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Abstract
The use of cluster robust standard errors (CRSE) is common as data are o�en collected from units, such as
cities, states or countries,withmultiple observationsper unit. There is considerablediscussionof howbest to
estimate standard errors and confidence intervals when using CRSE (Harden 2011; Imbens and Kolesár 2016;
MacKinnon and Webb 2017; Esarey and Menger 2019). Extensive simulations in this literature and here show
that CRSE seriously underestimate coe�icient standard errors and their associated confidence intervals,
particularlywith a small number of clusters andwhen there is littlewithin cluster variation in the explanatory
variables. These same simulations show that a method developed here provides more reliable estimates
of coe�icient standard errors. They underestimate confidence intervals for tests of individual and sets of
coe�icients in extreme conditions, but by far less than do CRSE. Simulations also show that this method
producesmore accurate standard error and confidence interval estimates than bootstrapping, which is o�en
recommended as an alternative to CRSE.

Keywords: clustered robust standard errors, clustered data, confidence intervals

Common units of analysis in Political Science are collective entities, such as voting precincts,
cities, states or countries because that is how available data are collected, as in ecological voting
studies, or because the unit is the entity of interest, as in studies of electoral party systems.
Data clustered this way present estimation problems because the error terms within a cluster are
unlikely to be independent. In many studies the multiple observations per unit are observed at
irregular intervalswith varyingnumbers of observationsper unit so thedatadonot conform to the
standard time-series, cross-section estimation models, which is one method for accommodating
interdependence. The interdependence problem, however, must be addressed to obtain reliable
estimates of the coe�icients’ uncertainty as measured by their standard errors.
The commonmethodwith clustered data is cluster robust standard errors (CRSE), based on the

Liang and Zeger (1986) extension to clustered data of the robust standard errors associated with
Eicker (1967), Huber (1967) andWhite (1980). Unfortunately, as reviewed in various studies cited in
Imbens and Kolesár (2016), MacKinnon and Webb (2017) and Esarey and Menger (2019) CRSE are
biased downwards for small samples and possibly even for larger samples. These authors present
methods to adjust the CRSE confidence intervals, but do not address the basic bias problem.
This paper contributes to this literature by discussing a method for using the residuals from

an OLS estimation to estimate the covariance within clusters which is then used to estimate the
coe�icient variance–covariance matrix. The problems with CRSE are discussed and then the new
approach is developed. ExtensiveMonteCarlo simulations are conducted to compare thedi�erent
correction methods with di�erent sample properties. We conclude with examples from the State
Politics and the Comparative Politics literatures where clustered data are common.1

1 Methodological Issues with Cluster Robust Standard Errors
CRSE are routine with grouped data. (See Greene (2012, pp. 351 and 353); Franzese (2005); and
the citation count in Esarey and Menger (2019, Table 1).) MacKinnon and Webb (2017, p. 233)

Author’s note: I want to thank Ken Kollman, Chuck Shipan, MatthewWebb and the ubiquitous anonymous referee for their
helpful comments and Diogo Ferrari for his comments and the R package “ceser” for computing CESE. All are absolved
from any and all errors.

1 Replication files and data for all simulations and examples are archived at Jackson (2019).
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name three necessary conditions for CRSE to be consistent: (a) an infinite number of clusters;
(b) homogeneity across clusters in the stochastic term distributions; and (c) an equal number of
observations per cluster. This section discusses these and additional conditions that a�ect the
CRSE underestimates of the true standard errors and thus biases subsequent statistical inference.

1.1 OLS with Cluster Robust Standard Errors
The problems posed by clustered data are described well in the cited literature. Following the
conventional notation thepopulationmodel isY = Xβ+V and theestimatedmodel isY = Xb+e .
The observations used to obtain the estimatedmodel are clustered into groups, such as countries.
The clusters aredenotedbyg ,g = 1, . . . ,G .With interdependencewithin clustersE (VgV ′g ) = Σg ,
σ2
g I . Denote the o�-diagonal terms in Σg by ρg , 0. The conventional assumption and the one
adopted here is that the stochastic terms are independent across groups so that Σv = E (VV ′) is
block diagonal with the blocks being the variances and covariances of the stochastic termswithin
each cluster. The correct standard errors for the OLS estimation are,

Σb = (X ′X )−1


G∑
g=1

(X ′gΣgXg )

(X ′X )−1, (1)

and are estimated with the expression,

Σ̂b = Sb = (X ′X )−1


G∑
g=1

(X ′g Σ̂gXg )

(X ′X )−1, (2)

where Σ̂g is an estimate forΣg .
Cluster robust standard errors, following the procedure for sandwich estimators, obtain Σ̂g

from the OLS residuals, Σ̂g = (eg e ′g ), giving the following expression for the estimated CRSE,

Sb = (X ′X )−1


G∑
g=1

X ′g (eg e
′
g )Xg


(X ′X )−1. (3)

Comparison of the true standard errors to the expected CRSE is a comparison of the bracketed
term in Equation (1) with the expected value of the bracketed term in Equation (3), which in turn
depends on E (eg e ′g ). Appendix A develops the following expression,

E (eg e ′g ) = Σg − ΣgPg − PgΣg + Xg (X
′X )−1 *.

,

G∑
g=1

X ′gΣgXg
+/
-
(X ′X )−1X ′g , (4)

where Pg = Xg (X ′X )−1X ′g . Equation (4) shows the expected value of the variance–covariance
matrix used to estimate Σg . Unfortunately substituting Equation (4) into the expected value of
Equation (3) does not lead to any easily interpretable expression. Appendix B does this for the
bivariate case assuming homogeneous clusters, i.e. Σg = Σ for all g . The results provide some
important insights into factors that a�ect by howmuch CRSE underestimateΣb .
One key result in Appendix B is Equation (B 5), which shows for the bivariate case that,

σ2
b = (x ′x )−1 *.

,

∑
g

xgΣg xg
+/
-
(x ′x )−1 =

σ2

NVx
+

2ρ

(NVx )2
∑
g

C ∗g , (5)
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where x denotes thedeviations of the explanatory variable from its full samplemean, x = (X −X̄ );
N is the total sample size;Vx is the full sample variance of the explanatory variable X , and C ∗g
is the sum of the cross-product terms in cluster g , C ∗g =

∑ng−1

i=1

∑ng
j=i+1 xgi xg j . Equation (B 4) in

Appendix B shows that the expression for the expected value of the CRSE estimated coe�icient
variance is

E (s2b ) =
σ2

NVx


1 −

∑
g

(
ngVxg

NVx

)2 +
2ρ

(NVx )2
∑
g



(
1 −

ngVxg

NVx

)2
C ∗g


. (6)

There are several important implications that can be drawn from Equations (5) and (6). The
di�erence between the two equations is the presence of the squared terms involving ngVxg /NVx ,
which is the share of the total variance inX contributed by cluster g . The larger these summation
terms the larger the amount by which the CRSE underestimate the true standard errors. Though
Equation (6) is derived from the bivariate model and does not translate directly to the general
multivariate model it still provides insight into factors that likely a�ect the reliability of CRSE in
the general case.
Thereare several factors that a�ect themagnitudeof the sumof these squared terms.One is the

homogeneity of the distribution ofX across clusters. Appendix B.1 shows that with homogeneous
clusters, meaning that the number of observations and the mean and variance of X are identical
for all clusters, then the terms in brackets are only related to the factor 1/G so that as the number
of clusters increases the CRSE approach the true standard errors, limG→∞ sb = σb .
Cluster heterogeneity is themore frequent and interesting case. Because the relevant terms are

squared quantities increasing heterogeneity increases the sum of these terms, which increases
the gap between the CRSE and the true standard errors. One obvious source of heterogeneity is
variation in the number of observations in each cluster, ng . As this variation increases so will the
bias in the CRSE. Equal cluster sizes are one of the necessary conditions for consistent CRSE.
Heterogeneity in the explanatory variables’ variance is amuch less discussed problem, though

this heterogeneity hasmany sources. The focus here is on the amount of between cluster variance
as a proportion of the total variance in an explanatory variable, labeled the amount of covariate
clustering.2 A high degree of covariate clustering is a likely attribute of many Political Science
clustered datasets where the majority of variation in entities of interest, such as electoral rules,
institutions, etc. is between units, such as countries, rather than within units. To see the e�ect of
increasing the between variance decompose ngVxg into its within and between components,

ngVxg =

ng∑
i=1

[(Xgi − X̄g )2 + ng (X̄g − X̄ )2 = ngvxg + ng (X̄g − X̄ )
2], (7)

wherevxg is the variance ofX within cluster g . Increased covariate clusteringmeans larger values
for the ng (X̄g − X̄ )2 component, which in turn increases the variation in the ngVxg terms in
Equation (6), which in turn decreases the value forE (s2b ) relative toσ

2
b . As the amount of covariate

clustering increases the gap between the CRSE and the true standard error also increases.

2 Corrections
Whatare thealternatives?Bell andMcCa�rey (2002), basedona recommendation inDavidsonand
MacKinnon (1993), suggest an adjustment to the residual variances that increases the coe�icient

2 Harden (2011, footnote 3) discusses covariate clustering but combines itwith a termassessing the variation in observations
per cluster, conflating twosourcesofheterogeneity.His exact expression is,1+ρ[(1/N )(

∑G
g=1 n

2
g )−1],whereρ is theamount

of covariate clustering.
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standard errors.3 Imbens and Kolesár (2016) incorporate this adjustment in their method. This
approach still relies on eg e ′g to estimate Σg . Following the sandwich metaphor used to describe
Equation (3) this method alters the bread but not the meat, which is where the problem lies.4

Twomethods adjust the confidence intervals for each coe�icient, but not the standard errors,
hoping to improve statistical inferences on a coe�icient by coe�icient basis. Imbens and Kolesár
(2016) and Stata adjust the number of degrees of freedom for each coe�icient, thereby expanding
the confidence interval. Another approach uses bootstrap methods to estimate the confidence
intervals, (Cameron, Gelbach, and Miller 2008; Harden 2011; MacKinnon and Webb 2017). Esarey
and Menger (2019) have an excellent summary and comparison of di�erent bootstrap methods.
These approaches are limited because they do not provide an estimate for Σb .5 Exceptions

are Harden (2011) who uses a bootstrapping procedure that returns an estimate for Σb and
the Stata boottest program, Roodman et al. (2019).6 We return to Harden in a later section.
By far the most common correction though follows Cameron, Gelbach, and Miller (2008) and
only corrects the individual coe�icient confidence intervals, which creates serious limitations.
A major one is that tests of null hypotheses about multiple coe�icients, such as in models with
interaction terms, are infeasible. This is a serious shortcoming given the popularity of models
with interaction terms and the associated marginal e�ects plots, which require the fullΣb matrix
to compute the desired confidence intervals. The corrections focused on confidence intervals
also constrain the discussion to the confidence intervals selected by the authors as computing
intervals for di�erent α values requires the original data. This is contrary tomuch current practice
of reporting coe�icients and standard errors and letting readers choose the level of uncertainty,
see Wasserstein, Schirm, and Lazar (2019). A better strategy is to estimate the correct standard
errors, which is done next.

2.1 Cluster Estimated Standard Errors
The proposed method begins with the expression for E (eg e ′g ). The strategy is to relate this
expectedvalue to theunobservedvariances,σ2

gi
, andcovariancesamongpairs of stochastic terms,

ρgi j , and then to use these expressions to derive estimates for Σ̂g in computing Σ̂b in Equation (2).
Begin with the expression for E (eg e ′g ) in Equation (4). Impose the condition that the stochastic

terms within a cluster are identically distributed so that σ2
vgi

= σ2
g and that ρgi j = ρg for all i and j

in g . Equation (A 2) in Appendix A shows that,

E (eg e ′g ) = σ
2
g (Ig − Pg ) + ρg


ιg ι
′
g − (Ig − Pg ) − (Pg ιg ι

′
g + ιg ι

′
gPg )

+ Xg (X ′X )−1
*.
,

G∑
g=1

X ′g ιg ι
′
gXg

+/
-
(X ′X )−1X ′g


= σ2

gQ1g + ρgQ2g , (8)

where ιg is a ng x 1 column vector of ones. Equation (8) shows that the expected value of the
squares and cross-products of the residuals in each cluster are linear functions of the unknown

3 Davidson and MacKinnon refer to this as the hc2 adjustment. See Section 2.1.
4 A few early Monte Carlo simulations showed that the Bell and McCa�rey method provides only slight improvements over
CRSE so to conserve space it was not pursued.

5 Esarey andMenger (2019) examine amethod developed by Ibragimov andMuller (2002) called cluster-adjusted t-statistics
that does provide an estimate forΣb . This method, however, requires the model be estimated separately for each cluster.
This is impossible when the number of observations within a cluster is less than the number of explanatory variables or if
there are variables that do not vary within a cluster.

6 Boottest returns the full coe�icient variance–covariance matrix if the test command includes all the right hand side
variables including the constant term.
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terms σ2
g and ρg with the weighting terms being functions of the observed X s, e.g. the elements

inQ1g andQ2g .
To simplify the algebra while we illustrate the methodology we impose the homogeneity

condition across groups, so that σ2
g = σ2 and ρg = ρ for all g . Estimates for σ2 and ρ follow from

the linear structure in Equation (8). There are ng (ng + 1)/2 residual squares and cross-products
in (eg e ′g ) whose expected values are linear functions of σ2 and ρ. Pooling these elements for
all groups gives

∑G
g=1 ng (ng + 1)/2 elements in the matrix of observed residual squares and

cross-products,

Se =



e1e
′
1 0 · · · 0

0 e2e
′
2 · · · 0

...
...
. . .

...

0 0 · · · eGe
′
G



.

These elements are related to the two unknown coe�icients we are estimating and the
corresponding elements inQ1 andQ2. Think of this as a simple linear regression model,

Se =



e1e
′
1 0 · · · 0

0 e2e
′
2 · · · 0

...
...
. . .

...

0 0 · · · eGe
′
G



=



E (e1e ′1) + ξ1 0 · · · 0

0 E (e2e ′2) + ξ2 · · · 0
...

...
. . .

...

0 0 · · · E (eGe ′G ) + ξG



= σ2



Q11 0 · · · 0

0 Q12 · · · 0
...
...
. . .

...

0 0 · · · Q1G



+ ρ



Q21 0 · · · 0

0 Q22 · · · 0
...
...
. . .

...

0 0 · · · Q2G



+



ξ1 0 · · · 0

0 ξ2 · · · 0
...
...
. . .
...

0 0 · · · ξG


= σ2Q1 + ρQ2 + ξ. (9)

Estimation of σ2 and ρ is based on this regression structure. Let seg be the observed residual
square and cross-product terms from the lower triangle of eg e ′g stacked into an ng (ng + 1)/2
column vector. Similarly let q1g , q2g and ξg be the corresponding vectors of elements fromQ1,Q2

and ξ for cluster g . The OLS regression model used to estimate σ2 and ρ is,



se1

se2
...

seg
...

seG



=



q11

q12
...

q1g
...

q1G



σ2 +



q21

q22
...

q2g
...

q2G



ρ +



ξ1

ξ2
...

ξg
...

ξG



. (10)

This gives



σ̂2

ρ̂


=



q ′1q1 q
′
1q2

q ′2q1 q
′
2q2



−1 

q ′1se

q ′2se


. (11)
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This is not a statistical regression, but a method for choosing the values for σ2 and ρ that best fit
the observed squares and cross-products of the residuals, where best is defined as the minimum
sum of squared errors. This method is referred to as cluster estimated standard errors (CESE).
One adjustment is made computing the CESE. Davidson and MacKinnon (1993, p. 554)

recommend adjusting the residuals by hc2 = e i /
√
1 − hi i or by hc3 = e i /(1 − hi i ), where

hi i denotes the i th diagonal element in the projection matrix Pg . They argue that squared
residuals underestimate the true variance of the stochastic terms, particularly for observations
that exert leverage on the OLS estimates (indicated by larger values for hi i ). They recommend
the hc3 adjustment for data where heteroskedasticity is present. Long and Ervin (2000) report
the results of extensive Monte Carlo simulations that support the Davidson and MacKinnon
recommendations. These arguments and demonstrations are the basis for these adjustments.7

These are referred to as the CESE2 and CESE3 estimators, respectively.

3 Monte Carlo Experiments Comparing Correction Methods
Monte Carlo experiments are conducted to compare the performance of the two methods
for estimating standard errors with clustered data—cluster robust standard errors (CRSE) and
cluster estimated standard errors (CESE). The distributions of the explanatory variables and
stochastic terms are selected to examine the performance of the two estimators under a variety of
circumstances. The initial simulations match the ideal conditions for the CRSE—homogeneously
distributed explanatory variables with no covariate clustering, an equal number of observations
per clusterandhomogeneousnormallydistributedstochastic terms.Subsequent simulationsvary
the number of observations per cluster, the amount of covariate clustering, the heterogeneity of
the stochastic term distributions for each cluster and the shape of the distribution fromwhich the
stochastic terms are obtained. Each simulation is done for varying numbers of clusters.
The model has three explanatory variables and one interaction term,

Ygi = 2 + 1 ∗ X1gi
+ 0 ∗ X2gi

+ 0 ∗ (X1gi
· X2gi

) + 0.3 ∗ X3gi
+Vgi . (12)

The values for β2 and β3 equal zero to enable calculation and comparison of the rejection rates
for Wald tests of the null hypothesis that both are zero. The values for the explanatory variables
are randomdraws fromaChi-squared distributionwith three degrees of freedom. All experiments
are done with 12, 24, 48 and 72 and for the ideal conditions with 96 clusters to provide a better
examination of the asymptotic properties.
The estimators’ performance is compared in two ways. The first is the mean standardized

error in the estimated standard error of the coe�icients. Let sb be the standard deviation of the
distribution of simulated coe�icients and ¯̂sb be the mean estimated coe�icient standard error.
The mean standardized error is mste = ( ¯̂sb − sb )/sb .8 This is the mean error in estimating the
coe�icient standard error standardized by the standard deviation of the coe�icient distribution.
For example, if sb = 1 and the mean estimated standard error is 0.9 then mste = −0.1. This term
is then averaged for the five coe�icients in themodel to give the averagemean standardized error
(amse). The second comparison is the percent of the simulations inwhich theWald test of the null

7 The same adjustments can be done computing (eg e′g ) with CRSE, Bell and McCa�rey (2002). Some of the simulations that
proved most troublesome for CRSE were redone with these adjustments, with minimal improvements. These corrections
are eschewed in the Monte Carlo simulations because of the small gains but more importantly so the simulated CRSE
are the Liang and Zeger (1986) estimator and so the results are comparable to those with standard estimation packages.
The CRSE computed here do include a degrees of freedom adjustment,

(
G
G−1

) (
N−1
N−K

)
, that is part of the Stata r eg r ess

package. Stata also treats the t-statistic as havingG − 1 degrees of freedom in calculating the p-value.
8 Let σ̂br − sb be the error in the estimated coe�icient standard error in the r th replication of the simulation with R total
trials. Thenmste = 1

R

∑R
r=1

(
σ̂br −sb
sb

)
.
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Figure 1. Estimator performance with homogeneous clusters.

hypothesis that β2 = β3 = 0 is rejected for p = 0.05.9 Any value greater than 5% indicates this null
hypothesis is being rejected at too high a rate, increasing the probability of a Type I error.
A complication arose in a small fraction of the simulations where the CESE estimated value for

ρ is greater than the estimated value forσ2
v . This situation occurred in 0.22%of all the simulations

and was concentrated in the most problematic scenarios. Over 40% of the occurrences are in
the simulations with twelve clusters and heteroskedastic error terms drawn from exponential
or chi-squared distributions or with highly correlated errors, which are less than 8% of all the
simulations. An arbitrary strategy is used which resets σ̂2 = (ρ̂ + 0.02) whenever ρ̂ > σ̂2

u .10

3.1 Homogeneous Clusters
The initial experiments constitute the ideal sample for CRSE. There are ten observations per
cluster, the explanatory variables for each cluster are drawn from distributions with the same
mean and variance, and the stochastic terms are drawn from identical normal distributions for
each observation and each cluster. For these experiments the number of clusters is expanded
to ninety-six to observe the asymptotic properties better. The within cluster stochastic term
covariance is created by specifying a cluster specific stochastic term that is included in each
observation’s stochastic term,Vgi = ug + εgi . The terms u and ε are independent so the stochastic
term variance is σ2

v = σ2
u + σ

2
ε and the covariance is ρ = σ2

u . For these simulations both stochastic
terms are independently drawn from standard normal distributions. Let rv = σ2

u /σ
2
v be the

expected correlation among the stochastic terms in each cluster. The simulations are done with
both a very low and amoderate expected correlation, rv = 0.1 and rv = 0.5, respectively. The two
panels in Figure 1 plot the performance measures for each estimator. The number in parentheses
in the legend denotes the correlation of the stochastic terms within each cluster. Online appendix
Table C.1 reports the numerical results.
The CRSE asymptotic properties are very evident. The underestimates of the coe�icient

standard deviations range from about 5% with twelve clusters, to about 3% with forty-eight
clusters to about 2% with ninety-six clusters. Similarly, the rejection rates drop from 13% with
twelve clusters to about 6.5%with ninety-six clusters. The important result is that with forty-eight
or fewer clusters, at least with the simulated data here, CRSE are quite unreliable and this
unreliability increases sharply as the number of clusters decreases.

9 The replication programs also include the rejection rate for p = 0.01.
10 Greene (2012, p. 375) reports a similar problemandproposesa similar solution, suchas settinganegative varianceestimate
to zero, when estimating comparable terms in the context of pooled time-series, cross-section models.

John E. Jackson ` Political Analysis 324

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
9.

38
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2019.38


The CESE perform quite well for most numbers of clusters.11 CESE overestimate the coe�icient
standard deviations by 2 to 3%with twelve clusters and underestimate them by less than 1%with
ninety-six clusters. The CESE consistently reject the null hypothesis by close to the desired 5%.
The CESE inferences are actually too conservative. In half the simulations the average rejection
rate is less than 5%.
Di�erences with variations in the correlation of the stochastic terms in each cluster are quite

small. Exceptions are the averagemean standardized errors with twelve clusters, where the CRSE
amse are 0.015 and the CESE amse are about 0.01 more negative with the higher correlation.
For the CRSE and the CESE the di�erences in the rejection rates with the di�erent amounts
of interdependence are less than 0.4% except for the CRSE with twelve clusters, where the
di�erence is about 0.7%. The subsequent question iswhether cluster heterogeneity leads to larger
di�erences with increased interdependence.
Summarizing, CRSEperformedas expectedwith ideal data—poorlywithonly a fewclusters and

better as thenumber increased. The surprise is the apparent number of clusters for the asymptotic
properties to dominate. MacKinnon and Webb (2017, p. 234) cite Angrist and Pischke (2009)
suggesting a “rule of 42,” that forty-two clusters are su�icient for reliable inference, but then argue
there is no reliable rule of thumbon thenecessarynumberof groupsas theperformanceof CRSE is
very sample specific. These simulations provide a further illustration of the MacKinnon andWebb
concerns. The CESE are far less sensitive to the number of clusters, with relatively little change in
performance particularly for rejection rates.

3.2 Estimator Performance with Heterogeneity
The next simulationsmove away from the ideal, homogeneous, sample with normally distributed
stochastic terms in several importantways. Thesemovesmore closely approximate the situations
encountered in Political Science. In these simulations stochastic terms are drawn from either a
normal or an exponential distribution with three di�erent types of heterogeneity.

(1) Number of observations per cluster. In these experiments there are five, ten or fi�een
observationsper cluster in equalproportions. This givesanaveragenumberofobservations
equal to that in the homogeneous experiments but with important variation.

(2) Heterogeneous explanatory variables. The heterogeneity explored here is the amount
of covariate clustering, defined as the between cluster variance as a proportion of the
variable’s total variance. When covariate clustering equals zero the explanatory variables in
each cluster have the same mean and variance. The amount of covariate clustering equals
0, 0.3, 0.6, and 0.9.12 The higher covariate clustering corresponds to analyses where factors
such as institutions or electoral rules have very little within cluster variation.

(3) Heterogeneous stochastic terms. The stochastic terms are heteroskedastic between
clusters, but homoskedastic within clusters.

All the comparisons begin with sixteen basic simulations—four with di�erent numbers of
clusters by four with di�erent amounts of covariate clustering. These sixteen simulations are
done with identically normally distributed stochastic terms and then with heteroskedastic
exponentially distributed stochastic terms. In the heteroskedastic simulations the standard
deviations for each of the stochastic components for each cluster, σgu and σgε , are drawn from

11 The CESE results use the hc2 adjustment given the homogeneity of the stochastic terms.
12 The variations in covariate clustering are achieved by specifying that each explanatory variable has a cluster specific
component and aunique component, e.g. xi g = ρ1ug +ρ2e i where ρ2 =

√
1 − ρ21 andwith ρ1 varying from0.00 to 0.95. The

total variation in x will be one and ρ21 indicates the expected between group variance as a proportion of this total variance.
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a uniform distribution on the interval 0.1–2.0, giving variances that range from 0.01 to 4.0.13 The
intention is to create a maximal amount of heterogeneity. The simulations with zero covariate
clustering and homogeneous normally distributed stochastic terms only di�er from the previous
simulations in that there are now an unequal number of observations per cluster, so comparing
the results illustrates the e�ect of unequal numbers of observations per cluster.
The simulation designs keep the distribution of the number of observations per cluster

constant as the number of clusters increases. As a consequence the total sample size increases as
the number of clusters increases,N = 10∗G . Equation (B 4) implies that CRSE performance varies
withG but notwithN , which is consistentwithMacKinnonandWebb (2017, footnote 3, p. 237) and
EsareyandMenger (2019). Anonlineappendixexplores this implicationwithaseriesof simulations
withG = 12 but N = 480 for the case with heterogeneous clusters and homoskedastic normally
distributed stochastic terms. The results are consistent with expectations as all the methods’
performance are nearly identical with the di�erent sample sizes but equal numbers of clusters.

3.2.1 Estimator Performance with Heteroskedastic and Exponentially Distributed Errors
These simulations compare the estimators’ performance in extremely unfavorable conditions—
exponentially andheteroskedastically distributed stochastic terms—with that in better conditions
—normally and homoskedastically distributed errors. The methods should perform worst in
the former simulations and best in the latter. This provides a good picture of the range of the
estimators’ performance and whether there is any commonality in that performance in quite
di�erent conditions. The emphasis here is a comparison of CRSE and CESE under these two
conditions. The next section has a more detailed discussion of CESE performance in a range of
conditions.
The le� panel in Figure 2 plots the amse and rejection rates for the results for both estimators

under the more favorable conditions. The right panels show these plots for heteroskedastically,
exponentially distributed errors.14 (All the results are reported in online appendix Table A.2.)
In themost favorable case, with seventy-two clusters, no covariate clustering and homoskedastic
normal error terms the CRSE underestimate the true standard deviations by 2%and reject the null
hypothesis of noassociation 7%of the time. This performance is slightlyworse thanwhat is shown
in Figure 1 when there are identical numbers of observations per cluster.
The CRSE performance declines as covariate clustering increases, even with a large number

of clusters, and as the number of clusters decreases, even with no covariate clustering. This
strong negative interaction between these conditions is predicted by Harden’s (2011) deflation
factor shown in Footnote 6. The amse decreases to −0.09 and the rejection rate increases to 12%
with seventy-two clusters but very high covariate clustering, to −0.08 and 15% respectively with
twelve clusters and no covariate clustering, and to −0.40 and an over 50% rejection rate with
twelve clusters and very high covariate clustering. The performance falls between these values
for intermediate numbers of clusters and covariate clustering.
The simulationswith heteroskedastic and exponentially distributed stochastic terms, themost

extreme conditions, shown in the right panels of Figure 2, present a similar pattern, but with
an interesting paradox for CRSE. CRSE performance decreases sharply with increased covariate
clustering and with decreasing numbers of clusters and again with a strong negative interaction
between the two. Theparadox is that theamseareworsebut the rejection rates are lowerbyabout
2% with the more extreme stochastic term distribution. The rejection rates are still too high for

13 The precise stata commands are: σug = 0.1 + 1.9 ∗ runiform() and σεg = 0.1 + 1.9 ∗ runiform(). ThenUg = rnormal(0,σug )
and εgi = rnormal(0,σεg ) for the normally distributed simulations and Ug = σug ∗ [rexponential(1) − 1] and εgi =
σεg ∗ [rexponential(1) − 1] in the exponential simulations.

14 The CESE2 adjustment is used with the homoskedastic stochastic terms in the le� side panels and the CESE3 adjustment
with the heteroskedastic stochastic terms in the right side panels.
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Figure 2. Estimator performance with heterogeneous clusters.

reliable inferences for all but the most favorable conditions, e.g. forty-eight or more clusters and
no or a small amount of covariate clustering, where the rejection rates remain about 7%.
The CESE performance shown in Figure 2 provides a clear picture of the improvements o�ered

by this estimator. In thebest casewith forty-eightor seventy-twoclustersandnoora small amount
of covariate clustering the CESE amse is about 0.07 smaller than with CRSE and the rejection
rates are about the desired 5% compared to 7 or 8% for CRSE. The di�erences between CESE and
CRSE increase rapidly as the number of clusters decreases and the amount of covariate clustering
increases. For example, with twenty-four clusters and a moderate amount of covariate clustering
the CRSE amse are about −0.20 with rejection rates of 16%. The CESE amse range from −0.01 to
−0.04 and rejection rates range from 6% to 7% depending upon the stochastic term distribution.
Given these consistent disparities the remaining discussion focuses on the performance of the
CESE in a wide range of circumstances.

3.2.2 CESE with Di�erent Stochastic Term Distributions
This section compares CESE performance across a broad range of stochastic term distributions to
examine its robustness to deviations from the case with homoskedastic normally distributed
errors. Stochastic terms drawn from a chi-square distribution with four degrees of freedom
are added to the above distributions. These new simulations examine CESE performance
with a skewed distribution but one not as extreme as the exponential. Figure 3 plots the
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Figure 3. CESE estimator performance with di�erent error term distributions.

CESE performance in the ninety-six di�erent simulations. (The numerical results are shown in
online Appendix A.3.) The figure highlights the performance di�erences associated with the
di�erent distributions, which are plotted as separate lines. The right hand plot, which shows
the performance with heteroskedastic errors also includes the plots with homoskedastic normal
errors, which is treated as the base case.
CESE perform quite well with a large number of clusters. With forty-eight and seventy-two

clusters nine of forty-eight simulations had amse < −0.015 and eight had rejection rates greater
than 6%. All nine of the cases with large amses occurred with heterogeneous non-normally
distributed errors and moderate to high amounts of covariate clustering and seven of the eight
caseswithhigh rejection ratesoccurredwith thehighest level of covariate clustering,whichare the
most problematic scenarios. Performance declinesmarkedly as the number of clusters decreases,
particularly with only twelve clusters. With twelve clusters half the simulations have an amse <
−0.02 and rejection rates greater than 7%. Again, the poor performance is concentrated in the
simulations with higher levels of covariate clustering.
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Low levelsof covariate clusteringarealsoassociatedwithgoodperformance. In the simulations
with no or low amounts of clustering only five have amse < −0.015 and six have rejection rates
higher than5.5%. Increasing covariate clustering led topoorer performance.With thehighest level
of clustering nearly half have amse < −0.02 and half have rejection rates greater than 7%. These
problems occur, with one exception, in experiments with twelve and twenty-four clusters.
Comparing performance with both covariate clustering and numbers of clusters makes the

interaction between the two properties quite clear. As is evident in Figure 3 combining both a
small number of clusters with high covariate clustering seriously degrades CESE performance.
This combinationof circumstancesalso increases thee�ectsofhavingnon-normal stochastic term
distributions. In the experiments with twelve or twenty-four clusters and amoderate or high level
of covariate clustering going fromanormal distribution to anexponential increases the amse from
−0.014 to−0.052 and the rejection rate from 8.53 to 9.59. With forty-eight or seventy-two clusters
and no or low covariate clusters the comparable range for the amse is 0.006 to −0.007 and is
4.88 to 5.07 for rejection rates. Comparing simulations with homoskedastic and heteroskedastic
distributions showed very little di�erence or interaction e�ects.
The CESE method performs very well, even too conservatively at times, with large numbers of

clusters, small amounts of covariate clustering, or homoskedastic normally distributed stochastic
terms. This performance declines with each step away from these desirable conditions, with
substantial negative interactions between the number of clusters and the amount of covariate
clustering. Figure 3 shows that performance becomes unacceptable, such as rejection rates that
exceed 8 or 9%, with extreme deviations from the ideal.

3.2.3 Di�erences in Cluster Stochastic Term Correlation
The final simulations in this section explore how di�ering amounts of stochastic term correlation
within a cluster a�ect CESEperformancewith heterogeneous clusters. Equation (6) shows that the
amount bywhich CRSE underestimate the true standard deviation varies with the stochastic term
correlation, ρ, times the amount of heterogeneity in the clusters. This relationship predicts that
increasing ρwill degrade theperformanceof the estimatorsmore in theheterogeneous than in the
homogeneous case. Recall that Figure 1 shows the performance of the CRSE and CESE estimators
with di�erent amounts of interdependence, rv = 0.1 and 0.5, for situations with completely
homogeneous clusters—equal numbers of observations per cluster and identical distributions for
the explanatory variables and the stochastic terms. We now make the same comparisons with
the heterogeneous clusters used in the previous experimentswith the expectation that increasing
interdependencewill decrease performance faster in the heterogeneous case. The heterogeneous
samplehas five, tenor fi�eenobservationsper cluster, sets the covariate clustering level at 0.6 and
uses normally homoskedastically distributed stochastic terms. The simulations are done for a low
correlation, rv = 0.1, amoderate correlation, rv = 0.5 and a high correlation, rv = 0.75. The results
for the simulationswith homogeneous clusters are shown in online Appendix A.1 and those for the
heterogeneous clusters are shown in online Appendix A.4.
Figure 4 graphs the performance associated with the levels of interdependence for the

homogeneous and heterogeneous simulations. (The homogeneous simulation plots repeat
Figure 1.) One conclusion, evident in Figure 1, is that di�erences in stochastic term correlations
have little e�ect on the CESE with homogeneous clusters. Not so with heterogeneous clusters.
The performance gap is large between the low and high correlation cases with twelve clusters,
is relatively small with twenty-four clusters and virtually disappears with forty-eight or more
clusters. For example, with twelve clusters the amse are 0.00, −0.01 and −0.02 and the rejection
rates are 6.8%, 8.0% and 9.3% across the three correlation levels. With forty-eight clusters the
amse are 0.01, 0.006 and −0.005 and the rejection rates are 5.3%, 5.5% and 5.6%. The conclusion
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Figure 4. Estimator performance with di�erences in interdependence.

is that the level of interdependence matters, but primarily with low numbers of heterogeneous
clusters.

3.3 Bootstrapped Standard Errors
Most of the current literature examines bootstrapping as a correction for CRSE. The bootstrapping
procedure in Harden (2011) returns an estimate for Σb , which enables the full range of statistical
tests such as the Wald tests explored in the previous simulations. This section repeats a selected
set of theprevious simulationsusing this bootstrapmethod toestimate coe�icient standarderrors
and conduct the Wald tests and compares these results with the CESE. The scenarios are:

(A) homogeneous clusters with homoskedastic normally distributed stochastic terms;
(B) scenario A but with an unequal number of observations per cluster;
(C) scenario B but with covariate clustering equals 0.6;
(D) scenario C but with heteroskedastic error terms; and
(E) scenario C but with stochastic terms draws from a χ2 distribution.

These simulations compare cluster bootstrapped standard errors (CBSE) with CESE over this
range of conditions. They are not a comprehensive examination of CBSE performance. All five
simulations are donewith the same data as the previous simulations.15 The scenarios are ordered
in terms of increasing di�iculty for the CESE estimator.
The simulations followed Harden (2011, footnote 10) in using one thousand replications for the

bootstrap.Thesimulations raiseaconcernwithbootstrapping.TheestimatedΣb variednoticeably
with the number of replications and the randomnumber seed. For example, the average rejection
rate for the simulationwith twenty-four clusters and scenario C di�ered bymore than 1%with two
di�erent seeds. (More on this in online Appendix C.) For consistency all reported results are done
with 1000 replications and the random seed used for the CESE simulations, but it is important to
understand that these estimates of coe�icient uncertainty are themselves uncertain.
Figure 5 plots the amse and rejection rates for the CESE and CBSE for all five scenarios with

varying numbers of clusters. The quick summary is that CESE have smaller errors than the CBSE

15 The only di�erence between the bootstrap simulations and the previous simulations is that for computational economy
the bootstrap simulations are done for 5,000 rather than 10,000 iterations.
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Figure 5. CESE & bootstrapped standard errors.

method for all scenarios and numbers of clusters. The CBSE amse were substantially larger for
all scenarios with only twelve clusters. Above twelve clusters there are relatively small di�erences
between theCBSEandCESEamse for the first two scenarios,which includenocovariate clustering
and homoskedastic normal errors. As the scenarios deviated from these more ideal conditions
the di�erence in the two amse grows substantially. For example, with twenty-four clusters the
CESE and CBSE amse are both zero for scenario A, but the CBSE amse grow almostmonotonically
across the scenarios, reaching−0.11 for scenarios C, D and Ewhile the CESE amse ≥ −0.013. With
seventy-two clusters the CBSE amse are−0.02 to−0.01 and the CESE amse areweakly positive for
scenarios A and B. But, for scenarios C to E where the scenarios deviate from these ideal cases the
CBSE amse decrease to −0.05 and −0.06while all the CESE amse are −0.01 or higher.
The CBSE rejection rates follow a somewhat irregular pattern though all are higher than the

CESE measures. There is very little variation in CBSE rejection rates across the simulations with
twelve clusters though they aremuchhigher than the CBSE rejection rates even in scenarios D and
E, which present the greatest di�iculties for CESE. With twenty-four and forty-eight clusters CBSE
rejection rates increasemoving from scenarios A to Ewith a sharp spike for scenario C. In themost
favorable simulations the CBSE rejection rates are just over 6% and increase substantially a�er
that for scenarios C, D, and E, being 10%ormore in over half the fi�een simulationswhereG < 72.
By comparison the CESE rejection rates are less than 6% in ten of the same fi�een simulations.
With seventy-twoclusters theCBSE rejection rates vary from6.2%to8.2%while theCESE rejection
rates range from 4.5% to 5.5%.
The Monte Carlo results show that CBSE perform well in simulations with a moderate to large

number of relatively homogeneous clusters, G > 12 and scenarios A and B. With G = 12 and/or
heterogeneity across the clusters and in the error terms the CBSE amse become increasingly
negative and the rejection rates increase beyond what should be acceptable. CESE are much less
sensitive to these variations, exceptwithG = 12andheterogeneous clusters and stochastic terms,
though in all scenarios they perform better than CBSE.16

16 A small selected set of scenarios were repeated using the wild, fast bootstrap in the Stata ‘boottest’ program (Roodman
et al. 2019) specified to return the full coe�icient variance–covariance matrix. The results had larger errors than the CBSE
results shown above and were more sensitive to the di�iculties in scenarios C, D and E.
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3.4 Monte Carlo Simulation Summary
There are several take-aways from the simulations. As is now well established CRSE seriously
underestimate the standard deviation of the simulated coe�icient distributions and produce
confidence intervals that are far too narrow, leading to rejection rates that are substantially too
high except with homogeneous clusters and a large number of clusters. A common solution is
cluster bootstrapped standard errors, particularly as presented in Harden (2011) where the full
coe�icient variance–covariance matrix is estimated. In the simulations done here this method is
a vast improvement on CRSE, but still underestimates the actual coe�icient standard deviations,
except for data with very homogeneous clusters, and over rejects a null hypothesis using a Wald
test based on the estimated coe�icient variance–covariance matrix. An option proposed here is
the CESE correction, which has better estimated standard errors and rejection rates. The quality
of this estimator decreases as the number of clusters decreases, as the amount of covariate
clustering increases, and with heterogeneous stochastic terms. In terms of relative performance
in the simulations conducted here the CESEmethod outperformed the CBSEmethod particularly
as the number of clusters decreases, as the amount of covariate heterogeneity increases and as
the stochastic terms deviate from being homoskedastically normally distributed. These are the
circumstances where CESE perform poorly, but their performance does not decline as fast or as
far as the other methods examined.17

4 Examples
We compare the CRSE, CBSE and CESE estimators with two examples.18 One from state politics,
Brown, Jackson, and Wright (1999), which Harden (2011) uses to compare CRSE and CBSE. The
other fromcomparativepolitics, Elgieetal. (2014). The formerhas relativelyhomogeneousclusters
aseach statehas fourobservations,which should favorCRSEandCBSE. In thecomparativepolitics
example the number of observations per cluster ranges from one to thirty-two, which should
present problems for CRSE and likely CBSE.

4.1 State Politics
Harden (2011) replicates Brown, Jackson, and Wright (1999)’s model of state voter registration.19

The propositions are that liberal (Democratic) control of the legislature, ease of registration, and
party competition are associated with higher levels of voter registration. Controls for education,
income, residential mobility, unemployment, south, and presidential election years are included.
Harden estimates their model with both CRSE and CBSE. Liberal control and ease of registration
are statistically significant with CRSE along with the education and mobility controls. With CBSE
both liberal party control and mobility are no longer significant. Harden [pp. 235 and 236],
however, makes the point that liberal control, “. . . is just on the edge of significance with CBSE
(t = 1.94).” and “. . . the authors have good reason to interpret a t-value of 1.94 as support for
their hypothesis.”
The registration equation is replicated using CRSE, CBSE and CESE.20 Table 1 displays the

respective coe�icients, standard errors and p-values.21 These data should favor CRSE and CBSE
as there are an equal number of observations per cluster. The results replicate Harden’s findings

17 An online appendix examines an alternative method, which is inferior to CESE, particularly with decreasing numbers of
clusters, but is superior to the other estimators. Both procedures show that estimating Σg , which is used to compute Σb ,
is better than the alternatives.

18 The examples are done in R using the packages lmtest, rms and ceser. ceser is available at
devtools::install_github(“DiogoFerrari/ceser”).

19 I want to thank Professor Harden for sharing these data and so�ware. They are exactly what a replication dataset should
be, enabling both replication and extensions.

20 Online Appendix C shows the bootstrapping results vary substantially with the random number seed and the number of
replications. Here the random seed is 441,022 with 50,000 replications.

21 CRSE andCESE compute p-values basedon thedegrees of freedomadjustments in footnote 7. TheCBSEp-values are those
reported by the bootcov package.
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Table 1. State voter registration rates.

St. errors p-values

Variable Coe� CRSE CBSE CESE CRSE CBSE CESE

Liberal control 1.64 0.736 0.838 0.841 0.031 0.052 0.057
Registration ease 0.06 0.020 0.023 0.027 0.006 0.013 0.031
Party comp. −0.03 0.082 0.091 0.084 0.677 0.709 0.685
Education 0.40 0.152 0.195 0.204 0.012 0.043 0.057
Income −0.15 0.316 0.333 0.367 0.644 0.660 0.691
Unemployment 0.72 0.431 0.463 0.457 0.101 0.120 0.121
Mobility −0.56 0.245 0.293 0.330 0.026 0.056 0.096
South 4.02 2.521 3.023 3.166 0.118 0.185 0.210
Pres. year 3.64 0.689 0.685 0.657 0.000 0.000 0.000
Constant 45.53 11.490 13.131 13.974 0.000 0.001 0.002

with CBSE standard errors being almost 15% larger than the CRSE standard errors. The CESE
standard errors are, on average, 5% larger than the CBSE standard errors. Consistent with the
simulations, CESE attach themost uncertainty to the coe�icient estimates andCRSE the leastwith
the uncertainty implied by CBSE being much closer to that with CESE.
This increasing uncertainty has implications for those who persist in reporting statistical

significance. With CRSE a 95% confidence interval for the Liberal control, registration ease,
education and mobility coe�icients excludes zero. With CBSE this list is reduced to registration
ease and education and with CESE only the registration ease coe�icient meets this criteria.

4.2 Comparative Politics
The second example provides an important contrast to the state politics example as there are a
wide range of observations per cluster making the clusters very heterogeneous. It also includes
an interaction term so there is a need to use a joint test of a pair of coe�icients. The example is
a slightly modified version of a model relating the e�ective number of parties to the number of
presidential candidates and presidential power presented by Elgie et al. (2014) building on work
of Golder (2006) and Hicken and Stoll (2012).22 They relate the number of e�ective legislative
parties to the number of presidential candidates, a measure of presidential power, the proximity
of presidential and legislative elections, the e�ective number of ethnic groups and the log of
average district magnitudes and two interaction terms. The model the authors say shows the
strongest relationship between the e�ective number of legislative parties and presidential power
and the e�ective number of candidates is shown in a marginal e�ects plot in their Figure 4 and
included in the replication file but the coe�icients and standard errors are not shown in the table
of results.23

Their Figure 4 model is re-estimated with three changes that expand the sample and number
of countries. The databases developed by Golder and colleagues (Golder 2005; Bormann and
Golder 2013), which form the basis for most of this comparative research, contain data that
permit replacement of missing values in the proximity and log district magnitude variables. This
adds twenty observations but does not increase the number of countries as these countries
had nonmissing values for these variables. Seven missing values in the preferred measure of

22 I want to thank Professor Elgie for sharing their data and stata .do files. Again, these are the epitome of what a replication
dataset should be.

23 Elgie et al. (2014, Table 1) show results for five di�erent models estimated with a variety of standard error corrections,
including CRSE, but for some unstated reason do not report the coe�icients for this model. The values are easily obtained
from the replication dataset and .do file. The variable measuring presidential power in their Figure 4 is labeled fapres3 in
the replication data.
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Table 2. Model for number of legislative parties.

St. errors p-values

Variable Coe�. CRSE CBSE CESE3 CRSE CBSE CESE3
#Pres. candidates 0.30 0.233 0.307 0.341 0.206 0.331 0.386
Pres. power −0.63 0.201 0.300 0.372 0.003 0.037 0.097
#Cand * pres. power 0.21 0.078 0.099 0.109 0.009 0.033 0.059
Proximity 0.01 0.249 0.278 0.370 0.958 0.963 0.972
#Ethnic groups 0.04 0.135 0.159 0.167 0.785 0.817 0.826
log(Av. magnitude) −0.11 0.416 0.471 0.451 0.799 0.821 0.814
#Ethnic grps *log(Mag) 0.29 0.259 0.286 0.229 0.263 0.308 0.207
Constant 2.58 0.502 0.910 1.225 0.000 0.005 0.041
N 310
#Countries 51
Wald Testa 9.88 4.78 3.80 0.007 0.092 0.150

a Wald test that β2 = β3 = 0.

presidential power are replaced by the values in the alternative measure that Elgie et al. use in
most of their analyses, which adds seven cases and two countries.24 These changes expand the
number of observations from 281 to 310 and increase the number of countries from 47 to 51.25 The
results of these changes favor their core hypothesis as the two coe�icients relating the e�ective
number of legislative parties to presidential power are slightly larger, though within sampling
variability, and are individually and collectively more significant.26

Table 2 shows the estimated coe�icients, standard errors and continuous p-values. The CESE
standard errors are the largest, being about 55 and 20% larger than the CRSE and CBSE standard
errors, respectively, for the four institutional variables.27 As in the previous example, CRSE imply
a much higher level of certainty about the coe�icient distributions than either CBSE or CESE with
the CBSE estimates closer to the CESE estimates than to the CRSE estimates. For example, the
estimated relationship between the number of legislative parties and presidential power is−0.63.
The estimated standard deviation of the distribution from which this value is drawn ranges from
0.20 with the CRSE to 0.37 with CESE.
The standard error di�erences are consequential for statistical inference for those who rely on

these evaluations. A major point in Hicken and Stoll (2012) and Elgie et al. (2014) is a significant
relationship between the number of legislative parties and presidential power and its interaction
with thenumberof candidates. Thep-valueof thecoe�icientonpresidential power increases from
less than 0.01 level with the CRSE to less than the 0.05 level with the CBSE to just less than 0.10
level with CESE standard errors. The p-value for the interaction term coe�icient increases from
0.009 to 0.032 to 0.059 with the CRSE, CBSE and CESEmethods, respectively. At the conventional
95% confidence level these two coe�icients are only significant with the first twomethods.
Wald tests of the joint hypothesis that β2 = β3 = 0, meaning no association between the

number of legislative parties and the presidential power variables, are 9.88, 4.77 and 3.80 with
p-values of 0.007, 0.092 and 0.150 for the CRSE, CBSE and CESE estimates, respectively. The CRSE
results clearly reject while the CBSE and CESE results do not reject this null hypothesis at the 95%

24 The di�erence in the two measures is that the preferred measure separates the highest category in the second measure
into an additional category.

25 Two corrections are made to their data. Their replication data included ethnic fractionalization rather than the e�ective
number of ethnic groups for Cape Verde, which is corrected. (The latter is the reciprocal of the former.) The number of
presidential candidates in Nigeria in 1979 is reported as zero, which seems implausible. The Golder (2005) data report a
value of 4.03 for Nigeria in 1979, which is substituted for the zero value.

26 The absolute di�erences in the two estimates for each coe�icient are less than half their CRSE standard error.
27 The results are the CESE3 adjusted standard errors as heteroskedastic errors are likely.
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significance level. The CBSE value, however, is significant at the 0.10 level. This result combined
with theCBSE tests of the individual coe�icients,which reject thenull hypothesis of noassociation
for the two presidential power variables, might cause some doubt about not rejecting the null
hypothesis, depending upon ones tolerance for Type I and Type II errors. The CESE results leave
much less doubt about not rejecting the null hypotheses.
The Comparative Politics results parallel the State Politics results and the simulations. The

CESE estimates are themost conservative and the CRSE estimates the least conservative. Further,
the CBSE and CESE are more consistent with each other and very di�erent from the CRSE. The
important di�erence between the CBSE and CESE results is that the CBSE results reject the null
hypothesis that the individual coe�icients on the two presidential power variables, including the
#Candidates*Pres. Power interaction term, are zero while the CESE estimates do not.

5 Concluding Remarks
The comparisons shown in Tables 1 and 2 and their substantive implications along with the
analytical discussions and the Monte Carlo simulations indicate that the choice of an estimation
method has important consequences. Resort to CRSE when analyzing grouped data is unwise,
particularly with a small number of clusters, highly clustered explanatory variables or non-
normally distributed errors. The sensitivity of CRSE to covariate clustering is seldom discussed
in the literature, except for Harden (2011), but for many Political Science applications this will be
a critical factor as many of the important variables have little variation within clusters. A method
such as CESE that estimates the within cluster variance–covariancematrix and uses that estimate
to compute the standard errors performs much better in simulations and in the examples is far
less willing to reject a null hypothesis of no association than are methods based on the sandwich
estimator associated with Liang and Zeger (1986). Bootstrap methods, commonly proposed as
the alternative to CRSE, performmuch better than CRSE but still have smaller estimated standard
errors and higher rejection rates than CESE in both the simulations and the examples. In any
specific application one may want to compare the performance of the di�erent methods for the
data at hand using the type of Monte Carlo simulations undertaken here given their likely sample
specific performance.
The next challenge is to explore if, or how, the CESE estimator can be extended to the general

linear model, which includes the important class of limited dependent variables, counts, etc. We
lay out a possible way to begin this exploration. The discussion is restricted to the general linear
model whereYi = f (Xi β ) = f (zi ) and the log likelihood function for observation i is L∗i = g (zi ).
Let δi = ∂L∗i /∂zi so that ∂L

∗
i /∂βk = δiXi k . The MLE estimates for β are obtained by solving the

following set of equations, ∂L∗/∂βk =
∑N
i=1 δi βk = 0, k = 1, . . . ,K . Further, letD equal the inverse

of theHessianmatrix of secondderivatives,D = [∂2L∗/∂βk ∂βk ′]
−1. The sandwichestimate for the

variance–covariance matrix of the MLE coe�icients is

V (β̂ ) = D−1[X ′(δδ ′)X ]D−1. (13)

With the OLS model δi = (Yi − Xi β ) = ui . For the standard OLS model with iid stochastic terms
E (uu ′) = σ2

u I and Equation (13) becomes the familiar V (β̂ ) = σ2
u (X ′X )−1. With clustered data

Equation (13) becomes Equation (1). Substituting the residuals e i for ui gives Equation (3), the
expression for CRSE.
Equation (13) is the starting point in developing the equivalent to CESE for the general linear

model. It will be necessary to find expressions for δi and then relate the matrix δδ ′ to the
interdependence within clusters. Although these steps are not obvious for many applications
the logit model for binary outcomes o�ers an example of how one might begin. In the logit
model L∗i = − log(1 + e

−zi ) forYi = 1 and− log(1 + ezi ) forYi = 0. With Pi denoting the probability
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thatYi = 1 the resulting expressions for δi are:

δi = e
−zi /(1 + e−zi ) = 1 − Pi : Yi = 1, (14)

and

δi = −e
zi /(1 + ezi ) = 0 − Pi : Yi = 0. (15)

Fortuitously the δi areanalogous to the stochastic terms in theOLSmodel as they indicatehowthe
observed outcomes, which are measured as zeros and ones, di�er from the true probability that
Yi = 1. If a�er calculating the logit estimates for β the predicted probabilities P̂i are calculated
the residuals di = 1 − P̂i or di = −P̂i can be substituted for δ in Equation (13). The next, and
most di�icult step, is to derive an expression for dd ′ as a function of the true variances and
covariances within clusters, analogous to Equations (9) and (11), that can be used to estimate δδ ′

in Equation (13).

Data Availability Statement
Replication materials can be found at Jackson (2019).

Supplementarymaterial
For supplementary material accompanying this paper, please visit
https://doi.org/10.1017/pan.2019.38.

Appendix A. Expression for E (ege′g )
This appendix develops the expression Equation (4).

E (eg e ′g ) = E [(Yg − Xgb)(Yg − Xgb)
′] = E {[Vg − Xg (b − β )][Vg − Xg (b − β )]′}

= E {[Vg − Xg (X ′X )−1X ′V ][Vg − Xg (X ′X )−1X ′V ]′}

= E (VgV ′g ) − E (VgV
′)X (X ′X )−1X ′g − Xg (X

′X )−1X ′E (VV ′g )

+Xg (X ′X )−1X ′E (VV ′)X (X ′X )−1X ′g

=Σg − ΣgPg − PgΣg + Xg (X ′X )−1
*.
,

G∑
g=1

X ′gΣgXg
+/
-
(X ′X )−1X ′g , (A 1)

where Pg is the projection matrix Pg = Xg (X ′X )−1X ′g . This equation makes repeated use of the
condition that the stochastic terms are independent across clusters.
Equation (A 1) can be extended with repeated use of the assumption of homogeneity within

clusters and the expression thatΣg = ριg ι
′
g + (σ2

v − ρ)Ig . (Recall that ιg is an ng x 1 vector of ones
and Ig is an ng x ng identity matrix.) Use this expression to rewrite Equation (A 1) as,

E (eg e ′g ) = ρg ιg ι
′
g + (σ

2
g − ρg )Ig − 2(σ

2
g − ρg )Pg − ρg (Pg ιg ι

′
g + ιg ι

′
gPg )

+Xg (X ′X )−1



G∑
g=1

[(σ2
g − ρg )X

′
gXg + ρgX

′
g ιg ι

′
gXg ]



(X ′X )−1X ′g

= ρg ιg ι
′
g + (σ

2
g − ρg )Ig − 2(σ

2
g − ρg )Pg − ρg (Pg ιg ι

′
g + ιg ι

′
gPg )

+ (σ2
g − ρg )Xg (X

′X )−1 *.
,

G∑
g=1

X ′gXg
+/
-
(X ′X )−1X ′g

+ ρgXg (X ′X )−1
*.
,

G∑
g=1

X ′g ιg ι
′
gXg

+/
-
(X ′X )−1X ′g
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= σ2
g (Ig − Pg ) + ρg


ιg ι
′
g − (Ig − Pg ) − (Pg ιg ι

′
g + ιg ι

′
gPg )

+ Xg (X ′X )−1
*.
,

G∑
g=1

X ′g ιg ι
′
gXg

+/
-
(X ′X )−1X ′g


= σ2

gQ1 + ρgQ2, (A 2)

where Q1 and Q2 are functions of the observed explanatory variables. This equation shows that
E (eg e ′g ) is a linear function of the unknown terms σ2

g and ρg .

Appendix B. CRSE—Bivariate Case
This appendix uses the expression for E (eg e ′g ) from Equation (A 1) in the previous appendix to
derive the CRSE estimate for the variance of the estimate in the bivariate case. In this derivation
all variables are mean centered, e.g. xgn = (Xgn − X̄ ), removing the constant term. The bivariate
case along with mean centered variables greatly simplify the algebra because the term (X ′X )−1

reduces to the scalar 1/NVx where N is the total sample size andVx is the full sample variance
of the explanatory variable. We also simplify the model by assuming homogeneous error terms,
Σv g = Σv for all g .
Begin with the expression for

∑G
g=1 x

′
gΣv xg .

G∑
g=1

x ′gΣv xg =
G∑
g=1

(xg1, xg2, . . . , xgng )

*........
,

σ2 ρ . . . ρ

ρ σ2 . . . ρ
...
...
. . .
...

ρ ρ . . . σ2

+////////
-

*........
,

xg1

xg2
...

xgng

+////////
-

=
G∑
g=1


σ2(x 2g1 + x

2
g2 + · · · + x

2
gng ) + 2ρ *.

,

ng−1∑
i=1

ng∑
j=i+1

XgiXg j
+/
-



= σ2
G∑
g=1

ng∑
i=1

X 2
gi + 2ρ

G∑
g=1

*.
,

ng−1∑
i=1

ng∑
j=i+1

Cgi j
+/
-

= σ2NVx + 2ρ *.
,

G∑
g=1

C ∗g
+/
-
, (B 1)

where Cgi j is the cross-product of the values for xg in periods i and j and C ∗g is the sum of these
terms in cluster g . Equation (B 1) is an important term as it appears in the equation for the true
coe�icient variance–covariancematrix, Equation (1), and is the first termand the sandwich term in
large parentheses in the expression for the expected coe�icient variance–covariancematrix using
CRSE, obtained from substituting Equation (4) in Equation (3).
The next term to derive isW =

∑
g x
′
gΣvPg xg =

∑
g x
′
gΣv [xg (x ′x )−1x ′g ]xg .

W =
G∑
g=1

[(x ′gΣv xg )(x
′x )−1(x ′g xg )]

=
1

NVx

G∑
g=1

{[σ2(x 2g1 + · · · + x
2
gng ) + 2ρC ∗g ](x

2
g1 + · · · + x

2
gng )}

=
σ2

NVx

G∑
g=1

(ngVxg )
2 +

2ρ

NVx

G∑
g=1

ngVxgC
∗
g , (B 2)
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whereVxg is the variation of x about the full sample mean in cluster g . Given the symmetries the
value for x ′gPgΣxg will be identical toW in Equation (B 2).
Last there is an expression for Z =

∑
g x
′
g [xg (x ′x )−1(

∑
g x
′
gΣv xg )(x ′x )−1x ′g ]xg .

Z =
1

(NVx )2

G∑
g=1

[(x 2g1 + · · · + x
2
gn )

2(σ2NVx + 2ρC ∗g )]

=
σ2

NVx

G∑
g=1

(ngVxg )
2 +

2ρ

(NVx )2

G∑
g=1

(ngVxg )
2C ∗g . (B 3)

Substituting the expressions in Equations (B 1)–(B 3) for the terms in Equation (3) gives the
expected value of the CRSE estimated coe�icient variance as,

E (S2
b ) =

1

(NVx )2



G∑
g=1

(x ′gΣv xg ) − 2W + Z



=
1

(NVx )2



σ2NVx + 2ρ

G∑
g=1

C ∗g −
2

NVx


σ2

G∑
g=1

(ngVxg )
2 + 2ρ

G∑
g=1

ngVxgC
∗
g



+



σ2

NVx

G∑
g=1

(ngVxg )
2 +

2ρ

(NVx )2

G∑
g=1

(ngVxg )
2C ∗g






=
σ2

NVx


1 −

∑G
g=1(ngVxg )

2

(NVx )2


+

2ρ

(NVx )2




G∑
g=1


1 −

2ngVxg
NVx

+
(ngVxg )2

(NVx )2


C ∗g




=
σ2

NVx


1 −

G∑
g=1

(
ngVxg

NVx

)2 +
2ρ

(NVx )2



G∑
g=1

(
1 −

ngVxg

NVx

)2
C ∗g


. (B 4)

From Equations (1) and (B 1) the true coe�icient variance is,

σ2
b = (x ′x )−1 *.

,

G∑
g=1

xgΣv xg
+/
-
(x ′x )−1 =

σ2

NVx
+

2ρ

(NVx )2

G∑
g=1

C ∗g . (B 5)

The di�erence between Equations (B 4) and (B 5) is the presence of the squared terms involving
ngVxg /NVx , which is the share of the total variance inX contributed by cluster g . The larger these
terms the larger the amount by which the CRSE underestimate the true standard errors.

B.1 CRSE with Fully Homogeneous Clusters
A su�icient condition for consistent CRSE is fully homogeneous clusters, by which we mean an
equal number of observations in each cluster and thatX has the samemean and variance in each
cluster; ng = n, X̄g = X̄ , andVxg =Vx for all g . With these conditions,

ngVxg

NVx
=

nVx
nGVx

=
1

G
(B 6)

and equation (6) becomes,

E (S2
b ) =

σ2

NVx

(
1 −

1

G

)
+

2ρ

(NVx )2



G∑
g=1

(
1 −

1

G

)2
C ∗g


. (B 7)

Thus, limG→∞ E (S2
b ) = σ

2
b .
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