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Abstract

The definition of stable models for propositional formulas with infinite conjunctions and

disjunctions can be used to describe the semantics of answer set programming languages. In

this note, we enhance that definition by introducing a distinction between intensional and

extensional atoms. The symmetric splitting theorem for first-order formulas is then extended

to infinitary formulas and used to reason about infinitary definitions.

1 Introduction

The original definition of a stable model (Gelfond and Lifschitz 1988) was applicable

only to quantifier-free formulas of a restricted syntax. Stable models for arbitrary

first-order sentences were defined by Ferraris et al. (2007) using the stable model

operator SM. This definition can be used to define the semantics of some rules with

aggregate expressions. For instance, the following rule, written in the input language

of the ASP system clingo,1

q :- #count{X:p(X)} = 0 (1)

can be identified with the first-order sentence

∀x ¬p(x) → q. (2)

In Ferraris et al. (2011), that definition was generalized to allow a distinction

between “extensional” and “intensional” predicate symbols. (Under the original

definition all predicate symbols are treated as intensional.) Intuitively, an intensional

predicate is one whose extent is defined by the program, while all other, extensional,

predicates are defined externally. Similar distinctions have been proposed many

1
http://potassco.sourceforge.net
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times: Gelfond and Przymusinska (1996) distinguish between input and output

predicates in their “lp-functions”, Oikarinen and Janhunen (2008) distinguish be-

tween input and output atoms, and Lierler and Truszczynski (2011) between input

and non-input atoms. These distinctions are useful because they allow for a modular

view of logic programs. For example, in the splitting theorem from Ferraris et al.

(2009), the authors showed that stable models for a program can sometimes be

computed by breaking the program into parts and computing the stable models of

each part separately using different sets of intensional predicates.

Using the approach proposed by Ferraris (2005), Truszczynski (2012) extended

the definition of a stable model in a different direction: he showed how to apply this

concept to infinitary propositional formulas. He also showed that the definition of

first-order stable models in terms of the 2007 definition of the operator SM could

be reduced to the definition of infinitary stable models. Infinitary stable models were

used in that paper as a tool for relating first-order stable models to the semantics of

first-order logic with inductive definitions. Infinitary stable models are important also

because they provide an alternative understanding of the semantics of aggregates.

For instance, rule (1) can be identified with the infinitary formula

∧
t

¬p(t) → q, (3)

where the conjunction in the antecedent is understood as ranging over all ground

terms t not containing arithmetic operations. The advantage of this approach over

the use of first-order formulas is that it is more flexible. For example, it is applicable

to aggregates involving #sum. In recent work, Gebser et al. (2015) use this idea to

define a precise semantics for a large class of ASP programs, including programs

with local variables and aggregate expressions.

However, Truszczynski’s definition of stable models for infinitary formulas does

not allow a distinction between extensional and intensional atoms. It treats all atoms

as intensional. In this note, we generalize the definition of stable models for infinitary

formulas to accommodate both intensional and extensional atoms, and we study

properties of this definition. As might be expected, the definition of first-order stable

models with extensional predicates can be reduced to the definition proposed in this

note. We use this definition to generalize the results on first-order splitting from

Ferraris et al. (2009). In particular, we look at the splitting lemma from Ferraris

et al. (2009), which showed that under certain conditions the stable models of a

formula can be computed by computing the stable models of the same formula

with respect to smaller sets of intensional predicates. We find that a straightforward

infinitary counterpart to the splitting lemma does not hold, and show how the lemma

needs to be modified for the infinitary case. The situation is similar for the splitting

theorem discussed above. The infinitary splitting theorem is used to generalize the

lemma on explicit definitions due to Ferraris (2005), which describes how adding

explicit definitions to a program affects its stable models. In the version presented

in this note, the program can include infinitary formulas and the definition can be

recursive.
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2 Review: Infinitary Formulas and their Stable Models

This review follows Truszczynski (2012), Harrison et al. (2015). Let σ be a proposi-

tional signature, that is, a set of propositional atoms. For every nonnegative integer r,

(infinitary propositional) formulas (over σ) of rank r are defined recursively, as

follows:

• every atom from σ is a formula of rank 0,

• if H is a set of formulas, and r is the smallest nonnegative integer that is

greater than the ranks of all elements of H, then H∧ and H∨ are formulas

of rank r,

• if F and G are formulas, and r is the smallest nonnegative integer that is

greater than the ranks of F and G, then F → G is a formula of rank r.

We will write {F,G}∧ as F ∧ G, and {F,G}∨ as F ∨ G. The symbols � and ⊥ will

be understood as abbreviations for ∅∧ and ∅∨ respectively; ¬F stands for F → ⊥,

and F ↔ G stands for (F → G) ∧ (G → F). These conventions allow us to view finite

propositional formulas over σ as a special case of infinitary formulas.

A set or family of formulas is bounded if the ranks of its members are bounded

from above. For any bounded family (Fα)α∈A of formulas, the formula {Fα : α ∈ A}∧

will be denoted by
∧

α∈A Fα, and similarly for disjunctions.

Subsets of a signature σ will be also called interpretations of σ. The satisfaction

relation between an interpretation and a formula is defined recursively, as follows:

• For every atom p from σ, I |= p if p ∈ I .

• I |= H∧ if for every formula F in H, I |= F .

• I |= H∨ if there is a formula F in H such that I |= F .

• I |= F → G if I �|= F or I |= G.

An infinitary formula is tautological if it is satisfied by all interpretations. Two

infinitary formulas are equivalent if they are satisfied by the same interpretations.

The reduct FI of a formula F w.r.t. an interpretation I is defined recursively, as

follows:

• For every atom p from σ, pI is p if p ∈ I , and ⊥ otherwise.

• (H∧)I is {GI | G ∈ H}∧.

• (H∨)I is {GI | G ∈ H}∨.

• (G → H)I is GI → HI if I |= G → H , and ⊥ otherwise.

If H is a set of infinitary formulas, then the reduct HI is the set {FI : F ∈ H}. An

interpretation I is a stable model of a set H of formulas if it is minimal w.r.t. set

inclusion among the interpretations satisfying the reduct HI .

Example

It is clear that {q} is the only stable model of (3). Indeed, the reduct of (3) w.r.t.

{q} is

� → q, (4)

and {q} is a minimal model of this formula w.r.t. set inclusion. It is easy to see that

(3) has no other stable models.
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3 A-stable Models

Following Ferraris et al. (2011), we will assume that some atoms in a program are

designated “intensional” while all others are regarded as “extensional”.

Recall that σ denotes a propositional signature. Let A ⊆ σ be a (possibly infinite)

set of atoms. The partial order �A is defined as follows: for any sets I, J ⊆ σ,

we say that I �A J if I ⊆ J and J \ I ⊆ A. (Intuitively, if the atoms in A are

treated as intensional and all other atoms from σ are treated as extensional, the

relation holds if I ⊆ J and I, J agree on all extensional atoms.) An interpretation I

is called an (infinitary) A-stable model of a formula F if it is a minimal model of FI

w.r.t. �A.

Observe that if A = σ then A-stable models of a formula F are the same as

stable models. If A = ∅, then A-stable models are all models of F . Truszczynski

observed that an interpretation I satisfies F iff I satisfies FI (Truszczynski 2012,

Proposition 1). It follows that all A-stable models of F also satisfy F .

Example (continued)

To illustrate the definition of A-stability, let’s find all {q}-stable models2 of (3). The

stable model {q} of (3) is {q}-stable as well, because it is a minimal model of (4)

w.r.t. �{q}. On the other hand, any non-empty set P of atoms of the form p(t) is

{q}-stable too. Indeed, the reduct of (3) w.r.t. such a set is an implication whose

antecedent has ⊥ as one of its conjunctive terms. Such a formula is tautological so

that it is satisfied by P. Furthermore, P is a minimal model w.r.t. �{q} since any

subset of P will disagree with it on extensional atoms.

The fact that all stable models of (3) are also {q}-stable is an instance of a more

general fact: If I is an A-stable model of F and B is a subset of A, then I is also

a B-stable model of F . This follows directly from the definition of A-stability.

The following proposition provides two alternative definitions for A-stability.

Proposition 1

The following three conditions are equivalent:

(i) I is an A-stable model of F;

(ii) I is a minimal model (w.r.t. set inclusion) of

FI ∧
∧

p∈I\A

p; (5)

(iii) I is a stable model of

F ∧
∧

p∈σ\A

(p ∨ ¬p). (6)

2 Here, we understand σ as implicitly defined to be the set containing q and all atoms of the form p(t)
where t is a ground term.
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Proof

We first establish that conditions (i) and (ii) are equivalent: I is an A-stable model

of F

iff I is a minimal model of FI w.r.t. �A

iff I |= FI and there is no J ⊂ I such that J |= FI and I \ J ⊆ A
iff I |= FI and there is no J ⊂ I such that J |= FI and ∀p(p ∈ I ∧ p �∈ J → p ∈ A)

iff I |= FI and there is no J ⊂ I such that J |= FI and ∀p(p ∈ I ∧ p �∈ A → p ∈ J)

iff I |= FI and there is no J ⊂ I such that J |= FI and I \ A ⊆ J

iff I |= FI ∧
∧

p∈I\A

p and there is no J ⊂ I such that J |= FI ∧
∧

p∈I\A

p

iff I is a minimal model of (5).

Finally, we will establish that conditions (ii) and (iii) are equivalent. It is easy to

see that the reduct of (6) is equivalent to (5):

FI ∧

⎛
⎝ ∧

p∈σ\A

(p ∨ ¬p)

⎞
⎠

I

↔ FI ∧
∧

p∈σ\A

(pI ∨ (¬p)I )

↔ FI ∧
∧

p∈I\A

(pI ∨ (¬p)I ) ∧
∧

p∈σ\(I∪A)

(pI ∨ (¬p)I )

↔ FI ∧
∧

p∈I\A

(p ∨ ⊥) ∧
∧

p∈σ\(I∪A)

(⊥ ∨ �)

↔ FI ∧
∧

p∈I\A

p.

So I is a minimal model of (5) iff it is a stable model of (6). �

4 Relating Infinitary and First-Order A-Stable Models

As mentioned in the introduction, Truszczynski (2012) showed that infinitary stable

models can be viewed as a generalization of first-order stable models in the sense

of Ferraris et al. (2011). In this section, we will show that the corresponding result

holds for p-stable models as well.3 First, we review Truszczynski’s results.

Let Σ be a first-order signature, and I be an interpretation of Σ with non-empty

domain |I |. For each element u of |I |, by u∗ we denote a new object constant, called

the name of u. By Σ|I | we denote the signature obtained by adding the names of all

elements of |I | to Σ. An interpretation I is identified with its extension I ′ to Σ|I | in

3 The definition of p-stable models, where p is a list of distinct predicate symbols, can be found in
Ferraris et al. (2011), Section 2.3.
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which for each u in |I |, I ′(u∗) = u. By AΣ,I we denote the set of all atomic sentences

over Σ|I | built with relation symbols from Σ and names of elements in |I |, and by

Ir we denote the subset of AΣ,I that describes in the obvious way the extents of the

relations in I . Let F be a formula over signature Σ|I |. Then the grounding of F w.r.t.

I , grI (F) is defined recursively, as follows:

• grI (⊥) is ⊥;

• grI (p(t1, . . . , tk)) is p((tI1)
∗, . . . , (tIk)

∗);

• grI (t1 = t2) is � if tI1 = tI2 and ⊥ otherwise;

• grI (F � G) is grI (F)� grI (G), where � ∈ {∧,∨,→};
• grI (∀xF(x)) is {grI (F

x
u∗ )|u ∈ |I |}∧;

• grI (∃xF(x)) is {grI (F
x
u∗)|u ∈ |I |}∨.

(By Fx
u∗ we denote the result of substituting u∗ for all free occurrences of x in F .) It

is clear that for any first-order sentence F over signature Σ, grI (F) is an infinitary

formula over the signature AΣ,I .

Example (continued)

If Σ consists of the unary predicate p and the propositional symbol q, and I is an

interpretation of Σ such that the domain |I | is the set of all ground terms t, then the

grounding of (2) w.r.t. I is (3). (To simplify notation we identify the name of each

term t with t.)

According to Theorem 5 from Truszczynski (2012), if F is a first-order sentence

and I is an interpretation, then I is a first-order stable model of F iff Ir is an

infinitary stable model of grI (F). The proposition below generalizes this result to

the case of p-stable models. By pI we denote the atomic formulas in AΣ,I built with

predicates from p.

Example (continued)

If p is p then pI is the set of all atoms of the form p(t).

Proposition 2

For any first-order sentence F over Σ and any tuple p of distinct predicate symbols

from Σ, an interpretation I is a p-stable model of F iff Ir is a pI -stable model

of grI (F).

Example (continued)

Let I be the interpretation that interprets p as identically false and assigns the value

� to q. Then Ir is {q}. Let J be an interpretation that satisfies at least one atomic

formula p(t) and assigns the value ⊥ to q. Then Jr is {p(t) | J |= p(t)} (the same as

P from the previous section). We saw in the previous section that {q}-stable models

of (3) are {q} and any non-empty set of atoms of the form p(t). In accordance with

the proposition above, I and J are {q}-stable models of (2).

Proof of Proposition 2

Consider a first-order sentence F and list of distinct predicate symbols p. Let Q be

the set of all predicates occurring in F but not in p. Consider an interpretation I of
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the signature of F . By Theorem 2 from Ferraris et al. (2011), I is a p-stable model

of F iff it is a stable model of

F ∧
∧
q∈Q

∀x(q(x) ∨ ¬q(x)),

where x is a list of distinct object variables the same length as the arity of q. By

Theorem 5 from Truszczynski (2012), I is a stable model of the formula above iff Ir

is a stable model of the grounding of this formula w.r.t. I . The grounding of the

formula above w.r.t. I is

grI (F) ∧
∧
q∈Q
A∈qI

(A ∨ ¬A) . (7)

By Proposition 1, Ir is a stable model of (7) iff it is a pI -stable model of grI (F). �

5 Review: First-Order Splitting Lemma

The lemma presented in the next section of this note is a generalization of the

splitting lemma from Ferraris et al. (2009).

In order to state that lemma, we first review the definition of the predicate

dependency graph given in that paper. We say that an occurrence of a predicate

symbol or a subformula in a first-order formula F is positive if it occurs in the

antecedent of an even number of implications and strictly positive if it occurs in

the antecedent of no implication. An occurrence of a predicate constant is said to

be negated if it belongs to a subformula of the form ¬F , and nonnegated otherwise.

A rule of a first-order formula F is a strictly positive occurrence of an implication

in F . The (positive) predicate dependency graph of a first-order formula F w.r.t. a

list p of distinct predicates, denoted DGp[F] is the directed graph that

• has all predicate symbols in p as its vertices, and

• has an edge from p to q if, for some rule G → H of F ,

— p has a strictly positive occurrence in H , and

— q has a positive nonnegated occurrence in G.

We say that a partition4 {p1, p2} of the vertices in a graph G is separable (on G)

if every strongly connected component of G is a subset of either p1 or p2. (Here, we

identify the list p with the set of its members.)

The following assertion is a reformulation of Version 1 of the splitting lemma

from Ferraris et al. (2009).

Splitting Lemma

If F is a first-order sentence and p1, p2 are lists of distinct predicate symbols such

that the partition {p1, p2} is separable on DGp1p2
[F], then I is a p1p2-stable model

of F iff it is both a p1-stable model and a p2-stable model of F .

4 We understand a partition of X to be a set of disjoint subsets (possibly empty) that cover X.
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6 Infinitary Splitting Lemma

The statement of the infinitary splitting lemma refers to the positive dependency

graph of an infinitary formula. As we will see, the vertices of this graph correspond

to intensional atoms. This definition is similar to the definition of a predicate

dependency graph given in Ferraris (2007) and Ferraris et al. (2009) and reviewed

in the previous section. The concepts necessary to define the dependency graph of

an infinitary formula are all straightforward extensions of the concepts used in the

previous section to define the predicate dependency graph in the first-order case.

However, because infinitary formulas are not syntactic structures, we have to define

these concepts recursively.

We define the set of strictly positive atoms of an infinitary formula F , denoted

P(F), recursively, as follows:

• For every atom p ∈ σ, P(p) is {p};
• P(H∧) is

⋃
H∈H P(H), and so is P(H∨);

• P(G → H) is P(H).

The set of positive nonnegated atoms and the set of negative nonnegated atoms of

an infinitary formula F , denoted Pnn(F) and Nnn(F) respectively, were introduced

in Lifschitz and Yang (2012). These sets are defined recursively as well:

• For every atom p ∈ σ, Pnn(p) is {p};
• Pnn(H∧) is

⋃
H∈H Pnn(H), and so is Pnn(H∨);

• Pnn(G → H) is ∅ if H is ⊥ and Nnn(G) ∪ Pnn(H) otherwise.

and

• For every atom p ∈ σ, Nnn(p) is ∅;

• Nnn(H∧) is
⋃

H∈H Nnn(H), and so is Nnn(H∨);

• Nnn(G → H) is ∅ if H is ⊥ and Pnn(G) ∪ Nnn(H) otherwise.

The set of rules of an infinitary formula is defined as follows:

• The rules of G → H are G → H and all rules of H;

• The rules of H∧ and H∨ are the rules of all formulas in H.

Example (continued)

The set of positive nonnegated atoms in formula (3) is the same as the set of strictly

positive atoms: {q}. The only rule of formula (3) is the formula itself.

For any infinitary formula F the (positive) dependency graph of F (relative to a

set of atoms A), denoted DGA[F], is the directed graph, that

• has all atoms in A as its vertices, and

• has an edge from p to q if, for some rule G → H of F ,

— p is an element of P(H), and

— q is an element of Pnn(G).
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p0p−1 p1. . . . . .

Fig. 1. Any partition of the vertices in this graph is separable.

The following statement appears to be a plausible counterpart to the splitting

lemma reproduced in Section 5 for infinitary formulas:

If F is an infinitary formula and P1,P2 are sets of atoms such that the

partition {P1,P2} is separable on DGP1∪P2
[F], then I is a P1 ∪ P2-stable

model of F iff it is both a P1-stable model and a P2-stable model of F .
(∗)

But this statement does not hold; in the case of infinitary formulas separability is

not a sufficient condition to ensure splittability. Let F be the infinitary conjunction
∧
n

(pn+1 → pn) ,

where the conjunction extends over all integers n. Let P be the set of all atoms

pn. Let P1 be the set {pn | n is even}, and P2 be the set {pn | n is odd}. Then the

partition {P1,P2} is separable on DGP[F] (shown in Figure 1). Indeed, the strongly

connected components of this graph are singletons. If I is the set of all atoms pn,

then the reduct of F w.r.t. I is F itself. It is easy to check that I is a P1-stable model

as well as a P2-stable model of F , but is not P-stable. This counterexample shows

that (∗) is incorrect.

In order to extend the splitting lemma to infinitary formulas, we will need a

stronger notion of separability. An infinite walk W of a directed graph G is an

infinite sequence (v1, v2, . . . ) of vertices occurring in G, such that each pair vi, vi+1 in

W corresponds to an edge in G. A partition {P1,P2} of the vertices in G will be

called infinitely separable (on G) if every infinite walk (v1, v2, . . . ) of G visits either

P1 or P2 finitely many times, that is either {i : vi ∈ P1} or {i : vi ∈ P2} is finite.

Proposition 3

For any graph G,

(i) every infinitely separable partition of G is separable, and

(ii) if G has finitely many strongly connected components and partition {P1,P2}
is separable on G then it is infinitely separable on G.

Proof

(i) We will prove the contrapositive: if {P1,P2} is a partition that is not separable

on G, then there is some strongly connected component of G that contains at least

one vertex from P1 and at least one vertex from P2. Let’s call these vertices v and

w, respectively. Since v and w are in the same strongly connected component, each

vertex is reachable from the other. Then there is an infinite walk that visits each

of these vertices (and therefore both P1 and P2) infinitely many times, so that the

partition is not infinitely separable on G.

(ii) Again we prove the contrapositive: if {P1,P2} is a partition that is not infinitely

separable on G, then there is some infinite walk (v1, v2, . . . ) of G that visits both P1

and P2 infinitely many times. Since there are only finitely many strongly connected
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components in G, at least one strongly connected component of P1 and at least

one strongly connected component of P2 must be visited infinitely many times.

Call these strongly connected components C1 and C2 respectively; then C1 must

be reachable from C2 and vice versa. Then C1 = C2 so that the partition is not

separable on G. �

Claim (∗) will become correct if we require the partition {P1,P2} to be infinitely

separable:

Infinitary Splitting Lemma

If F is an infinitary formula and P1,P2 are sets of atoms such that the partition

{P1,P2} is infinitely separable on DGP1∪P2
[F], then I is a P1 ∪ P2-stable model of

F iff it is both a P1-stable model and a P2-stable model of F .

The splitting lemma reproduced in Section 5 is a consequence of the infinitary

splitting lemma in view of Theorem 2 and the following fact:

Proposition 4

For any first-order sentence F and tuple p of distinct predicate symbols, if {p1, p2} is

a partition of p that is separable on DGp[F], then for any interpretation I , {pI1, pI2}
is infinitely separable on DGpI [grI (F)].

Proof

If {p1, p2} is a partition of p that is separable on DGp[F], then for any interpretation

I , the partition {pI1, pI2} is separable on the atomic dependency graph of grI (F) with

respect to pI . Furthermore, it is easy to see that DGpI [grI (F)] must have finitely

many strongly connected components, so that {pI1, pI2} must be infinitely separable

on it. �

7 Proof of the Infinitary Splitting Lemma

The following two lemmas can be easily proved by induction on the rank of F .

Lemma 1

If I does not satisfy F , then the reduct FI is equivalent to ⊥.

Lemma 2

If the set A is disjoint from P(F) and I satisfies F , then I \ A satisfies FI .

In particular, if I satisfies F then I satisfies FI . (This is the direction left-to-right

of Proposition 1 from Truszczynski (2012).)

Lemmas 3–5 are similar to Lemmas 3–5 from Ferraris et al. (2009).

Lemma 3

For any disjoint sets of atoms B1,B2, interpretation I , and formula F ,

(i) If B2 is disjoint from Pnn(F) and I \B1 satisfies FI then I \(B1∪B2) satisfies FI .

(ii) If B2 is disjoint from Nnn(F) and I\(B1∪B2) satisfies FI then I\B1 satisfies FI .
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Proof

Both parts of the lemma are proved simultaneously by induction on the rank of

F . Here, we show only the most interesting case when F is of the form G → H .

(i) If I does not satisfy F , the reduct is equivalent to ⊥ so that the proposition is

trivially true. Assume that I \ B1 satisfies GI → HI and that B2 is disjoint from

Pnn(G → H). Then either H is ⊥ or B2 is disjoint from both Nnn(G) and Pnn(H).

If H is ⊥, then the set P(F) is empty, so that (B1 ∪ B2) is disjoint from it. Then by

Lemma 2, if I satisfies F then I \ (B1 ∪ B2) satisfies FI . If, on the other hand, B2 is

disjoint from both Nnn(G) and Pnn(H), then by part (i) of the induction hypothesis

we may conclude that

if I \ B1 satisfies HI then so does I \ (B1 ∪ B2), (8)

and by part (ii) of the induction hypothesis we may conclude that

if I \ (B1 ∪ B2) satisfies GI then so does I \ B1. (9)

Assume that I \ (B1 ∪ B2) satisfies GI . Then by (9), I \ B1 satisfies GI . Then, since

I \ B1 satisfies GI → HI , that interpretation must satisfy HI . Then by (8) we can

conclude that I \(B1 ∪B2) satisfies HI . It follows that I \(B1 ∪B2) satisfies GI → HI .

(ii) Similar to Part (i). �

Lemma 4

Let B,C be disjoint sets of atoms and let F be an infinitary formula such that

there are no edges from B to C in DGB∪C[F]. If I \ (B ∪ C) satisfies FI , then so

does I \ B.

Proof

The proof is by induction on the rank of F . Again we show only the most

interesting case when F is of the form G → H . Assume that I \ (B ∪ C) satisfies

(G → H)I = GI → HI . We need to show that I \ B also satisfies GI → HI . If

B is disjoint from P(H), then by Lemma 2, I \ B satisfies HI , and therefore satisfies

GI → HI . If, on the other hand, B is not disjoint from P(H), then C must be disjoint

from Pnn(G), because there are no edges from B to C in DGB∪C[G → H]. Then

by Lemma 3(i), I \ (B ∪ C) satisfies GI . Since we assumed that I \ (B ∪ C) satisfies

GI → HI , it follows that I \ (B ∪ C) satisfies HI . Since every edge in DGB∪C[H]

occurs in DGB∪C[G → H], there is no edge from B to C in DGB∪C[H]. Then by

the induction hypothesis, I \ B satisfies HI and therefore satisfies GI → HI . �

Lemma 5

For any non-empty graph G and any infinitely separable partition {A1,A2} on G,

there exists a non-empty subset B of the vertices in G such that

(i) B is either a subset of A1 or a subset of A2, and

(ii) there are no edges from B to vertices not in B.

Proof

Since {A1,A2} is infinitely separable on G, there is some vertex b such that the set

of vertices reachable from b is either a subset of A1 or a subset of A2. (If no such
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b existed, then A1 would be reachable from every vertex in A2 and vice versa, and

we could construct an infinite walk visiting both elements of the partition infinitely

many times.) It is easy to see that the set of all vertices reachable from b satisfies

both (i) and (ii). �

Proof of the Infinitary Splitting Lemma

Let F be an infinitary formula such that the partition {A1,A2} is infinitely separable

on DGA1∪A2
[F]. We need to show that I is an A1 ∪A2-stable model of F iff it

is an A1-stable model and an A2-stable model of F . The direction left-to-right is

obvious. To establish the direction right-to-left, assume that I is both an A1-stable

model and an A2-stable model of F . By Proposition 1, it is sufficient to show that

I is a minimal model of

FI ∧
∧

p∈I\(A1∪A2)

p. (10)

Clearly, I satisfies this formula. It remains to show that I is minimal. Assume

there is some non-empty subset X of I such that I \ X satisfies (10). Then I \ X

satisfies the second conjunctive term of (10), so I \ (A1 ∪ A2) ⊆ I \X. Consequently,

X ⊆ A1 ∪A2. Consider the sets X∩A1 and X∩A2. Since A1 and A2 are infinitely

separable on DGA1∪A2
[F], the sets X ∩ A1 and X ∩ A2 must be infinitely separable

on DGX[F]. Then by Lemma 5, there is some non-empty set B that is either a

subset of X ∩ A1 or a subset of X ∩ A2 and such that there are no edges from B
to X \ B. We will show that I \ B satisfies

FI ∧
∧

p∈I\A1

p, (11)

which contradicts the assumption that I is an A1-stable model of F . Since I \ X

satisfies the first conjunctive term of (11), by Lemma 4 so does I \ B. Assume, for

instance, that B is a subset of X ∩ A1. Then B is a subset of A1, so that I \ A1 is

a subset of I \ B. We may conclude that I \ B satisfies the second conjunction term

of (11) as well. �

8 Infinitary Splitting Theorem

The infinitary splitting lemma can be used to prove the following theorem, which is

similar to the splitting theorem from Ferraris et al. (2009).

Infinitary Splitting Theorem

Let F,G be infinitary formulas, and A1,A2 be disjoint sets of atoms such that the

partition {A1,A2} is infinitely separable on DGA1∪A2
[F ∧G]. If A2 is disjoint from

P(F), and A1 is disjoint from P(G), then for any interpretation I , I is an A1∪A2-

stable model of F ∧G iff it is both an A1-stable model of F and an A2-stable model

of G.

Example (continued)

Consider the conjunction of (3) with the formula P∧ where P is as before some

non-empty set of atoms of the form p(t). We saw previously that {q} and all non-

empty sets of atoms of the form p(t) are {q}-stable models of (3). It is easy to check
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that σ\{q}-stable models of P∧ are P and P ∪ {q}. In accordance with the splitting

theorem, P is the only stable model of this formula.

The following lemma, analogous to Theorem 3 from Ferraris et al. (2011), is used

to prove the infinitary splitting theorem.

Lemma 6

For any infinitary formulas F,G, if A is disjoint from P(G) then I is an A-stable

model of F ∧ G iff it is an A-stable model of F and satisfies G.

Proof

⇐: Assume I is an A-stable model of F and I satisfies G. Since I satisfies G, it

satisfies GI . Since I is an A-stable model of F , it is a minimal w.r.t. �A among the

models of F , and consequently among the models of F ∧ G.

⇒: Assume I is an A-stable model of F ∧G. Then I is a minimal model of (F ∧G)I

w.r.t. �A. So I satisfies F ∧ G and therefore satisfies G. It remains to show that

there is no proper subset J of I such that I \ J ⊆ A and J satisfies FI . Assume that

there is some such J . Then J must not satisfy GI . (If it did, then I would not be

minimal with respect to �A among the models of (F ∧ G)I .) Let A′ denote I \ J .

Since A is disjoint from P(G), so is A′. So by Lemma 2, I \ A′ = J must satisfy GI .

Contradiction. �

Proof of the Infinitary Splitting Theorem

Let F,G be infinitary formulas and let A1,A2 be disjoint sets of atoms such that

the partition {A1,A2} is infinitely separable on DGA1∪A2
[F ∧ G] and the other

conditions of the infinitary splitting theorem hold. By the infinitary splitting lemma,

I is an A1 ∪A2-stable model of F ∧ G iff it is both an A1-stable model and an

A2-stable model of F ∧ G. Since A2 is disjoint from P(F), by Lemma 6, I is an

A2-stable model of F ∧ G iff it is an A2-stable model of G and it satisfies F .

Similarly, I is an A1-stable model of F ∧ G iff it is an A1-stable model of F and it

satisfies G. It remains to observe that if I is an A2-stable model of F then it satisfies

F , and similarly if I is an A1-stable model of G. �

9 Application: Infinitary Definitions

About a formula G and a set Q of atoms we will say that G is a definition for Q if it

is a conjunction of a set of formulas of the form H ∧ C∧ → q, where q is an atom

in Q, C is a subset of Q (possibly empty), and no atoms from Q occur in H .5

A simple special case is “explicit definitions”: conjunctions of formulas H → q

such that atoms from Q don’t occur in any H . For example, (3) is an explicit

definition of {q}. The conjunction of the formulas

pαβ → qαβ and qαβ ∧ qβγ → qαγ

5 The relation p occurs in F is defined recursively in a straightforward way.
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for all α, β, γ from some set of indices, which represents the usual recursive definition

of transitive closure, is a definition in our sense as well. On the other hand, the

formula ¬q → q is not a definition.

The following theorem shows that all definitions are “conservative”.

Theorem on Infinitary Definitions

For any infinitary formula F , any set Q of atoms that do not occur in F , and any

definition G for Q, the map I �→ I \ Q is a 1-1 correspondence between the stable

models of F ∧ G and the stable models of F .

This theorem generalizes the lemma on explicit definitions due to Ferraris (2005)

in two ways: it applies to infinitary formulas, and it allows definitions to be recursive.

Lemma 7

If all atoms that occur in F belong to A then, for any interpretation I , I is an

A-stable model of F iff I ∩ A is a stable model of F .

Proof

If all atoms that occur in F belong to A, then

FI∩A ∧
∧

p∈I\(I∩A)

p

is identical to (5). �

Lemma 8

Let G be a definition for a set Q of atoms, and let I be a model of G. For any subset

K of I such that K \ Q = I \ Q, K satisfies GI iff K satisfies G.

Proof.

We can show that K satisfies a conjunctive term H ∧ C∧ → q of G iff K satisfies its

reduct HI ∧ (C∧)I → qI as follows:

K �|= HI ∧ (C∧)I → qI

iff K |= HI, K |= (C∧)I , and K �|= qI

iff K |= HI, K |= (C∧)I , and q �∈ K (because K ⊆ I)

iff I |= HI, K |= (C∧)I , and q �∈ K (K and I agree on atoms occurring in H)

iff I |= H, K |= (C∧)I , and q �∈ K

iff K |= H, K |= (C∧)I , and q �∈ K (K and I agree on atoms occurring in H)

iff K |= H, C ⊆ K, and q �∈ K (K ⊆ I)

iff K �|= H ∧ C∧ → q. �

Lemma 9

Let G be a definition for a set Q of atoms. For any set J of atoms disjoint from Q
there exists a unique Q-stable model I of G such that I \ Q = J .
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Proof

Let I be the intersection of all models K of G such that K \ Q = J . We will show

first that I satisfies G. Assume otherwise, and take a conjunctive term H ∧ C∧ → q

of G that is not satisfied by I . Then I satisfies H , C ⊆ I , and q �∈ I . By the choice

of I , it follows that there is a model K of G such that K \ Q = J and q �∈ K . On

the other hand, since I satisfies H and does not differ from K on atoms occurring

in H , K satisfies H . Since C ⊆ I ⊆ K , K satisfies C∧. Hence, K does not satisfy one

of the conjunctive terms of G, which is a contradiction. Thus, I is a model of G,

and consequently a model of GI . To prove that it is Q-stable, consider any model K

of GI such that K �Q I . By Lemma 8, K is also a model G. By the choice of I , it

follows that I ⊆ K . Consequently, K = I .

It remains to show that I is unique. Let K be a Q-stable model of G such that

K \ Q = J . It is easy to see that I ⊆ K . Furthermore, K satisfies GK and I satisfies

G, so by Lemma 8, I satisfies GK . Since I �Q K , it follows that I = K . �

Proof of Theorem on Infinitary Definitions

Let σ denote the set of all atoms occurring in F ∧ G. Since atoms from Q do not

occur in F and P(G) ⊆ Q, there are no edges from σ \ Q to Q in DGσ[F ∧ G].

Consequently, the partition {σ\Q,Q} is infinitely separable on this graph. By the

splitting theorem for infinitary formulas, an interpretation I is a stable model of

F ∧G iff it is a (σ\Q)-stable model of F and a Q-stable model of G. Consider a stable

model I of F ∧ G. We have seen that I is a (σ\Q)-stable model of F . By Lemma 7,

it follows that I \ Q is a stable model of F . Consider now a stable model J of F ,

and let S be the set of all interpretations I such that J = I \ Q. We will show that S

contains exactly one stable model of F ∧G, or equivalently, that there is exactly one

interpretation that is a (σ\Q)-stable model of F and a Q-stable model of G in S .

By Lemma 7, any interpretation in S is a (σ\Q)-stable model of F . By Lemma 9, S

contains exactly one Q-stable model of G. �

10 Conclusion

In this note, we defined and studied stable models for infinitary propositional

formulas with extensional atoms. The use of extensional atoms facilitates a more

modular view of logic programs, as evidenced by the Theorem on Infinitary

Definitions. The proof of this theorem relies on the Splitting Theorem, and the

proof of that theorem makes critical use of the distinction between intensional and

extensional atoms.
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