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We consider the steady-state simulation output analysis problem for a process that
satisfies a functional central limit theorem. We construct an estimator for the time-
average variance constant that is based on excursions of a process above the minimum.
The resulting estimator does not require a fixed run length, and the memory require-
ment can be dynamically bounded. Standardized time series methods based on
excursions are also described.

1. INTRODUCTION

A basic simulation problem is to estimate the steady-state mean and variance of a
simulated stochastic process. One of the most commonly used and widely applicable
methods is the method of batch means. This method can be applied when the simulated
process satisfies a functional central limit theorem, which is the case with many classes
of processes that might arise in a steady-state simulation context; see Glynn and
Iglehart [7]. The idea is to break up the suitably normalized and centered simulated
path into a number of fixed-size batches and compute a statistic based on the increments
over the batches; see Goldsman and Schmeiser [8]. Variations include the method of
overlapping batch means (Meketon and Schmeiser [11]).

In this article we consider methods that break the simulated path into random
length segments. In some settings there can be computational advantages as well as
advantages in terms of statistical efficiency.

The methods we describe are partly motivated by the problem of simulation-based
optimization. Some optimization algorithms use a large collection of estimates based
on different parameter values. It must be possible to halt and resume simulations at
different parameter values, as those parameters become more or less important for
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identifying the optimum. Therefore, it is important for the simulations to use limited
memory (since there may be many of them going on in parallel), and it is not known in
advance how long the simulation at a particular parameter value will ultimately run.
Thus, it is also important to have the flexibility to increase or decrease the resources
allocated to a simulation as time advances and to always have an estimate available;
that is, we should not need to plan in advance a fixed horizon to simulate until we
obtain useful estimates. This issue is discussed, for example, in [10], in the context of
sequential methods for ranking and selection; see also [6].

We emphasize that we are concerned with the case in which the simulation run
length is not known in advance. The use of batching in this setting was investigated
in Yeh and Schmeiser [16]. As stated in Goldsman and Schmeiser [8], the storage
requirements should be O(1) or certainly at most O(n).

The methods that we propose are economical in their use of memory compared
with the batch-means alternative. The price we pay is that at least two independent
simulations must be run in parallel in order to center the output. To the extent that
initialization bias is a problem, it could be exacerbated by this requirement.

In the next section we describe the basic setup. Section 3 describes the variance
estimators based on excursions above the minimum and also the batch-means alter-
native. Section 4 outlines how the excursion approach can be used in the context of
standardized time series methods to produce asymptotically valid confidence intervals
for the steady-state mean. The results of some numerical experiments are presented
at the end of Sections 3 and 4.

2. EXCURSIONS ABOVETHE MINIMUM

Suppose that a simulation generates a real-valued sequence Y1, Y2, . . .. We assume
throughout the article that there exist constants μ ∈ R, σ ∈ (0, ∞), such that if we
define the process

X∗
n (t) = n−1/2

( �nt�∑
i=1

(Yi − μ) + (nt − �nt�)(Y�nt�+1 − μ
))

, t ≥ 0,

then X∗
n

d→ σB, where B is a Brownian motion and
d→ denotes convergence in distri-

bution. In this case we say that the process satisfies a functional central limit theorem;
see Revuz and Yor [12].

In discrete-event simulation, we are often interested in estimating the parameters
μ and σ . We now outline such a procedure.

Run two (or more) simulations in parallel, producing independent output
sequences {Y 1

1 , Y 1
2 , . . .} and {Y 2

1 , Y 2
2 , . . .}. For j = 1, 2, set

Xj
n(t) = n−1/2

( �nt�∑
i=1

(
Y j

i − μ
)

+ (nt − �nt�)(Y j
�nt�+1 − μ)

)
, t ≥ 0.
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Our functional central limit theorem assumption implies that Xj
n

d→ σB for j = 1, 2.
Let

μn = 1

2n

n∑
i=1

(
Y 1

i + Y 2
i

)
,

so that
√

n (μn − μ) = 1

2

(
X1

n (1) + X2
n (1)

) d→ σN(0, 1).

Let

A(t) =
�t�∑
i=1

(
Y 1

i − Y 2
i

) + (t − �t�) (
Y 1

�t�+1 − Y 2
�t�+1

)
, t ≥ 0.

This is the process that our output analysis algorithm uses. Note that

A(n ·)√
n

d→ σB.

Finally, set

Xn = X1
n − X2

n = n−1/2A(n·) d→ σB.

Although the Xj
n are not observable from the simulation since they depend on the

unknown μ, Xn can be constructed from the simulation.
Let {[αi, βi], i ≥ 1} denote the intervals of excursion above the minimum for the

process A; that is,

A(αi) = A(βi) = min
s≤αi

A(s)

and

A(s) > A(αi)

for αi < s < βi. Set

hi = sup{A(s) − A(αi) : αi ≤ s ≤ βi}

and

li = βi − αi.

We call the process A over the interval [αi, βi] the ith excursion above the minimum.
For the ith excursion, consider the pair (li, hi · l−1/2

i ) (we refer to the second component
as the normalized excursion height). Note that if A has an excursion of length l and
height h from α to β, then Xn = n−1/2A(n ·) has an excursion of length l/n and height
h/

√
n from α/n to β/n.
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We summarize some results on Brownian excursions; see, for example, Revuz
and Yor [12]. Let B be a standard Brownian motion and suppose that

B(α) = B(β) = 0

and

B(s) > 0, ∀s ∈ (α, β).

Then the process

e(t) = B (α + t(β − α))√
β − α

, 0 ≤ t ≤ 1,

is a standard (positive) Brownian excursion. Let H denote the maximum of a standard
Brownian excursion. Then

P(H ≤ x) = √
2π5/2x−3

∞∑
n=1

n2 exp

(
−1

2
π2 n2

x2

)
,

EH =
√

π

2
, EH2 = π2

6
, (1)

and Var(H) = (π/2)(π/3 − 1).
Let u be the location of the last minimum before time v. Then

M(t) = B (u + t(v − u))√
v − u

, 0 ≤ t ≤ 1,

is a standard Brownian meander. The distribution of M(1) is the same as the square
root of an exponential random variable with mean 2. Therefore,

EM(1) = √
π/2, Var(M(1)) = 2 − π/2.

The processes (B(t) − min0≤s≤t B(s)) and (|B(t)|) have the same law (Revuz and
Yor [12, p. 230]). Therefore, the absolute value of an excursion away from 0 of B has
the same law as an excursion of B above its running minimum.

Consider a standard Brownian motion B on the unit interval, and for ε > 0, let
ν(ε) be the number of excursions of length ≥ ε. Then by Theorem 2.21 in [9, p. 415],
as ε → 0,

ν(ε)
√

ε −→ √
8/π L1(0) a.s., (2)

where L1(0) is the local time process at 0 of a Brownian motion, evaluated at time 1.
If {hi · l−1/2

i , i = 1, 2, . . . , ν(ε)} are the normalized excursion heights of excursions
of length at least ε (including perhaps the terminal meander), then as ε ↓ 0,

√
ν(ε)

(
1

ν(ε)

ν(ε)∑
i=1

hi · l−1/2
i −

√
π

2

)
d→ N

(
0,

π

2

(π

3
− 1

))
. (3)

This follows from Theorem 17.2 in Billingsley [1], (2), and the fact that the normalized
heights are independent and identically distributed. (The final meander does not have
the same distribution, but it does not change the limit.)
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Let Fε denote the distribution of

1

ν(ε)

ν(ε)∑
i=1

hi · l−1/2
i .

3. THE SIMULATION ESTIMATOR

After the simulation time has reached n, we keep all excursions of A up to time n that
have length at least εn, where ε > 0. Let Ln denote the time of the last minimum of A
before time n. The final meander above the minimum before time n is treated exactly
like an excursion, except that we record its final instead of maximum value; if its length
is at least εn, then we keep its length n − Ln and terminal value Xn(n) − Xn(Ln). Thus,
the retained excursions correspond to excursions of length ≥ ε for the scaled process
that converges to σB; that is, an excursion of length εn for A corresponds to an
excursion of length ε for Xn.

Let νn(ε) be the number of retained excursions of A at time n (including the final
meander, if it is kept). Let hi,n and li,n denote the height and length, respectively, of
the ith retained excursion of A above the minimum, for 1 ≤ i ≤ νn(ε) (if the final
meander is long enough, then hνn(ε),n, lνn(ε),n is the terminal value and length of the last
meander). As n increases, the elements of {(hi,n, li,n), i ≤ νn(ε)} can change as some
pairs are dropped and others added.

Define the estimator

σn(ε)
=

√
2/π

νn(ε)

νn(ε)∑
i=1

hi,n√
li,n

. (4)

Theorem 3.1: For any ε > 0, as the simulation run length n → ∞,

√
νn(ε) (σn(ε) − σ)

d→ σ
√

ν(ε)

(√
2/π

ν(ε)

ν(ε)∑
i=1

hi√
li

− 1

)
.

Proof: By the Skorokhod representation theorem (Rogers and Williams [13]), there
exists a probability space (�′, F ′, P′) on which are defined processes X ′

n and X ′, with

X ′
n

d= Xn and X ′ a Brownian motion with diffusion coefficient σ and such that X ′
n → X ′

uniformly on [0, 1]. With probability 1, X ′ does not have the same local minimum
occurring more than once (Revuz and Yor [12, p. 108, Ex. 3.26]). Therefore, there
exists a set G ∈ F ′ with P′(G) = 1, and for all ω ∈ G, X ′

n(ω) converges uniformly to
X ′(ω), and X ′(ω) does not have the same local minimum occurring more than once.

Fix ω ∈ G and suppose that X ′(ω) has an excursion above the minimum of length
≥ ε; say X ′(ω, l) = X ′(ω, r) = mins≤r X ′(ω, s) for some 0 < l < r < 1, r − l ≥ ε,
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and maxl≤s≤r X ′(ω, s) = m. Since X ′
n(ω) converges uniformly to X ′(ω),

lim
n→∞ max

l≤s≤r
X ′

n(ω, s) = m

and

lim
n→∞ min

l≤s≤r
X ′

n(ω, s) = lim
n→∞ X ′

n(ω, l) = lim X ′
n(ω, r) = X ′(ω, l).

Thus, for large enough n, X ′
n(ω) has an excursion of height mn with left end point ln

and right end point rn and mn → m; the only thing that could prevent the excursion of
X ′

n from converging to that of X ′ is if its length in the limit is less than r − l. Suppose
that ln → l̂ > l. This would imply that X ′(ω, l̂) = X ′(ω, l). However, since ω ∈ G,
X ′(ω) does not have the same local minimum twice, and so = l; similarly, rn → r
and

(ln, rn, mn) −→ (l, r, m).

Thus, the normalized heights of the excursions of length ≥ ε of X ′
n converge to the

normalized heights of excursions of length ≥ ε of X ′. Since νn(ε) → ν(ε), where ν(ε)

is defined like νn(ε) but for X ′ instead of Xn, the proof is complete. �

By (3) and Theorem 3.1,

lim
ε↓0

lim
n↑∞ P

(√
νn(ε) (σn(ε) − σ) ≤ z

)
= 


(
z

σ
√

π/3 − 1

)
. (5)

For ε > 0, define ν ′(ε), l′i, h′
i, 1 ≤ i ≤ ν ′(ε) like the unprimed variables but for

excursions below the maximum instead of above the minimum. Let F̂ε denote the
distribution of

1

2

⎛
⎝ 1

ν(ε)

ν(ε)∑
i=1

hi · l−1/2
i + 1

ν ′(ε)

ν ′(ε)∑
i=1

h′
i · (l′i)

−1/2

⎞
⎠ .

As ε ↓ 0, both averages converge in probability to
√

π/2, and so F̂ε converges to a
point mass at

√
π/2. Define σ̂n(ε) the same way as σn(ε) was defined but with Xn

replaced by −Xn; that is, we average the normalized heights of excursions below
the maximum. Adapting the proof of Theorem 3.1 to consider excursions below the
maximum as well as excursions above the minimum shows that

σn(ε) + σ̂n(ε)

2σ
√

2/π

d→ F̂ε

as n → ∞. Then

lim
ε↓0

lim
n↑∞ P

(∣∣∣∣1

2

(
σn(ε) + σ̂n(ε)

) − σ

∣∣∣∣ > δ

)
= 0

for any δ > 0. This averaged estimator, which we rename σn(ε), makes use of more
of the simulated path and is the estimator that we use in the numerical experiments in
Section 3.3.
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A variation on the estimator is to fix the memory allocation m and keep only the
m longest excursions. This estimator was presented, without proofs, in Calvin [3].

3.1. Continuity Correction

Our estimator is biased due to the discrete nature of the process we are approximating
with a Brownian excursion. In order to examine this source of bias, let us assume
that the simulated process is a Brownian motion, so we are working with the lin-
ear interpolation of a skeleton of a Brownian motion. The situation is depicted in
Figure 1.

One source of bias is that the discrete maximum is less than the continuous max-
imum. The other source of bias is that in a “discrete” excursion, the continuous path
might sometimes go below the discrete minimum; thus, our estimate of excursion
length overestimates the actual continuous excursion length. Therefore, in the expres-
sion for the normalized excursion height, the discrete estimator underestimates the
numerator and overestimates the denominator, leading to underestimation.

FIGURE 1. Comparison of discrete and continuous excursions.
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In order to reduce the first source of bias, note that for a Brownian motion B,

E

(
min
i≤k

B(i/k) − min
0≤t≤1

B(t)

)
= ζ(1/2)√

2πk
+ o(k−1/2) ≈ 0.5826√

k
+ o(k−1/2),

where ζ is Riemann’s zeta function; see Calvin [2]. To account for the underestimation
of the height, for each excursion of length k, completed at time n, we add

σn
0.5826√

k
(6)

to the height of the excursion.
To reduce the second source of bias, we proceed as follows. At each simulation

step, simulate the continuous minimum of an interpolating Brownian motion with
variance σn. If the continuous minimum sets a new record low, use it in place of the
discrete minimum.

More precisely, if we have simulated to time n, we generate the continuous
minimum Z over the interval [n − 1, n] according to the distribution

P(Z < z) = exp(−2σn(A(n − 1) − z)(A(n) − z))

for z < min(A(n − 1), A(n)). If Z is smaller than the current record minimum, we
replace the minimum with Z . For computational simplicity, we take the location where
Z was attained to be n − 1/2.

Combining the two corrections results in a reduction in the bias by a factor of
approximately 5 in the numerical experiments. The first correction requires a negli-
gible increase in computation, whereas the second correction increases running time
proportional to the length of the simulation.

3.2. Batching

A natural alternative to the method described in the previous subsection is to use the
increments over a fixed grid. Suppose that we store {Xn(i/m) : i = 0, 1, 2, . . . , m} for
some fixed m and define

σb,m
=

(
m∑

i=1

(Xn(i/m) − Xn((i − 1)/m))2

)1/2

.

Due to the functional central limit theorem assumption and the continuous mapping
theorem, for fixed m we have

σb,m
d→ σ

(
χ2

m

m

)1/2
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as n → ∞, where χ2
m is a chi-square random variable with m degrees of freedom. If

σb,m is uniformly integrable, then in the limit we have

Eσb,m ≈ σ

(
2

m

)1/2
�((m + 1)/2)

�(m/2)
, Eσ 2

b,m ≈ σ 2,

and

var
(
σb,m

) ≈ σ 2

(
1 − 2

m

�2((m + 1)/2)

�2(m/2)

)
.

Comparing this with the variance of the height of a standard excursion, the variance
of the batch estimator with m = 6 is about the same as for a single excursion.

As n increases, one could “forget” some of the values (combine adjacent batches)
to maintain a memory of fixed size m or to limit the growth of the memory required.
Thus, we can construct a method for which the run length would not need to be known
in advance, although it would be cumbersome.

3.3. Numerical Experiments

For the numerical experiments we used the following first-order autoregressive model.
For 0 < ϕ < 1, let Y0 ∼ N(0, 1), and for i ≥ 1, set

Yi = ϕYi−1 + εi,

with the εi ∼ N(0, 1 − ϕ2) independent and independent of Y0. We set the parameter
ϕ = 1/2, which results in σ 2 = 3; see Chien, Goldsman and Melamed [4]. In order to
center the output, we ran two independent simulations for each of the 103 independent
replications, each of which was stopped after n = 105 transitions. We chose ε =
10−5/2, which resulted in an average of 21.2 excursions per replication.

Figure 2 shows the mean-squared error for the excursion scheme with this choice
of ε and the batching scheme with the number of batches varied from 2 up to 200.
The curves cross at around 115, so to obtain the same mean-squared error with on
average 21.2 excursions requires around 115 batches. Figures 3 and 4 break down the
mean-squared error into the standard deviation and bias. Figure 5 reveals that the bias
in the excursion estimator is greater than that of the batch-means estimator even for
20 batches.

We repeated the experiments using the bias-reduction methods described in
Section 3.1. Figure 5 shows that the mean-squared error with the bias correction
is improved, so that the curves cross at about 140 batches instead of at 115. Figure 7
shows that with the correction terms the bias of the excursion estimator is comparable
to that of the batch estimator with the number of batches equal to the average number
of excursions.
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FIGURE 2. Comparison of mean-squared error for batching and excursions.
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FIGURE 3. Comparison of standard deviation for batching and excursions.
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FIGURE 4. Comparison of bias for batching and excursions.
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FIGURE 5. Comparison of mean-squared error for batching and excursions with the
bias correction.
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FIGURE 6. Comparison of standard deviation for batching and excursions with the
bias correction.

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  20  40  60  80  100  120  140  160  180

bi
as

number of batches

batch means
excursions

FIGURE 7. Comparison of bias for batching and excursions with the bias correction.
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4. STANDARDIZEDTIME SERIES

Estimators based on excursions can be used in the context of standardized time series,
or cancellation methods; these methods are described in Schruben [14] and Glynn and
Iglehart [7]. In this section we illustrate the approach with one example. A preliminary
version of this approach appeared in Calvin [3].

Let C0 = {x ∈ C([0, 1]) : x(0) = 0} and C∗
0 = {x ∈ C0 : min0≤s≤1 x(s) < 0 <

max0≤s≤1 x(s)}. For x ∈ C∗
0 , define

τ(x) = sup{s ≤ 1 : x(s) = 0 and x changes sign at s},

R(x) = max0≤s≤τ(x) x(s) − min0≤s≤τ(x) x(s)√
τ(x)

,

U(x) = |x(1)|√
1 − τ(x)

.

For x ∈ C0 \ C∗
0 , set τ(x) = R(x) = U(x) = 0.

Theorem 4.1: As n → ∞,

(R(Xn), U(Xn))
d→ σ · (H, M(1)),

where H and M are independent, H is the maximum of a standard Brownian excursion,
and M is a standard Brownian meander.

Proof: The process

B(t) ≡ B (tτ(B)) /
√

τ(B), 0 ≤ t ≤ 1,

is a Brownian bridge (roughly, Brownian motion conditioned on the value at time
1 being zero). By a theorem of Vervaat (see Vervaat [15]), the range of a Brownian
bridge has the same distribution as the height of a standard Brownian excursion;

thus, R(B)
d= H .

The maps τ , R, and U are continuous on C∗
0 and P(C∗

0 ) = 1. Therefore, by the
continuous mapping theorem (Billingsley [1]) and the functional central limit theorem
assumption,

(R(Xn), U(Xn))
d→ (R(σB), U(σB))

d= σ · (H, M(1)) .

�

Let B1 and B2 be independent standard Brownian motions.

Lemma 4.2: As n → ∞,(
X1

n + X2
n√

2σ
,

X1
n − X2

n√
2σ

)
d→ (B1, B2).
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Proof: By the continuous mapping theorem,(
X1

n + X2
n√

2σ
,

X1
n − X2

n√
2σ

)
d→

(
B1 + B2

√
2

,
B1 − B2

√
2

)
d= (B1, B2).

The last equality is due to the rotational invariance of the Gaussian distribution.
�

The following theorem is the basis for constructing asymptotically valid confi-
dence intervals for μ.

Theorem 4.3: As n → ∞,
√

n(μn − μ)

(R(X1
n − X2

n )2 + U(X1
n − X2

n )2/2)1/2

d→ N

(H2 + γ )1/2
, (7)

where N ∼ N(0, 1), H is the height of a standard Brownian excursion, γ is an
exponential random variable with mean 1, and N, γ , and H are independent.

Proof: For x, y ∈ C∗
0 , define

G(x, y) = x(1)

2
(R(y)2 + U(y)2/2)−1/2.

Since G is continuous on C∗
0 × C∗

0 and P(B1 ∈ C∗
0 , B2 ∈ C∗

0 ) = 1,
√

n(μn − μ)

(R(X1
n − X2

n )2 + U(X1
n − X2

n )2/21/2
= G(X1

n + X2
n , X1

n − X2
n )

d→ G(B1, B2)

by Lemma 4.2. However,

G(B1, B2)
d= N

(H2 + γ )1/2
.

�

We derive the cumulative distribution function of the limiting random variable
appearing on the right-hand side of (7) by conditioning on N and γ . For z > 0,

P

(
N√

H2 + γ
≤ z

)
=

∫ ∞

x=−∞

∫ ∞

y=0
P

(
x√

H2 + y
≤ z

)
e−x2/2

√
2π

e−y dy dx.

The probability in the integrand is 1 for x ≤ 0, and for x > 0, y ≥ (x/z)2, and so

P

(
N√

H2 + γ
≤ z

)
= 1

2
+ 1

2
√

1 + 2/z2

+
∫ ∞

x=0

∫ (x/z)2

y=0
P

(
H ≥

√
(x/z)2 − y

) e−x2/2

√
2π

e−y dy dx.
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By an alternative formula for H (see [5, Thm. 7]),

P(H > b) = 2
∞∑

k=1

(
4k2b2 − 1

)
exp(−2k2b2).

Then∫ ∞

x=0

∫ (x/z)2

y=0
P

(
H ≥

√
(x/z)2 − y

) e−x2/2

√
2π

e−y dy dx

=
∫ ∞

x=0

∫ (x/z)2

y=0
2

∞∑
k=1

(
4k2[(x/z)2 − y] − 1

)
exp

(−2k2[(x/z)2 − y])

× e−x2/2

√
2π

e−y dy dx

= 2
∫ ∞

x=0

∫ (x/z)2

w=0

∞∑
k=1

(
4k2w − 1

)
exp

(−2k2w
) e−x2/2

√
2π

e−(x/z)2
ew dw dx,

where we have made the substitution w = x/z − y. We can interchange the order of
integration and summation, since∫ ∞

x=0

∫ (x/z)2

w=0

∞∑
k=1

(4k2w + 1) exp(−2k2w)
e−x2/2

√
2π

e−(x/z)2
ew dw dx < ∞.

Therefore,

2
∫ ∞

x=0

∫ (x/z)2

w=0

∞∑
k=1

(
4k2w − 1

)
exp

(−2k2w
) e−x2/2

√
2π

e−(x/z)2
ew dw dx

= 2
∞∑

k=1

∫ ∞

x=0

∫ (x/z)2

w=0

(
4k2w − 1

)
exp

(−2k2w
) e−x2/2

√
2π

e−(x/z)2
ewdw dx

= 2
∞∑

k=1

∫ ∞

x=0

exp(−(x2/2)(1 + 2/z2))√
2π

∫ (x/z)2

w=0

(
4k2w − 1

)
× exp

(−w(2k2 − 1)
)

dw dx

= 2
∞∑

k=1

∫ ∞

x=0

exp
(−(x2/2)(1 + 2/z2)

)
√

2π(
1 + 2k2

(1 − 2k2)2
−

(
1 + 2k2

(1 − 2k2)2
− 4k2

1 − 2k2
(x/z)2

)

× exp
(
(1 − 2k2)(x/z)2

))
dx

=
∞∑

k=1

1 + 2k2

(1 − 2k2)2

1√
1 + 2/z2

− 2
∞∑

k=1

∫ ∞

x=0

exp
(−(x2/2)(1 + 4k2/z2)

)
√

2π
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×
(

1 + 2k2 + 4k2(2k2 − 1)(x/z)2

(1 − 2k2)2

)
dx

=
∞∑

k=1

1 + 2k2

(1 − 2k2)2

1√
1 + 2/z2

−
∞∑

k=1

1 + 2k2

(2k2 − 1)2

1√
1 + 4k2/z2

−
∞∑

k=1

4k2

z2(2k2 − 1)

1

(1 + 4k2/z2)3/2
.

Combining these expressions, we obtain

P

(
N√

H2 + γ
≤ z

)
= 1

2
+ 1

2
√

1 + 2/z2
+ 1√

1 + 2/z2

∞∑
k=1

1 + 2k2

(2k2 − 1)2

−
∞∑

k=1

1 + 2k2

(2k2 − 1)2

1√
1 + 4k2/z2

−
∞∑

k=1

4k2

z2(2k2 − 1)

1

(1 + 4k2/z2)3/2
. (8)

Confidence intervals can be constructed based on quantiles computed numerically
from this formula. The FindRoot procedure in Mathematica gave the 95th percentile
as approximately 1.11262.

We used the Ehrenfest urn model with nine states for a numerical experiment.
The number of transitions was n = 105, and we constructed 95% confidence intervals
based on 104 independent replications. The bias correction terms described in Section
3.1 were incorporated into the estimator (with twice the term defined in (6) added to the
range component). To avoid numerical instability, in cases where the last zero crossing
takes place prior to time 0.05n, we consider only the meander part of the estimator
defined in Theorem 4.3, and, similarly, if the last zero occurs after time 0.95n, we use
only the excursion part of the estimator (as described in [3]). The quantiles for the
estimator based on only the meander are computed from the distribution of N/

√
γ ,

which has the distribution

P

(
N√
γ

> z

)
= 1

2

(
1 − 1√

1 + 2/z2

)

for z > 0, which can be established by a calculation similar to the one used to derive
(8). The 95th quantile is

√
162/19 ≈ 2.91998. Table 1 shows the results of compar-

ing coverage and confidence interval half-width mean and variance for the excursion
estimator and batch-means with one, two, four, and five batches. Compared with the
batch-means estimator with two batches, the excursion confidence intervals have cov-
erage much closer to the nominal level and have narrower and less variable confidence
intervals.
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TABLE 1. 95% Confidence Interval Characteristics for Excur-
sions and Batch Means

Coverage Avg. Half-width Var. Half-width

Excursion 0.9528 0.252745 0.008468
1 batch 0.9309 0.904173 0.474060
2 batches 0.9028 0.326427 0.030561
4 batches 0.7952 0.178619 0.004677
5 batches 0.7382 0.152188 0.002840

An alternative approach explored in [3] is based on the limit theorem that has the
same form as (7) but without the U and γ in the denominators; that is, the meander after
the last zero crossing is ignored. This estimator suffers from the problem mentioned
earlier that the last zero crossing can be near the origin. Additionally, the variability
is greater since the estimator is based on less of the path.
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