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Keywords and phrases: Fourier coefficients, Siegel modular forms, fundamental discriminant, vector-

valued, nonvanishing

2020 Mathematics Subject Classification: Primary 11F30

Secondary 11F50

1. Introduction

Fourier coefficients of Siegel modular forms have been objects of continued interest over
the years. It is a very useful fact – not only theoretically, but also in computation –

that such a form F ∈Mn
k , where Mn

k (resp., Sn
k ) is the space of (resp., cuspidal) Siegel

modular forms on Sp(n,Z) of scalar weight k, is determined by finitely many of its

Fourier coefficients aF (T ), described uniformly in terms of the weight k and n. Here
and henceforth, for F ∈Mn

k we write the Fourier expansion of F as

F (Z) =
∑

T∈Λn

aF (T )e(TZ),

where Λn is the set of all half-integral positive semi-definite matrices (see Section 2) of size

n and e(TZ) := exp(2πitrTZ). Such a result is known in the literature as ‘Sturm’-bound,

see [20, 26], even though this result was known from the works of Hecke or Maaß. For a
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more recent version of this in the context of the determination of elliptic cusp forms by
‘square-free’ Fourier coefficients, see [3].

Equally important are results concerning the determination of a Siegel modular form F

by Fourier coefficients aF (T ) supported on T ∈ Λ+
n (which are positive definite members

of Λn) with the discriminant of 2T (which we denote by disc(2T )) varying in an

arithmetically interesting subset S of natural numbers – for example, square-free numbers

or fundamental discriminants. For the many works along this line of research, we refer the

reader to the introductions in [3, 33]. Let us just note here that in the case of newforms
of half-integral weights (via Waldspurger’s formula), such a result is equivalent to the

determination of these forms by the twisted L-functions of their Shimura lifts.

When the set S consists of all fundamental discriminants, Saha [33] proved an
affirmative result on S2

k; this result has applications to the representation theory of

automorphic forms (see the discussion in [33, Introduction]). It is of course desirable to

generalise the results of [33] to higher-degree Siegel cusp forms (including vector-valued
modular forms), and to include the space of Eisenstein series. In fact, these aspects were

mentioned as ‘difficult open’ problems in [33, remark 2.6, 2.7]. While we addressed the

latter (in degree 2) in [10, Prop. 7.7], in this paper we settle both of these questions in

the most general case (for full level), in particular including vector-valued modular forms.
We note that one of the most natural settings for the problem at hand (also noted in [33,

remark 2.7]) is to consider the set S to be all those lattices 2T which are maximal in the

set of even integral lattices of a given rank. It is this viewpoint that we consider in this
paper.

Let us now state our main result. Let ρ be a polynomial, not necessarily irreducible

representation of GL(n,C). Denote by Mn
ρ the vector space of holomorphic vector-valued

Siegel modular forms on Sp(n,Z) with automorphy factor ρ (see Section 2 for more details)

with ‘determinantal’ weight k(ρ) (see Section 2 for the definition). We need one more piece

of notation. Let M ∈ Λ+
n and denote by dM its ‘absolute discriminant’ (i.e., ignoring the

usual sign), defined by

dM := |disc(2M)|=
{
det(2M) if n is even,
1
2 det(2M) if n is odd.

Further, for X ≥ 1, define

SF (X) := {d≤X, d odd, square-free |dT = d for some T and aF (T ) �= 0}.

Define the function �(n) by

�(n) =

{
3/2 if n is even,

1 if n is odd.
(1.1)

Theorem 1.1. Let F ∈ Mn
ρ be nonzero and set k(ρ)− n

2 ≥ �(n). When n is even,

assume that F is cuspidal. Then there exist infinitely many GL(n,Z)-inequivalent T ∈Λ+
n

such that dT is odd and square-free, and aF (T ) �= 0. Moreover, the following stronger
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quantitative result holds: for any given ε > 0,

#SF (X)�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X · (logX)−1/2 if n is odd,

X5/8−ε if n is even and F is cuspidal,

X if F is a scalar-valued, noncuspidal of weight k,

k is even, k > n+1 and n is odd.

(1.2)

Here the implied constant depends only on F and ε.

Here we call S,T ∈ Λ+
n equivalent under GL(n,Z) if there exists U ∈ GL(n,Z) such

that T = U tSU . For a version of Theorem 1.1 where we count prime discriminants, see

Theorem 5.1.

In particular, taking ρ= detk (for k− n
2 ≥ �(n)), Theorem 1.1 applies to scalar-valued

Siegel modular forms of weight k. For more information about the lower bound on the

quantity k(ρ), see Remark 4.7. Since the T appearing in Theorem 1.1 arise from maximal

(even) lattices, the statement of Theorem 1.1 also holds a fortiori for maximal lattices.
We add here that the different lower bounds for the quantity #SF (X) in Theorem 1.1

depending on the parity of the degree n occur due to our different treatment of these

cases. The first and last lower bounds emanate from an argument involving multiplicity

1 for integral weights, whereas the second relies on the existence of unconditional bounds
on Fourier coefficients of half-integral elliptic cusp forms. Let us mention that if n is odd,

we encounter integral weights, and half-integral weights otherwise. The reader may note

that when n is even, we do not have a result on noncusp forms. This is due to some
complications arising from half-integral weights.

Our proof uses induction on the degree n, with the Fourier–Jacobi expansion as a

main tool. The proof clearly decomposes into a preparatory part (called Part A), of
algebraic and number-theoretic considerations, and an analytic part (called Part B),

where nonvanishing properties of Fourier coefficients for elliptic modular forms of half-

integral or integral weights via some version of the Rankin–Selberg method play an

essential role.

The steps of Part A

The main aim of this part is to reduce the question to a problem on certain elliptic

modular forms. The results in this part should hold more generally over the classical tube
domains I–IV (as in, e.g., [44]), but we do not pursue that here, mainly because such a

treatment might obscure the technical points of this paper. We may return to this point

in a future work.

Step 1. This step assures the existence of a nonvanishing Jacobi coefficient ϕT =

ϕT (τ,z) of F , T ∈ Λ+
n−1,τ ∈H,z ∈C(1,n−1), with discriminant of T odd and square-free.

To prove this, we consider the Taylor expansion of F with respect to z around the origin.
Then the nonvanishing Taylor coefficients of the lowest homogeneous degree give rise to a

possibly vector-valued modular form of degree n−1. By induction, this modular form of

degree n−1 has a nonvanishing Fourier coefficient indexed by T ∈Λ+
n−1, with dT odd and
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square-free. For the original modular form F of degree n, this assures the existence of a
nonvanishing ϕT , with T as before. We mention here that in order to make the induction

work, we have to deal with vector-valued modular forms from the beginning, even if we

started from scalar-valued modular forms (see Proposition 3.1).

Step 2. This step ensures that the (possibly vector-valued) nonvanishing Fourier–

Jacobi coefficient ϕT from Step 1 has a nonvanishing component ϕ
(r)
T which is actually a

scalar-valued Jacobi form. It is this Jacobi form which we will focus on throughout the
rest of our proof.

Step 3. This step is concerned with the theta expansion of ϕ
(r)
T : we show that there

exists at least one nonzero theta-component hμ = hμ(τ) of ϕ
(r)
T , μ ∈ Zn−1/(2T )Zn−1,

such that T−1[μ/2] has the highest possible denominator (essentially equal to dT ); we

call such μ ‘primitive’. This result (Proposition 3.5) is of independent interest, and is
an intrinsic result in the theory of Jacobi forms. We finish Step 3 by setting up the

desired nonvanishing properties for the Fourier coefficients of such hμ, which follows from

Part B, to prove our theorem. Here we encounter both integral and half-integral weights
according to the parity of n mod 2. We also have to take special care of the prime p= 2

during the induction step (while passing from odd to even degrees), and ensure we do

not get unnecessary high powers of 2 (see Section 3.4).

The steps of Part B

Our induction steps in Part A do not ‘see’ whether the modular form is cuspidal or not;

however, in this part such a distinction becomes prominent. Moreover, let us note that

Part B actually serves two purposes:

(i) It covers the base case n = 1 of the induction procedure – that is, it proves

Theorem 1.1 when f ∈ M1
k with k ∈ N. If f ∈ S1

k, then such a result is already
known from [3, Thm. 6 and Prop. 5.8]. The extension to M1

k is trivial.

(ii) More importantly, it helps to glue the nonzero ‘square-free’ Fourier coefficients of

hμ (see Section 3.4) with T ∈ Λ+
n−1 to obtain some T ∈ Λ+

n which is also ‘square-
free’. The treatment of these hμ, however, leads us to both integral and half-integral

weights over the principal congruence subgroups.

Thus, in the following discussion, we focus only on (ii). We give two approaches for the

analytic part: Method 1 (see Sections 4.1.1 and 4.1.2) and Method 2 (see Section 4.2).

We feel each method has its own advantages and limitations, which we discuss later.

Step 1. The analytic part first analyses the Fourier expansion of the degree 1 cusp

forms hμ for primitive μ from Step 3 of Part A. Here some analytic number theory of

modular forms comes in, and we essentially adapt an argument from [3, 33], using either
a classical Rankin–Selberg method or a ‘smoothed’ version (Method 1) in the case of

half-integral weights, to the groups Γ1(N). The primitiveness of μ is crucial here. This

method has the advantage that it holds uniformly for cusp forms with either integral or
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half-integral weights, and does not depend on any multiplicity 1 result (see Theorem 4.5).

In the sequel, we use only the result for cusp forms with half-integral weights, as for those

with integral weights we prove a better quantitative result (see Theorem 4.6), which relies
on multiplicity 1 (Method 2). The details can be found in Sections 4.1.1 and 4.1.2.

Step 2. The remaining step is to treat noncusp forms. When n = 1, we are reduced

to usual elliptic modular forms, for which we present a new method (Method 2) which is

actually robust enough to deal with both cusp and noncusp forms! (See Section 4.2 for
the details.) Let us only mention here that this method crucially relies on multiplicity 1

for the newspaces and applies only for integral weights. We therefore assume here that n

is odd so that the weight of hμ is integral. But the quality of the quantitative result is

better than what can be obtained by Method 1 (see Theorem 4.6).
We finally combine the main results from these steps and finish the proof in Section 4.3.

To put things into perspective, let us mention that in degree 2 our proof looks somewhat

similar to that in [33] (here the setting is that of scalar-valued cusp forms), in that we
also reduce the question to a suitable Jacobi cusp form, say φ. However, there are quite

a few interesting differences:

(i) Instead of using the Eichler–Zagier map to reduce the question further to half-

integral-weight elliptic modular forms, we work directly with any of the ‘primitive’
theta-components of φ (i.e., those theta-components hμ for which (μ,4m) = 1,

where m= index of φ). These hμ automatically have Fourier expansion supported

away from the level, so the analytic treatment becomes easier (compare [3, Prop.
5.1] and [33, Prop. 3.7]). More importantly, these primitive theta-components are

crucial for us, since we are led to deal with levels which are squares, and these

levels do not satisfy the conditions of [3, Thm. 2] or [33, Thm. 2].

(ii) Our induction procedure only allows for the index m to be square-free, whereas in
[33] one could take m to be an odd prime. This is not serious when n= 2, but for

higher degrees it is a nontrivial point; it may not be possible to choose a nonzero

Fourier–Jacobi coefficient ϕT with T ∈ Λ+
n−1 and dT a prime (see Remark 3.2).

However, we show in Corollary 3.3 that one can always choose such a ϕT �= 0 with

dT odd and square-free.

(iii) By choosing m (sticking to n= 2 for illustration) odd and square-free and invoking

Proposition 3.5, we avoid the subtlety of the injectiveness of the Eichler–Zagier
map (this was a nontrivial difficulty in [3]). This injectiveness property ensures

smooth passage from Jacobi forms to elliptic modular forms, and is known only

when m is a prime and n= 2. For degrees n≥ 3, the theory of Eichler–Zagier maps
is not well developed. We circumvent this by using what we call the ‘primitive’

theta-components of ϕT . Moreover, we believe that this method should work with

suitable modifications for other kinds of modular forms, such as Hermitian modular

forms.

Concerning an important application of our main result, let us recall some recent work

of Pollack [31], where a meromorphic continuation of the degree 8 spinor L-function ZF (s)

attached to a Siegel Hecke eigenform F on Sp(3,Z) was proved. Further, it was shown
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that the functional equation follows under the assumption of nonvanishing of some Fourier
coefficient aF (T ), with T corresponding to a maximal order in a quaternion algebra over

Q ramified at ∞. In the last section of this paper, we show, as an application of a variant

of our main result, how to remove the aforementioned assumption to get an unconditional
result, which may be stated as follows.

Let ΛF (s) denote the completed spinor L-function attached to the Hecke eigenform F

(see, e.g., [31, p. 2] for a description of the gamma factors).

Theorem 1.2. Let F be a nonzero Siegel cuspidal eigenform form on the group Sp(3,Z)
of weight k ≥ 3. Then the spinor L-function ZF (s) attached to F has a meromorphic

continuation to C, is bounded in vertical strips and satisfies the functional equation

ΛF (s) = ΛF (1−s).

As indicated before, note that the proof of Theorem 1.2 does not use Theorem 1.1

directly; instead, it uses a variant of it, which is proved in a self-contained manner in
Section 5. To put things into perspective, let us note here that the analytic properties of

the spinor L-function for eigenforms on Sp(n,Z) were conjectured by Andrianov (they are

of course special cases of Langlands conjectures; note that we are dealing with nongeneric
automorphic forms here), and proved by him when n=2 (compare [4]). The meromorphic

continuation of the spinor L-function for eigenforms on Sp(3,Z) is known from the work of

Asgari and Schmidt (compare [7]), but obtaining the functional equation of these objects
is a delicate matter, and was not known for n ≥ 3. Thus, Pollack’s work combined with

our results from this paper shows the functional equation unconditionally for the first

time when n= 3.

As another application, let us mention that if one studies the standard L-function via
the Andrianov identity [5], one has to use a Rankin convolution involving a theta series

attached to a quadratic form T . It is quite convenient to know from the beginning (from

Theorem 1.1) that one may choose T to have square-free discriminant (and hence the
nebentypus character of the theta series is a primitive quadratic character; see [5, 6, 15]

for details).

As a last remark, let us mention that we have not considered the case of higher levels,
as the content of the paper is already quite technical; but it definitely is an interesting

problem to consider. Let us just mention that our methods should also work in this more

general setting, but we expect more complicated answers (compare [3] for n = 1). One

may have to take into account the Fourier expansions at all cusps simultaneously, and
one may expect new difficulties concerning primes dividing the level.

2. Notation and preliminaries

2.1. General notation

(1) Let ρ : GL(n,C) → GL(V ) be a finite-dimensional (not necessarily irreducible)

rational representation (a morphism in the sense of algebraic groups) with m =
dim(V ). We call ρ a polynomial representation if it can be realised as a map

ρ : GL(n,C)→ GL(m,C) where all the coordinate functions g 	−→ ρij(g) are given

by polynomial functions of the entries of g.
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For any such ρ, there exists a largest integer k such that det−k⊗ρ is polynomial,

and we call this k the (determinantal) weight k(ρ). We tacitly use the fact that this
weight does not decrease if we tensor ρ with another polynomial representation or

restrict it to some GL(n′,C) sitting inside GL(n,C) as an algebraic subgroup. This

follows easily by looking at the entries of ρ(g) in any matrix realisation of ρ.

(2) For a commutative ring R with 1, we denote by Mm,n(R) the set of m×n matrices
with coefficients in R. If m= n, we set Mn,n(R) =Mn(R). We denote the transpose

of a matrixM byM t. Further, for matrices A,B of appropriate sizes, A[B] :=BtAB.

We denote the n× n identity matrix over a subring of C by 1n. For quantities
a1, . . . ,an ∈ R, we denote by diag(a1, . . . ,an) the matrix consisting of the diagonal

entries as a1, . . . ,an.

Further, Zq denotes the ring of q-adic integers for a prime q, and νq the q-adic

valuation.

(3) We define the set of half-integral, symmetric, positive semi-definite matrices by

Λn :=
{
S = (si,j) ∈M(n,Q) | S = St,si,i ∈ Z,si,j ∈ 1

2Z,

and S is positive semi-definite},

and denote the subset of positive definite matrices in Λn by Λ+
n .

(4) For T real and Z ∈Mn(C), we define e(TZ) := exp(2πitr(TZ)), where tr(M) is the
trace of the matrix M .

(5) Throughout the paper, ε denotes a small positive number which may vary at

different places. Moreover, the symbols A �c B and OS(T ) have their standard

meaning, implying that the constants involved depend on c or the set S.

2.2. Siegel modular forms

We denote by

Hn :=
{
Z ∈Mn(C) | Z = Zt,�(Z)> 0

}
the Siegel upper half space of degree n. The symplectic group Sp(n,R) acts on Hn by Z 	→
g〈Z〉 = (AZ+B)(CZ+D)−1; for a polynomial representation ρ with values in GL(V ),
we define the stroke operator action on V -valued functions F on Hn by

(F |ρ g)(Z) := ρ(CZ+D)−1F (g〈Z〉).

A Siegel modular form of degree n and automorphy factor ρ is then a V -valued

holomorphic function F on Hn satisfying F |ρ γ =F for all γ ∈ Sp(n,Z) with the standard
additional condition in degree 1. We denote by Mn

ρ the vector space of all such functions

and by Sn
ρ the subspace of cusp forms; if ρ is scalar-valued, we write as usual Mn

k and

Sn
k if ρ= detk. An element F ∈Mn

ρ has a Fourier expansion

F (Z) =
∑
S∈Λn

aF (S)e(SZ), aF (S) ∈ V.
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If F is cuspidal, then this summation is supported on Λ+
n . Sometimes we also write a(F,S)

for aF (S).

This definition makes sense for arbitrary rational ρ, but by a theorem of Freitag [21]
(if ρ is irreducible), Mn

ρ can be nonzero only if ρ is polynomial; therefore, we only have

to take care of polynomial representations.

For g ∈ Sp(n−1,R) we denote by g↓ the image of g under the diagonal embedding

Sp(n−1,R) ↪→ Sp(n,R), g =
(
a b
c d

)
	→
(

1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d

)
. (2.1)

We also use the embedding of GL(n−1,R) ↪→GL(n,R) given by g 	→
(
1 0
0 g

)
.

Definition 2.1. Let f ∈Mn
k and Z ∈Hn−1. The Siegel Φ-operator is then defined by

Φ(F )(Z) := lim
t→∞

F (Z 0
0 it) =

∑
T∈Λn−1

aF ((T 0
0 0))e(TZ). (2.2)

Then it is well known [20] that Φ(F ) ∈Mn−1
k . Moreover, F ∈Mn

k is a cusp form if and

only if F is in the kernel of the Φ operator.

2.3. Jacobi forms

Throughout this paper, we use a decomposition for Z ∈Hn into blocks as follows:

Z =

(
τ z

zt Z

)
, z ∈C(1,n−1),Z ∈Hn−1. (2.3)

Clearly, every F ∈ Sn
ρ has a Fourier–Jacobi expansion with respect to this decomposition:

F (Z) =
∑

T∈Λn−1

ϕT (τ,z)e(TZ). (2.4)

The ϕT are then ‘Jacobi forms’ of automorphy factor ρ and index T – that is, the
functions ψ(Z) := ϕT (τ,z)e(TZ) on Hn are holomorphic, satisfy ψ |ρ g = ψ for all

g ∈Cn,n−1(Z) :=
{
(A B
C D ) | (C,D) =

(∗ 0 ∗ D2
0 0 0 1

)}
, where ∗ denotes some scalar entries, and

satisfy the boundedness condition (Fourier expansion at ∞) that

ψ(Z) =
∑

S=

(
n r/2

rt/2 T

)
∈Λn

aψ(S)e(SZ).

Note that this definition of vector-valued Jacobi forms does not agree with the one in

[45]; for degree 2 our definition is the same as in [22]. In our setup, where we work with

Fourier–Jacobi coefficients, this definition is obtained from the corresponding automorphy
for Siegel modular forms, and we must use it. In [45], ρ acts only on the Siegel upper half

space variable τ . Unless the automorphy factor is ρ= detk, the definition given here does

not match with that in [45] (compare [22, p. 785, eq. (1)]).
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The case ρ= detk is well known (see, e.g., [26, 45]); in particular, scalar-valued Jacobi

forms φT admit a ‘theta expansion’

ϕT (τ,z) =
∑
μ

hμ(τ) ·ΘT [μ](τ,z) (2.5)

with summation over μ ∈ Zn−1/2T ·Zn−1 and

ΘT [μ](τ,z) =
∑

R∈Zn−1

e2πi(T [R+μ̃]τ+2zT (R+μ̃)).

Here we use μ̃ := (2T )−1 ·μ. We note here that the hμ are then modular forms of weight
k− n−1

2 on some congruence subgroup; the Fourier expansion of hμ is of shape

hμ(τ) =
∑
n

aμ
(
n−T−1[μ/2]

)
e2πi(n−T−1[μ/2])·τ (2.6)

and its Fourier coefficients are given by

aμ
(
n−T−1[μ/2]

)
= aF

((
n μ/2

μ/2t T

))
, (2.7)

provided that ϕT is the Fourier–Jacobi coefficient of some scalar-valued Siegel modular
form F ∈Mn

k . We denote the space of (scalar-valued) Jacobi forms of weight k and index

T by Jk,T .

2.4. Maximal lattices and primitivity

When we talk about the ‘lattice M ’ for some M ∈Λ+
n , of course we are tacitly identifying

2M with the ‘even’ lattice LM := (Zn,μ 	→ (2M)[μ]) insideQn. We omit the accompanying
quadratic form from the notation when there is no danger of confusion. Henceforth,

throughout this paper we assume that dM is odd and square-free; in particular, this implies

that 2M corresponds to a maximal lattice – in other words, there exists no even integral

lattice properly containing LM . This can be seen easily: if LM �L for another even lattice
L with gram matrix A, then LM = H · L for some H ∈ Mn(Z), and dM = det(H)2dA.

Clearly H can not be unimodular, and thus dM could not have been square-free.

Let us recall that the level �M of 2M is the smallest �≥ 1 such that � · (2M)−1 is even
integral. We next compute the level in terms of the (absolute) discriminant.

Lemma 2.2. Let dM be odd and square-free. Then �M is equal to dM if n is even and

equal to 4dM if n is odd.

Proof. When n is even, this follows from the facts that �M | dM and dM | �nM . When n

is odd, we have � | 4dM,4dM | �n, which imply 2dM | � | 4dM . To get the exact power of
2 dividing �, we appeal to the local theory of quadratic forms. Namely, we know that

(2M)[U2] = H ⊥ ·· · ⊥ H ⊥ 2 for some U2 ∈ GLn(Z2), with H being the hyperbolic plane

(see Section 3.3.1 for more discussion). Our claim then follows from the following facts:
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(i) The levels of 2M and (2M)[U2] are the same.

(ii) For the even quadratic form H⊥ ·· · ⊥H⊥ 2 over Z2, the level clearly equals 4.

(iii) The level of 2M over Z2 divides that over Z.

Proposition 2.3. Let dM be odd and square-free. There is a μ ∈ Zn such that 1
4M

−1[μ]

has exact denominator d= dM if n is even and 4d if n is odd.

This proposition is crucial for us, and we will call such μ primitive in the sequel.

Proof. To show this, we first note that maximality is a local property (see, e.g., [25]) and
work locally. For any prime p, let us denote the (maximal) lattice LM ⊗Zp by LM,p and

use the identification LM,p :=
(
Zn

p ,μ 	→ (2M)[μ]
)
– or simply

(
Zn

p ,2M
)
– inside Qn

p . We

now prove the crucial property in the following claim:

Claim 1. For any prime p and μ ∈ Zn
p , we have the property

(2M)−1[μ] ∈ 2Zp if and only if μ ∈ 2M ·Zn
p (n≥ 1). (2.8)

To prove the claim, let us note that the ‘if ’ statement is trivial. In the other direction,

for any prime p, write μ = (2M) · μ̃ and assume that μ̃ �∈ Zn
p . Consider the lattice L̃ :=

LM,p + 〈μ̃〉, where we have defined 〈μ̃〉 := Zp · μ̃. Then as lattices in Qn
p carrying the

even integral quadratic form 2M (now viewed over Zn
p ), clearly Zn

p � L̃. We will be done

if we can show that
(
L̃,2M

)
is even integral, as this will contradict the maximality of

(LM,p,2M).

Let ν ∈ L̃. Writing ν := β+ cμ̃, β ∈ LM,p,c ∈ Zp, we see that (2M)[ν] ∈ 2Zp if and only

if (2M) [μ̃] = (2M)−1[μ] ∈ 2Zp. Therefore we are done with Claim 1.
Let us now proceed to prove Proposition 2.3. We choose μ ∈ Zn such that for all

p | det(2M) we have μ /∈ 2M ·Zn
p . This can certainly be done locally. Note that 2M is

equivalent over Zp to the quadratic form 〈∗ ⊥ ∗ ⊥ ·· · ⊥ ∗ ⊥ ∗p〉 for odd p (see, e.g., [14,
Thm. 3.1]), where the ∗ are units; and similarly for p= 2, see the proof of Claim 2 later.

Then by strong approximation we get μ ∈ Zn with the requested properties.

We claim that such a μ is primitive. This follows from first showing that d and 4d are
indeed the largest possible denominators (because of the level of M). We therefore can

write for some α= αp ∈ Zp (we remind the reader that d is odd),

1

4
M−1[μ] =

1

2
(2M)−1[μ] =

{
α
d if p is odd,
α
4d if p= 2.

(2.9)

We have to check that (αp,p) = 1. When p is odd, things are smooth, and the lemma
follows from property!(2.8) in Claim 1, along with our choice of μ.

When p = 2 and n is odd, then we need to take some care. Namely, we observe the

following, whose proof is deferred to the end of the proof of this proposition:

Claim 2.

(2M)−1[μ] ∈ Z2 if and only if (2M)−1[μ] ∈ 2Z2. (2.10)
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Granting this claim, we can now finish the proof of Proposition 2.3 when p = 2. If in
equation (2.9) α = α2 is odd, we are done. Otherwise, setting α′ = α/2 ∈ Z2, we get

(2M)−1[μ] = α′/d. Since d is odd, this implies that (2M)−1[μ] ∈ Z2, which means, by

Claim 2, that (2M)−1[μ] ∈ 2Z2, contradicting Claim 1.
It remains to prove Claim 2. To do that, we appeal to the dyadic theory of quadratic

forms (see, e.g., [14, Lem. 4.1]) to recall that since n is odd and ν2(det(2M)) = 1, 2M is

equivalent to the quadratic form H⊥ ·· · ⊥H⊥ 2 over Z2. Here H= (0 1
1 0) is a hyperbolic

plane and ⊥ means the orthogonal direct sum. This shows that with μ= (μ1, . . . ,μn)
t,

(2M)−1[μ] =
1

2
μ2
n+2Z2,

from which our claim follows.

3. Part A: Algebraic aspects

3.1. Step 1: A nonvanishing property for Fourier–Jacobi coefficients

The statement given in Proposition 3.1 seems to be new only when we start from a vector-

valued function. In the scalar-valued case, variants have appeared in works of Eichler and

Zagier [18], Yamana [44], Ibukiyama and Kyomura [22] and others.
We consider the following situation. Let ρ : GL(n,C) → GL(V ) be a polynomial

representation and F : Hn −→ V be a holomorphic function, not identically zero. We

decompose Z ∈Hn into blocks as in equation (2.3). We then consider the Taylor expansion

of F as a function of z= (z2, . . . ,zn) ∈C(1,n−1) as follows. We can write

F (Z) =
∑
λ

Fλ(τ,Z)zλ, (3.1)

where λ= (λ2, . . . ,λn) ∈Nn−1 is a polyindex and zλ := zλ2
2 . . . zλn

n .

We set ν = ν(λ) =
∑n

i=2λi and define

ν0 := min{ν(λ) | Fλ �= 0}.

Then we look at all the Taylor coefficients of homogeneous degree ν0 and study a

polynomial in variables X2, . . . ,Xn of homogeneous degree ν0:

F o(τ,Z) :=
∑

λ:ν(λ)=ν0

Fλ(τ,Z)Xλ2
2 , . . . ,Xλn

n . (3.2)

We may view F o as a function on H×Hn−1 with values in V ⊗C[X2, . . . ,Xn]ν0
, where

we denote by C[X2, . . . ,Xn]ν0
the C-vector space of homogeneous polynomials of degree

ν0.

For an integer m≥ 1, we denote by Symm the symmetric mth power representation of

GL(n,C) realised in the vector space of homogeneous polynomials over C of degree m:

Symm : GL(n,C)→GL(C[Z1, . . .,Zn]m), g 	→ g ·f, f ∈C[Z1, . . . ,Zn]m,

(g ·f)(Z1, . . . ,Zn) := f((Z1, . . . ,Zn) ·g).

Recall the embedding Sp(n−1,R) ↪→ Sp(n,R) given by g 	→ g↓, from formula (2.1).
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Proposition 3.1. Let the setting be as before. Then for any g =
(
a b
c d

)
∈ Sp(n−1,R),(

F |ρ g↓
)o

(τ,Z) = ρ
((

1 0
0 cZ+d

))−1⊗Symνo(cZ+d)−1F o(τ,g〈Z〉). (3.3)

In particular, if F ∈Mn
ρ , then F o, viewed as a function of Z, is in Mn−1

ρ′⊗Symν0 , where ρ′

is the restriction of ρ to GL(n− 1) ↪→ GL(n) (compare Section 2.2). Moreover, if F is

cuspidal, then F o is also cuspidal. Further, if F �= 0, then for some τ = τ0, F
o(τ0,Z) is

nonzero as a function of Z.

Proof. We recall [20] that

g↓〈Z〉=
(
τ − z(cZ+d)−1czt z(cZ+D)−1

(cZ+D)−tzt g〈Z〉

)
.

Then we compute from equation (3.1) that

F |ρ g↓ = ρ
((

1 0
czt cZ+d

))−1∑
λ

Fλ

(
τ − z(cZ+d)−1czt,g〈Z〉

)(
z(cZ+d)−1

)λ
. (3.4)

We pick out the contributions to zλ with ν(λ) = ν0: due to the minimality of ν0, all
summands on the right-hand side have degree ≥ ν0 as polynomials in z.

Now setting h= h(z) :=−z(cZ+d)−1czt, and Taylor expanding around τ (with z in a

sufficiently small neighbourhood of 0), we get

Fλ(τ +h,Z) = Fλ(τ,Z)+O(h);

here O(h) means a multiple of h. Thus by minimality (see definition (3.2)), only
Fλ(τ,g〈Z〉) may contribute.

Moreover, only ρ
((

1 0
0 cZ+d

))−1
has to be considered. To see this, note that

ρ
((

1 0
czt cZ+d

))−1

= ρ
((

1 0
−(cZ+d)−1czt 1n−1

))
·ρ
((

1 0
0 cZ+d

))−1
. (3.5)

Let us observe here that considering the homogeneous decomposition of the quantity

ρ
((

1 0
−(cZ+d)−1czt 1n−1

))
as a polynomial in z, we can write

ρ
((

1 0
−(cZ+d)−1czt 1n−1

))
= 1n+P (z),

where P (z) ∈ M(n,C)⊗C[z] has entries which are polynomial in z without a con-

stant term. Since multiplication of the polynomial expression ρ
((

1 0
0 cZ+d

))−1
Fλ(τ,Z)(

z(cZ+d)−1
)λ

in z by P (z) can only increase its degree in z – which, however, already

has degree ν0 – it follows that only ρ
((

1 0
0 cZ+d

))−1
has to be considered. This proves the

automorphy of F o.
The assertion about the cuspidality of F o follows easily by looking at its Fourier

expansion as a function of Z, and that about F o(τ0,Z) being not identically zero for

some τ0 is trivial. This proves the proposition.

Remark 3.2. The situation in [33] was very special: a result of Yamana [44] states that

a nonvanishing Siegel cusp form of level 1 always has a nonvanishing Fourier coefficient
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supported on a primitive (binary) quadratic form. From this, one could immediately get

a nonvanishing Fourier–Jacobi coefficient of prime index. The argument here relies on the

fact that a primitive binary quadratic form always represents infinitely many primes.
In order to pursue this procedure in our situation, say for degree 3, we would need

to prove that every primitive ternary quadratic form represents a binary quadratic form

whose determinant is square-free. Unfortunately this is not true in general; we give a
counterexample.

From the local theory of ternary quadratic forms, we can find a ternary quadratic form

T which for an odd prime p is equivalent over Zp to a form

diag
(
ε,p2,μ ·p2

)
with ε,μ ∈ Z×

p . Clearly, all binary quadratic forms integrally represented by such T have
determinant divisible by p2.

Let us now look at the Fourier–Jacobi expansion of F from equation (2.4). Let T ∈Λ+
n−1

and ϕT (τ,z) be the Fourier–Jacobi coefficients of F . From the definition of F o(τ0,Z)
(compare definition (3.2)), we see that

aF o(T ) = c ·
∑

ν(λ)=ν0

∂λ

∂ zλ
ϕT (τ0,z)|z=0, (3.6)

where c is a nonzero constant independent of F or T .

Clearly if aF o(T ) �= 0, then ϕT �= 0. Thus equation (3.6) provides us our avenue for

carrying out an induction argument.

Corollary 3.3. Let C ∈ N be given. Assume that Theorem 1.1 holds for all nonzero

forms in Mn−1
θ for all polynomial representations θ of GL(n−1,C) with k(θ)≥C. Then

for any polynomial representation ρ with k(ρ) ≥ C, all nonzero F ∈Mn
ρ have (infinitely

many) nonvanishing Fourier–Jacobi coefficients ϕT with T of size n−1 and square-free

odd discriminant.

3.2. Step 2: Reduction to the case of scalar-valued Jacobi forms

The Fourier–Jacobi coefficients of (the vector-valued) F do have a theta expansion, which

is more complicated than in the scalar-valued case. We do not pursue writing this down,
but our aim here is to show that we may choose a nonzero (vector) component of ϕT ,

which behaves as a Jacobi form in the scalar-valued case. Throughout this section, we

use the block decomposition (2.3).
We consider the two transformation laws responsible for the theta expansion. The first

one is

ϕT (τ,z+ r) = ϕT (t,z)

for any r ∈ Z(1,n−1); this comes from the transformation law of F for the matrix
(
1n S
0 1n

)
with S =

(
0 r
rt 0n−1

)
. The second transformation law is obtained from M =

(
Ut 0
0 U−1

)
∈

Sp(n,Z) with U =
(
1 �
0 1n−1

)
; here � ∈ Z(1,n−1), and it gives

ϕT (τ,τ�+ z) = ρ
(
U−1
)
ϕT (τ,z)e

(
−
(
T
[
�t
]
τ +2 ·T�tz

))
. (3.7)
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Let Δn ⊂ GL(n,C) be the subgroup of all upper triangular matrices. Since Δn is a

connected, solvable algebraic group, by the Lie–Kolchin theorem (compare [12, Thm.

10.5]), there exists a basis of V such that the set ρ(γ) is upper triangular for all γ ∈Δn.
Thus without loss, from now on we assume that V =Cm and that all elements of ρ(Δn)

are upper triangular.

We view ϕT as a Cm-valued function ϕT =
(
ϕ
(1)
T , . . . ,ϕ

(m)
T

)t
. We define

r := max
{
i | 1≤ i≤m,ϕ

(i)
T �= 0

}
.

For this r, equation (3.7) reads

ϕ
(r)
T (τ,τ�+ z) = ϕ

(r)
T (τ,z)e

(
−
(
T
[
�t
]
τ +2 ·T�tz

))
.

We must finally check the transformation law for SL(2,Z). Namely,

e

(
−c

cτ +d
zT zt
)
ρ

((
cτ +d cz

0 1n−1

))−1

ϕT

(
aτ + b

cτ +d
,

z

cτ +d

)
= ϕT (τ,z)

gives (when applied to ϕ
(r)
T ) the requested transformation property, with weight k′ given

by

ρ(diag(λ,1, . . . ,1)) = (gij(λ)),

where λ 	−→ grr(λ) is a (polynomial) character of GL(1,C) – that is, grr(λ) = λk′
for

some integer k′ ≥ 0. This follows by looking at the rth components on both sides of the

equation in the previous display and here we crucially use the property that ρ(Δn) is
upper triangular.

This means that ϕ
(r)
T is a nonvanishing scalar-valued Jacobi form of weight k′ ≥ k(ρ).

Summarising, we have shown the following:

Proposition 3.4. If ϕT �=0 is a vector-valued Jacobi form of index T with respect to ρ in

the sense of Section 2.3, then there exists a component ϕ
(r)
T of ϕT which is a scalar-valued

Jacobi form (of integral weight k′ ≥ k(ρ)) in the sense of [18].

3.3. Step 3: On primitive components of theta expansions

We now work with the scalar-valued Jacobi form ϕ
(r)
T from the previous section. More

generally, we prove the existence of ‘primitive’ theta-components of any such form whose
index has absolute discriminant odd and square-free. Note the switch from n− 1 to n

in this subsection, for convenience. We will later apply the result of this subsection to a

T ∈ Λ+
n−1. The following result is independent of the previous considerations:

Proposition 3.5. Let M ∈ Λ+
n be such that d= dM is odd and square-free. Let

φM (τ,z) =
∑
μ

hμ(τ)ΘM [μ](τ,z) ∈ Jk,M

be the theta decomposition of φM (see, e.g., [45, p. 210]). Assume that hμ = 0 for all

primitive μ. Then φM = 0.
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Remark 3.6.

(1) This property is weaker than irreducibility of the theta repesentation; note that in

the case of scalar index m, Skoruppa [39] showed that irreducibility holds only for

index m= 1 or a prime p.

(2) This result is expected to hold only when M is a maximal lattice; for example, when
n = 1 and dM is not square-free, there are nonzero Jacobi forms with vanishing

primitive hμ which ‘come’ from index-old forms (see [40, Lem. 3.1]).

Proof of Proposition 3.5. The proof is rather long, and has been divided into

several parts for convenience. Let φM be a Jacobi form satisfying the assumption of the
proposition. Then for all primitive μ, by considering hμ|

(
0 −1
1 0

)
, we obtain the relation∑

ν∈Zn/2M ·Zn

e

(
1

2
〈ν,μ〉
)
hν = 0,

where for vectors ν,μ we have set 〈ν,μ〉= νtM−1μ.

By applying translations τ 	−→ τ + t with t ∈ Z, this equation becomes∑
ν∈Zn/2MZn

e

(
1

2
〈ν,μ〉+ 1

4
〈ν,ν〉t
)
·hν = 0.

We observe that ν and ν′ define the same character t 	−→ e
(
1
4 〈ν,ν〉t

)
of (Z,+) if and only

if

1

4
〈ν,ν〉− 1

4
〈ν′,ν′〉= 1

4
M−1[ν]− 1

4
M−1[ν′] ∈ Z.

Using the linear independence of pairwise different characters we get a refined system of

equations, we fix some νo ∈ Zn and are led to consider∑
ν∈Zn/2MZn

1
4M

−1[ν]− 1
4M

−1[νo]∈Z

e

(
1

2
〈ν,μ〉
)
·hν = 0. (3.8)

Only the case of imprimitive ν0 is of interest here, since for primitive ν0, all ν appearing

in the equation (3.8) will also be primitive, and for these the hν are zero anyway.

Claim 1. For all fixed νo, the matrix
(
e
(
1
2 〈ν,μ〉

))
ν,μ

, with μ varying over primitive

vectors and ν varying over all vectors as in equation (3.8), is of maximal rank (equal to

the cardinality of the set of ν occurring here).
Let us now grant this claim and show how to finish the proof of Proposition 3.5. Indeed,

as already noted, we only need to show that all imprimitive hμ are zero. The condition

ν ∼ νo if and only if 1
4M

−1[ν]− 1
4M

−1[νo] ∈ Z defines an equivalence relation on the set
of imprimitive indices, and equation (3.8) along with Claim 1 just says that all the hν = 0

for all ν in the equivalence class of νo. But since νo can be any arbitrary imprimitive

index, we are done.
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3.3.1. Reduction to degree 1. Our aim is to show that we can reduce everything to
the case of degree 1 – in other words, we show next that it is enough to prove Claim 1

when M,μ,ν are scalars. The idea is to choose representatives of Zn/2M ·Zn which are

similar to those for n= 1. We give all details when n is odd and indicate the main points
for the other case.

When n is odd. First of all, we may find U ∈ SL(n,Z) such that M̃ := (2M)[U ] satisfies
for, f ≥ 2,

M̃ ≡ diag(∗, ∗ , . . . , ∗ ,ζd) mod df, (3.9)

where ∗,ζ are units modd, and

M̃ ≡H⊥ ·· · ⊥H⊥ 2 mod 2f, (3.10)

where H denotes the hyperbolic plane (0 1
1 0). Indeed, from the local theory of quadratic

forms (see, e.g., [14, Chap. 8, Prop. 3.1, Lem. 4.1]), we can find for every q | 2d matrices
Uq ∈ SL(n,Zq) such that, since n is odd and 2d is square-free,

(2M)[Uq] =

{
diag(∗, ∗ , . . . , ∗ ,q) if q �= 2,

H⊥ ·· · ⊥H⊥ 2 if q = 2.
(3.11)

The reader may note that a priori (with the convention in [14]) we can only get a Vq ∈
GL(n,Zq) with this property; but we can assume Vq ∈ SL(n,Zq) by multiplying Vq on the

left with the matrix diag
(
det(Vq)

−1
,1, . . . ,1

)
without loss.

Then by strong approximation for SL(n), we may find U ∈ SL(n,Z) such that U ≡
Uq mod qf for any f ≥ 1 for any prime q | 2d. This U works. To get statement (3.9), we

use the Chinese remainder theorem for the moduli qf with f ≥ 2.
As representatives of Zn/M̃Zn we may choose

ν̃ :=
{
(0,0, . . . ,ν̃n)

t | ν̃n mod 2d
}
. (3.12)

Using formulas (3.9) and (3.10), we see that indeed these are pairwise inequivalent by

checking locally and noting that the cardinality of this set is the right one.

Let nowM= (mi,j) be the adjoint of M̃ , so that M̃M=2d ·In. Then for ν̃,μ̃∈Zn/M̃Zn,
(assuming they are in the nice form as in definition (3.12), we see that

ν̃tM̃−1μ̃=
1

2d
ν̃nmn,nμ̃n. (3.13)

We claim that (mn,n,2d) = 1. To see this, we multiply formulas (3.9) and (3.10) by M on

both sides and compare the resulting congruences to obtain

ζdmn,n ≡ 2d mod df, 2mn,n ≡ 2d mod 2f,

which clearly implies our claim, since f ≥ 2.

Furthermore, for ν̃,ν̃o ∈ Zn/M̃Zn, we see that

1

2
M̃−1 [ν̃]− 1

2
M̃−1 [ν̃o] ∈ Z if and only if ν̃2n ≡ (ν̃on)

2
mod 4d. (3.14)
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Also, it is clear from equation (3.13) along with (mn,n,2d) = 1 that ν̃ is primitive (with

respect to M̃) if and only if (ν̃n,2d) = 1.
These considerations allow us to reduce the case of odd n to n = 1 with d′ = 2d as

follows. We note that

νt(2M)−1μ= νtUM̃−1U tμ= ν̃tM̃−1μ̃, (3.15)

whence we make a change of variables ν̃ = U tν,μ̃= U tμ; and we observe that as ν,μ vary
over Zn/2M ·Zn, so do ν̃,μ̃ vary over Zn/U t(2M) ·Zn =Zn/M̃Zn. Clearly ν is primitive

for M if and only if ν̃ is primitive for M̃ . Moreover, the condition on ν in equation (3.8)

can be seen to be exactly the one in formula (3.14) upon using equation (3.15).
The reduction to n= 1 is now clear from equation (3.13) and formula (3.14), where in

equation (3.13) we make a change of variable μ̃ 	→m−1
n,nμ̃ mod 2d. We will spell this out

explicitly at the end of this subsection after taking care of the analogous case where n is
even.

When n is even. We may find, arguing as in the previous case, a U ∈ SL(n,Z) such

that M̃ := (2M)[U ] satisfies

M̃ ≡ diag(∗, . . . , ∗ ,d) mod df,

where ∗ are units modd, and

M̃ ≡H⊥ ·· · ⊥H mod 4f or M̃ ≡H⊥ ·· · ⊥H⊥ F mod 4f,

where F= (2 1
1 2).

As representatives of Zn/2MZn we may choose

ν :=
{
(0,0, . . . ,νn)

t | νn mod d
}
,

and ν is primitive if and only if (νn,d) = 1. Furthermore,

e

(
1

2
νtM−1μ

)
= e

(
1

d
νnmn,nμn

)
,

where the matrix adjoint of M̃ is (mi,j) and

1

4
M−1[ν]− 1

4
M−1[νo] ∈ Z ⇐⇒ ν2n ≡ (νon)

2 mod d.

These considerations allow us to reduce the case of even n to n= 1 with d′ = d.

Summarising, we now have to prove the following:

Claim 2. Let d be a square-free odd positive integer, d = p1 · · · · · pt. To cover even

numbers also, we define

d′ :=

{
d if n is even,

2d if n is odd,

with the convention that d′ = 2 if t= 0. We assume that d′ > 1. We fix ν0 mod d′. Then
the following matrix has maximal rank:
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(
e
(μν
d′

)) μ mod d′,
(
μ,d′

)
= 1

ν mod d′,ν2 ≡ ν2
0 mod d′

. (3.16)

3.3.2. Proof of Claim 2. By the Chinese remainder theorem, the set{
ν mod d′ | ν2 ≡ ν20 mod d′

}
has cardinality 2t

′
, where t′ is the number of odd primes dividing d and not dividing

ν0; note that in the case of even d′, we might as well describe the congruence by ν2 ≡
ν20 mod 4d.

Lemma 3.7. With all the conditions from before, we claim that such a matrix always

has maximal rank (equal to the number of columns 2t
′
).

To prove this lemma, we argue by induction on t. For t = 0 and d′ = 2, the matrix in
question is just a nonzero scalar. For t= 1 we consider two cases.

Case I: t= 1,d′ = p. If ν0 ≡ 0 mod p, the matrix in question is a nonzero column.

Now we look at p � ν0. We have to consider ν =±ν0, with a μ still to be determined so

that the matrix ⎛⎝ e
(

ν0

p

)
e
(
− ν0

p

)
e
(

μν0

p

)
e
(
−μν0

p

)
⎞⎠

of size 2 whose determinant is equal to

e

(
(1−μ)ν0

p

)(
1− e

(
−2(1−μ)ν0

p

))
should have the determinant nonzero. This clearly implies the maximality of the rank of

the original matrix.

We may choose any μ coprime to p and different from 1. This settles case I.

Case II: t = 1,d′ = 2p. This works similarly: if ν0 ≡ 0 mod p, the matrix is again just a

nonzero column.

Now we assume p � ν0: we have to consider ν =±ν0, and with a μ still to be determined,

we look at the matrix of size 2: ⎛⎝ e
(

ν0

2p

)
e
(
− ν0

2p

)
e
(

μν0

2p

)
e
(
−μν0

2p

)
⎞⎠ .

The determinant is equal to

e

(
(1−μ)ν0

2p

)(
1− e

(
− (1−μ)ν0

p

))
.

We may choose any μ coprime to 2p and different from 1. Thus the lemma follows in this

case as well.
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Induction step: t 	−→ t+1, with t≥ 1 We write q for the prime pt+1. We decompose
ν0 mod d′q as

ν0 = d′ν′0+ qν′′0 ,

with ν′0 mod q and ν′′0 mod d′, and similarly for ν and μ. Then

μν

d′q
=

(d′μ′+ qμ′′)(d′ν′+ qν′′)

d′q
=

d′μ′ν′

q
+

qμ′′ν′′

d′
mod Z.

The matrix attached to d′q and ν0 is then the tensor product (‘Kronecker product’) of

the matrices attached to q and d′ · ν′0 and attached to d′ and q · ν′′0 . The induction step
follows from the well-known property of Kronecker products that the rank of A⊗B is

the product of the ranks of A and B.

This finishes the proof of Claim 2 and hence also of Proposition 3.5.

The following lemma, which will be used later, implies that when k is even, all the
theta-components of a noncuspidal scalar-valued Jacobi form of index M with dM odd

and square-free are also noncuspidal.

Lemma 3.8. Let M ∈ Λ+
n be such that d = dM is odd and square-free. Suppose that

φ ∈ Jk,M is noncuspidal and that k > n+2 is even. Then all the theta-components hμ of

φ are also noncuspidal.

In particular for a nonzero φ as before, there always exists a nonzero, noncuspidal

primitive theta-component. Also, we think that the lemma probably holds for all

discriminants, even in the vector-valued case (proving either, however, seems nontrivial).

Proof. Let JE
k,M and Jcusp

k,M be the spaces of Eisenstein series and cusp forms, respectively.

We write φ= φE +φc, where φE ∈ JE
k,M and φc ∈ Jcusp

k,M . Since φ is not a cusp form, φE �= 0.
Let us now recall from [2, Lem. 3.3.14] that

dimJE
k,M =

1

2

(
#Iso
(
L#
M/LM

)
+(−1)k#

{
γ ∈ Iso

(
L#
M/LM

)
| 2γ ∈ LM

})
,

where LM is the lattice associated with M (compare Section 2.4) and Iso
(
L#
M/LM

)
is

the set of isotropic elements in the discriminant form L#
M/LM associated to M . It is now

easy to check (note the normalisation of the quadratic form on [2, p. 12]), for M as in the

lemma, that Iso
(
L#
M/LM

)
is just trivial, and this follows precisely from formula (2.10)

if we note that L#
M =
(
(2M)−1Zn,μ 	→ (2M)[μ]

)
.

Thus JE
k,M =C{Ek,M,0} in the notation of [2], as k is even. For the absolute convergence

of Ek,M,0, we need here that k > n/2+2. Now from the results of [9, Theorem 10], Ek,M,0

appears as the Mth Fourier–Jacobi coefficient of the Siegel Eisenstein series, say Ek
n+1, of

degree n+1. Here we need to assume that k > n+2. Indeed, [9] describes explicitly the

Fourier–Jacobi expansion of any Siegel Eisenstein series. If M is maximal, the summation
over w1 there is trivial, which implies our claim. It is well known that all the Fourier

coefficients of Ek
n+1 are nonzero (see, e.g., [24, Theorem, p. 115]). Thus all the Fourier

coefficients of Ek,M,0 are nonzero – and thus so are all its theta-components.
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3.4. Formulation of the desired properties of hμ

We consider a nonzero F ∈Mn
ρ and choose (by induction hypothesis) a T ∈Λ+

n−1 with dT
odd and square-free such that ϕT is nonzero (compare Corollary 3.3). Then we choose by

Proposition 3.4 a suitable nonzero component ϕ
(r)
T of ϕT , which is a scalar-valued Jacobi

form.

Let (h0, . . . ,hμ, . . . ) denote the components of the theta expansion of ϕ
(r)
T (see

equation (2.5)). By Proposition 3.5, we get hold of a primitive μ such that hμ �= 0. We

work with this hμ (of weight k′− n−1
2 ) for the rest of the paper.

The basic starting point is an equation of type

detnT = detn

((
� μ

2
μt

2 T

))
=

(
�− 1

4
T−1
[
μt
])

·detn−1(T ) (3.17)

for the determinant detn(T ) of a half-integral matrix T of size n occurring on the left-hand

side.

Recall that dT is the (absolute) discriminant of 2T , and similarly for T .

3.4.1. When n is odd. We should multiply equation (3.17) by 2n−1:

dT =

(
�− 1

4
T−1[μ]

)
·dT .

The first factor has exact denominator dT , since μ is primitive (see Proposition 2.3). In

Part B we will show that there are (infinitely many) nonvanishing Fourier coefficients of

hμ for some primitive μ with summation index

�− 1

4
T−1[μ] =

α

dT

(see equation (2.6)) such that α is coprime to d (this is satisfied automatically by the

primitiveness of μ) and is square-free and odd.

3.4.2. When n is even. Here we must multiply equation (3.17) by 2n to get

dT = 4

(
�− 1

4
T−1[μ]

)
·dT =

(
4�−T−1[μ]

)
·dT .

The middle factor has exact denominator 4dT , since μ is primitive (see Proposition 2.3).
In Part B we will show that there are (infinitely many) nonvanishing Fourier coefficients

of hμ for some primitive μ with summation index

�− 1

4
T−1[μ] =

α

4dT
,

(see equation (2.6)) such that α is coprime to 4dT (this is satisfied automatically) and is

is odd and square-free.
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The next proposition summarises the findings from Part A and makes clear the role of
Part B in the remainder of the proof. Let us set

Hμ(τ) =

{
hμ(dT τ) if n is odd,

hμ(4dT τ) if n is even.
(3.18)

We now apply the results of this section to ϕ
(r)
T from Proposition 3.4 and keep in mind

the Fourier expansion of hμ from equation (2.6).

Proposition 3.9. Let n≥ 2 and C ∈N be given. Assume that Theorem 1.1 holds for all
nonzero forms in Mn−1

θ for all polynomial representations θ of GL(n−1,C) with k(θ)≥C.

Consider a nonzero F ∈Mn
ρ , where ρ is any polynomial representation of GL(n,C) with

k(ρ)≥ C.

Then there exist T ∈ Λ+
n−1 with dT running over infinitely many odd, square-free

numbers; and for each such T , there exist a primitive index μ ∈ Zn−1/(2T )Zn−1 and an

elliptic modular form Hμ(τ) =
∑

�≥1 aμ(�)q
d′
T (�− 1

4T
−1[μ]), where d′T = dT or 4dT according

to whether n is odd or even, of weight at least k(ρ)−(n−1)/2 as defined in equation (3.18)

with the following property:

aF (T ) �= 0 for T ∈ Λ+
n of the form T =

(
� μ

μt T

)
, �≥ 1, if aμ(�) �= 0.

Such a T satisfies the property that dT is odd and square-free, provided that

dT
(
�− 1

4T
−1[μ]
)
is odd and square-free.

Therefore, in Part B we must investigate the nonvanishing property of the Fourier

coefficients aμ(�). The reader will find the results summarised in Theorem 4.5 and
Theorem 4.6. Actually, in our application of Proposition 3.9 to prove Theorem 1.1 by

induction on n (see Section 4.3), we would only need one such T as in Proposition 3.9

for each of the induction steps. Say, for example, we are at the rth step – that is, passing
from Sp(r) to Sp(r+1), where 1 ≤ r ≤ n− 1; then we only need the nonvanishing of

φT (T ∈ Λ+
r ) for one T . The statement about infinitely many such dT follows from the

corresponding property of the aμ(�), where μ ∈ Zr−1/(2T )Zr−1, �≥ 1.

4. Part B: The analytic part

We start with a nonzero hμ, with μ ∈ Zn−1/2TZn−1 primitive (see Proposition 3.9).

The notion that μ is primitive with respect to T can be found in Proposition 2.3. For the
convenience of the reader, we reiterate that hμ is a nonzero theta-component of the scalar-

valued Jacobi form ϕ
(r)
T from Section 3.2, which in turn arises as a function component

of the vector-valued Jacobi form ϕT . Moreover, this ϕT is a Fourier–Jacobi coefficient of
F (see Section 3.1, especially Corollary 3.3). Note that dT is odd and square-free.

The arguments in this section are a little different depending on whether n is even or

odd, but we try to treat them simultaneously. Set

κ= k− n−1

2
, d= dT , (4.1)
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and for N ≥ 1 and κ ∈ 1
2Z, we set (for the remainder of the paper)

N ′ =

{
N if κ ∈N,

4N otherwise.
(4.2)

In any case, we note that hμ ∈ Mκ (Γ(d
′)) with κ ∈ Z. Indeed, the transformation

properties of the hμ are inherited from those of the Jacobi form ϕ
(r)
T and the Jacobi

theta functions of matrix index (compare equation (2.3)). We can read these off from

[45, p. 210, eqn. (1) and (2)]. It is clear that the Weil representation defined in,
for example, [41, Definition 5.1] is the same as that defined on the theta module

C
{
ΘT [μ] : μ ∈ Zn−1/2T ·Zn−1

}
(compare section 2.3 and [45, Lem. 3.2]). Now the fact

that φ
(r)
T =
∑

μhμ ·ΘT [μ] implies that the tuple {hμ}μ transforms via the dual of the Weil

representation just alluded to. Thus our claim about the level of hμ follows by noting that

the kernel of the Weil representation attached to 2T factors through (and thus is trivial

on) Γ(d) when n is odd (i.e., when κ∈Z), and in general is trivial on ˜Γ(level(2T )) = Γ̃(d′)
(where Γ̃ denotes the metaplectic cover of Γ; see, e.g., [41, Lem. 5.5] for this well-known

result). For uniformity of notation, we suppress the tilde in Γ̃ even when κ �∈ Z.
Let us set f = hμ(d

′τ). Therefore, in Proposition 3.9 we take Hμ := f .

Then it is clear that f ∈ Mκ

(
Γ1

(
d′2
))
. Crucial for us is the fact that the Fourier

expansion of f is supported away from its level (this follows from Section 3.4, precisely
because of the primitiveness of μ):

f(τ) =
∑

n≥1,(n,d′)=1

af (n)e(nτ). (4.3)

For later purposes, we have to consider the modified cusp form

g(τ) :=
∑

(n,M)=1

af (n)e(nτ), (4.4)

where M (to be chosen later) is an odd, square-free integer containing all the prime

factors of d′ if κ is integral. We note that g ∈ Sκ

(
Γ1

(
d′2M′2

))
, where M ′ is the largest

divisor of M coprime to d′.

Lemma 4.1. The modular form g in definition (4.4) is nonzero.

Proof. In the case of integral weights, this essentially follows, since f satisfies the property
in equation (4.3) and follows easily from classical oldform theory. Let us define M′ :=
M/d′. Then g=0 implies that a(f,n) = 0 for all n such that (n,M′) = 1. Since

(
M′,d′2

)
=

1, from [29, Theorem 4.6.8 (1)] it then follows that f = 0, a contradiction.

Lemma 4.1 is true for half-integral weights as well, even though we will not use this

fact. Since this is a bit subtle and may have use elsewhere, we give a proof. In this case

let us set M to be the square-free number appearing in [33, Thm. 3] (denoted Nf there).
Recall that we need to show that g (as in definition (4.4)) is nonzero.

We refer the reader to [33, Prop. 3.7] for the spaces Sκ (N,χ) and follow its proof.

Inspecting the argument in that proof, it is clear that one needs to prove that if 0 �= f ∈
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Mκ (Γ1 (N
′)) for some N ≥ 1 with af (n) = 0 for all n such that (n,p) = 1, then p |N ′ – and

hence p |N , since we can and will assume that p is odd, since N ′ and Nf (compare [33,

proof of Prop. 3.4]) are both even, and here we are concerned with those primes p which
divide Nf but not N ′. It is not immediately clear how to adapt the proof in [37, Lem. 7]

in our setting. The following lemma, however, completes the proof:

Lemma 4.2. Set κ ∈ 1
2Z and f ∈Mκ (Γ1 (N

′)). If af (n) = 0 for all n coprime to an odd

prime p �N ′, then f = 0.

Proof. The trick is to reduce to integral weights. Suppose that f �= 0 and define g(τ) :=
f2(τ). Then from the formula

ag(n) =
∑

r+s=n

af (r)af (s),

we see that g ∈M2κ (Γ1 (N
′)) is such that ag(n) = 0 for all n with (n,p) = 1. Indeed, each

summand is zero unless both r and s are divisible by p. This means that the Fourier
expansion of g is supported on multiples of p, and hence we can write g(q) = Ψ(qp) for

some power series Ψ, where q = e(τ).

However, taking f∞(q) = Ψ(q), j = 2κ and L=N ′, this forces g and hence f to be zero

upon invocation of [27, Chapter VIII, Thm. 4.1], which states:
• Let L ∈N and p be a prime such that p �L. If f∞(q) is a power series such that f∞(qp)

belongs to Mj(Γ1(L)) for some integer j ≥ 1, then f∞ = 0.

This finishes the proof.

4.1. Method 1: Proof for all cuspidal f without using multiplicity 1 for κ∈ 1
2
Z

In this section we want to prove that f has infinitely many nonzero, odd and square-free

Fourier coefficients, possibly in a quantitative fashion. However, let us note that we can

not just quote the corresponding results from, say, [3, Theorem 2] or [33, Theorem 2],
since the results therein are only for cusp forms on Γ0(N) with nebentypus, whereas our

setting is on Γ1(N), and the problem of finding nonzero square-free Fourier coefficients

does not behave in a desirable way under decomposition by characters.
We now pursue the cases of integral and half-integral weights in separate subsections,

by closely following [3, 33]. We will henceforth work with the modular form g from

definition (4.4).

4.1.1. f cuspidal and κ integral. Let us set D = d2M2 and, for a square-free r such

that (r,D) = 1, define

G := U
(
r2
)
g =
∑
n≥1

ag
(
r2n
)
e(nτ),

so that g ∈ Sκ(Γ1(D)), G ∈ Sκ

(
Γ1

(
Dr2
))
. (Actually the level would be Dr, but we will

not need this.)
We apply the Rankin–Selberg method to g. For any g ∈ Sκ(Γ1(D)), D≥ 1, with Fourier

expansion g =
∑

n≥1 a
′
g(n)n

κ−1
2 e(nτ) – noting that ag(n) = a′g(n)n

κ−1
2 – applying this
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method (see [32, p. 357, Theorem 1] and [34, eq. (1.14)]) yields∑
n≤X

∣∣a′g(n)∣∣2 =AgX+Og

(
X

3
5

)
, (4.5)

where the constant Ag is given by

Ag :=
3

π

(4π)κ

Γ(κ)

[
SL(2,Z) : Γ1(D)

]−1 〈g,g〉D . (4.6)

Here and henceforth, 〈g,g〉D denotes the Petersson norm of g with respect to Γ1(D),

defined by

〈g,g〉D :=

∫
Γ1(D)\H

|g(τ)|2vkdudv/v2, τ = u+ iv.

It is possible to rework all the calculations done for this in [3] on the spaces Sκ (N,χ)

in our situation, but since a major portion of the work requires only upper bounds on
the sum of square of Fourier coefficients, we may reduce to [3] via decomposition by

characters.

For Y > 0 and a modular form g, let us define Sg(Y ) :=
∑

n≤Y

∣∣a′g(n)∣∣2. We now prove
some results which give upper and lower bounds for the quantity Sg(Y ). In particular,

they provide suitable bounds on SU(r2)g(Y ) which are uniform in r.

Proposition 4.3. For f ∈ Sκ

(
Γ1

(
d2
))

as before, the following statements hold for some

positive constants cf,M depending on f and M, and for Bf,Cf depending only on f .

(i) For all Y ≥ cf,M, we have Sg(Y )≥Bf

∏
p|M

(
1− 2

p

)2
·Y .

(ii) For all Y > 0, we have Sg(Y )≤ Cf ·Y .

Proof. For the proof of (i), let us write M0 :=M/d. Since the Fourier expansion of f is

supported away from d, we see first of all

Sg(Y ) =
∑

n≤Y ,(n,M)=1

∣∣a′f (n)∣∣2 = ∑
n≤Y ,(n,M0)=1

∣∣a′f (n)∣∣2 . (4.7)

M0 is odd and square-free, since both M and d are so. Next, we rewrite equation (4.7)

as

Sg(Y ) =
∑
β|M0

μ(β)
∑

n≤Y/β

∣∣a′f (nβ)∣∣2 = ∑
β|M0

μ(β)SU(β)f (Y/β).

Therefore, equation (4.5) applied to U(β)f ∈ Sκ

(
Γ1

(
d2β
))
, with β as before, gives

Sg(Y ) =
∑
β|M0

μ(β)

β
AU(β)fY +Of,M

(
Y 3/5
)
. (4.8)

For D ≥ 1, let us define νD :=
[
SL(2,Z) : Γ1(D)

]−1
. Consider the orthogonal basis

{fj}j away from d2 that we are considering in this section. Let us further recall from
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[3, Theorem 8] and the argument in [3, Proof of Cor. 5.4] that for β and fj ,

〈U(β)fj,U(β)fj〉d2β =Qβ 〈fj,fj〉d2β , (4.9)

where Qβ is a multiplicative function given by

Qβ (fj) =
∏
p|β

Qp (fj), Qp (fj) =

(
pk−2+

(p−1)
∣∣λfj (p)

∣∣2
p+1

)
. (4.10)

Here λfj (p) is the eigenvalue for fj under Tp. Now from [3, Cor. 5.2] and equation (4.9),

we find, with aκ = 3
π

(4π)κ

Γ(κ) , that

AU(β)fj = aκνd2ββ
1−κQβ (fj)〈fj,fj〉d2β = aκνd2β1−κQβ (fj)〈fj,fj〉d2

= β1−κQβ (fj) ·Afj .

Now we write f =
∑

j cjfj and note that by the orthogonality of the fjs,

〈f,f〉=
∑
j

|cj |2 〈fj,fj〉, Af =
∑
j

|cj |2Afj ;

and by the orthogonality of the Uβ (fj)s (invoking [3, Theorem 8]),

〈U(β)f,U(β)f〉d2β =
∑
j

|cj |2 〈U(β)fj,U(β)fj〉d2β .

Therefore we get

AU(β)f =
∑
j

|cj |2β1−κQβ (fj) ·Afj . (4.11)

Putting all these together, we now derive from equation (4.8) that

Sg(Y ) =
∑
j

|cj |2Afj

∑
β|M0

μ(β)Qβ (fj)

βκ
·Y +Of,M

(
Y 3/5
)
. (4.12)

Let Qβ (resp., λ(p)) denote any of the quantities Qβ (fj) (resp., λfj (p)). We define

Q(M0) :=
∑

β|M0

μ(β)Qβ

βκ . By multiplicativity we can write

Q(M0) =
∏
p|M0

(
1− Qp

pκ

)
=
∏
p|M0

(
1− 1

p2
− (p−1)|λ(p)|2

pκ(p+1)

)
.

Using the Deligne bound for λ(p), we see that

Q(M0)≥
∏
p|M0

(
1− 4

p
− 1

p2
+

8

p(p+1)

)

≥
∏
p|M0

((
1− 2

p

)2
+

8

p(p+1)
− 5

p2

)
≥
∏
p|M0

(
1− 2

p

)2
≥ ad
∏
p|M

(
1− 2

p

)2
,

(4.13)
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for some constant ad depending only on d.
We now use the lower bound (4.13) in equation (4.12) to obtain

Sg(Y )≥ ad
∏
p|M

(
1− 2

p

)2∑
j

|cj |2Afj ·Y +Of,M

(
Y 3/5
)

≥Afad
∏
p|M

(
1− 2

p

)2
·Y +Of,M(Y 3/5). (4.14)

The proof of (i) is therefore complete from formula (4.14), taking for instance Bf :=

Afad/2.

For the proof of (ii) note that for all Y > 0,

Sg(Y ) =
∑

n≤Y ,(n,M)=1

∣∣a′f (n)∣∣2 ≤∑
n≤Y

∣∣a′f (n)∣∣2 = Sf (Y )≤ Cf ·Y , (4.15)

for some constant Cf depending only on f , by looking at equation (4.5).

The space Sκ

(
Γ1

(
d2
))

has an orthogonal basis consisting of eigenforms for all Tn,σn

with (n,d) = 1. Here σn are the diamond operators. This set is just the union of eigenforms

away from the level d2 in the spaces Sκ

(
d2,ψ
)
with ψ varying mod d2. Let this basis be

denoted by {f1,f2, . . . ,fJ} where J = dimSκ

(
Γ1

(
d2
))
.

Lemma 4.4. For any square-free integer r such that (r,M) = 1 and for all Y > 0, we
have SU(r2)f (Y )≤Df ·11ω(r) ·Y .

Proof. We look at the orthogonal decomposition f =
∑

j cjfj , where the set {f1, . . . ,fJ}
is an orthogonal basis for Sκ

(
Γ1

(
d′2
))
. We first prove the lemma for the eigenforms fj .

Let us define a′j(n) := a′fj (n). Let r= p1p2 · · ·pt. We proceed by induction on t. Note that

by our choice (compare the paragraph preceeding Lemma 4.1), d | M. Thus (r,M) = 1

implies that (r,d) = 1.

From [3, Proof of Prop. 5.3], we recall that for a prime p such that (p,M) = 1,

a′j
(
p2n
)
= a′j(n)a

′
j

(
p2
)
−χ(p)a′j(n)δp|n−χ(p)a′j

(
n/p2
)
, (4.16)

where δp|n = 1 if p | n and 0 otherwise, and a′j(s) is zero if s is not an integer. Here

we remind the reader that the |k operator in [3] is normalised so that it defines a group

action on GL(2,R)+, the subgroup of GL(2,R) whose elements have positive determinant.

Since fj is an eigenform away from d′, a′j
(
p2
)
equals the (normalised) eigenvalue of some

newform of level dividing D under the Hecke operator Tp2 defined as in [3].

By the Cauchy–Schwarz inequality and applying the Deligne bound to a′j
(
p2
)
, we get∣∣a′j (p2n)∣∣2 ≤ 9

∣∣a′j(n)∣∣2+ ∣∣a′j(n)∣∣2 δp|n+ ∣∣a′j (n/p2)∣∣2 ≤ 10
∣∣a′j(n)∣∣2+ ∣∣a′j (n/p2)∣∣2 . (4.17)

Summing formula (4.17) over n ≤ Y and using the bound in Proposition 4.3(ii) applied

to gj , we get

SU(p2)fj (Y )≤ 11 ·Sfj (Y )≤ 11 ·Cj ·Y.
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This proves Lemma 4.4 for the eigenform fj when t = 1 with a constant Cj depending
only on κ and d.

For i=1, . . . ,t, let us set Vi :=U
(
p21 · · ·p2i−1

)
fj and V0 := fj . By the induction hypothesis,

suppose we know the result in the statement of the lemma for Vi−1. Since (pi,D) = 1, the
Hecke operator Tp2

i
commutes with U

(
p21 · · ·p2i−1

)
. Therefore, arguing as in the case when

t= 1, replacing gj by Vi gives us

SVi
(Y )≤ 11SVi−1

(Y )≤ Cj ·11i ·Y (4.18)

with Cj as before. This proves our result for the elements {f1, . . . fJ} of the orthogonal

basis.
Now again from the equation f =

∑
j cjfj , we see by the Cauchy–Schwarz inequality

that

SU(r2)f (Y )≤

⎛⎝∑
j

|cj |2
⎞⎠ ·
∑
j

SU(r2)fj (Y )≤Df ·11ω(r) ·Y , (4.19)

using formula (4.18) for i= t. Here Df =
(∑

j |cj |
2
)
·
(∑

jCj

)
. This completes the proof

of the lemma.

Let S be the set of square-free integers and SM = {n ∈ S|(n,M) = 1}. Define

Sf (M,X) :=
∑

n≤X,n∈SM

∣∣a′f (n)∣∣2
⎛⎝= ∑

n≤X,n∈S

∣∣a′g(n)∣∣2
⎞⎠, (4.20)

keeping in mind that a′g(n) is 0 if (n,M) > 1 and equal to a′f (n) otherwise (see

definition (4.4)). Hence1

Sf (M,X) =
∑
n≤X

∑
r2|n

μ(r)
∣∣a′g(n)∣∣2 = ∑

r2≤X,r∈SM

μ(r)
∑

m≤X/r2

∣∣a′g (mr2
)∣∣2

=
∑

r2≤X,r∈SM

μ(r)SU(r2)g

(
X/r2
)
. (4.21)

Clearly SU(r2)g

(
X/r2
)
≤ SU(r2)f

(
X/r2
)
. Therefore for X large enough – that is, X ≥

cf,M, where cf,M is as in Proposition 4.3) – we can use (i) and (ii) in Proposition 4.3 and
Lemma 4.4 to write

Sf (M,X)≥Bf

∏
p|M

(
1− 2

p

)2
·X−

∑
r2≤X,r∈SM

SU(r2)f

(
X/r2
)

1We take the opportunity to correct an error in [3, Prop. 5.8]. The calculations for the lower
bound of the quantity Sf (M,X) there are not correct, and should be replaced by those given
here, along with the results supporting them – Proposition 4.3 and Lemma 4.4 of this paper.
The rest of the results in [3] still hold. Note also that Proposition 4.3 and Lemma 4.4 in this
paper hold for any g whose Fourier expansion is supported away from its level.
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≥

⎛⎝Bf

∏
p|M

(
1− 2

p

)2
−Df ·

∑
r2≤X,r∈SM

·11ω(r)r−2

⎞⎠ ·X. (4.22)

Now let us choose M=
∏

2<p≤t p with t large enough such that all the primes in d occur

in M (compare equation (4.1) and the few lines after definition (4.4), and recall that d is
odd): ∑

r≥2,r∈SM

11ω(r)/r2 =−1+
∏
p>t

(
1+11/p2

)
. (4.23)

This sum is bounded as O(1/t). Now we look at the quantity
∏

p|M

(
1− 2

p

)2
. We see that

∏
p|M

(
1− 2

p

)−2

= exp

⎛⎝2 ∑
2<p≤t

log

(
1− 2

p

)⎞⎠= (log t)4+O(1). (4.24)

We therefore can choose t large enough so that the expression inside the parentheses in

formula (4.22) is positive. Hence for X ≥ cf,M (which will depend only on f , since we

can choose t large depending only on f),

Sf (M,X)≥ EfX, (4.25)

where Ef > 0 depends only on f . Thus we are done in the integral-weight case.

4.1.2. f cuspidal, κ ∈ 1
2
Z \Z. Here as well, we try to reduce to the calculations in

[33]. In the remainder of this subsection, let us define for convenience

L := d′2, Lf := the square-free integer divisible by all prime factors of L appearing

in [33, Thm. 3] (=M, compare the line preceding Lemma 4.1).

We start with

g(τ) =
∑

n≤X, (n,Lf )=1

a′f (n)q
n ∈ Sκ

(
Γ1

(
LL2

f

))
,

and we do not worry about the precise level of g. Now g is nonzero by Lemma 4.1. Let

us decompose g by characters modLL2
f and write

g =
∑
χ

cχgχ,

where cχ ∈ C and gχ ∈ Sκ

(
LL2

f,χ
)
. Note that the constants cχ depend only on g (or

equivalently only on f). Let M be a square-free integer (to be specified later) divisible

by Lf . Let us put M0 =M/Lf , so that M0 is odd and square-free and (M0,Lf ) = 1. We
then consider the quantity

Tf (Y ,M) :=
∑

n≥1,(n,M)=1

|a′(f,n)|2 e−n/Y ,
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which also equals Tg(Y ,M0), whose definition is obvious. Then

Tf (Y ,M) = Tg(Y ,M0) =
∑
s|M0

μ(s)
∑
n≥1

|a′(g,sn)|2 e−sn/Y

=
∑
χ,χ′

cχcχ′
∑
s|M0

μ(s)
∑
n≥1

a′ (gχ,sn)a′ (gχ′,sn)e−sn/Y . (4.26)

If we denote the innermost sum in equation (4.26) by Ts(χ,χ
′;Y ), then from the results

of [17] we infer that for any square-free s such that (s,Lf ) = 1 (in particular for s |M0),
and for some constant Cf > 0 (proportional to 〈f,f〉) depending only on f ,

Ts (χ,χ;Y ) = Cf
Y

s
+Of,M

(
Y 1/2
)

(4.27)

Ts (χ,χ
′;Y ) =Of,M

(
Y 1/2
)
, χ �= χ′. (4.28)

In equation (4.28), we have used the fact that gχ and gχ′ are orthogonal to each other if

χ �= χ′. Indeed, equation (4.28) follows from [17, Theorem 5], noting that the first term

on the right-hand side of [17, eqn (48)] is proportional to the inner product of the cusp
forms in question. Therefore,

Tg(Y ,M0) =
∑
χ

|cχ|2
∑
s|M0

μ(s)

s
· CfY +Of,M

(
Y 1/2
)

≥Df
φ(M)

M
·Y , (4.29)

for all Y > df,M for some constant depending only on f,M .

After this, we follow the argument in the previous subsection – that is, we choose an

orthogonal basis of Sκ(Γ1(L)) and write f =
∑

j fj , where the set {fj}j consists of a basis
of pairwise orthogonal eigenforms on the spaces Sκ (L,χ), χ mod L, which are away from

L. Analogous to [33, Lem. 3.8], we find that for any square-free r (including 1) coprime

with L, ∑
n≥1

∣∣∣a′U(r2)f (n)
∣∣∣2 e−n/X ≤ 19ω(r)BfX, (4.30)

where Bf depends only on f .
Let us now finish the proof. Recall that SM is the set of square-free integers coprime

to M . Using formulas (4.29) and (4.30), we write∑
n≥1,n∈SM

∣∣a′f (n)∣∣2 e−n/X ≥ φ(M)

M
Df ·X−BfX ·

∑
r≥2,(r,M)=1

|μ(r)|19ω(r)r−2. (4.31)

The right-hand side is shown to be � X in [33, p. 377] by choosing M appropriately
(depending only on f ; see also Section 4.1.1), and thus we are done.

4.1.3. Quanitative bounds. To obtain quantitative versions of the nonvanishing

results, we use the Deligne bound – a′f (n)�f nε, n≥ 1 square-free – when κ ∈Z and the
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Bykovskĭi bound otherwise: a′f (n)�f n
3/16+ε, n≥ 1 [13]. More precisely, when the weight

κ is integral, referring to the sum in definition (4.20) and looking at its lower bound from

formula (4.25), we see (with a given ε > 0) that

#
{
n≤X,n ∈ SM|a′f (n) �= 0

}
·Xε �

∑
n≤X,n∈SM

∣∣a′f (n)∣∣2 �f X, (4.32)

which gives the lower bound on #
{
n≤X|a′f (n) �= 0

}
. When κ is half-integral, we start

from the lower bound in formula (4.31), writing it in the form∑
n≤X1+ε,(n,M)=1

∣∣a′f (n)∣∣2 e−n/X +
∑

n>X1+ε,(n,M)=1

∣∣a′f (n)∣∣2 e−n/X �f X. (4.33)

The second sum can be estimated as∑
n>X1+ε,(n,M)=1

∣∣a′f (n)∣∣2 e−n/X ≤
∫ ∞

X1+ε

y3/8+εe−y/Xdy

≤X11/8+εΓ(3/8+ ε,Xε), (4.34)

where Γ(s,x) denotes the upper incomplete gamma function defined for �(s)> 0 as

Γ(s,x) =

∫ ∞

x

ys−1e−ydy.

From the standard asymptotic properties of Γ(s,x) (see, eg., [1]), for s > 0 and x→ ∞
we know that Γ(s,x)∼ xs−1e−x. Therefore for X large enough, we see that the left-hand

side of formula (4.34) is

�ε X
11/8+εe−Xε �ε,A X−A

for any A> 0. Therefore the second sum in formula (4.33) contributes only negligibly to

it.

Thus for large enough X and the obvious inequality∑
n≤X1+ε,(n,M)=1

∣∣a′f (n)∣∣2 ≥ ∑
n≤X1+ε,(n,M)=1

∣∣a′f (n)∣∣2 e−n/X �f,ε X,

using Bykovskĭi’s bound we get

#
{
n≤X1+ε,n ∈ SM |a′f (n) �= 0

}
·X3/8+ε �

∑
n≤X1+ε,(n,M)=1

∣∣a′f (n)∣∣2 �f X.

Finally, by replacing X1+ε with X and again changing ε if necessary, we obtain

#
{
n≤X,n ∈ SM |a′f (n) �= 0

}
�f,ε X

5/8−ε. (4.35)

We summarise in a theorem.

Theorem 4.5. Let κ≥ 2,N ≥ 1 and f ∈Sκ (Γ1 (N
′)), with N ′ as defined in equation (4.2),

be such that af (n) = 0 for all n such that (n,N ′) > 1. Then there exist infinitely many
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odd and square-free n such that af (n) �= 0. More precisely, for any ε > 0,

#{n≤X, n square-free |af (n) �= 0}�f,ε

{
X1−ε if κ ∈ Z,

X5/8−ε otherwise.

4.2. Method 2: Proof for all f ∈ Mκ(Γ(N
′)) using multiplicity 1 where κ ∈ Z

We will show that when κ ∈ Z, one can prove an optimal result about the nonvanishing

of odd, square-free Fourier coefficients of any nonzero h ∈ Mκ(Γ(N
′)) whose Fourier

expansion is supported away from the level. This result can then be applied to f from
equation (4.3) with N = d2. The crucial input is the multiplicity 1 on the space of

newforms. The method is based on a useful argument involving sieving of eigenforms,

originally due to Balog and Ono [8]. Variants of this method have already appeared in
[3]. For convenience, we recall the details of the method below.

We start with an h ∈ Mκ(Γ(N
′)) such that ah(n) = 0 for all n such that (n,N) > 1.

We consider, as before, H(τ) = h(Nτ) ∈ Mκ(Γ1(D)), where we put D = N2. Note that

aH(n) = 0 for all (n,D)> 1.
Let us denote the set of normalised newforms on Γ1(D) of weight k by F1

D, and those

on Γ0(D) with nebentypus χ by FD,χ. In this section we allow κ≥ 2.

Since F1
D = ∪χFD,χ, where χ runs over Dirichlet characters modD, we can write

H(τ) =
∑
i

∑
δ

αi,δfi(δτ). (4.36)

Here fi runs over ∪χFD,χ, δ runs over the divisors of D (such that δ · (level of fi) | D)
and cj,δ are scalars. For this result, see [29, Lem. 4.6.9] for the space of cusp forms and

[43, Prop. 5] for the space of Eisenstein series.

Now by classical (new-/)oldform theory it follows that H can not entirely lie in the
oldspace (see [29, Theorem 4.6.8]), and hence must have a nonzero ‘newform’ component

of some level. In terms of equation (4.36), this means that there exists an i′ such that

ci′,1 �= 0. For ease of notation, by renumbering if necessary, we can assume that i′ = 1
and omit the nebentypus χ′ of the corresponding newform f1 (of some level M |D) from

display.

We now move on to the argument mentioned at the beginning of this subsection. This

involves sieving out the entire old-classes corresponding to all fi with i �= 1 by means
of Hecke operators Tp with p � D (for Γ1(D)) and using multiplicity 1. Let the Fourier

expansion of fi be written as

fi(τ) =
∑
n≥1

bi(n)q
n.

By multiplicity 1, we can choose an odd prime q = q1,2 �D such that b1(q) �= b2(q). In

fact, we can bound such a q solely in terms of κ and D (see, e.g., [11, Prop. 3.2]). Then

consider the form g1(τ) =
∑∞

n=1 a1(n)q
n := T (q)f(τ)− b2(q)f(τ), so that

g1(τ) =

s∑
i=1

(bi(q)− b2(q))
∑
δ|N

αi,δfi(δτ), s= dimMκ(Γ1(D)).
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The modular forms f2(δτ) for any δ|N do not appear in the decomposition of g1(τ),

but f1 does. Proceeding inductively in this way, we can remove all the nonzero newform

components and their translates fi(δτ) for all i= 2,...,s one by one, to obtain a modular
form F in Mκ(Γ1(D)) such that on the one hand we have

F (τ) =
∞∑

n=1

A(n)qn :=
∏

2≤j≤s

(b1 (q1,j)− bj (q1,j))
∑
δ|N

α1,δf1(δτ). (4.37)

To be precise, we set g0 := H, and having determined gi−1, we define gi := T (q1,i)gi −
bq1,igi, where q1,i is any prime coprime to D such that b1(q1,i) �= bi(q1,i). At each stage we
choose the smallest odd prime with these properties. As mentioned before, such primes

are bounded solely in terms of κ and D (compare [11, Prop. 3.2]). Then F = gs−1.

By the construction, the product appearing on the right-hand side of the equality
in formula (4.37) is nonzero. Therefore, rescaling F and calling the resulting function

again F , we note on the other hand that the inductive procedure gives us finitely many

(≤ 3s−1) algebraic numbers βt (polynomials in the p1,is and certain Dirichlet characters)

and positive, square-free rational numbers γt (which are quotients of the p1,is) such that
for every n≥ 1,

A(n) =
∑
δ|N

α1,δb1(n/δ)≡
∑
t

βtaH(γtn). (4.38)

In equation (4.38), α1,δ �= 0. We define Q :=
∏s

i=2 q1,i. Note that maxt γt ≤Q.
Therefore, if we choose n≥ 1 such that (n,QN) = 1, we get

α1,1b1(n) =
∑
t

βtaH(γtn). (4.39)

Then by our choice, all the γts appearing in equation (4.39) are odd, square-free integers.

This is because the primes q1,i are pairwise distinct.

Let us define for L≥ 1 and g ∈Mκ(Γ1(D)) the counting functions

Πg(L;X) := {n≤X | (n,L) = 1,ag(n) �= 0},
Π∗

g(L;X) := #{n≤X | (n,L) = 1,n odd, square-free, ag(n) �= 0}.

Now from equation (4.39) we see that for any n ≤ X, (n,QN) = 1 such that b1(n) �= 0,

there is a unique t such that γtn satisfies aH(γtn) �= 0. Clearly γtn≤QX. This implies

Π∗
f1(QN ;X)≤Π∗

H(QN,QX). (4.40)

The size of the set Πg(L;X) has been studied in [35, 37] when g is a newform. In
particular when g is cuspidal, we quote [35, Théoréme 16, Prop. 18] for κ ≥ 2 and [36,

Théoréme 4.2(ii)] for κ = 1. For our purposes we need analogous statements about the

quantity Π∗
g(L;X). Namely, we want to show that for some constants ρj,α > 0 depending
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only on g and L, the following hold:

#Π∗
g(L;X)∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ1X if g is cuspidal, not of CM type, κ≥ 2,

ρ2
X

(logX)1/2
if g is cuspidal, of CM type, κ≥ 2,

ρ3
X

(logX)α if g is cuspidal, κ= 1,

ρ4X if g is an Eisenstein newform, κ≥ 2.

(4.41)

These bounds have been proved in [35, 36] for Πg(L;X). We need to address two additional

points in our case:

(a) Serre states his results for L= 1, but we require them to hold for any fixed L≥ 1.

(b) We have to count odd, square-free integers – that is, consider the quantity Π∗
g(L;X).

We show in the following how to adapt Serre’s arguments in a simple manner to deal

with (a) and (b). For this we refer the reader to [36, §1, §2], and follow the arguments

presented therein.
Define Pg(L) := {p � L | ag(p) = 0} and Π∗

g(L) := {(n,L) = 1,n square-free | ag(n) = 0}.
Then the generating function (Dirichlet series) F(s) of Π∗

g(L) is just, say,

F(s) =
∑

n�∈Π∗
g(L)

n−s =
∏

p �∈Pg(L)

(1+p−s) =
∑
n≥1

bnn
−s.

Clearly Π∗
g(L;X) =

∑
n≤X bn. Further, the set Pg(L) is ‘Frobenian’ and has natural (and

hence analytic or Dirichlet) density α := α(g) such that 0 ≤ α < 1. Moreover, if g is of
CM type, then α= 1/2; and if κ≥ 2 and g is not of CM type, then α= 0. For these facts,

see, for example, [35, §7.4, p. 178] and [35, §7.5, p. 180], respectively.
F(s) is holomorphic in the region �(s)> 1 and is nonzero there. We can then write

logF(s) =
∑

p �∈Pg(L)

p−s+θ1(s) = (1−α) · 1

s−1
+θ2(s),

where θ1(s),θ2(s) are holomorphic in �(s) ≥ 1. This can be seen, for example, from [36,

equation (1.6)]. This gives us

F(s) =
1

(s−1)1−α
· exp(θ2(s)), �(s)≥ 1.

Since F(s) has nonnegative Dirichlet coefficients, our desired results follow from the (gen-

eralised) Ikehara–Weiner theorem (see [36, equation (2.7)] and [16]), and we conclude that

Π∗
g(L;X) =

∑
n≤X

bn ∼ c · X

(logX)α
, c > 0.

The assertions in formula (4.41) now follow from the different values of α.

From the foregoing discussion and formula (4.40), we now arrive at the following

theorem:

Theorem 4.6. Let κ ∈ Z, N ≥ 1 and h ∈ Mκ(Γ(N)) be such that af (n) = 0 for all n

such that (n,N) > 1. Then there exist infinitely many odd and square-free n such that
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af (n) �= 0. More precisely, for some 0< α < 1,

#{n≤X, n odd, square-free |ah(n) �= 0}�h

⎧⎪⎪⎨⎪⎪⎩
X

(logX)1/2
if h is cuspidal, κ≥ 2,

X
(logX)α if h is cuspidal, κ= 1,

X if h is not cuspidal, κ≥ 2.

4.3. Conclusion of the proof of Theorem 1.1

As mentioned in the introduction, we prove Theorem 1.1 by induction on n. When n= 1

and ρ is as in the statement of the theorem, we can write F = (f1, . . . ,fm), wherem=dimρ

and each fj is a modular form of some weight kj ≥ 0. Moreover, at least one fj �= 0. To
prove Theorem 1.1 for n= 1, it is therefore enough to prove it for any of the nonzero fj .

This in turn follows directly from Theorem 4.6.

We next move to treat higher degrees and assume that n > 1.
We first demonstrate the proof of the first two lower bounds of #SF (X) in Theorem 1.1.

We start with a vector-valued F �= 0 of degree n with the given condition on the weight

that k(ρ)− n/2 ≥ �(n), and consider the nonzero modular form F o ∈ Mn−1
ρ′′ (with ρ′′

denoting the representation appearing in Proposition 3.1) of weight k (ρ′′) ≥ k(ρ). To

apply the induction hypothesis to F o, we need to verify that k (ρ′′)−(n−1)/2≥ �(n−1).

Indeed, this follows from the k(ρ′′)≥ k(ρ) inequality and the hypothesis on F . Now using

Corollary 3.3, we obtain a scalar-valued Jacobi form ϕ
(r)
T �= 0, T ∈Λ+

n−1, which is a Jacobi

form of weight k′ ≥ k(ρ) and is a certain vector component of a (vector-valued) Fourier–

Jacobi coefficient ϕT of F . Here T has odd, square-free discriminant.

Now we again invoke the fact that k(ρ)− n
2 ≥ �(n), so that κ := k′− (n−1)/2≥ k(ρ)−

(n− 1)/2 ≥ �(n)+1/2, and hence κ ≥ 5/2, since κ is half-integral when n is even. This

allows us to use the results of Section 4. If n is odd, we get κ≥ 2 by a similar reasoning,

which puts us into the setting of Section 4.2. See Remark 4.7 for more on the restriction
on the weights.

Then we move on to the realm of elliptic modular forms by using Proposition 3.9 to

obtain a primitive theta-component hμ of ϕ
(r)
T of weight κ. In fact, we work with its close

relative Hμ (compare equation (3.18)) and then use Theorem 4.5 and Theorem 4.6 to get

suitable nonvanishing properties of its Fourier coefficients. In the vector-valued setting

that we are in, let us point out that even when we start with a noncuspidal form F ,

it is not clear to us how ensure that the scalar-valued ϕ
(r)
T is also noncuspidal. This is

highly probable, but we cannot prove it. It can be proved, however, if we start from a

noncuspidal scalar-valued modular form (see later). Therefore, the first lower bound in

Theorem 1.1 is actually the infimum of the lower bounds appearing in Theorem 4.6.
Thus we can demonstrate (via Proposition 3.9) the requisite nonvanishing properties

of the Fourier coefficients of F . This finishes the proof of the first two lower bounds of

#SF (X) in Theorem 1.1.
To demonstrate the proof of the last lower bound in Theorem 1.1, we start with a scalar-

valued F �= 0. We then consider G := Φ(F )∈Mn−1
k , where Φ is the Siegel Φ-operator (see

definition (2.2)). Now the first lower bound in Theorem 1.1 gives us at least one M ∈Λ+
n−1
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such that dM is odd and square-free and

aΦ(F )(M) = aF ((M 0
0 0)) �= 0. (4.42)

If the Fourier–Jacobi coefficients of F are denoted by ϕT , T ∈Λn−1, then equation (4.42)

clearly implies that ϕM �= 0 and ϕM is noncuspidal. Therefore, by Lemma 3.8 and
Proposition 3.5, ϕM has a nonzero noncuspidal primitive theta-component hμ. From this

point on, the demonstration proceeds exactly as described in the first part of this proof.

We apply Theorem 4.6 here. The restriction on the weight comes from Lemma 3.8.

Remark 4.7 (Condition on weights). Let us remark here that the condition on the

weight in Theorem 1.1 – namely, k(ρ)− n
2 ≥ �(n) – is technical, and is used in many

places in Section 4. Let us set � := k(ρ)− n−1
2 . When n is odd, so that � is an integer, the

bound � ≥ 2 is enough. When n is even, so that � is a half-integer, the bound � ≥ 5/2 is
needed to invoke results from [33].

To be more precise, let us point out that the results of Sections 4.1.1 and 4.1.2 are

valid for κ (= weight of the cusp form considered there) at least 1 and 5/2, respectively.
The lower bound 5/2 can be improved to 3/2 if we use the results of [28], but we have to

ensure that we do not encounter unary theta series of weight 3/2. This is an interesting

thing to consider. In section 4.2 we request κ≥ 1 in the cuspidal case and κ≥ 2 otherwise.
(The second condition perhaps can be relaxed.)

We note here that in the scalar-valued cuspidal case it is necessary to have k− n
2 ≥ 0;

otherwise F is singular. Thus our condition on k implies that F is not singular. Moreover,

our result is false for small weights, such as when k = n/2+ 1. Counterexamples are
furnished by the theta series ϑ ∈ Sn

n/2+1, given as

ϑ(Z) =
∑

X∈Mn(Z)

det(X)e(S[X]Z),

where S is even unimodular and does not have an automorphism with det = −1. In
particular, it is not clear whether our theorem would hold for k = (n+1)/2. Similar

remarks as before apply to the vector-valued case as well.

In the noncuspidal case as well, our theorems may not hold for small weights; the

classical theta function of weight n/2 already defined as ϑ, but with the det(X) removed,
is a counterexample.

5. Refinement for prime disciminants and an application to the spinor

L-function

In this section we first show how a variant of our main result (Theorem 1.1) can be used

to refine it to a statement about ‘prime discriminants ’. This is explicitly stated in the

following. Let P denote the set of all primes.

Theorem 5.1. Let n be odd. Let F ∈ Sn
ρ be nonzero and k(ρ)− n

2 ≥ 3/2. Then there

exist T ∈ Λ+
n with dT assuming infinitely many odd prime values, such that aF (T ) �= 0.
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Moreover, the following stronger quantitative result holds:

#(SF (X)∩P)�X/ logX,

where the implied constant depends only on F .

We now show how to use this theorem (for n = 3) along with the work of Pollack

[31] to obtain the standard analytic properties (meromorphic continuation, functional
equation, etc.) of the spinor L-function ZF (s) of a holomorphic Siegel cuspidal eigenform

F on Sp(3,Z) unconditionally (compare Theorem 1.2). We briefly discuss the background

behind this result. Pollack used the correspondence between ternary quadratic forms

and quaternion algebras to study a certain Rankin–Selberg integral (with respect to a
suitable Eisenstein series) indexed by orders in quaternion algebras (or equivalently by

some T ∈ Λ+
3 ). This integral could be evaluated by unfolding using an expression for the

spinor L-function as a Dirichlet series (essentially due to Evdokimov [19]), with a factor
aF (T ) in the front, where T corresponds to a maximal order in the quaternion algebra in

question. The moment we know that aF (T ) �= 0, we can read off the analytic properties

of ZF (s) from those of the Eisenstein series in question. This is what we are going to
do in this section. But first, let us postpone the proof of Theorem 5.1 and show how

Theorem 1.2 can be obtained from it.

5.1. Proof of Theorem 1.2

In view of [31, Theorem 1.2] and Theorem 5.1, it is enough to check that T ∈Λ+
3 with dT =

p (p odd prime) defines a maximal order in a quaternion algebra (necessarily) ramified
at ∞, since T is positive definite.

Since the correspondence between Λ+
3 and orders in quaternion algebras (see, e.g., [31,

Proposition 3.3] or [42, Chapter 22]) preserves discriminants (compare [31, Corollary

3.4]), if T corresponds to an order OT in some quaternion algebra Q over Q ramified at
∞, then dT = p = |rd(OT )|. Here rd(OT ) denotes the reduced discriminant of OT . This

implies that OT is a maximal order. Indeed, if OT ⊂O for some maximal order O of Q,

then |rd(O)|
∣∣|rd(OT )|= p. However, rd(O) cannot be 1, as it must be ramified at another

finite place (p), since the number of ramified places is even. Thus |rd(O)| = |rd(OT )| –
that is, O =OT and OT is maximal.

In order to prove Theorem 5.1, we need a lemma.
Let us denote the set of normalised newforms on Γ1(M) of weight k by F1

M and those on

Γ0(M) with nebentypus χ (with mχ |M) by FM,χ. We begin with a lemma on integral-

weight cusp forms. For � ≥ 1, f ∈ Sk(Γ1(N)), let f |k V�(τ) := f(�τ). In this section we

allow k ≥ 1.

Lemma 5.2. Let f ∈ Sk(Γ1(N)) be nonzero. Suppose that f does not belong to the C-
span of F1

M |k V� (where M |N and � |N/M) with � > 1. Then there exist infinitely many

primes p such that af (p) �= 0. More precisely,

#{p≤ x,(p,N) = 1 | af (p) �= 0}�f x/ logx.

The proof of this lemma is based on the celebrated Ikehara–Wiener theorem on Dirichlet

series with nonnegative coefficients, which we recall next.
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Theorem 5.3 (Ikehara and Wiener [30]). Let A(s) =
∑∞

n=1 ann
−s be a Dirichlet series.

Suppose there exists another Dirichlet series B(s) =
∑∞

n=1 bnn
−s with bn ≥ 0 such that

(a) |an| ≤ bn,

(b) B(s) converges in �(s)> 1,

(c) B(s) (resp., A(s)) can be extended meromorphically to �(s) ≥ 1 having no poles
except (resp., except possibly) a simple pole at s = 1 with residue R ≥ 0 (resp.,

r ≥ 0). Then

(i)
∑
n≤x

an = rx+o(x), (ii)
∑
n≤x

bn =Rx+o(x).

Proof of Lemma 5.2. Since F1
M = ∪χFM,χ, where χ runs over Dirichlet characters

modM such that mχ|M , we can write

f(z) =
∑
χ

∑
M

∑
�

cχ,M,�fM (�z), (5.1)

where χ runs over Dirichlet characters modN , M runs over divisors of N such that
mχ |M , fM runs over FM,χ, � runs over the divisors of N/M and cχ,M,� are scalars. By

our assumption, there exist a χ and an M such that cχ,M,1 �= 0.

From equation (5.1), it follows immediately that for primes (p,N) = 1 we can write

af (p) =
∑
f

cfλf(p), (5.2)

where f runs over the set ∪χ,MFM,χ, with χ and M varying as before, and not all the cf
are zero. The point to note here is that all the f are newforms of level dividing N .

By a theorem of Shahidi [38], we know that the Rankin–Selberg convolution (in the
sense of Langlands) L(f⊗g,s) �= 0 on the line �(s) = 1, if f �= g. Moreover, it is classical

(see, e.g., [23]) that L(f⊗ g,s) is analytic in C except for a simple pole with positive

residue at s= 1 if and only if f= g.
Then we compute∑

p≤x,p�N

|af(p)|2 logp

=
∑
f

|cf|2
∑

p≤x,p�N

|λf(p)|2 logp+
∑
f �=g

cfcg
∑

p≤x,p�N

λf(p)λg(p) logp

=
∑
f

|cf|2
∑

p≤x,p�N

∣∣∣λf⊗f
(p)
∣∣∣ logp+∑

f �=g

cfcg
∑

p≤x,p�N

λf⊗g(p) logp.

We now appeal to (a relative version of) the Ikehara–Wiener theorem (see Theorem 5.3)

applied to the Dirichlet series defined by the logarithmic derivatives L′

L

(
f⊗ f,s
)
and then

to L′

L (f⊗g,s). Let us denote the Satake parameters of f and g at a prime p (which we

suppress mostly) by {ai,p} and {bj,p}, respectively. We drop the suffix p from {ai,p}, {bi,p}
for convenience.
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Further, let us set

L′

L
(f⊗g,s) =

∞∑
n=1

Λf⊗g(n)n
−s, (5.3)

where

Λf⊗g(n) =

{(∑
i,j a

m
i bj

m
)
logp if n= pm,

0 otherwise.

Thus by the Cauchy-Schwarz inequality, we see that

|Λf⊗g(n)| ≤
1

2

(
Λ
f⊗f

(n)+Λg⊗g(n)
)
, (5.4)

and moreover, Λ
f⊗f

(n) = |
∑

i a
m
i |2 ≥ 0 for all n.

Thus all the conditions of the Ikehara–Wiener theorem (Theorem 5.3) for L′

L

(
f⊗ f,s
)

and L′

L (f⊗g,s) are satisfied, and we have

(i)
∑
n≤x

Λ
f⊗f

(n) = x+o(x), (ii)
∑
n≤x

Λf⊗g(n) = o(x) (5.5)

as x→∞.

It is then easy to finish the proof by noting that∑
n≤x

Λf⊗g(n) =
∑
p≤x

Λf⊗g(p)+O
(
x1/2 logx

)
(5.6)

and Λf⊗g(p) = λf⊗g(p) logp. Indeed, combining equations (5.3), (5.5) and (5.6), we get∑
p≤x,(p,N)=1

|af(p)|2 logp=
∑
f

|cf|2x+of(x) (5.7)

as x→∞, where
∑

f
|cf|2 > 0. This immediately implies the assertion of Lemma 5.2.

Remark 5.4. One may look for a better error term in equation (5.7) from the point of

view of analytic number theory. This may be obtained (using the same arguments) by

using the prime-number theorem for the Rankin–Selberg L-functions L(f⊗g,s). However,
one has to be careful about Siegel zeros in case L(f⊗g,s) has a quadratic Dirichlet L-

function as a factor.

5.2. Proof of Theorem 5.1

First we note that in the statement of Proposition 3.9, we can replace the condition ‘odd
and square-free’ in the second part of the proposition with ‘odd and prime’.

We appeal to Corollary 3.3 (which is now unconditional, as we have proved Theorem 1.1)

to conclude that our F ∈ Sn
ρ has infinitely many nonzero Fourier–Jacobi coefficients φT ,

T ∈ Λ+
n−1, with dT odd and square-free. Then Proposition 3.9 gives us the nonzero cusp

form Hμ, μ primitive, as defined just before Proposition 3.9. Let us keep the notation

used there.
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From now on we assume that n is odd. Now let us observe that Lemma 5.2 can be applied
to Hμ ∈ Sk′−n−1

2

(
Γ1

(
d′2
))

– recall that d′ = dT in the present case and k′− n−1
2 ∈N –

because its Fourier expansion is supported on indices which are coprime to dT by the

primitiveness of μ. This in turn implies by oldform theory that it cannot entirely lie in
the oldspace (see [29, Theorem 4.6.8]), and hence must have a nonzero new component.

Thus by the first paragraph of this section, we conclude that when n is odd, there

exist infinitely many odd primes p such that for each such p, F has at least one nonzero

Fourier coefficient aF (T ) with dT = p. The quantitative version follows immediately from
the corresponding statement of Lemma 5.2.

Remark 5.5. It is desirable to prove an analogue of Theorem 5.1 for n even; however,
the necessary properties of elliptic modular forms of half-integral weight (i.e., a suitable

version of Lemma 5.2) seem not to be available.
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