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The dynamical connection between topographic control and wave excitation aloft is
investigated theoretically and numerically in the idealized setting of two-dimensional
stratified flow over an isolated ridge. We consider a constant far upstream inflow with
uniform stratification except for a sharp density step located above the height of the
ridge crest. Below this step, the stratification is sufficiently strong that the low level
flow is blocked upstream and a hydraulically controlled flow spills over the crest.
Above the density step, the flow supports upward radiating waves. In the inviscid
limit, a bifurcating isopycnal separates the hydraulically controlled overflow from the
wave field aloft. We show that, depending on the height of the density step, the sharp
interface can either remain approximately flat, above the controlled downslope flow,
or plunge in the lee of the obstacle as part of the controlled overflow itself. Whether
the interface plunges or not is a direct consequence of hydraulic control at the crest.
The flow above the crest responds to the top of the sharp density step as if it were a
virtual topography. We find that a plunging interface can excite a wave field aloft that
is approximately six times as energetic, with 15 % higher pressure drag, than that in
a comparable flow in which the interface remains approximately flat.
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1. Introduction
There is a considerable body of literature (cf. Long 1955; Pierrehumbert & Wyman

1985; Baines 1987) on the phenomenon of upstream blocking, which occurs whenever
the height hm of an obstacle in a stratified flow is greater than the energetic vertical
excursion scale V∞/N0. Here V∞ and N0 are, respectively, the background flow
speed and buoyancy frequency, assumed constant. An obstacle that exerts upstream
influence, leading to flow deceleration and blocking, is referred to as dynamically
tall. To preserve continuity, the fluid immediately overlying the upstream blocked
layer accelerates and plunges asymmetrically across the crest as a hydraulically
controlled overflow (Baines & Hoinka 1985). The top of this asymmetric overflow
is marked by a bifurcating isopycnal which partially separates it from the overlying
flow. While this bifurcating isopycnal and the resultant isolating layer (Smith 1985;
Winters & Armi 2014) dynamically insulate the topographically controlled overflow
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from the surrounding flow, the flow field aloft can be influenced by the shape and
character of the overflow. The dynamical connection between hydraulic control and
the flow structure further aloft has been a subject of interest ever since the pioneering
theoretical and experimental studies of Long (1955).

Hydraulically controlled flows that include density steps occur both in the ocean and
the atmosphere. In their observations of the overflow in the Panay Sill, Tessler et al.
(2010) noted the presence of a sharp density interface in the subthermocline water
that plunges across the sill. Recently, Armi & Mayr (2015) described the observation
of a hydraulically controlled flow in the Sierras in which a nearly neutral lower
layer capped by a strong density step overflows asymmetrically across the mountain
crest. Their observations showed that the density step at the top of the controlled
overflowing layer forms a ‘virtual topography’ so that the flow aloft responds to the
shape of the density step across the crest rather than the real topography underneath.
Motivated by these observations, here we numerically explore ‘virtual topography’
effects in blocked stratified flows where a strong density step is present above the
crest level. A theoretical framework to interpret the flow solutions is also presented.

Jagannathan, Winters & Armi (2019) investigated flow splitting effects in stratified
flows encountering dynamically tall, long mountain ridges. In these flows, the fluid
below a depth δ from the crest remains stagnant or flows around the sides of the ridge.
Above this blocked fluid is a plunging, asymmetric overflow that is hydraulically
controlled at the crest. A schematic of this flow in a purely two-dimensional (2-D)
setting is shown in figure 1(a). For a given obstacle height hm, upstream flow speed
V∞ and stratification N0, the important non-dimensional parameter is V∞/(N0hm). The
inverse quantity hm/(V∞/N0) is sometimes referred to as a dimensionless obstacle
height (e.g. Epifanio & Durran 2001), while other authors (e.g. Miles & Huppert
1969; Baines 1998) leave this dimensionless group nameless. The identification of
V∞/(N0hm) as a Froude number is common in the literature (e.g. Brighton 1978;
Smolarkiewicz & Rotunno 1989; Hunt et al. 1997; Legg & Klymak 2008; Pal et al.
2017). For consistency with our previous work, we denote V∞/(N0hm) = Fr, where
Fr is a bulk parameter relating far upstream flow properties with the obstacle height.
In blocked flows, Fr may be approximately thought of as the ratio of the background
flow speed and the propagation speed N0hm/π of a columnar internal wave mode
that accomplishes upstream blocking. Note that Fr should not be confused with the
dynamic or inner Froude number that relates the flow speed and long wave speed
within the streamtube overflowing the crest.

Winters & Armi (2014) showed that when blocking effects are significant, or
equivalently, when Fr� 1, the optimally controlled overflow has a parabolic velocity
profile upstream of the blocking location, with the layer thickness H and volume
transport Q coupled through the control relationship Q = N0H2/π. The height
of the bifurcating isopycnal of this optimally controlled flow is then given by
z= zop = hm − δ +H. For a given upstream flow configuration, H can be determined
by solving a kinematic equation for the overflow transport (e.g. Winters & Armi
2014; Jagannathan et al. 2019). These predictions were corroborated in Jagannathan
et al. (2019), where it was also noted that, contrary to the Winters & Armi (2014)
assumption, the flow above the bifurcating isopycnal is not completely dynamically
uncoupled from the controlled flow beneath. Rather, the asymmetric plunging overflow
acts like a virtual topography for the flow aloft in a manner similar to that described
by Armi & Mayr (2015) (cf. figure 3 of their paper), launching vertically propagating
internal waves of wavelength approximately 2πV∞/N0.

Winters & Armi (2012, 2014) studied blocking and hydraulic dynamics in low Fr,
uniformly stratified flow over an infinite obstacle, but did not consider the effects
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of non-uniform stratification, e.g. density steps. Here we investigate blocked flows
which feature a strong density step embedded within an otherwise uniformly stratified
fluid. This flow configuration is shown schematically in figure 1(b). A density step of
magnitude 1ρi is located at z= z0 such that hm < z0 < zop. That is, the step is above
crest level but below the height of the bifurcating isopycnal in the corresponding
uniformly stratified case. The thickness of the interface is assumed to be small but
finite, that is δi/H� 1, so that the stratification changes abruptly, Nδi/N0� 1, where
Nδi and N0 are the stratification within and away from the interface, respectively. This
flow configuration is comparable to the observed stratification and velocity profiles
at the Panay Sill by Tessler et al. (2010) (e.g. figures 2 and 3 of their paper) where
the ratio of the stratification within the density interface and the layer below is
approximately 5 and the flow also appears to be approximately motionless upstream
of the crest.

We will show that the spatial location of the density step relative to hm and
zop strongly influences the height of the bifurcating isopycnal. Further we will also
demonstrate that the amplitude of the mountain wave aloft is directly connected to the
nature of the hydraulically controlled overflow and in particular depends sensitively
on whether or not the density interface is drawn down asymmetrically across the
crest as part of the plunging overflow.

2. Model description
The governing equations are the two-dimensional, non-rotating equations of motion

for a stratified fluid in the Boussinesq limit. The numerical model used for the
computations is the spectral solver flow_solve described in Winters & De la Fuente
(2012), with hyper-viscosity to dissipate subgrid scale motions. We consider a
background state characterized by a far upstream flow speed V∞ and stratification
N(z) incident on a Gaussian topography

h= hm exp(−y2/σ 2
y ); hm/σy = 1/6. (2.1a,b)

The topography is centred in a domain of width Ly = 33σy and is incorporated via
the immersed boundary set-up discussed in Winters & De la Fuente (2012), with
conditions of free-slip at the obstacle surface. While the obstacle is gently sloping
(hm/σy = 1/6), the numerical model itself is non-hydrostatic. The height of the
computational domain is Lz= 6hm and the density profiles considered are as shown in
figure 1(b). In the computations, the density step 1ρi over a height δi is represented
using a hyperbolic tangent function as

ρ = ρ0 + 0.51ρ2

(
Lz − z
Lz − z0

) [
1+ tanh

(
2(z− z0 − δi/2)

δi

)]
+ 0.5

(
1ρ2 +1ρi +

(
z0 − z

z0

)
1ρ1

) [
1− tanh

(
2(z− z0 − δi/2)

δi

)]
, (2.2)

so that the bottom of the step is located at z = z0. The corresponding stratification
profiles are then approximately given by

N(z)≈

{
Nδi; |z− z0 − δi/2|6 δi/2,
N0; |z− z0 − δi/2|> δi/2.

(2.3)
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FIGURE 1. (a) Schematic of low Fr controlled asymmetric overflow over an infinite ridge
for the case of uniform upstream stratification and flow speed. The upstream fluid below
a depth δ from the crest is blocked. The streamwise coordinate of the blocking location
is y=−yb, and Q denotes the volume transport within the overflow, which matches the
far upstream transport as shown. The streamwise computational boundaries are y=−Ly/2
and y= Ly/2. The optimally controlled overflow has a parabolic velocity profile, with the
height of the bifurcating isopycnal being z = zop. Panel (b) is as in figure 1(a) but for
the case when a density step is present in an otherwise uniformly stratified fluid with
Fr = V∞/N0hm � 1. The density step 1ρi is large and the interface is thin relative to
H (δi/H� 1), so that Nδi/N0� 1, where Nδi and N0 denote the stratification within and
away from the interface, respectively. The flow arrows indicate that the far upstream inflow
speed is a constant V∞ up to an arbitrary height z > zop. For z = z0 < zop, the upstream
thickness of the overflow is H̃ < H and the velocity profile deviates from the optimal
parabolic shape as indicated. Note that the downward arrows associated with H and H̃
point to different z locations. This is in anticipation of the result (see also, § 3) that the
blocking scale δ̃ when the isopycnal bifurcates at the vertical level of the density step is
different from the blocking scale δ when no density step is present.

We fix Fr= 0.16 and consider strong density steps characterized by the dimensional
values N0= 10−2 s−1 and Nδi = 8.6N0= 8.6× 10−2 s−1. In Jagannathan et al. (2019), we
showed that for a blocking scale δ̃, the appropriate inner horizontal length scale for the
overflow is the half-width of the obstacle at the blocking level σy

δ̃
. The smallest verti-

cal length scale is the thickness of the density interface δi which, in our experiments,
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is much smaller than the blocking scale δ̃. To resolve these inner length scales, we
choose a grid spacing 1z≈ δi/6 and 1y≈ σy

δ̃
/10.

A sponge layer of thickness Lz/4 is placed at the upper boundary to prevent
reflection of vertically propagating waves and the upstream boundary condition
evolves slowly through an iterative scheme (Jagannathan et al. 2019) that accounts
for upstream influence of the topography. Arrest of the forward energy cascade due
to downstream instabilities and overturns is accomplished by sixth-order hyperviscous
and hyperdiffusion operators (Winters & De la Fuente 2012). The flow speed is
rapidly accelerated from rest toward its target speed V∞ over approximately ten
time steps. We judge the flow to be quasi-steady when, at the blocking location just
upstream of the crest, the peak speed in the overflow varies in time by less than 1 %
of its mean value.

3. Numerical results
When Fr� 1, across-crest asymmetry induced by upstream blocking forces a flow

response that is characterized by hydraulic control at the crest (cf. Winters 2016;
Jagannathan et al. 2019). For the uniformly stratified case depicted in figure 1(a),
Winters & Armi (2014) show that the upstream flow has a parabolic shape above
the blocking level, with peak speed given by 1.5N0H/π. Further, the blocking scale
is also related to the overflow thickness as δ = H/8. The statement of volume flux
conservation for the overflow then reads (see also Jagannathan et al. (2019))

N0H2/π= V∞(hm + 7H/8). (3.1)

The unknown thickness H is obtained as the positive root of this equation:

H =

7πV∞
8N0

+

√(
7πV∞
8N0

)2

+
4πV∞hm

N0

2
. (3.2)

Note that H can also be written in terms of hm and Fr as

H =

7π

8
hmFr+ hm

√(
7π

8

)2

Fr2 + 4πFr

2
. (3.3)

Thus for a fixed Fr, the overflow thickness H is directly proportional to hm.
Keeping the other parameters same, we now consider the effect of including a

strong density step within the stratification profile. In the simulations that follow,
we set Fr = 0.16 and the ratio Nδi/N0 to 8.6. Substituting Fr = 0.16 in (3.2) yields
H = 0.96hm. That is, the bifurcating isopycnal for a uniformly stratified flow at this
Fr will be at zop = hm + (7/8)0.96hm = 1.84hm. When the step is placed at z0 > zop,
we expect to recover the Winters & Armi (2014) solution, depicted schematically in
figure 1(a).

As an example, consider a strong density interface located well above zop, at
z0 = 2.23hm. Contours of isopycnals and streamwise velocity of the quasi-steady flow
for this case (figure 2) reveal that the overflow bifurcates at z ≈ zop and not z = z0.
The vertical profile of the overflow at the upstream blocking location (figure 3) also
agrees closely with the parabolic prediction of Winters & Armi (2014). We also note
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FIGURE 2. Quasi-steady flow field for 2-D Fr = 0.16 flow over an infinite ridge with a
density step characterized by Nδi/N0 = 8.6 located at z0 = 2.23hm. (a) Isopycnal lines and
contours and (b) streamwise velocity contours. Flow is from left to right.

that the presence of the density step above the bifurcation acts to strongly inhibit
isopycnal displacements aloft. This is similar to observations above the Panay Sill by
Tessler et al. (2010) (e.g. figure 4 of their paper), where the sub-thermocline overflow
plunges down the lee slope, but isopycnal displacements above the strongly stratified
thermocline are suppressed.

We now present results from two numerical simulations which highlight by
comparison the strong coupling between hydraulic control of the overflow and wave
excitation aloft. These simulations differ only in the vertical location of the density
step, which is now in the height range hm < z0 < zop, with Fr and Nδi/N0 again being
set to 0.16 and 8.6, respectively. In the first, we consider a case with the density
interface at z0= 1.73hm. We then lower the interface to z0= 1.33hm. We will see that
a topographically controlled overflow develops in both these flows, but that the flow
morphology differs significantly. In particular, the density interface remains nearly flat
in one case while it plunges across the crest in the other. We will see that whether
the interface plunges with the overflow or not is determined by the fundamental
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FIGURE 3. Vertical profile of the steady streamwise velocity at the blocking point y=−yb
for Fr= 0.16 flow over an infinite ridge with a sharp density step located at z0 = 2.23hm.
The Winters & Armi (2014) parabolic overflow prediction is shown in red.

condition for crest control, namely that the upstream flow be subcritical to a long
gravity wave mode.

The theoretical construct of a bifurcating isopycnal (Smith 1985; Winters & Armi
2014) as depicted in figure 1 has a well-defined bifurcation point, which is the
upstream location where the lower branch of the bifurcating isopycnal begins to
plunge. In numerical simulations, due to limitations of resolution and instability
of the flow downstream (Smith 1991; Jagannathan, Winters & Armi 2017), the
bifurcation manifests over a finite region above the blocking location rather than at
a single point. This creates some ambiguity in identifying the bifurcating isopycnal.
Here, we identify the topmost isopycnal below which the overflow accelerates and
plunges across the crest as the bifurcating isopycnal. We will also show by solving
the Taylor–Goldstein equation that this is precisely the lowest isopycnal that renders
the upstream flow beneath it and above the blocked layer subcritical.

The time averaged, quasi-steady flow field for the case z0 = 1.73hm (figure 4)
exhibits upstream blocking and across-crest asymmetry. An accelerating downslope
flow forms beneath a wedge of nearly stagnant mixed fluid, identifiable as the
isolating layer. An isopycnal bifurcation occurs just beneath the sharp interface,
at z = z0, leaving the bulk of the stratified interface above the accelerated layer
upstream and above the isolating layer downstream. Directly above the crest, the
top of the interface is displaced slightly upward. This appears to be related to the
shear instability that develops just downstream of the bifurcation point (e.g. Peltier &
Scinocca 1990; Jagannathan et al. 2017).

3.1. Non-plunging interface: weak perturbations aloft
The key feature of the flow is that the density interface remains dynamically
inactive; that is, it does not plunge across the crest as part of the hydraulically
controlled overflow. The flow aloft responds to an effective flat bottom formed by
the density interface rather than the real topography below. As a result, only weak
flow perturbations occur in this region. These perturbations are small-amplitude,
upward-propagating waves excited by time dependent disturbances of the density step
near the bifurcation region.
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FIGURE 4. Same as figure 2 but for z0 = 1.73hm.

Figure 5 shows that the overflow profile at the upstream blocking location has a
semi-parabolic shape rather than the parabolic shape observed when the stratification
is uniform or when the density step is located above zop as in figure 3. Recall that
in the Winters & Armi (2014) solution, the blocking scale is dynamically related to
the thickness of the parabolic overflow as δ=H/8. Simulations over a range of small
Fr suggest that when a strong density step is present at z = z0 < zop, the dynamical
blocking scale is related to the thickness H̃ of the semi-parabolic overflow as δ̃≈ H̃/4.

The peak speed of the semi-parabolic overflow can be predicted as follows. The
volume transport Q̃ of the overflow must match the far upstream transport below the
bifurcating isopycnal, which is simply given by V∞z0 (see figure 1b). The peak speed
vm of the overflow at the blocking location is then obtained by solving the volume
conservation equation

Q̃= V∞z0 = (2/3)H̃vm, (3.4)

with H̃ = z0 − hm + δ̃ = z0 − hm + H̃/4, yielding

H̃ = 4
3(z0 − hm). (3.5)
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FIGURE 5. Vertical profile of the steady streamwise velocity at the blocking point y=−yb
for Fr= 0.16 flow over an infinite ridge with a sharp density step located at z0 = 1.73hm.
The prediction in red is based on the values of H̃ and vm from (3.5) and (3.6), respectively.
The wave aloft is predicted to have a vertical wavelength 2πV∞/N0 and perturbation speed
amplitude V∞N0/Nδi = 0.12V∞ (see § 6.1), with the phase chosen to match the computed
solution.

Substituting (3.5) into (3.4), we obtain

vm =
9
8

V∞z0

(z0 − hm)
, (3.6)

which furnishes a complete description of the overflow profile in terms of the known
problem parameters V∞, hm and z0.

Figure 5 shows that the peak speed of the overflow agrees well with the value
obtained from (3.6). Within the density step, the flow speed decreases linearly to
the ambient V∞. Finally, above the step, small amplitude oscillations (≈ 0.15V∞) are
present. These oscillations are characterized by nearly zero frequency and vertical
wavelength identifiable as 2πV∞/N0, which is consistent with a vertically propagating
linear mountain wave. Note that vertical propagation above z≈ 4hm is suppressed by
the sponge layer.

3.2. Plunging interface: large amplitude wave aloft
When the density step is located closer to the crest, at z = 1.33hm, an asymmetric
hydraulic response is again observed, but there are important differences with respect
to the case z0= 1.73hm. The isopycnals and streamwise velocity contours of the quasi-
steady flow are shown in figure 6. Unlike in the previous case, the upstream flow
now bifurcates at the top of the sharp interface, at z = z0 + δi. The density step is
thus a dynamically active component of the hydraulically controlled plunging overflow.
It descends a depth of approximately H̃/2 from its initial position, which is roughly
1.4V∞/N0 for the value Fr= 0.16 considered.

The upstream velocity profile again has a semi-parabolic shape (figure 7). To predict
its peak speed using a volume flux constraint, equation (3.4) must be modified to
include the density step in the overflow. Once again assuming that the velocity
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FIGURE 6. Same as figure 4 but for z0 = 1.33hm.

decreases linearly within the interface to the ambient V∞, volume flux conservation
requires that

Q̃= V∞(z0 + δi)= (2/3)H̃vm +
(vm + V∞)

2
δi, (3.7)

giving

vm =
V∞(z0 + δi/2)

(2/3)H̃ + δi/2
. (3.8)

Figure 7 shows that the peak speed within the overflowing layer is now well
estimated by (3.8). Further, the descending step acts as a virtual topography for
the flow aloft and excites a large wave of amplitude approximately V∞ rather than
0.15V∞ as in the previous case. Interestingly, a comparison of figure 7 with figure 5
also reveals that there is a phase difference of approximately π in the vertical between
the mountain wave in the present case and the small amplitude disturbance observed
when the interface does not plunge. This is a consequence of the difference in the
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FIGURE 7. Same as figure 5 but for z0 = 1.33hm. The prediction for the peak speed
is obtained from (3.8), while the wave aloft is assumed to have a vertical wavelength
2πV∞/N0 and perturbation speed amplitude of V∞ (see § 6.1). The phase of the wave is
chosen to match the computed solution.

shapes of the ‘virtual topography’ i.e. the top of the density step in these two flows
– it descends sharply past the bifurcation point in one case while rising slightly and
subsequently flattening out in the other. A similar ‘virtual topography’ effect on the
phase of the flow response aloft was also noted by Armi & Mayr (2015) in their
comparison of flow over the Sierras with the 1972 Boulder windstorm described by
Lilly (1978).

Figure 8 shows snapshots of the inverse Richardson number Ri−1
= (∂v/∂z)2/N2 for

the two cases, where N is the local, instantaneous stratification. Isopycnal overturns in
the unstable downslope flow region are visible as patches of negative Ri−1. In these
simulations, we resolve the formation of the overturns, but the subsequent turbulent
dissipation and mixing is modelled using a hyperdiffusive closure scheme. In the
plunging interface case, sub-quarter Ri (i.e. Ri−1 > 4) occurs not only downstream,
but also upstream and further aloft. As we will describe in § 6, the wave field aloft
exhibits large fluctuations in the plunging interface case, suggesting the possibility
of instability and nonlinear processes. By contrast, the upstream flow reaches steady
state and remains stable despite Ri dropping below 1/4 in a thin region at the base
of the flowing layer.

The emergent picture then is of an intrinsic dynamical connection between hydraulic
control of the overflowing layer in direct contact with the topography and the wave
field further aloft. The latter is essentially a response to the shape of the virtual
topography formed by the top of the density interface and depends sensitively on the
dynamics of the hydraulic flow component.

4. Theoretical framework – crest control and upstream subcriticality
The underlying basis of the framework we describe is hydraulic control, character-

ized by subcritical-to-supercritical flow transition at the obstacle crest. A flow profile
is defined to be subcritical if it supports at least one long internal wave mode that
is able to propagate upstream, supercritical if no such mode exists and critical if the
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FIGURE 8. Instantaneous snapshots of the inverse Richardson number overlain with
isopycnal contours. (a) Flat interface (z0=1.73hm) and (b) plunging interface (z0=1.33hm).

fastest upstream mode is exactly arrested (cf. Pratt et al. 1999; Pratt & Whitehead
2007). In the present context, this implies that when the density interface does not
plunge, the upstream flow with uniform stratification N0 and semi-parabolic velocity
profile with peak speed given by (3.6) must be subcritical.

To check for subcriticality, we take the bottom and top of the overflowing layer
as rigid boundaries of a waveguide, and solve the Taylor–Goldstein equation to
determine whether the predicted upstream flow supports at least one upstream
propagating internal wave mode. Assuming a background velocity profile V̄(z),
uniform stratification N0 and a wave-like disturbance with stream function ψ =

φ(z) exp(il(y− ct)), the Taylor–Goldstein equation for a vertical wave mode φ(z) with
speed c is

d2φ

dz2
− l2φ +

N2
0

(V̄(z)− c)
2φ −

1
(V̄(z)− c)

d2V̄(z)
dz2

φ = 0, (4.1)

where u= dψ/dz and w=−dψ/dy.
For the purpose of this analysis, we redefine the vertical coordinate z so that

z= 0 is the bottom of the overflowing layer. The predicted upstream flow profile has
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a semi-parabolic velocity distribution

V̄(z)= 4vm

(
z

2H̃
−

z2

4H̃2

)
. (4.2)

Bell (1974) showed that in a stratified flow with a sheared velocity profile V̄(z) and
stratification N(z) where the Richardson number Ri is greater than 1/4 everywhere,
internal wave modes come in pairs with speeds c+j and c−j such that c+j >max(V̄(z))
and c−j <min(V̄(z)). For V̄(z) given by (4.2), since V̄(0)= 0, this implies that there
always exists an upstream propagating mode provided Ri> 1/4 everywhere. However,
as shown in figure 8(b) for the plunging interface case, Ri drops to sub-quarter values
at the base of the flowing layer upstream and so the Taylor–Goldstein equation must
be solved to conclusively determine subcriticality.

For the semi-parabolic velocity profile given by (4.2), equation (4.1) can be written
as

d2φ

dz2
− l2φ+

N2
0

v2
m

[
4
(

z

2H̃
−

z2

4H̃2

)
−

c
vm

]2φ+
2

H̃2

[
4
(

z

2H̃
−

z2

4H̃2

)
−

c
vm

]φ=0, (4.3)

with boundary conditions φ = 0 at z= 0, H̃. We now non-dimensionalize z as

ẑ= z/H̃ (4.4)

and confine attention to the fastest, long internal wave modes with l→ 0 that diagnose
the criticality of the flow. Equation (4.3) then becomes

1

H̃2

d2φ

d ẑ2
+

N2
0

v2
m

[
4
(

ẑ
2
−

ẑ2

4

)
−

c
vm

]2φ +
2

H̃2

[
4
(

ẑ
2
−

ẑ2

4

)
−

c
vm

]φ = 0, (4.5)

with the boundary conditions φ = 0 at ẑ = 0, 1. Strictly speaking, while the base
of the flowing layer intersects the topography and may thus be treated as a rigid
boundary, the upper boundary is not a true rigid surface, but rather a pliant boundary
that can move with the wave. When the fluid overlying the waveguide is stagnant
and homogeneous, it is straightforward to impose matching pliant conditions at this
boundary (e.g. Smith 1991). This is because the solution of (4.1) within the stagnant,
homogeneous region takes a particularly simple form of exponential decay. In the
flows considered here, the fluid overlying the upstream flowing layer is also stratified,
so the formulation of a pliant boundary condition is less obvious. Here we have
assumed simple rigid lid conditions at both vertical boundaries.

We now show that the criticality of the flow is completely determined by the two
non-dimensional parameters Fr and the ratio z0/hm. First, we claim that for any γ > 0,
equation (4.5) is invariant to the following transformation:

hm→ γ hm, z0→ γ z0, N0→N0/γ . (4.6a−c)

To see this, note that the transformation keeps the control parameter Fr and ratio
z0/hm fixed. From (3.5) and (3.6), this leads to a re-scaling of the thickness of the
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z0/hm min(c−j )/V∞

Excluding density interface Including density interface
1.73 −0.64 −0.91
1.63 −0.35 −0.63
1.53 −0.11 −0.36
1.43 −10−5

−0.13
1.33 5.4× 10−5

−10−3

1.23 7.5× 10−4 4× 10−4

TABLE 1. Speed of the fastest upstream propagating internal wave mode (min(c−j )/V∞)
within the waveguide formed by the semi-parabolic overflow for different locations of the
density step at Fr= 0.16.

semi-parabolic overflow H̃ → γ H̃, while vm stays the same. Substituting these re-
scaled quantities in (4.5) leaves it unmodified, which shows that the subcritical or
supercritical character of the flow is insensitive to this transformation. We remark that
this invariance property of (4.5) will not hold but for the long wave approximation
l→ 0 that causes the second term in (4.3) to drop out.

If instead, we make the transformation

hm→ γ hm; z0→ γ z0; V∞→ γV∞, (4.7a−c)

then Fr and z0/hm are once again unchanged, but (4.5) now becomes

1

H̃2

d2φ

d ẑ2
+

N2
0

v2
m

[
4
(

ẑ
2
−

ẑ2

4

)
−

ĉ
vm

]2φ +
2

H̃2

[
4
(

ẑ
2
−

ẑ2

4

)
−

ĉ
vm

]φ = 0, (4.8)

where ĉ = c/γ . In other words, the eigenvalues of the rescaled problem differ from
those of the original one by a factor of γ . However, the crucial point is that (4.8) has
a negative eigenvalue if and only if (4.5) has one.

Thus only changes to Fr and z0/hm can affect the criticality of the flow. It follows
that, for a fixed Fr, the criticality of the flow can only be altered by varying z0/hm.
Based on the results from our numerical simulations, we hypothesize that for a given
small Fr, there exists α > 1 and a corresponding zcritical = αhm such that for zcritical <
z0 < zop, the waveguide formed by the semi-parabolic flow profile is subcritical.

Table 1 presents the speed min(c−j ) of the fastest upstream propagating internal
wave mode within the waveguide formed by this predicted upstream flow for
different values of z0/hm at Fr = 0.16. The wave speeds were computed using the
pseudo-spectral generalized eigenvalue solver described in Jagannathan et al. (2017).
The second and third columns list the wave speeds for a waveguide that excludes
and contains the sharp density interface, respectively.

When the bottom z= z0 of the interface is below z= zop= 1.84hm but above a height
1.33hm from the ground, the predicted semi-parabolic upstream flow is subcritical. For
z0= 1.73hm, table 1 shows that min(c−j )=−0.64V∞. Thus the bifurcating isopycnal is
predicted to lie at the base of the density step. This prediction is consistent with the
asymmetric crest-controlled flow observed in the numerical simulation for this case
(figure 4).
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FIGURE 9. Prediction of vertical profiles of the velocity and density within the
overflowing layer at the blocking location y=−yb for the case z0= 1.33hm, with Nδi/N0=

8.6. Note that the vertical coordinate z has been redefined so that z= 0 is the base of the
flowing layer. Panel (a) excludes the density interface, whereas (b) includes the density
interface.

At 1.33hm, which we identify as zcritical, this profile becomes supercritical, which is
in violation of the hydraulic control assumption. To resolve this inconsistency, we first
note that shifting the upper boundary of the waveguide to include the density interface
will increase the mean stratification of the waveguide and thus allow faster upstream
propagating waves. Therefore a plausible way to maintain subcriticality is to require
that the density interface be part of the controlled overflow. That is, the isopycnal
bifurcation occurs at the top rather than base of the density step. The third column of
table 1 reveals that for z= zcritical, the upstream flow indeed becomes subcritical when
the density interface is considered to be part of the waveguide. The flow profiles used
in performing the wave speed computations for this case are shown in figure 9. The
computed flow solution for this case (figure 6) corroborates the waveguide analysis,
viz. the top of the density step plunges across the crest as part of the overflow.

When z0 < zcritical, the semi-parabolic prediction fails to be subcritical even when
the interface is considered to be part of the waveguide. Based on the low Ri values
observed in figure 8(b) at the base of the flowing layer upstream, it is likely that
zcritical is near the margin of stability for the semi-parabolic flow configuration. Indeed,
simulations for cases with z0< zcritical indicate that, while the overflow continues to be
asymmetric and hydraulically controlled, its shape and thickness progressively deviate
from the predictions here as z0 moves further and further below zcritical. The upstream
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flow in these cases appears to maintain subcriticality through an upward shifting of
the bifurcating isopycnal, to some intermediate height between z0 + δi and zop. That
is, in addition to the density interface, a portion of the overlying fluid also plunges
across the crest as part of the hydraulically controlled overflow.

5. Pressure drag
The pressure drag is a useful diagnostic to characterize the degree of cross-crest

asymmetry in flow across topography. It is defined as the decelerating force exerted
on the flow by the obstacle,

FD =

∫
∞

−∞

∫
∞

−∞

ps
∂h
∂y

dy dx=
∫
∞

−∞

∫
∞

−∞

h
∂ps

∂y
dy dx, (5.1)

where ps is the pressure on the obstacle surface. The dynamical significance of
pressure drag is that it removes horizontal momentum from the large scale flow and
must thus be parameterized in general circulation models of the ocean and atmosphere
which do not resolve flow details in the vicinity of topography. For a 2-D obstacle,
it is appropriate to consider the drag force per unit length:

FD =

∫
∞

−∞

ps
∂h
∂y

dy=
∫
∞

−∞

h
∂ps

∂y
dy. (5.2)

As Winters & Armi (2014) show, in blocked downslope flows, there is a continuous
drop in surface pressure starting at the upstream blocking location. It is this pressure
drop that accelerates the lowest isopycnal of the overflowing layer up and across
the crest. Consequently, there arise large surface pressure anomalies between the
upstream and downstream sides, which will produce a high drag force on the obstacle.
Figure 10 shows the evolution of the normalized drag per unit length as a function
of non-dimensional time t′δ = t/tδ for the flat and plunging interface simulations. Here
tδ = V∞/σyδ is a time scale for the development of the overflow (Jagannathan et al.
2019) and σyδ is the half-width of the ridge at the blocking level. The drag has been
normalized with the force produced due to a 2-D hydrostatic linear mountain wave
excited by a ridge of identical shape and height, and for the same values of the outer
flow parameters, FDL = ρ0V∞N0h2

m (see appendix A).
Both the flat and plunging interface flows gradually evolve to a high-drag state.

After t′δ ≈ 30, the relative amplification of the drag in the flat interface simulation has
a mean value of around 3.25. In the plunging interface flow, a further reduction of the
surface hydrostatic pressure occurs along the lee slope and the non-dimensional drag
reaches a value of approximately 3.75 at late times. In other words, the pressure drag
is approximately 15 % higher when the interface plunges. It is pertinent to consider
that in realistic low Fr geophysical flows, lateral flow splitting will often mitigate the
surface pressure anomaly across the topography. To illustrate this, we have also shown
in figure 10 (dotted lines) the drag for uniformly stratified flow past a long but finite
ridge, with cross- to along-stream length ratio 30 at the same Fr = 0.16 – a flow
that was investigated in Jagannathan et al. (2019). At early times, the non-dimensional
drag across this ridge approaches 1.5, but over a longer time scale, it drops to around
half the linear value, consistent with the fact that flow splitting is a low-drag process
compared to mountain wave excitation.

Under the assumption that the drag is dominated by the blocked response, Klymak,
Legg & Pinkel (2010) used a two and a half layer model to predict its value in 2-D
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FIGURE 10. Evolution of the normalized pressure drag force. The dotted line represents
the finite ridge case considered in Jagannathan et al. (2019) in which flow splitting leads
to reduced drag.

flows where Fr� 1. When the total water depth Lz� hm, this can be written in our
notation as

FD2.5 = ρ0V∞N0h2
m
π

2
(1+πFr− 2π2Fr2). (5.3)

From their 2-D simulations, Klymak et al. (2010) report that (5.3) approximates the
drag quite well for very low values of Fr (Fr ∼ O(10−2)). For the value Fr = 0.16
considered here (5.3) yields FD2.5 ≈ 1.57ρ0V∞N0h2

m which is an underprediction by a
factor of 2 even in the ‘flat-interface’ case (figure 10). This is likely because (5.3)
does not take into account the dynamics in the lee, in particular flow instabilities in
the moderately low Fr flows considered here that lead to the formation of a deep,
nearly stagnant and homogeneous isolating layer downstream (e.g. figure 4). The
isolating layer causes a further drop in the lee surface pressure and thus an increase
in the pressure drag.

6. The wave field aloft

A robust measure of the wave activity aloft is provided by considering the
perturbation wave energy averaged over an appropriately defined area. The perturbation
wave energy is the sum of its kinetic and potential energy contributions (KE and PE,
respectively),

E(y, z, t)= 1
2 [(v − V∞)2 +w2

]︸ ︷︷ ︸
KE

+
1
2 N2ξ 2︸ ︷︷ ︸

PE

, (6.1)

where N(z) is the background stratification and ξ(y, z, t) is the instantaneous
isopycnal displacement at (y, z). For an obstacle with small aspect ratio hm/σy � 1,
the wave activity is largely confined to the region above the obstacle. We thus
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FIGURE 11. Evolution of the normalized wave energy density above the overflow, within
the domain (y, z) ∈ [−σy, σy] × [2hm, 4hm].

define the wave energy density 〈E(t)〉 as the area average over the domain
(y, z) ∈ [−σy, σy] × [2hm, 4hm]. The normalized 〈E(t)〉 (figure 11) shows that at later
times, the mean wave energy density in the plunging interface flow (z0 = 1.33hm)
is over six times larger compared to the flat interface case (z0 = 1.73hm). Figure 11
also displays 〈E(t)〉 for simulations over a range of intermediate values of z0/hm. For
z0/hm > 1.4, 〈E(t)〉 is found to be small, indicating that the interface remains mostly
flat. In the range 1.4 6 z0/hm < 1.33, 〈E(t)〉 becomes oscillatory and its mean value
grows steadily as z0/hm decreases towards 1.33. This suggests that the interface does
not remain completely flat, rather a portion of it plunges. A complete dynamical
description of these ‘split interface’ flows is beyond the scope of the present study.

There are large oscillations with time in the wave energy density when the
interface plunges (z0 = 1.33hm), revealing a fluctuating nonlinear wave field aloft.
This unsteadiness could be due partly to shear instability of the mean mountain wave
solution itself, as suggested by the presence of a region aloft where Ri drops below
1/4 (figure 8b). In addition, perturbations at the top of the unstable plunging flow
also propagate vertically and may interact with the mean mountain wave field. To
further analyse the fluctuating wave field, we write the flow variables as the sum of
time mean and eddy components,

v = V∞ + v(y, z)+ v′(y, z, t), (6.2a)
w=w(y, z)+w′(y, z, t), (6.2b)

p= p0(z)+ p(y, z)+ p′(y, z, t), (6.2c)
b= b0(z)+ b(y, z)+ b′(y, z, t), (6.2d)

where b = −gρ/ρ0 is the buoyancy and the steady background flow field is in
hydrostatic balance (1/ρ0)∂p0/∂z = b0. The sources of eddy kinetic energy (EKE)
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FIGURE 12. (Left to right) Normalized vertical Reynolds stress VRS = −v′w′∂v/∂z,
horizontal Reynolds stress HRS = −v′v′∂v/∂y and vertical buoyancy flux VBF = b′w′
contributions to the EKE production for the plunging interface case (z0 = 1.33hm).

production in this flow are the vertical and horizontal Reynolds stress terms,
VRS = −v′w′ ∂v/∂z, HRS = −v′v′ ∂v/∂y and the vertical buoyancy flux VBF = b′w′.
The last term represents the reversible exchange of available potential energy between
the mean and eddy flow fields.

The contributions of each of these terms to EKE production are displayed in
figure 12 for the plunging interface case (z0 = 1.33hm). Time averages were taken
over 50 snapshots, at a sampling rate of 0.5/tδ. Downstream of the crest, VRS is of
similar magnitude as HRS and both are an order of magnitude larger than VBF. This
implicates the role of overturning Kelvin–Helmholtz instability (Jagannathan et al.
2017) in EKE production there. By contrast, further aloft VBF is the dominant term
(figure 12c), suggesting that the unsteadiness aloft is a manifestation of continuous,
reversible exchange of available potential energy between the mean and fluctuating
wave fields.

The energy equation for internal waves can be written as (e.g. Gill 1982; Nash,
Alford & Kunze 2005)

∂E
∂t
+∇ · (Eu)+∇ · (pu)=−ε, (6.3)

where u is the velocity vector, ∇ the gradient operator and ε the rate of energy
dissipation, in this case, due to hyperviscosity.

We define integral, time mean energy fluxes

VEF= 〈Ew+ pw〉 =
∫ σy

−σy

Ew+ pw dy, (6.4a)

HEF= 〈E(v − V∞)+ p(v − V∞)〉 =
∫ 4hm

2hm

E(v − V∞)+ p(v − V∞) dz, (6.4b)

to quantify wave energy propagation. Focussing on the vertical component VEF,
it encompasses a pressure work term pw and nonlinear advection of wave energy
Ew. The pressure work term can be further decomposed into time-mean and eddy
components as

〈pw〉 = 〈p̄w̄〉 + 〈p′w′〉. (6.5)
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Plunging interface
Flat interface

(a) (b)

FIGURE 13. Vertical energy fluxes as defined in (6.5) for the flat (z0 = 1.73hm) and
plunging (z0= 1.33hm) interface cases: (a) total flux including nonlinear energy advection.
(b) Eddy component due to the pressure work term.

For a linear mountain wave in an unbounded atmosphere, the direction of the
group velocity is vertically upward and tilted upstream. The vertical energy flux
then remains constant with height (Eliassen & Palm 1961), with nonlinear advection
Ew being negligible. Figure 13(a) shows that between z = 2hm and 4hm, VEF is on
average, approximately three times larger when the interface plunges. The pressure
work pw and nonlinear advection Ew (not shown separately) are found to be of similar
order and further, the wave energy flux also includes a significant eddy component
(figure 13b). Horizontal flux and dissipative losses account for the net decrease in
VEF between z = 2hm and 4hm. Interestingly, even in the case when the interface
remains approximately flat and therefore only produces a weak wave response aloft,
VEF and p′w′ exhibit non-negligible divergences in the vertical, particularly between
z0/hm= 2 and 2.5. These likely arise due to interactions between the mean wave field
and time-dependent vertically propagating disturbances excited downstream of the
bifurcation region where the flow is unstable. Above z≈ 4hm, the waves are strongly
damped due to the presence of the sponge layer.

6.1. Scaling estimate for the mean wave field
Finally, we note that the amplitude of the mean mountain wave field aloft can
also be deduced using heuristic scaling arguments as follows. In the case of the
non-plunging density interface, the only perturbation of the interface is a bump
around the bifurcation region (figure 4a). The size of this bump can be estimated
from energetics arguments (e.g. Sheppard 1956) by which the vertical displacement
of isopycnals within the interfacial layer is approximately V∞/Nδi . Therefore the flow
aloft responds to a virtual topography of height V∞/Nδi . The response is dominated
by an arrested lee wave with group velocity directed upwards, vertical wavelength
2πV∞/N0 and perturbation flow speed N0(V∞/Nδi) (cf. Queney 1948; Baines 1998),
which is small relative to V∞ whenever N0/Nδi � 1. The observed perturbation
amplitude in figure 5 of 0.15V∞ agrees well with the prediction V∞N0/Nδi ≈ 0.12V∞.

In the plunging interface case, the top of the density interface forms a virtual
topography for the flow above. As seen in figures 11 and 13(b), the wave response in
this case is highly nonlinear, but we assume that its vertical wavelength again scales
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as 2πV∞/N0. Klymak et al. (2010) also find in their simulations of low Fr flows
that this scaling works reasonably well for nonlinear lee waves. We noted in § 3.2
that the interface plunges a depth of approximately 1.4V∞/N0 from its quiescent
position. Energetic considerations, however, cap the maximum vertical excursion of
isopycnals above the plunging density step at V∞/N0, giving a flow speed perturbation
of approximately N0(V∞/N0) = V∞. In other words, compared to the non-plunging
case, the wave amplitude is larger by a factor of Nδi/N0. This prediction is consistent
with the result from the computed flow (figure 7) at the blocking location where
the time-averaged perturbation speed amplitude is seen to be comparable to the
background value V∞.

7. Summary and conclusions

The presence of a density step in the stratification profile can have a profound effect
on the dynamics of fluid flow over topography. In this study we have demonstrated
that, in low Fr blocked flows, a sharp density step above crest level can set the height
of the isopycnal bifurcation and thereby influence both the nature of the hydraulically
controlled overflow as well as the flow response further aloft.

The observations of Armi & Mayr (2015) showed that when a neutrally stratified
layer is capped by a temperature inversion, i.e. a stable density step, the flow aloft
responds to the virtual topography formed by the inversion layer. They found that,
depending on the ambient conditions, the overflow may be subcritical, supercritical
or hydraulically controlled and asymmetric across the crest. The exact nature of the
overflow and the corresponding shape of the inversion across the crest were then
shown to be well described using single-layer reduced-gravity hydraulics.

Unlike the Armi & Mayr (2015) study and the earlier works of Vosper (2004) and
Jiang (2014), in the present study, we consider a lower layer which is sufficiently
stratified for blocking effects to be significant. In these flows, the natural across-crest
asymmetry induced by upstream blocking triggers a hydraulic response, regardless
of the location of the step. This differs from the study of Vosper (2004) in which
the formation of a hydraulic plunging flow depends sensitively on the inversion
strength and location. The reduced gravity shallow water theory of Jiang (2014)
is also rendered inapplicable when upstream blocking occurs. On the other hand,
the hydraulic framework outlined here can successfully interpret the nature of the
crest-controlled overflow and in particular predict whether the density interface will
plunge across the crest. We find that a plunging density interface can give rise to
a wave field aloft that is as much as six times more energetic and produces 15 %
higher pressure drag compared to a non-plunging interface. In general the relative
amplification of the wave energy density and drag will depend on the ratio Nδi/N0.

In uniformly stratified, blocked, topographically controlled flows that feature a
sharp density step, a one-way decoupling exists in the sense that the hydraulically
controlled flow in contact with the topography is isolated from the flow further aloft.
The energetics of the wave field aloft, however, depend sensitively on the dynamics
of the controlled flow component. The top of the density step constitutes a ‘virtual
topography’ for the flow above and whether or not it participates in the overflow
is shown to be directly connected to the fundamental condition of maintaining a
subcritical flow upstream. A hydraulic waveguide analysis correctly diagnoses the
shape of the density interface across the crest. When the interface plunges across the
crest, it produces a highly energetic wave field aloft. By contrast, when the interface
remains flat, wave excitation is strongly suppressed. In general, a quantification of
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the topographically controlled flow component is essential to determine the shape of
the virtual topography and hence to predict the characteristics of the flow response
further aloft.
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Appendix A. Linear drag for flow across a Gaussian obstacle

In the linear, hydrostatic limit, the drag force per unit length across an obstacle of
form z= h(y) is given by (see, e.g. Baines (1998))

FDL =
ρ0N0V∞

π

∫
∞

0
|ĥ(k)|2k dk, (A 1)

where ĥ(k) is the Fourier transform of h(y), defined as

ĥ(k)=
∫
∞

−∞

h(y)e−iky dy. (A 2)

For a Gaussian-shaped ridge, h(y)= hme−y2/σ 2
y , we have

ĥ(k)= hm

∫
∞

−∞

e−y2/σ 2
y e−iky dy. (A 3)

This integral can be evaluated by standard methods. For example, taking the
derivative with respect to k of (A 3):

dĥ(k)
dk
= i

hmσ
2
y

2

∫
∞

−∞

d
dy
(e−y2/σ 2

y )e−iky dy. (A 4)

After integration by parts and applying limits, this simplifies to the ordinary
differential equation

dĥ(k)
dk
=−

σ 2
y k

2
ĥ(k), (A 5)

which has the solution
ĥ(k)=Ce−σ

2
y k2/4. (A 6)

The unknown constant C is determined by evaluating the Fourier transform at k= 0:

C= ĥ(0)= hm

∫
∞

−∞

e−y2/σ 2
y dy= hmσy

√
π. (A 7)
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Substituting (A 6) into (A 1) then gives the linear drag force per unit length as

FDL = ρ0N0V∞σ 2
y h2

m

∫
∞

0
ke−σ

2
y k2/2 dk= ρ0N0V∞h2

m. (A 8)
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