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Rayleigh–Bénard convection with a
melting boundary
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We study the evolution of a melting front between the solid and liquid phases of a
pure incompressible material where fluid motions are driven by unstable temperature
gradients. In a plane-layer geometry, this can be seen as classical Rayleigh–Bénard
convection where the upper solid boundary is allowed to melt due to the heat flux
brought by the fluid underneath. This free-boundary problem is studied numerically
in two dimensions using a phase-field approach, classically used to study the melting
and solidification of alloys, which we dynamically couple with the Navier–Stokes
equations in the Boussinesq approximation. The advantage of this approach is that
it requires only moderate modifications of classical numerical methods. We focus on
the case where the solid is initially nearly isothermal, so that the evolution of the
topography is related to the inhomogeneous heat flux from thermal convection, and
does not depend on the conduction problem in the solid. From a very thin stable
layer of fluid, convection cells appear as the depth – and therefore the effective
Rayleigh number – of the layer increases. The continuous melting of the solid
leads to dynamical transitions between different convection cell sizes and topography
amplitudes. The Nusselt number can be larger than its value for a planar upper
boundary, due to the feedback of the topography on the flow, which can stabilize
large-scale laminar convection cells.

Key words: Bénard convection, solidification/melting, topographic effects

1. Introduction

Thermally or compositionally driven convection remains a fascinating area of
research with diverse applications from geophysics, where it plays a key role
in stirring the Earth’s atmosphere (Stevens 2005) and inner core (Roberts 2015),
to nonlinear physics, where it is a canonical example of pattern formation and
self-organization (Cross & Hohenberg 1993). Convection is often studied in the
classical Rayleigh–Bénard (RB) configuration both due to its simplicity and
well-defined control parameters (Bodenschatz, Pesch & Ahlers 2000). Although
this configuration is still actively studied and contributes to our fundamental
understanding of convection processes, it is highly idealized compared to more
realistic natural configurations involving non-uniform heating (Rossby 1965; Killworth
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& Manins 1980), unsteady buoyancy forcing (Venezian 1969; Roppo, Davis &
Rosenblat 1984; Singh, Bajaj & Kaur 2015), complex geometries (Gastine, Wicht
& Aurnou 2015; Toppaladoddi, Succi & Wettlaufer 2015), non-constant transport
coefficients (Tackley 1996; Davaille 1999), compressible effects (Matthews, Proctor
& Weiss 1995; Kogan, Murphy & Meyer 1999; Verhoeven, Wiesehöfer & Stellmach
2015), overshooting and interactions with a stably stratified region (Moore & Weiss
1973; Couston et al. 2017), etc.

Among the phenomena neglected in classical RB convection, the possibility of
a non-planar boundary is particularly interesting. The case of rough boundaries
has been extensively studied due to its application to laboratory experiments (Du
& Tong 2000) while the case of large-scale topographies can significantly change
the nature of convection both close to onset (Kelly & Pal 1978; Weiss, Seiden &
Bodenschatz 2014) and in the super-critical regime (Toppaladoddi et al. 2015; Zhang
et al. 2018). While the topography is usually fixed initially, many natural mechanisms
can dynamically generate non-trivial topographies. The two-way coupling between
a flow and an evolving boundary, be it due to erosion, melting or dissolution, has
recently received some attention (Claudin, Durán & Andreotti 2017; Ristroph 2018),
and is at the origin of many geological patterns (Meakin & Jamtveit 2010). Of interest
here is the case of melting, where a natural mechanism able to dynamically generate
non-trivial topographies is thermal convection itself. It can locally melt or freeze
the solid boundaries as a result of non-uniform heat fluxes. This coupling between
thermal convection and melting or freezing boundaries finds applications in various
fields, from geophysics where it can affect the dynamics of the Earth’s mantle and
inner core (Alboussière, Deguen & Melzani 2010; Labrosse et al. 2018), the thermal
evolution of magma oceans (Ulvrová et al. 2012) and the melting of ice in oceans
(Martin & Kauffman 1977; Keitzl, Mellado & Notz 2016), to dendritic growth where
it affects the structure of the growing solid phase (Beckermann et al. 1999).

Of particular interest to the present study is the work of Vasil & Proctor (2011).
They considered the gradual melting of a pure isothermal solid at the melting
temperature heated from below. As the solid melts, the liquid layer grows vertically
until it reaches the critical height above which convection sets in. The linear stability
of this system is not trivial since the equilibrium background is evolving with
time due to the continuous melting (Walton 1982). This has led previous authors
to focus on the limit of large Stefan numbers, for which there is a time scale
separation between the growth rate of the convection instability and the evolution
of the background state (Vasil & Proctor 2011). Many theoretical and numerical
studies concerned with this problem focus on a one-way coupling where the release
of latent heat affects the buoyancy of the fluid, but the dynamical effect of the
topography created by this phase change is often neglected (Keitzl et al. 2016).
There exists a variety of methods to take into account the evolving phase change
boundary: enthalpy methods (Voller, Swaminathan & Thomas 1990; Ulvrová et al.
2012), lattice-Boltzmann approaches (Jiaung, Ho & Kuo 2001; Rabbanipour Esfahani
et al. 2018), level set methods (Gibou et al. 2007) and arbitrary Lagrangian–Eulerian
schemes (Mackenzie & Robertson 2002; Ulvrová et al. 2012). Here we consider
a self-consistent framework where the free-boundary problem associated with the
Stefan boundary condition is solved implicitly using a phase-field method (Boettinger
et al. 2002). Adding moderate complexity to the regular Boussinesq equations, our
approach is applied to the case of Rayleigh–Bénard convection with a melting upper
boundary. We focus on the particular case where the temperature of the solid is
initially close to its melting temperature. This simple configuration does not allow for
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an equilibrium, since the solid phase is not cooled and will therefore continuously
melt. Note also the simultaneous and independent study by Rabbanipour Esfahani
et al. (2018), who considered a similar configuration, but mostly focused on global
quantities such as the heat flux or the statistical properties of the interface. In
addition to independently confirming some of their findings, we also present a
detailed description of the transition between diffusive and convective regimes, we
discuss the secondary bifurcation which destabilizes the initial set of convective rolls
and we derive scalings for the melting velocity as a function of the Stefan number.
The case where the system is both heated from below and cooled from above, which
can lead to quasi-steady states, as in the experimental study of Davis, Müller &
Dietsche (1984), will be studied later.

The paper is structured as follows. The general formulation of the physical problem
is presented in § 2. We then discuss how the free-boundary conditions are treated using
a phase-field method in § 3. The phenomenology of the melting dynamics is described
in § 4 and we describe quantitatively the effect of varying the Stefan number in § 5.
We finally conclude in § 6.

2. Formulation of the problem
We consider the evolution of a horizontal layer of a pure incompressible substance,

heated from below. The domain is bounded above and below by two impenetrable,
no-slip walls, a distance H apart. The layer is two-dimensional with the x-axis in
the horizontal direction and the z-axis in the vertical direction, pointing upwards.
The gravity is pointing downwards g = −gez. The horizontal size of the domain is
defined by the aspect ratio λ so that the substance occupies the domain 0< z<H and
0< x< λH and we consider periodic boundary conditions in the horizontal direction.
We impose the temperature T =T1 at the bottom rigid boundary and T =T0 at the top
rigid boundary with T0<T1. The melting temperature TM of the substance is such that
T0 < TM < T1. Both liquid and solid phases of the substance therefore coexist inside
the domain (see figure 1). In this paper, we focus on the particular case where the
solid is isothermal so that TM = T0. For simplicity, we assume that both the density
ρ and thermal diffusivity κT are constant and equal in both phases. The kinematic
viscosity of the fluid phase ν is also assumed constant.

In the Boussinesq approximation, using the thermal diffusion time H2/κT as a
reference time scale and the total depth of the layer H as a reference length scale,
the dimensionless equations for the fluid phase read

1
σ

(
∂u
∂t
+ u · ∇u

)
=−∇P+ Raθez +∇

2u, (2.1)

∂θ

∂t
+ u · ∇θ =∇2θ, (2.2)

∇ · u= 0, (2.3)

where u = (u, w) is the velocity, θ = (T − T0)/(T1 − T0) is the dimensionless
temperature and the pressure P has been made dimensionless according to P0 =

ρκTν/H2. Ra is the Rayleigh number and σ is the Prandtl number defined in the
usual way by

Ra=
αtg1TH3

νκT
and σ =

ν

κT
. (2.4a,b)
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Liquid

Solid
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g

T = T0

T = TM

T = T1

h-(t)

FIGURE 1. (Colour online) Schematic description of the problem considered. The blue
region corresponds to the solid phase and the white region to the liquid phase. TM is the
melting temperature of the pure substance. In this paper, we focus on the particular case
where the solid is isothermal so that TM = T0.

These dimensionless quantities involve g the constant gravitational acceleration, αt the
coefficient of thermal expansion and 1T =T1−T0 the temperature difference between
the two horizontal plates. For numerical convenience, the Prandtl number is fixed to
be unity throughout the paper. Note that relevant applications such as the melting of
ice shelves or geophysical situations involving liquid metals are respectively at high
and very low Prandtl numbers. We nevertheless choose to reduce the large parameter
space by considering the standard case Pr=1, leaving the study of varying the Prandtl
number to future works.

In the solid phase, which we assume to be non-deformable, the dimensionless heat
equation simplifies to

∂θ

∂t
=∇

2θ. (2.5)

The specificity of this configuration, compared to classical Rayleigh–Bénard
convection with a liquid phase only, lies in the boundary conditions at the interface
between solid and liquid phases. They are given by the classical Stefan conditions
(Woods 1992; Worster 2000), which we write in dimensionless form as

θ = θM, (2.6)
Stv · n= (∇θ (S) −∇θ (L)) · n, (2.7)

where θM = (TM −T0)/(T1−T0) is the dimensionless melting temperature (0<θM < 1),
n is the local normal to the interface (pointing towards the liquid phase), v is
the interface velocity and the superscript (S) (respectively (L)) denotes the solid
(respectively liquid) phase. St is the Stefan number and corresponds to the ratio
between latent and specific heats

St=
L

cp1T
, (2.8)

where L is the latent heat per unit mass associated with the solid–liquid transition and
cp is the specific heat capacity at constant pressure of the liquid. Since we assume
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there is no density variations between the solid and the liquid phases and by continuity
of the normal velocity, the interface is effectively impenetrable (Davis et al. 1984). We
additionally consider the realistic case of no-slip boundary conditions on the interface.
Finally, in this general formulation, we neglect the so-called Gibbs–Thomson effects
associated with the surface energy of the solid–liquid interface (Worster 2000).
Note however that the phase-field model described in the following section includes
such thermodynamic effects in order to derive a continuous model of the interface
dynamics.

3. Phase-field and numerical methods
In this paper, we focus on a fixed-grid method (Voller et al. 1990) where the

spatial discretization of the physical domain is fixed with time and the interface is
not explicitly tracked. Our motivation is to derive a model which can be directly
implemented into any numerical code able to solve the Navier–Stokes equations in
the Boussinesq approximation without major alterations.

3.1. Phase-field approach for the interface
In order to solve the previous dimensionless equations without having to impose the
internal boundary conditions related to the interface, we introduce the continuous
phase-field or order parameter φ(x, z, t) such that φ = 0 in the solid phase and φ = 1
in the liquid. A thin interface of finite width in which φ takes values between zero
and unity exists between the pure solid and liquid phases. Writing an evolution
equation for the phase-field parameter can be done in several ways. The simpler
derivation, which we briefly explain here, is the geometrical approach described in
Beckermann et al. (1999) and starts from the Gibbs–Thomson effect

vn

µ
= TM − T −

σsTM

L
κ, (3.1)

where µ is the mobility, σs the surface tension, κ the mean curvature of the front
and vn the normal velocity of the interface between the solid and the liquid phases.
Although φ represents a finite-thickness interface, the normal velocity of the front can
be related to the time evolution of φ at a fixed value (for instance φ = 1/2), through
the equation

vn =
∂φ/∂t
|∇φ|

. (3.2)

Moreover, the curvature of the front can be computed in terms of φ through

κ =∇ · n=∇ ·
(
∇φ

|∇φ|

)
φ=1/2

. (3.3)

Substituting (3.2) and (3.3) into (3.1), we obtain an evolution equation for φ, in which
the right-hand side depends only on ∇φ and ∇2φ. However, this equation does not
have a unique stationary solution. Therefore, the profile for φ has to be specified, and
this point is motivated by thermodynamics considerations.

This leads us to the second approach for deriving the evolution equation for φ,
based on thermodynamics and described in detail in Wang et al. (1993) among others
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(Penrose & Fife 1990; Karma & Rappel 1996). The entropy of a given volume V is
represented by the functional

S =
∫

V

[
s−

δ2

2
(∇φ)2

]
dV, (3.4)

where s(e, φ) is the entropy density, e is the internal energy density, φ the phase
field and δ a constant. The second term in the right-hand side of equation (3.4) is
analogous to the Landau–Ginzburg gradient term in the free energy and is accounting
for contributions from the liquid–solid interface. In order to ensure that the local
entropy production is positive (Wang et al. 1993), the phase field must evolve
according to

τ
∂φ

∂t
=
∂s
∂φ

∣∣∣∣
e

+ δ2
∇

2φ, (3.5)

where τ is a positive constant. Following the thermodynamically consistent derivation
of Wang et al. (1993), this leads to the following dimensional phase-field equation:

τ
∂φ

∂t
= δ2
∇

2φ +Q(T)
dp(φ)

dφ
−

1
4a

dg(φ)
dφ

, (3.6)

where Q(T) is defined as

Q(T)=
∫ T

TM

L(ζ )
ζ 2

dζ . (3.7)

In the following, we assume that the latent heat L does not depend on temperature
and that the temperature close to the interface is always approximately the melting
temperature TM, i.e. |T − TM| � TM, so that (3.7) can be simplified to

Q(T)≈
L
T2

M
(T − TM). (3.8)

Note that the validity of this simplification can be questionable in our case since
thermal boundary layers will develop close to the interface. We nevertheless checked
its impact on our results by comparing the original function defined by (3.7) to its
simplified version (3.8), and found no significant differences.

The two functions p(φ) and g(φ) must be prescribed in order to close the model.
While several choices exist in the literature, we use the prescription of Wang et al.
(1993) which ensures that the solid and liquid phases correspond to φ = 0 and φ = 1,
irrespective of the temperature distribution across both phases:

g(φ)= φ2(1− φ)2 (3.9)

and

p(φ)=

∫ φ

0
g(ξ) dξ∫ 1

0
g(ξ) dξ

= φ3(10− 15φ + 6φ2). (3.10)
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The function g(φ) corresponds to a double well and ensures that the phase field is
either equal to 0 or 1 everywhere except close to the liquid–solid interface where the
phase change occurs. The positive constant a in (3.6) is related to the amplitude of the
potential barrier between the two equilibria. The function p(φ) ensures a continuous
transition between each extremum value of φ. Note that in a steady one-dimensional
configuration, and assuming that T = TM, equation (3.6) leads to a simple analytical
profile for the phase variable around the interface located at x= xi given by

φ(x)=
1
2

[
1− tanh

(
x− xi

2
√

2aδ

)]
, (3.11)

assuming that φ=1 as x→−∞ and φ=0 as x→+∞. The diffuse interface therefore
has a characteristic thickness equal to δ

√
a.

The corresponding dimensional temperature equation is given by (Wang et al.
1993)

∂T
∂t
+ u · ∇T = κT∇

2T −
L
cp

∂p(φ)
∂t

, (3.12)

where the last term corresponds to the release or absorption of latent heat as the
phase field varies in time. Note that the fluid is assumed to be at rest in Wang
et al. (1993), but other phase-field models have since included the advection term
(Beckermann et al. 1999; Anderson, McFadden & Wheeler 2000). Using the same
non-dimensionalization as in § 2, the phase field (3.6) and the temperature (3.12)
read

ε2

m
∂φ

∂t
= ε2
∇

2φ +
αε

St
(θ − θM)

dp
dφ
−

1
4

dg
dφ
, (3.13)

∂θ

∂t
=−u · ∇θ +∇2θ − St

dp
dφ
∂φ

∂t
, (3.14)

where

α =
L2H
√

a
δcpT2

M
(3.15)

is the coupling parameter between the phase field and the temperature field. The
dimensionless interface thickness and mobility are respectively

ε =
δ
√

a
H
, m=

δ2

τκT
, (3.16a,b)

and the Stefan number is defined in (2.8). It is clear from (3.11) that ε represents the
typical interface thickness in the dimensionless space. Since we only consider cases
where the bottom boundary is in the liquid phase while the top boundary is in the
solid phase, we impose Dirichlet boundary conditions on the phase field

φ|z=0 = 1 and φ|z=1 = 0, (3.17a,b)

and we recall that we impose the temperature at the boundaries

θ |z=0 = 1 and θ |z=1 = 0. (3.18a,b)
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This phase-field model was initially derived in a much more general context than
the classical Stefan problem, focusing on the micro-physics of solidification. It is
indeed consistent with the Gibbs–Thompson effects where the temperature at the
interface is not exactly the melting temperature, but additionally depends on the local
curvature and velocity of the interface. Following the asymptotic analysis of Caginalp
(1989), Wang et al. (1993) showed that in the limit of a vanishing interface thickness
ε→ 0, the following boundary condition applies at the interface

θ − θM =−
St
α

(
κ +

vi

m

)
, (3.19)

where the parameter St/α can be seen as a dimensionless capillary length, κ is the
dimensionless interfacial curvature and vi is the normal velocity of the interface. Thus,
in the additional limit where St/α→ 0, and for finite curvature and interface velocity,
we recover the original Stefan boundary condition (2.6) where θ = θM at the interface,
as predicted by Caginalp (1989). The value of the mobility is irrelevant provided
that the two limits above are respected. In conclusion, the original Stefan problem
is recovered provided that

ε� 1, (3.20)
St
α
� 1, (3.21)

while the mobility is fixed to be unity here.
In practice, all the additional parameters introduced by the phase-field formulation

are in fact strongly constrained by the limits (3.20)–(3.21). The value of ε is typically
proportional to the numerical grid size in order to accurately solve for the interface
region whereas α is limited by stability constraints. For the interested reader, the effect
of these parameters is discussed in more detail in appendix A. In the following, the
interface thickness ε is comparable to the smallest grid size whereas α is typically of
order St/ε so that both limits (3.20) and (3.21) are satisfied.

3.2. Navier–Stokes equations
The phase-field model described above satisfies the thermal Stefan conditions at the
interface given by (2.6)–(2.7). We also have to ensure that the interface corresponds to
a no-slip boundary condition for the velocity. Here we choose an immersed boundary
method (Mittal & Iaccarino 2005) called the volume penalization method. The no-slip
boundary condition at the liquid–solid interface is implicitly taken into account by
adding a volume force to the classical Navier–Stokes equations, solved simultaneously
in both liquid and solid domains, leading to

1
σ

(
∂u
∂t
+ u · ∇u

)
=−∇P+ Raθez +∇

2u−
(1− φ)2u

η
, (3.22)

where the last term is the penalization term and η is a positive parameter. The
incompressibility condition (2.3) is imposed everywhere so that the total volume
is necessarily conserved. The penalized (3.22) converges towards the Navier–Stokes
equations with a no-slip boundary condition imposed at the interface (Angot, Bruneau
& Fabrie 1999). The error between the original Navier–Stokes equations and their
penalized version scales like

√
η so that η is taken as small as possible. This ensures
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that this term is dominant when φ= 0 (i.e. in the solid) and the velocity exponentially
decays to zero on a time scale proportional to η. When φ = 1 (i.e. in the liquid), the
penalization term vanishes and the regular Navier–Stokes equations (2.1) are solved.
Note that the particular choice (1 − φ)2 in the numerator of the penalization term
is arbitrary and any continuous function that is zero in the liquid and unity in the
solid is adequate. For example, in the more general case of porous media, a more
complex Carman–Kozeny permeability function (1 − φ)2/φ2 can be prescribed, and
the momentum and mass conservation equations can also be modified (Beckermann
et al. 1999; Le Bars & Worster 2006). Here we choose the simplest approach of
using the phase variable directly to prescribe our penalization term. The quadratic
form is chosen in order to match the Carman–Kozeny permeability for φ → 1
while recovering a value of unity for φ → 0. Finally, note that all of the results
discussed in this paper do not qualitatively depend on this particular prescription of
the penalization term; it only affects the detailed structure of the transition between
the solid and liquid phase which occurs on length scales typically smaller than the
thermal and viscous boundary layers. A comparative study of the different possible
expressions for the penalization term, expressed as a function of the phase field itself,
is beyond the scope of this paper but would nevertheless prove useful for improving
the convergence properties of the current model. The penalization parameter is chosen
as small as possible, noting that an explicit treatment of the penalization term leads
to stability constraints, typically dt<η (Kolomenskiy & Schneider 2009) where dt is
the time step. In the following, the penalization parameter is chosen so that η= 2dt.

We now suppose that the system is two-dimensional which naturally leads to a
streamfunction formulation of the Navier–Stokes equations. The streamfunction ψ is
defined by u=−∇× (ψey) or

u=
∂ψ

∂z
and w=−

∂ψ

∂x
. (3.23a,b)

Taking the curl of (2.1) and projecting onto the y-direction leads to the vorticity
equation for a two-dimensional flow in the (x, z) plane

∂∇2ψ

∂t
+
∂ψ

∂z
∂∇2ψ

∂x
−
∂ψ

∂x
∂∇2ψ

∂z
=−σRa

∂θ

∂x
+ σ∇4ψ −

σ

η
(∇× (1− φ)2u) · ey. (3.24)

The no-slip boundary conditions at the top and bottom boundaries correspond to

ψ |z=0,1 = 0 and
∂ψ

∂z

∣∣∣∣
z=0,1

= 0. (3.25a,b)

Similarly, the heat equation, including the phase-field term and the streamfunction
decomposition, leads to

∂θ

∂t
+
∂ψ

∂z
∂θ

∂x
−
∂ψ

∂x
∂θ

∂z
=∇

2θ − St
dp
dφ
∂φ

∂t
. (3.26)

3.3. Spatial and temporal discretizations
Equations (3.24), (3.26) and (3.13) are solved using a mixed pseudo-spectral
finite-difference code. This code has been used in various context from fully
compressible convection (Matthews et al. 1995; Favier & Bushby 2012) to rapidly
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rotating Boussinesq convection (Favier, Silvers & Proctor 2014). Each variable is
assumed to be periodic in the x-direction and is written as

f (x, z)=
∑

nx

f̂ (nx, z) exp(ikxx)+ c.c., (3.27)

where nx is an integer, c.c. stands for conjugate terms and the wavenumber is defined
as

kx =
2πnx

λ
. (3.28)

Horizontal spatial derivatives are computed in spectral space whereas vertical
derivatives are discretized using a fourth-order finite-difference scheme.

For the streamfunction, the dissipative fourth-order term is solved implicitly,
whereas the advective, temperature and penalization terms are solved explicitly. This
is achieved using a classical second-order Crank–Nicolson scheme for the implicit
part coupled with a third-order Adams–Bashforth scheme for the explicit part. For the
temperature and the phase field, we use a fully explicit third-order Adams–Bashforth
scheme. An explicit treatment of these equations is indeed easier due to the nature
of the coupling term on the right-hand side of equation (3.26). Note that an implicit
scheme could be used to solve these equations (see for example Andersson (2002))
but the stability constraint associated with solving explicitly both diffusive terms in
(3.26)–(3.13) is not very limiting in our two-dimensional case. We have tested the
convergence of our numerical scheme in § A.3.

4. Phenomenology of the melting dynamics
We consider the following set of initial conditions, which only depends on the

vertical coordinate z:

u(t= 0)= 0, (4.1)

θ(t= 0)=
{

1+ (θM − 1)z/h0 if z 6 h0,

θM(z− 1)/(h0 − 1) if z> h0,
(4.2)

φ(t= 0)=
1
2

[
1− tanh

(
z− h0

2
√

2ε

)]
, (4.3)

where h0 is the initial position of the planar solid–liquid interface. It corresponds
to a simple piecewise linear temperature profile with a heat flux discontinuity at
z= h0. Depending on the values of θM and h0, this can lead to situations dominated
by freezing or melting. In this paper, we focus the gradual melting of a solid that
is initially nearly isothermal with a temperature close to the melting temperature.
In our dimensionless system, this corresponds to θM � 1. In that configuration, no
equilibrium is expected and the solid phase continuously melts until the top boundary
z = 1 is reached and only the liquid phase remains. Note that we do not consider
the limit case θM = 0 in order to avoid numerical issues in the phase field (3.13).
In that case, the coupling term proportional to θ − θM vanishes in the whole solid
which can lead to issues in the localization of the interface. The results discussed in
this paper are obtained using a typical value of θM = 0.05. This ensures that the heat
conduction in the solid plays a negligible role in the dynamics so that the evolution
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of the interface is solely due to the heat flux in the liquid phase (this has been
checked by varying the value of θM).

We now define several quantities that will prove useful later. The position of the
interface h(x, t), which we assume to be single-valued, evolves in space and time and
is implicitly defined as

φ(x, z= h, t)= 1/2. (4.4)

It is useful to define the effective Rayleigh number of the fluid layer, based on the
actual temperature gradient across the depth of the fluid layer

Rae = Ra(1− θM)h
3
, (4.5)

where we introduce the averaged fluid height defined as

h(t)=
1
λ

∫ λ
0

h(x, t) dx, (4.6)

where λ is the dimensionless horizontal length of the domain. In the following, the
operator · corresponds to a horizontal spatial average. For simplicity, and by analogy
with classical Rayleigh–Bénard convection, we only work with the heat flux injected at
the bottom boundary. The heat flux consumed at the solid–liquid interface to melt the
solid could equally be used, although it is more complicated to measure numerically.
A detailed discussion of the different measures of the heat flux in this system can be
found in Rabbanipour Esfahani et al. (2018). The heat flux injected into the fluid is

QW =−
1
λ

∫ λ
0

∂θ

∂z

∣∣∣∣
z=0

dx (4.7)

so that the Nusselt number can be defined to a first approximation (see § 5.3 for a
more detailed discussion) by

Nu=
QW

QD
=

QWh
1− θM

, (4.8)

where we have introduced the reference diffusive heat flux QD which can be
approximated for now by (1− θM)/h.

4.1. Critical Rayleigh number
We focus here on the transition between a purely diffusive regime and a convection
regime as the fluid depth increases with time. We therefore consider the case where
the initial height h0 is small enough so that the initial conditions given by (4.1)–
(4.3) are stable. It has been shown by Vasil & Proctor (2011) that the convection
threshold can be modified compared to the classical Rayleigh–Bénard problem and
that a morphological mode grows as soon as Ra(1 − θM)h

3
> Rac ≈ 1295.78. This

corresponds to a significant modification of the stability criterion compared to the case
of classical no-slip RB convection, for which Rac ≈ 1707.76 (Chandrasekhar 1961).
The most unstable wavenumber is also reduced from kc ≈ 3.116 to kc ≈ 2.552. These
results are however only valid in the asymptotic limit of large Stefan numbers. While
this regime is virtually impossible to reach numerically using the current approach
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FIGURE 2. (Colour online) Kinetic energy density in the fluid domain versus the time
varying Rayleigh number defined by (4.5). Each curve corresponds to a different initial
fluid depth h0 in (4.2)–(4.3). The dashed curve corresponds to the case where only the
horizontally averaged component of the phase field is solved (i.e. the upper boundary is
effectively planar).

(there exists a time scale separation between the dynamics of the flow and that of the
interface), we nevertheless explore this critical transition for finite Stefan numbers in
the following.

We start from the initial conditions defined by (4.1)–(4.3) with various initial heights
from h0 = 0.33 to h0 = 0.45, and θM = 0.1. Using a global Rayleigh number of Ra=
15 180, this leads to an initial effective Rayleigh number varying between Rae(t= 0)=
491 and 1245. We start from infinitesimal temperature perturbations in the liquid layer
only. We consider a case where St = 10 which is large enough to get a reasonable
time scale separation while still being accessible numerically. The other numerical
parameters are given in table 1 and correspond to case A. We define the kinetic energy
density in the system by

K(t)=
1
Vf

∫
Vf

u2 dV, (4.9)

where Vf (t) is the volume of fluid as a function of time. The time evolution of the
kinetic energy density versus time for various initial heights h0 is shown in figure 2.
Initially, the kinetic energy in the system briefly increases. This is a consequence
of our choice of initial conditions for which the fluid is at rest and temperature
perturbations only are added. After this short transient, the kinetic energy density
decreases with time for all cases. Surprisingly, the kinetic energy starts to grow for
different effective Rayleigh numbers in each case, as early as Rae ≈ 650 for the
smallest initial height of h0 = 0.33. The growth rate of this first phase is however
much weaker than the typical growth rate when the effective Rayleigh number
becomes larger than the classical value of 1707.76. We therefore do not observe a
clear transition between stable and unstable behaviours at a given critical Rayleigh
number, which seems to indicate that perturbations can grow at any value of the
effective Rayleigh number.
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Case Nx Nz Ra St θM λ ε α

A 512 256 15180 10 0.1 8 4× 10−3 2500
B 256 256 6× 105 10 0.05 1 2× 10−3 5000
C 4096 1024 108 1 0.05 8 10−3 1000
D 1024 512 107

[0.02 : 50] 0.05 6 3× 10−3
[10 : 20 000]

TABLE 1. List of numerical parameters for the different cases discussed in this study.

In order to show that this is a consequence of the upper boundary not being
exactly planar, we perform an additional simulation with exactly the same parameters
as above and for h0 = 0.41. The only difference is that we artificially smooth the
upper boundary by only solving the horizontally averaged value of the phase field
(this is performed in Fourier space by truncating all modes except kx = 0). This is
of course artificial but nevertheless useful for understanding the origin of this early
growth. The time evolution of the kinetic energy density is shown in figure 2 as a
dashed curve. At early times, there are no noticeable differences between the regular
simulation and the artificial planar case. However, at later times, there is no growth
for the planar case until the critical value of Rae ≈ 1710 is reached. This clearly
shows that the very early growth of the kinetic energy is associated with the presence
of a topography. This topography is very small in amplitude since it is generated by
the initial perturbations, but is nevertheless measurable numerically. It is known that
any non-planar topography will drive a baroclinic flow at any Rayleigh number (Kelly
& Pal 1978). The amplitude of this gravity current scales linearly with the Rayleigh
number and linearly with the amplitude of the topography and is directly forced by the
misalignment between the hydrostatic pressure gradient and the inclined temperature
gradient normal to the boundary. As we get closer to the threshold Rae = 1707.76,
we eventually recover the classical instability mechanism of convection through an
imperfect bifurcation (Coullet & Huerre 1986). This is consistent with the slow
growth of kinetic energy we observed in figure 2, followed by an exponential phase
(the growth rate for Rae > 1707.76 is actually super-exponential since the Rayleigh
number keeps increasing while the instability develops).

There are several reasons why we do not recover the result of Vasil & Proctor
(2011) who found a critical transition at Rae ≈ 1295. First, we are not in the
asymptotic regime of large Stefan numbers. We repeated the previous simulations at
higher St, up to St = 100, without qualitative changes in the results discussed above.
It is however possible that the asymptotic regime discussed by Vasil & Proctor (2011)
is only achieved at much higher Stefan numbers. In addition, Vasil & Proctor (2011)
used slightly different boundary conditions and they focused on modes growing on the
very slow melting time scale, which is difficult to isolate in our finite Stefan number
simulations. Finally, even if we varied all the numerical parameters of our model
to confirm that the results discussed above are numerically converged, we cannot
discard the possibility that the phase-field approach is inappropriate for studying the
evolution of infinitesimal perturbations of the topography, as is the case here. One
must remember that the interface is here continuous with a typical width that is
here much larger than the perturbations responsible for driving the baroclinic flow.
However, we note that once the classical convection instability sets in, all the previous
simulations starting from various initial heights lead to the same nonlinear state (apart
from a temporal shift as seen in figure 2 at late times) which is discussed in the
following sections.
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4.2. Nonlinear saturation close to onset and secondary bifurcation
We now explore the evolution of the system once the initial instability saturates and
leads to a steady set of convective rolls. In the following, we consider a particular
case with a relatively large Stefan number St = 10 so that we get a reasonable time
scale separation between the flow and the interface dynamics. This particular choice is
made to simplify the analysis of the bifurcation to be discussed below. For the same
reason, we consider a laterally confined case where λ= 1. The other parameters are
given in table 1 for case B. We start from an initial height of h0 = 0.13 so that the
initial fluid layer is stable (Rae(h0)≈ 1245).

After the transient growth discussed in the previous section, we observe at saturation
a steady flow and a significant topography which is now clearly non-planar (see
figure 3). Perhaps unsurprisingly, the wavelength of this topography is equal to that
of the convective rolls below. The solid is locally melting just above rising hot
plumes but less so above sinking cold plumes. Once this nonlinearly equilibrated
set of rolls and their associated topography exist, the horizontal wavenumber of the
rolls is fixed while the average fluid depth keeps increasing with time. This can
be seen by measuring the typical horizontal wavelength of the topography as the
distance between two local minima of h(x, t). In order to compare with classical RB
convection, we normalize the corresponding wavenumber kx by the time dependent
averaged fluid depth h(t). We show in figure 3(a) the effective Rayleigh number
of the fluid layer as a function of this normalized wavenumber hkx. The marginal
stability curve of classical RB with no-slip and fixed temperature walls is shown for
reference (Chandrasekhar 1961). Since the average fluid depth h increases, while the
horizontal wavenumber of the convection remains constant, the effective Rayleigh
number continuously increases like Rae ∼ h

3
. Our simulation closely follows this

prediction, as shown in figure 3(a).
A simple question now arises: how long can this dynamically evolving set of

convective rolls persists against the continuous vertical stretching of the fluid domain?
One possibility would be to assume that the rolls are vertically elongated until they
become stable again. This is indeed possible since the marginal curve behaves
like Rac ∼ (hkx)

4 for large wavenumbers whereas the rolls with fixed horizontal
wavenumber follow a Rae∼ (hkx)

3 scaling, so that they will eventually become stable
as shown in figure 3(a). This is not what is observed in the simulation, however, and
a bifurcation occurs well before the possible restabilization of the initially unstable
mode. This bifurcation occurs after the rolls have been elongated vertically by an
approximate factor of 3 and corresponds to an abrupt reduction in the horizontal
wavenumber kx(t) of the convection rolls.

The detailed nature of this bifurcation can be qualitatively understood by following
the time evolution of the horizontally averaged mean flow u(z, t), shown in figure 3(b).
This mean flow remains negligible at early times but abruptly grows when the rolls
become elongated enough. It first appears as a shear flow with one vertical wavelength,
effectively shearing the first set of rolls, as can be seen in the temperature field shown
in the middle panel of figure 3(c). Once the initial set of rolls has been disrupted, the
mean flow undergoes damped oscillations. A new set of rolls is then generated by the
convection instability, with a larger horizontal wavelength, therefore maintaining the
unit aspect ratio of the convective cells. This bifurcation is also visible in figure 3(a)
where a jump between two kx ∼ const. curves is observed. This is reminiscent of the
generation of mean shear flows in laterally confined classical RB convection (Busse
1983; Prat, Massaguer & Mercader 1995; Fitzgerald & Farrell 2014; Goluskin et al.
2014). Our case is however slightly more complicated since the volume of fluid
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FIGURE 3. (Colour online) Generation of mean horizontal shear flows during the collapse
of steady convective rolls. (a) Effective Rayleigh number as a function of the normalized
wavenumber hkx. The red curve corresponds to the marginal curve for classical RB
(Chandrasekhar 1961). The oblique dashed lines correspond to a constant horizontal
wavenumber and follow Rae ∼ h

3
. (b) Horizontally averaged flow u versus z and time.

The black line corresponds to the maximum height max(h(x, t)). The onset of convection
and the nonlinear saturation are indicated with vertical dashed lines. (c) Temperature field
shown at three successive instants, shown as empty symbols and vertical dotted lines in
(a,b). The white line corresponds to the interface defined as φ = 1/2 and the grey lines
correspond to streamlines.

increases with time and the upper topography is non-planar. The generation of mean
horizontal shear flows is nevertheless a generic mechanism in RB convection that
we also observe in our particular system. Note that the detailed properties of this
bifurcation depends on the aspect ratio of numerical domain λ, the Stefan number St
and the nature of the initial perturbations.

This transition between convection rolls of different sizes is expected to repeat
itself as the fluid depth keeps increasing, with the additional complication that the
effective Rayleigh is ever increasing due to the gradual melting of the solid, so that
the bifurcation is expected to become more and more complicated.

4.3. Behaviour at large Ra
We now focus on a representative example at high Rayleigh number for which we
fix St= 1, Ra= 108 and σ = 1. This simulation corresponds to case C in table 1. We
consider a domain with a large aspect ratio of λ= 8. Doing so, we aim at minimizing
the horizontal confinement effect associated with our periodic boundary conditions.
Note that this is the global aspect ratio including the solid domain, the actual aspect
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ratio of the liquid domain is initially much larger. We therefore expect the liquid phase
to display spatio-temporal chaos instead of purely temporal chaos typical of laterally
confined systems (Manneville 2006). The initial position of the interface is h0 ≈ 0.02
so that the effective Rayleigh number of the fluid layer is Rae(t= 0)=Ra(1− θM)h3

0≈

760, well below the critical value. Using a horizontal resolution of Nx = 4096 and a
vertical resolution of Nz=1024, the smallest grid size is typically dx≈2×10−3 so that
interface width is fixed to ε = 10−3. Assuming a Prandtl–Blasius scaling (Grossmann
& Lohse 2000), the dimensionless width of the viscous boundary layers δv scales like
Ra−1/3 which typically leads to δv > 2.2× 10−3 in our case. Thus, the interface width
ε is always significantly smaller than the viscous boundary layer δv.

The simulation is run until the interface reaches the upper boundary z= 1. For the
parameters of this simulation, this approximately takes 0.03 thermal diffusive time
scales. We first show in figure 4 (see also movie 1 in the supplementary materials
available online at https://doi.org/10.1017/jfm.2018.773) visualizations showing the
temperature and vorticity distributions at different times during the simulation. At the
early times, the solution is purely diffusive until the liquid depth reaches its critical
value above which convection sets in. Convection is initially steady and laminar,
as observed previously, with approximately 132 convective cells across the whole
domain. As the interface progresses, this initial set of convective rolls is vertically
stretched, eventually forcing a secondary transition leading to larger convective cells,
as discussed previously in § 4.2, although the nature of the bifurcation appears to
be different in this large aspect ratio domain (see below). This alternation between
quasi-stationary phases of melting where the number of convective cells is conserved
and more violent transitions associated with a reordering of the convective cells
continues until the upper boundary is eventually reached.

Let us first discuss the shape of the interface as the solid continuously melts.
We first show in figure 5(a) the interface position as a function of the horizontal
coordinate x at different times. The interface is obtained by interpolating the phase
field variable in order to find the isocontour φ = 1/2. Equivalently, the interface
can be defined as the isotherm θ = θM, which leads to the same results, apart from
very localized regions of high curvatures where a slight mismatch between the two
isocontours is observed, as expected from the Gibbs–Thomson relation (3.19). These
discrepancies are however negligible here (i.e. the maximum distance between the
isocontours φ= 1/2 and θ = θM is smaller than the thickness of the boundary layers),
as expected from our choice of large coupling parameter α. The colour of the curves
in figure 5(a) corresponds to the signed curvature, derived from the interface position
h(x, t) following

κ(x, t)=
∂xxh

[1+ (∂xh)2]3/2
. (4.10)

The maximum value of the curvature corresponds to cusps joining two cavities of the
topography and is approximately κmax ≈ 300. This is of the same order as the largest
curvature achievable by our phase-field approach, which can be approximated by
the inverse of the interface width ε−1

= 103. We can therefore be confident that the
cusps are numerically resolved and not artificially smoothed by our diffuse interface
approach. The horizontal positions of these cusps appear to be very stable, which
corresponds to a spatial locking between the convection rolls and the topography
(Vasil & Proctor 2011). One can also note that these cusps often correspond to small
melting rates (i.e. the successive profiles of h(x, t) are close) compared to the much
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FIGURE 4. (Colour online) Visualizations of the total numerical domain for case C in
table 1. The temperature is shown on the left (dark red corresponds to θ = 1 while dark
blue corresponds to θ = θM) while vorticity is shown on the right (blue and red colours
correspond to ±0.25ωmax respectively). The grey line corresponds to the interface defined
by the isosurface φ= 1/2. Time is increasing from top to bottom: t= 5× 10−4, 1.5× 10−3,
6 × 10−3, 1.2 × 10−2, 2.4 × 10−2 and 3 × 10−2. See also movie 1 in the supplementary
materials.

larger cavities with negative curvature where intense localized melting events driven
by the underlying hot thermal plumes are observed. An alternative three-dimensional
view of the spatio-temporal evolution of the interface is also shown in figure 5(b).
The successive bifurcations between different rolls size is clearly visible. We observe
various types of cell merging events, from two adjacent cells merging into one, to
more complicated behaviours where one cell disappears, leading to the merging of
its neighbour cells.

We now describe the dynamics of the fluid flow, which is strongly correlated with
that of the interface. Our system is not laterally confined so that there is no significant
horizontal mean flow, as seen in § 4.2 previously. Instead, we observe a reorganization
of the convection cells through local merging events. Figure 6 shows the temperature
profile located at the mid-height of the fluid domain, θ(x, z = h(t)/2, t). At early
times, as shown in figure 6(b), the temperature profile is initially purely diffusive
and uniform, θ(z = h/2) = (1 − θM)/2 ' 1/2. The first network of steady convective
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FIGURE 5. (Colour online) (a) Position of the interface h(x, t) as a function of x for
different times separated by approximately 5× 10−4 thermal diffusion times. The colour of
the curves corresponds to the signed curvature defined by (4.10). Dark colours correspond
to small negative curvatures whereas light colours correspond to cusps with large positive
curvatures. (b) Three-dimensional view of the spatio-temporal evolution of the interface
h(x, t). The colour corresponds to the local value of h(x, t).

cells eventually appears and we again observe that the typical horizontal wavelength
remains constant after the first nonlinear saturation of the convection instability. The
secondary instability, which involved a horizontal mean flow in § 4.2, now appears
to be more local since the system is not laterally confined. Interestingly, these local
transitions tend to propagate horizontally to neighbouring cells in a percolation
process. This is indicated in figure 6(b) by the inclined dashed lines. The typical
speed of propagation of this defect in the convection cells lattice, estimated directly
from the slope of the dashed lines in figure 6(b), is approximately the same as the
fluid vertical velocity. Each cell is therefore destabilized after approximately one
turnover time.

In addition, the thermal plumes are clearly oscillatory just after the bifurcation
but eventually stabilize and become steady after a short transient. This observation
is especially interesting since the Rayleigh number of the system is continuously
increasing with time. One might therefore expect the dynamics to become more and
more complex, transiting from periodic to chaotic and eventually turbulent solutions
as it is the case in classical RB convection without topography. This transition from
oscillatory convection to steady convection clearly shows the stabilizing effect that
the topography exerts on the flow, locking two counter-rotating convection rolls
inside each cavity. At later times and higher Rayleigh numbers, shown in figure 6(a),
although the stabilization of the thermal plumes by the topography is still observed,
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FIGURE 6. (Colour online) Spatio-temporal evolution of the temperature at the middle of
the fluid layer θ(x, h/2, t). (a) Full duration of the simulation 0< t < 3× 10−2 and full
spatial extent 0< x< 8. The dashed line corresponds to the zoom shown below. (b) Zoom
in at early times 0< t< 6× 10−3; the dashed lines follow the propagation of a defect in
the initially steady array of convective rolls.

significant temporal fluctuations are nevertheless visible, indicating that the convective
cells will eventually transit to more chaotic behaviours. The inevitable transitions
between steady, periodic and chaotic solutions observed in classical RB (Gollub &
Benson 1980; Curry et al. 1984; Goldhirsch, Pelz & Orszag 1989) are therefore
probably just delayed by the presence of the topography, but will eventually reappear
at much larger Rayleigh numbers. This conclusion remains speculative at this stage
since this particular simulation is limited to Rae < 108. It is nevertheless reasonable
to expect a different, potentially reduced, interaction between the topography and the
underlying flow in the fully developed turbulent regime.

A final interesting observation concerns the clear asymmetry between rising and
sinking plumes. Sinking plumes are extremely stable and do not seem to move
horizontally, apart from the sudden transitions associated with the reorganization of
the convective cells. As seen in figure 4, cold plumes are generated by the merging
of two boundary layers descending along the topography, leading to the formation of
a high curvature cusp. This cusp is therefore protected by the continuous supply of
cold fluid generated by the melting of the neighbouring dome by hot rising fluid. The
sinking plumes are therefore always found to be emitted by the cusps. In contrast,
rising plumes tend to slowly drift horizontally until they eventually collide with an
adjacent sinking plume, leading to destabilization of both convection rolls. The reason
for this drift is probably associated with the baroclinic gravity currents, infinitesimal
at low Rayleigh numbers and small topography as in § 4.1, but much stronger at large
effective Rayleigh numbers and for finite topography slopes. Once a rising thermal
plume slightly moves horizontally, it is continuously dragged by the topographic
current until a merger occurs. The competition between thermal convection driven
by unstable bulk temperature gradients and gravity currents driven by a baroclinic
forcing close to an inclined slope is interesting in itself, although we postpone the
study of its detailed dynamics to future studies.
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5. Statistical description
We now describe the evolution of the convection and of the topography in a more

quantitative way by systematically varying the Stefan number and measuring the
averaged response of the interface h(x, t) and the heat flux QW . In order to reach
the large Stefan number regime, for which the solid melts at a much slower rate, we
reduce the Rayleigh number to Ra= 107, the other parameters being given in table 1,
case D.

5.1. Melting velocity
We now consider the effect of varying the Stefan number on the dynamics of the
convective flow and interface. The parameters are the same as previously but we now
vary the Stefan number from St = 2 × 10−2 to St = 50. The main consequence of
increasing the Stefan number is to increase the time scale separation between the
turnover time of the convective cells and the typical time scale of evolution of the
topography. As St increases, it takes much more time for a given set of convection
rolls to form or alter a topography due to the larger amount of latent heat necessary
to do so.

This can be seen in figure 7(a) where the averaged fluid depth is shown versus time
for three different Stefan numbers. The dotted lines show the purely diffusive solution
in the absence of motions in the fluid phase (i.e. for Rae < Rac at all times). These
purely diffusive solutions all display the scaling h ∼ t1/2 as expected for diffusive
Stefan problems (Vasil & Proctor 2011). One observes a departure from this prediction
which marks the onset of convection. The larger the Stefan number, the longer it
takes to reach the threshold of convection. However, all cases follow the scaling h∼ t
after the onset of convection. The prefactor however depends on the Stefan number,
as shown in figure 7(b). The melting velocity, obtained by a best fit of the previous
linear law, is plotted against the Stefan number. The melting velocity seems to be
independent of the Stefan number for low values and scales as St−1 for large values.

These behaviours can be understood by simple energetic arguments. By integrating
(3.14) over the whole volume V , we find the relation

d
dt

∫
V
[θ + Stp(φ)] dV =

∫
upper

∂θ

∂z
dS−

∫
lower

∂θ

∂z
dS, (5.1)

where the left-hand side corresponds to the total rate of change of the enthalpy in
the system whereas the right-hand side corresponds to the heat fluxes entering and
leaving the domain. This conservation constraint must be exactly satisfied at all times
during the simulations. Since we work with the temperature as a variable with the
latent heat being viewed as an external forcing term, the enthalpy is not explicitly
conserved by our scheme. We therefore have to check a posteriori that the enthalpy
is indeed conserved in our system. We typically observe a relative error in the total
enthalpy of the system of the order of 1 % at the final time of the simulations when
all the solid has melted.

Equation (5.1) can also be used to estimate the rate of change of the average
fluid height h(t). The internal heat associated with the solid can be neglected in
first approximation since we consider the limit where θM� 1. In addition, assuming
that the fluid layer is fully convective and behaves as in classical RB convection, its
average temperature can be approximated by 1/2. This leads to the relation (ignoring
heat losses from the quasi-isothermal solid above)(

1
2
+ St

)
dVf

dt
=−

∫
lower

∂θ

∂z
dS≈ λ

Nu
h
, (5.2)
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FIGURE 7. (Colour online) (a) Time evolution of the horizontally averaged fluid depth h
for different Stefan numbers. The two scalings h∼ t and h∼ t1/2 are shown as continuous
black lines. The two horizontal dotted lines correspond to the critical heights above which
convection sets in, estimated from Rac≈ 1707. (b) Melting velocity ˙h for different Stefan
numbers. The theoretical estimate is derived from (5.5) using γ ≈ 0.115 and β = 1/3.

where the heat flux from the lower boundary has been replaced by the Nusselt number
Nu as defined in (4.8) (and we have assumed that θM � 1). In (5.2), the volume of
fluid

Vf =

∫
V

p(φ) dV (5.3)

can be approximated by hλ and the Nusselt number can be replaced by the usual
scaling law involving the effective Rayleigh number of the form Nu∼ γRaβe (see § 5.3
for a more detailed discussion of the heat flux) leading to(

1
2
+ St

)
dh
dt
≈
γRaβe

h
≈ γRaβh

3β−1
, (5.4)

where we have again assumed that θM� 1. The solution to this equation reads

h(t)≈
[

h2−3β
0 +

(2− 3β)γRaβ

1/2+ St
t
]1/(2−3β)

, (5.5)

where h0 = h(t = 0). Using the typical value of β = 1/3 (Grossmann & Lohse
2000), we find that h ∼ t which is indeed recovered by our simulations. Note that
assuming that β = 1/4 leads to h ∼ t4/5 which is also in reasonable agreement with
our simulations. In addition, assuming that β = 1/3, the melting velocity ˙h can be
estimated for different Stefan numbers from (5.5) and compared with the numerical
results. The only adjusting parameter is the prefactor γ linking the Nusselt number
with the Rayleigh number. We show in figure 7 the best fit with our numerical data
which gives γ ≈ 0.115. The agreement is very good over nearly four decades of
Stefan numbers. In particular, we recover the fact the melting velocity behaves like
St−1 in the limit of large Stefan numbers.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

77
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.773


458 B. Favier, J. Purseed and L. Duchemin

0.0625 0.1250 0.2500

h-(t)
0.5000

0.1

I c(
t)

1.0

(a) (b)

St = 0.05
St = 0.1
St = 0.2
St = 0.5

St = 1
St = 2
St = 5

St = 10

104 105

Rae(t)
106

10-1

¡Rae
1/2

10-2

h r
m

s(t
)

10-3

Ic = 2h-

St = 0.05
St = 0.1
St = 0.2
St = 0.5

St = 1
St = 2
St = 5

St = 10

FIGURE 8. (Colour online) (a) Typical horizontal extent of the cavities as a function
of the averaged fluid depth. The dashed line corresponds to the limit case where each
convective roll has a unit aspect ratio. (b) Root-mean-square value of the topography
defined by (5.6) as a function of the effective Rayleigh number and for different Stefan
numbers. The scaling Ra1/2

e is shown for reference.

5.2. Horizontal and vertical scales of the topography
Let us now discuss some properties of the topography as times evolves. We can track
the number of local minima Nmin(t) of the function h(x, t) as a function of time. The
typical length of the cavities generated by flow can be estimated as lc(t)= λ/Nmin(t)
where λ is the aspect ratio of the numerical domain. This length scale is plotted in
figure 8 for different Stefan numbers as a function of the average fluid depth h(t).
As expected, the typical size of the cavities grows with time. Additionally, as seen in
figure 4, each cavity contains two convective rolls, each having an opposite circulation.
For classical RB convection, the convective rolls typically have a unit aspect ratio
(which is related to the fact the critical wavenumber is approximately k ≈ π). This
corresponds to the typical relation lc(t)≈ 2h(t), which we also plot in figure 8. All the
curves remain below this curve, showing that our convective rolls are always slightly
elongated in the vertical direction despite the successive dynamical transitions that
eventually destabilize them. Note that convective cells tend to be less elongated (i.e.
our results get closer to the prediction lc= 2h) as the Stefan number increases. This is
a direct consequence of the time scale separation typical of the large Stefan number
regime, for which the flow can quickly bifurcate to a new, more unstable, set of
convective rolls without any significant change in the average fluid depth.

Finally, it is interesting to consider the typical amplitude of the topography. One
can compute the root-mean-square depth as

hrms(t)=
√
(h(x, t)− h(t))2. (5.6)

Figure 8 shows this quantity as a function of the effective Rayleigh number of the
fluid layer. Interestingly, there is little dependence with the Stefan number, except
close to onset where the saturation of convective occurs later for small Stefan numbers.
The typical amplitude of the topography, as measured by hrms, seems to depend mostly
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on the effective Rayleigh number of the layer, following an approximate scaling of
Ra1/2

e . Note that the fluctuations of our results, a consequence of the dynamical
transitions discussed above, and the relatively small variation in effective Rayleigh
numbers, are limiting us from getting a conclusive scaling. It is however interesting
to note that the local Reynolds number of RB convection typically scales as Ra1/2

(Grossmann & Lohse 2000), so that there might be a link between the amplitude
of the topography and the Reynolds number of the underlying flow, and thus the
thickness of the boundary layers developing along the topography.

5.3. Effect of the topography on the heat flux
The previous section has shown the non-trivial back-reaction that the topography
imprints on the convective flow. The effect of non-uniform boundary conditions
on the heat flux in a Rayleigh–Bénard system has a long history. Roughness of
the horizontal plates is an obvious candidate to trigger boundary layer instabilities
possibly leading to an enhancement of the heat flux (Ciliberto & Laroche 1999)
and possibly to the so-called ultimate regime predicted by Kraichnan (Kraichnan
1962; Roche et al. 2010). The wavelength and typical amplitude of our topography is
however much larger than the typical roughness used in experiments (Rusaouën et al.
2018). Note also that roughness does not always lead to a heat transfer enhancement
(Zhang et al. 2018). In the present case, the horizontal wavelength of the topography
is precisely that of the most unstable wavelength of the idealized Rayleigh–Bénard
problem in the absence of topography, a situation sometimes referred to as the
resonant case (Kelly & Pal 1978; Bhattacharjee 1991; Weiss et al. 2014).

In this section, we consider the heat flux at the bottom boundary QW defined by
(4.7). We show the evolution with time of this heat flux for St= 10 and Ra= 107 as
a function of the average fluid depth h in figure 9. Before the onset of convection,
the purely diffusive heat flux is simply given by QW ≈ (1 − θM)/h which is indeed
observed initially. After convection sets in, we observe a rapid increase of heat flux
associated with the nonlinear overshoot of the instability. The heat flux then tends
to decrease with time, but we also observe a succession of plateaus characterized by
an approximately constant heat flux QW , separated by sudden decays. The plateaus
correspond to the quasi-steady phases where the convection is locked inside the
topography, whereas the sudden decays correspond to the secondary bifurcation
where the mean flow is disrupting the convection rolls and inhibits the heat flux
across the fluid layer. Starting from the classical relation Nu∼ γRaβe , where Nu is the
Nusselt number defined by (4.8), leads to the relation QW ∼ h

3β−1
so that for β < 1/3,

the convective heat flux is indeed a decreasing function of the fluid height, all other
parameters being fixed, whereas it is independent of the fluid height when β = 1/3.
These different scalings are shown in figure 9 for reference.

We now consider the problematic question of the normalization of this heat flux.
In classical RB convection, the diffusive flux across a plane-layer domain is trivially
derived from the solution of the purely diffusive heat equation. In our case, however,
the diffusive flux is not trivial since the topology of the fluid domain is fully two-
dimensional and of finite amplitude. Formally, one should therefore solve the heat
equation in order to know the diffusive heat flux across the layer. This refinement
has negligible consequence when the topography is of very small amplitude, but this
is not the case here, where the topography is of comparable order with the fluid depth.
We therefore derive below a second-order correction of the diffusive heat flux at the
bottom boundary.
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FIGURE 9. (Colour online) Heat flux averaged over the bottom surface QW , as defined in
(4.7), as a function of the averaged fluid depth h(t). The results are only shown for the
case St= 10 for clarity. The dotted lines correspond to various power law scalings.

We consider the purely diffusive case of a fluid layer heated from below (θ = 1 in
z= 0), with the upper surface at temperature θ = θM located at

z= h(x, t)= h(t)(1+ ε cos kx), (5.7)

where ε� 1, h is the mean height given by (4.6), and k is the wavenumber of the
topography. We assume that the evolution of h(t) is much slower than the diffusion
(which is formally justified in the large Stefan number limit: see Vasil & Proctor
(2011)). Therefore, we note h = h0, 1θ = 1 − θM, and we look only for stationary
solutions of the diffusion equation

∇
2θ = 0, z ∈ [0, h(x)], (5.8a,b)

with boundary conditions

θ(x, 0)= 1, (5.9)
θ(x, h(x))= θM. (5.10)

We expand θ in power series of ε,

θ(x, z)= θ0(x, z)+ εθ1(x, z)+ ε2θ2(x, z)+ · · · , (5.11)

and solve for (5.8) at each order in ε. After some algebra (cf. appendix B), we obtain
at second order

QD =−
1
λ

∫ λ
0

∂θ

∂z
(x, 0) dx=

1θ

h0
+ ε2 k1θ

2
coth kh0. (5.12)

On the other hand, the area of the topography per unit horizontal length A (a length
per unit length in our two-dimensional geometry) can be computed using (5.7):

A=
1
λ

∫ λ
0

√
1+

(
∂h(x, t)
∂x

)2

dx=
1
λ

∫ λ
0

√
1+ (−kh0ε sin kx)2 dx. (5.13)
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FIGURE 10. (Colour online) Nusselt number as a function of the effective Rayleigh
number Rae(t) for a Stefan number of St = 10. The empty symbols correspond to the
classical Rayleigh–Bénard case whereas the dashed line corresponds to the optimum steady
solution of Sondak, Smith & Waleffe (2015). The thin line is shown for indication and
is obtained by computing the effective Rayleigh number on the maximum fluid height
instead on its horizontally averaged value.

At order ε2, we obtain

1A≡ A− 1= 1
4 k2h2

0ε
2. (5.14)

Finally, the diffusion heat flux can be expressed according to this surface area
increase

QD =
1θ

h0

(
1+

21A
kh0

coth kh0

)
. (5.15)

The typical wavelength in our simulations being of the order of 2h0, we can estimate
this diffusion flux by writing k'π/h0, leading to

QD '
1θ

h0

(
1+

21A
π

)
. (5.16)

We can now rescale the heat flux through the fluid layer QW at each time knowing
the averaged fluid depth h and the area increase 1A computed numerically at each
time step. The diffusive heat flux through the fluid layer is approximately

QD(t)=
1− θM

h(t)

(
1+

21A(t)
π

)
(5.17)

and the Nusselt number is finally defined as the ratio between the total heat flux (4.7)
and the diffusive flux estimated using (5.17).

The result of this normalization is shown in figure 10. For the case St = 10,
we show the time evolution of the effective Nusselt number as a function of the
effective Rayleigh number. For reference, we also show some typical values obtained

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

77
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.773


462 B. Favier, J. Purseed and L. Duchemin

for classical Rayleigh number (each point corresponding in that case to the time
average of a single simulation at fixed Rayleigh number). We also indicate the
results of Sondak et al. (2015) which correspond to the optimal heat transfer for a
two-dimensional steady solution giving Nu≈ 0.125Ra0.31. In Sondak et al. (2015), the
best fit is actually Nu≈ 0.115Ra0.31 but corresponds to a Prandtl number of 7. They
obtained a slightly larger prefactor for σ = 1 but the same power law. Interestingly,
although our simulation departs significantly from classical Rayleigh–Bénard, our
renormalization shows that the Nusselt number follows that of classical RB convection
in a quasi-static manner. This is of course only true at large Stefan numbers. For
lower Stefan numbers (not shown), the curves are much more erratic and no clear
trend can be derived. There are however significant differences between our case
and the predictions specific to RB. Although the exponent is not significantly altered
by the presence of the melting interface, the prefactor appears larger than what it
is for regular RB. This is marginally true at low Rayleigh numbers (Rae < 106)
but quite clear at higher Rayleigh numbers. This can be attributed to the back
reaction of the topography on the convective rolls, which appears to be a stabilizing
effect by delaying the transition to periodic convection. In two dimensions, this
transition typically occurs around Ra ≈ 105 and reduces the Nusselt number, as can
be seen in figure 10. The presence of the topography induced by the convective
flow itself seems to favour stable quasi-steady rolls as opposed to oscillatory ones.
This leads to an increase in heat flux when compared to classical RB and is closer
to the optimal solution of Sondak et al. (2015), derived assuming steady laminar
solutions. This marginal increase in the Nusselt number was also recently reported
in the independent study by Rabbanipour Esfahani et al. (2018), both in two and
three dimensions, although for a Prandtl number of 10. Note finally that although
we carefully normalized the heat flux, our choice of Rayleigh number is rather
arbitrary. One could argue for example that the effective Rayleigh number based
on the averaged fluid depth is barely relevant and that only the maximum depth
where the Rayleigh number is effectively maximum matter for the heat flux. The
results corresponding to this particular choice are shown in figure 10 as the thin
line. Although it does reduce the overall heat flux for a given Rayleigh number,
our conclusions drawn above remain qualitatively valid. Since we are limited in
the maximum value for our effective Rayleigh number (a consequence of the finite
vertical extent of our numerical domain), it is not clear how the topography affects
the heat flux in the fully chaotic regime reached at much higher Rayleigh numbers.

6. Conclusion
Numerical simulations of Rayleigh–Bénard convection in two dimensions with an

upper melting boundary have been performed. We have shown that the fact that the
upper boundary dynamically becomes non-planar has interesting consequences on
the development of convection in the fluid layer. The onset of convection becomes
imperfect due to baroclinic effects close to the topography so that it is difficult to
study the transition between a purely diffusive regime and thermal convection, even
when the Stefan number is large. The initial saturation of the instability leads to
steady convective rolls carving a topography with the same wavelength. As the fluid
depth increases and when the flow is laterally confined, the steady rolls eventually
feed a mean horizontal shear flow, as observed in supercritical RB convection, which
disrupts convection until a new array of convective rolls grows with an aspect ratio
close to unity. For large horizontal aspect ratios, the transition is replaced by local
merging events propagating to neighbouring cells in a percolation process. Finally, at
higher Rayleigh numbers, we observe that the convection rolls remain locked into
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the topography, delaying bifurcations to periodic and chaotic orbits, and effectively
increasing the heat flux compared to classical RB convection.

Many aspects of this apparently simple system remain to be explored. We focused
in this paper on the particular case θM → 0. It is however obvious that the system
can reach a quasi-steady equilibrium with both liquid and solid phases present when
0<θM < 1. In that case, the solid is cooled from above, effectively balancing the heat
flux brought by thermal convection in the liquid phase below. Depending on the values
for θM, Ra and St, this regime is expected to lead to interesting dynamics which we
are currently exploring. The Prandtl number was also fixed to be unity for simplicity
but it is well known that classical RB convection crucially depends on this parameter
and we expect our system to be the same. It is also worth recalling that liquid metals
typically have very low Prandtl numbers, for which we expect a different melting
or solidifying dynamics. Finally, while it would be very difficult to generalize our
approach to variable densities between the solid and liquid phases, a natural extension
involving non-uniform thermal diffusivities is nevertheless possible (Almgren 1999).

Based on the phase-field method, our approach is relatively simple to implement
in existing numerical codes capable of solving the usual Boussinesq equations. As
of now, it remains numerically expensive due to the fact that some diffusive terms
are solved explicitly. This could easily be improved by considering a linearized
version of the last term on the right-hand side of equation (3.26), allowing for a
fully implicit coupling between the temperature and the phase-field equations. This
would allow us to consider similar problems in three dimensions, thus extending the
early experimental works by Davis et al. (1984) and the recent numerical study of
Rabbanipour Esfahani et al. (2018). Some of the results discussed in this paper might
not be relevant to the three-dimensional case since the stability of three-dimensional
convection patterns are notoriously different from their two-dimensional equivalents.
The effects of an upper melting boundary on the development of three-dimensional
convection cells remain to be fully explored.

The framework developed in this paper could finally be used to study other
free-boundary problems. The dynamical creation of non-trivial topographies by
dissolution (Claudin et al. 2017) or erosion (Moore et al. 2013) are also accessible
using the current approach. The Stefan boundary condition which depends on the
temperature gradients can be generalized to incorporate gradients of concentration
or tangential velocity. Several academic configurations could therefore be revisited
using a continuous interface approach such as the phase-field model coupled with the
Navier–Stokes equations.
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FIGURE 11. (Colour online) Reference solution obtained by the mapping method. (a)
Time evolution of the temperature profile. The red curve corresponds to the initial
condition whereas the blue curve corresponds to the reference time t = 1/4 used for
comparison. (b) Time evolution of the interface position.

Appendix A. Numerical convergence with the phase-field parameters

The objective of this section is to show how the parameters introduced by the phase-
field formulation are chosen in order to recover the original Stefan problem as defined
by (2.5)–(2.7).

A.1. One-dimensional case without fluid motions
We consider a simple one-dimensional Stefan problem. A liquid phase of a pure
material initially occupies a region [0, xi] while the solid phase occupies the
region [xi, 1]. The dimensionless temperature is imposed to be θ = 1 at x = 0
and θ = 0 at x = 1. The interface is initially located at xi(t = 0) = 1/5 and
the melting temperature is θM = 1/5. The initial temperature profile is given by
θ(x, t=0)= (e−β(x−1)

−1)/(eβ−1) where β ≈ 8.041. The Stefan problem (2.5)–(2.7) is
then solved for a fixed Stefan number of St = 1. The expected steady state, which
is recovered by all simulations discussed in this section, corresponds to a linear
temperature profile θ(x, t → ∞) = 1 − x and xi(t → ∞) = 4/5. In the following,
we focus on the more interesting transient phase and compare different numerical
methods in their ability to predict the position of the front and the temperature profile
at t= 1/4.

The reference solution is obtained by a mapping method where the unsteady liquid
domain x ∈ [0, xi(t)] is transformed into a steady domain ζ ∈ [0, 1] whereas the solid
domain x ∈ [xi(t), 1] is transformed into ζ ∈ [1, 2]. This is achieved by using the
following change of spatial variable:

ζ (t)=
{

x/xi(t) in the liquid domain,
(x− 2xi(t)+ 1)/(1− xi(t)) in the solid domain, (A 1)

where ζ = 1 corresponds to the interface at all times. In each domain, the spatial
derivative in ζ is discretized using fourth-order finite differences whereas the time-
stepping is performed with a third-order explicit Adams–Bashforth scheme. We use
the same number of grid points N = 256 in each domain. The temporal evolution of
the temperature profile and of the position of the interface are shown in figure 11.
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FIGURE 12. (Colour online) L2 relative error as a function of ε and α. The error decreases
as ε→ 0 and α→∞. The vertical dotted lines in (b) correspond to St/α = ε where the
capillary length is equal to the interface thickness. Increasing α further does not improve
the convergence of the phase-field model, therefore setting an upper bound for α.

The phase-field model introduced in § 3.1 is now used to solve exactly the same
problem. Equations (3.13) and (3.26) are solved on a one-dimensional domain
neglecting fluid motions. The numerical scheme is the same as for the mapping
method described above. The spatial resolution is fixed to N= 256 for all simulations.
In addition to the physical parameters used above, we need to specify three additional
numerical parameters specific to the phase-field formulation: ε, α and m. Following
Caginalp (1989) and Wang et al. (1993), the mobility is fixed whereas α and ε are
varied. In this paper, all simulations are performed with m= 1 and we checked that
varying m does not qualitatively affect the solution. The first parameter ε corresponds
to the effective thickness of the interface and the original discontinuous problem
is obtained taking ε→ 0. In practice, the minimal value of ε is directly related to
the grid size. We therefore perform several simulations varying ε while all other
parameters remain fixed, m= 1 and α= 200. For each value of the interface thickness
ε, we compute the L2 relative error on the temperature profile at t = 1/4 between
the phase-field model and the reference solution obtained with the mapping method.
Results are shown in figure 12. The relative error increases with ε with a power law
between ε and ε2. The minimum of the error is obtained for ε ≈ 2× 10−3 which is
half of the grid size dx≈ 4× 10−3. This is not surprising since the effective thickness
of the interface at equilibrium is given by 2

√
2ε (see (3.11)). When ε decreases

below this critical value of ε = dx/2, the phase-field model becomes unstable and
leads to non-physical results.

In order to show that the particular choice of the functions p(φ) and g(φ) in (3.6)
is arbitrary and does not affect the results, we also show in figure 12 the convergence
of the so-called Model II of Wang which only differs from Model I by the choice of
p(φ). Instead of (3.10), Model II chooses p(φ)= φ2(3− 2φ). Results are very similar
for both models. We nevertheless stick with Model I since this particular choice of
functions ensures that all thermodynamic constraints are satisfied independently of the
temperature distribution.

We now consider the convergence of the phase-field model as a function of the
coupling parameter α. We repeat the same procedure but we now fix ε = 2.5× 10−3;
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α is varied from 1 to α = 800. The same relative error is shown in figure 12. When
α is of order unity, the Stefan boundary condition is not satisfied since the capillary
length is too large and the temperature at the interface is not exactly the melting
temperature. As α increases, the relative error drops by several orders of magnitude,
following a power law between α−1 and α−2. For very large values of α, typically
α> 0.2/ε, the error saturates, which is expected since the capillary length becomes as
small as the interface thickness. This is confirmed by repeating the same experiment
for different values of the interface thickness. Similar results are obtained using the
alternative Model II.

In conclusion, this one-dimensional study shows that all numerical parameters
introduced by the phase-field model are actually constrained in order to accurately
represent the original Stefan problem. The interface mobility is fixed to an arbitrary
value of order unity and we choose here the simplest choice m = 1. The interface
thickness is taken as small as possible and is related to the grid size dx by ε = dx/2.
Once ε and m are fixed, we choose α = St/ε where St is the Stefan number (see
(3.19)). This approach ensures that for a given spatial resolution, the error with
respect to the original Stefan problem is minimized.

A.2. One-dimensional axisymmetric case without fluid motions
We now consider an axisymmetric case without motion in the fluid phase. This
additional validation is important since the previous one-dimensional study neglected
curvature effects. The phase-field method introduces an effective surface tension at the
interface, which has to be negligible in order to recover the classical Stefan problem.
The boundary condition associated with the phase-field model in the limit of vanishing
interface thickness is given by (3.19) where curvature at the interface and kinetics
can modify the temperature at the interface. In order to recover the Stefan boundary
condition, they need to be negligible leading to the limit α/St→∞. Since the forcing
term in the phase field (3.13) is solved explicitly here, α is necessarily bounded for
stability reasons. This means that, for a given problem, there is a maximum curvature
of the interface above which the Stefan boundary condition will not be satisfied. In
this paper, we typically take α/St ∼ ε, so that the upper bound for the curvature is
approximately the inverse of the interface thickness.

To study the convergence of the phase-field model as curvature effects become
important, we study a simple axisymmetric Stefan problem. A solid disk of initial
radius ri is immersed inside an infinite fluid domain. The initial temperature
distribution is given by θ(r) = [1 + tanh(γ (r − ri))]/2 where r = 0 is the centre
of the disk and we choose ri = 1/10 and γ = 100. The solid is therefore mostly at
θ = 0 while the liquid is mostly at θ = 1, the melting temperature being fixed to
θM = 1/2. The Stefan number is fixed to St= 1.

The problem is first solved using the same mapping method as in § A.1, solving for
the radial diffusion of heat in both liquid and solid domain and explicitly matching the
two solutions in order to satisfy the Stefan condition at the interface. We use N = 64
grid points for the small solid domain and N = 512 grid points for the larger liquid
domain. To test the phase-field model, we use the same numerical code as before,
adapted to cylindrical coordinates. We use N= 512, ε= 10−3, m= 1 as usual, and vary
α from α= 10 to α= 103 which corresponds to the limiting case where the capillary
length is equal to the thickness of the interface. We track the interface position which
corresponds to φ = 1/2.

Figure 13 shows the time evolution of the interface position, for both the mapping
method and the phase-field model with different values of α. As time evolves, the
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FIGURE 13. (Colour online) (a) Temporal evolution of the interface curvature as obtained
by the phase-field method with varying α. The dots corresponds to the time at which
the solid is completely melted. (b) Radial profile of temperature in the solid and liquid
domains at different times.

curvature of the interface increases continuously so that, for a fixed α, the effective
boundary condition of the phase-field model (3.19) departs from the expected Stefan
boundary condition θ(ri) = θM. Note in addition that the velocity of the interface
diverges as ri→ 0, so the second kinetic term in (3.19) also starts to contribute.

In conclusion, providing that ε→ 0 and α→∞, the Stefan boundary condition is
recovered except in regions with large curvatures, typically of order 1/ε. Even for the
extreme case of a vanishing solid considered here, the phase-field model predicts the
time of complete melting to within a few per cent, and most of the errors are due the
final period where the curvature and interface velocity diverge.

A.3. Two-dimensional case with fluid motion
Finally, let us discuss the complete problem where fluid motion occurs in the fluid
phase. To our knowledge, there is no analytical solution to such a problem, so we
perform a relative convergence study, where our reference is a numerical simulation
with the largest available resolution. We consider a two-dimensional square domain
of unit side, with periodic boundary conditions in the x-direction and no-slip fixed
temperature boundary conditions in the z-direction. We choose the simple initial
equilibrium given by θ(z)= 1− z where θM = 1/2, the interface being initially located
at z = 1/2. To this equilibrium state, we add a temperature perturbation inside the
liquid domain of the form θ ′(x, z)= A sin(4πx) sin2(2πz) and θ ′(x, z)= 0 in the solid
domain. We choose the following set of physical parameters: Ra = 5 × 105, St = 1,
Pr= 1.

This problem is solved using an increasing spatial resolution from N = 32
to N = 1024 in each spatial direction. The highest resolution is our reference
case to which we compare all other resolutions. The phase-field and penalization
parameters are automatically adjusted depending on the resolution according to the
following rules. The interface thickness is chosen as small as possible and is directly
proportional to the grid size ε = 1/(N − 1) (see § A.1). The coupling parameter α is
taken to be St/ε and the mobility m= 1. The penalization parameter is automatically
chosen to be η = 2dt where dt is the time step. We let the simulation evolve up to
t= 0.1.
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FIGURE 14. (Colour online) (a) Visualization of the temperature field, vorticity and phase-
field contours for the case N = 1024 at t= 0.1. (b) Interface position h(x) as a function
of the resolution N and at t= 0.1.

A snapshot of the reference solution with N = 1024 is shown in figure 14. The
colours correspond to the temperature field, the grey lines correspond to contours
of the vorticity and the two black lines correspond to contours of the phase field
characterized by φ = 0.1 and φ = 0.9. The interface position h(x, t) is computed at
each iteration and for each horizontal position by interpolating the temperature field
in order to find the vertical position of the isotherm θ = θM = 1/2. This is achieved
using a fourth-order Lagrangian interpolation scheme in the vertical direction only.
The position of the interface at t = 0.1 for all resolutions considered here is shown
in figure 14(b). The characteristic topography is observed for all resolutions, and
its vertical position is converging toward an asymptotic solution as N is increased.
The inset shows details of the topography close to a cusp which also corresponds
to the slowest convergence of our scheme due to high curvature effects (see § A.2).
Nevertheless, we compute the relative error on the lowest value of h(x) between
the reference case at N = 1024 and all other cases. Results are shown in figure 15,
where a second-order convergence with the resolution is obtained. Note that the
slow convergence, typically first order, obtained at low resolution is due to the
overlap between the typical size of the thermal boundary layers and the typical size
of the interface ε (which is, we recall, enslaved to the spatial resolution here). In
other words, this confirms the intuitive conclusion that the interface thickness must
be smaller than any other physical length scales for the phase-field model to be
appropriate. All simulations presented in this paper satisfy such a condition.

Appendix B. Second-order correction of the diffusion flux with topography
Using expression (5.7), the expanded boundary condition (5.10) reads

θM = θ(x, h0)+ εh0 cos kx
∂θ

∂z
(x, h0)+ ε

2h2
0 cos2 kx

∂2θ

∂z2
(x, h0)+ · · · (B 1)

= θ0(x, h0)

+ ε

(
θ1(x, h0)+ h0 cos kx

∂θ0

∂z
(x, h0)

)
+ ε2

(
θ2(x, h0)+ h0 cos kx

∂θ1

∂z
(x, h0)+ h2

0 cos2 kx
∂2θ0

∂z2
(x, h0)

)
+ · · · . (B 2)
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FIGURE 15. (Colour online) Relative error on the minimum value of the interface position
at t = 0.1 as a function of the spatial resolution. The reference case corresponds to the
case N = 1024.

The leading-order solution of the diffusion equation for ε= 0 is simply given by

θ0(x, z)= 1−1θ
z
h0
. (B 3)

At order ε, we need to solve

∇
2θ1 = 0, (B 4)

with the boundary conditions

θ1(x, 0)= 0, (B 5)

θ1(x, h0)+ h0 cos kx
∂θ0

∂z
(x, h0)= 0. (B 6)

The solution reads

θ1(x, z)=1θ cos kx
sinh ky
sinh kh0

. (B 7)

At order ε2, we need to solve

∇
2θ2 = 0, (B 8)

with the boundary conditions

θ2(x, 0)= 0, (B 9)

θ2(x, h0)+ h0 cos kx
∂θ1

∂z
(x, h0)+ h2

0 cos2 kx
∂2θ0

∂z2
(x, h0)= 0. (B 10)
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FIGURE 16. (Colour online) Comparison between the prediction from (B 13) and direct
numerical simulations using the spectral element solver Nek5000.

The solution reads

θ2(x, z)=−
k1θ

2
coth kh0

(
z+ h0 cos 2kx

sinh 2kz
sinh 2kh0

)
, (B 11)

and the full second-order solution is

θ(x, z)= θ0(x, z)+ εθ1(x, z)+ ε2θ2(x, z). (B 12)

Finally, the mean heat flux through the lower boundary can be computed from this
expansion. The only two contributions to the flux come from θ0 and θ2:

QD =
1θ

h0
+ ε2 k1θ

2
coth kh0

1
λ

∫ λ
0

(
1+ 2kh0 cos 2kx

1
sinh 2kh0

)
dx

=
1θ

h0
+ ε2 k1θ

2
coth kh0. (B 13)

We compare this scaling with actual numerical simulations of the heat flux
through a plane layer with the upper topography being defined by (5.7). These
simulations were performed using the spectral element solver Nek5000 (Fischer,
Lottes & Kerkemeier 2008) which can easily accommodate this kind of non-trivial
geometry. Nek5000 has for example been recently used to study flows inside tri-axial
ellipsoids (Grannan et al. 2017). We use a two-dimensional Cartesian mesh made of
256 elements and a polynomial order of 12. The aspect ratio of the box is λ= 2 and
we explicitly impose the topography given by (5.7). The horizontal boundaries are
periodic and we fix the temperature on both the planar bottom and corrugated upper
boundaries. We run several simulations varying the amplitude ε and we measure the
heat flux (4.7) in the steady state for Ra= 0 to ensure a purely diffusive regime. The
agreement between the theoretical prediction (B 13) and the direct measure of the
diffusive flux QD in the Nek5000 simulations is excellent as can be seen in figure 16,
up to topographies with amplitude around ε≈ 0.5, well below the typical amplitudes
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observed in our melting simulations, thus justifying the use of the reference diffusive
heat flux (B 13) to define the Nusselt number. Note that if instead of imposing
a simple monochromatic topography, we consider a more realistic configuration
involving cusps for example, the correction to heat flux remains of second order, and
only the prefactor is slightly modified.
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