissner–Mindlin–Timoshenko, and that can be studied from the point of view

of mathematical analysis, especially regarding the exponential stability and taking into

account the speeds of wave propagation. For example, the dynamic model plates can

be studied with other dissipative mechanisms such as thermal dissipation, which can be

obtained by considering heat conduction Fourier’s or Cattaneo’s law. Therefore, for these

systems we hope that there exists a relationship between the coefficients, which makes

them exponentially stable as in the 1-D case.
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[20] Muñoz Rivera, J. E. & Portillo Oquendo, H. (2003) Asymptotic behavior on a Mindlin–

Timoshenko plate with viscoelastic dissipation on the boundary. Funkcialaj Ekvacioj. 46(3),

363–382.
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