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Elliott, Rothenberg, and Stock~1996, Econometrica64, 813–836! derive a class
of point-optimal unit root tests in a time series model with Gaussian errors+
Other authors have proposed “robust” tests that are not optimal for any model
but perform well when the error distribution has thick tails+ I derive a class of
point-optimal tests for models with non-Gaussian errors+ When the true error
distribution is known and has thick tails, the point-optimal tests are generally
more powerful than the tests of Elliott et al+ ~1996! and also than the robust
tests+ However, when the true error distribution is unknown and asymmetric, the
point-optimal tests can behave very badly+ Thus there is a trade-off between ro-
bustness to unknown error distributions and optimality with respect to the trend
coefficients+

1. INTRODUCTION

Elliott, Rothenberg, and Stock~1996! derive a class of point-optimal unit root
tests in a time series model with Gaussian errors+ They show that, by effi-
ciently handling intercept and trend coefficients, their tests are generally more
powerful than the standard Dickey–Fuller tests+ The present paper investi-
gates whether the same power improvements can be attained when using “ro-
bust” testing methods that are designed to improve power for non-Gaussian
error distributions+ I find that this improvement occurs when the true error
distribution is known or at least is known to be symmetric+ However, if one
wants to be robust to thick-tailed, possibly asymmetric, error distributions, the
power improvement found by Elliott et al+ ~1996! cannot be attained+

First I consider the model with an intercept and no time trend+ In large sam-
ples the variation of a nearly integrated process dominates the intercept of the
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process+ Thus the intercept can be set equal to zero when forming test statis-
tics+ The resulting point-optimal tests dominate previously proposed robust tests
~see Lucas, 1995; Herce, 1996; Hasan and Koenker, 1997! which do not set the
intercept to zero+

However, when the error distribution is unknown and asymmetric, set-
ting the intercept to zero leads to a test with very bad properties+ In large
samples the zero-intercept tests reject a true null hypothesis with probability
approaching one-half+ The previously proposed inefficient tests perform well
under asymmetric errors+ Thus there is a trade-off between efficiently han-
dling conditioning variables and robustness with respect to asymmetric error
distributions+

Then the model with both an intercept and a linear time trend is considered
and the form of the point-optimal test that is invariant to the time trend is
derived+ In many cases it is difficult to compute the point-optimal test, so I
use Laplace’s approximation to derive an asymptotically equivalent test that
is easier to calculate+ I show that tests based on the maximum likelihood esti-
mator ~MLE ! and the likelihood ratio~LR! statistic, which were previously
studied by Xiao~2001!, are asymptotically admissible+ When the error distri-
bution is known and non-Gaussian, a test based on either of these statistics
will in many cases have higher power than the tests suggested by Elliott et al+
~1996!+

In the model with a time trend, an unknown asymmetric error distribution
causes the power of the point-optimal test to approach zero in large samples+
The tests based on the MLE and LR statistic have slightly better properties—
they have power approaching zero against local alternatives, but power ap-
proaching 1 against fixed alternatives+ Thus, although asymmetric errors lead
to power losses for these two procedures, the tests do not overreject a true null
and are acceptable for both correctly and incorrectly specified errors+ Monte
Carlo results suggest the power losses are substantial for the point-optimal tests
but not as bad for the MLE and LR tests+

Thus the viable unit root tests are the traditional robust tests~which in-
efficiently handle intercepts and trends! and the point-optimal Gaussian tests
proposed in Elliott et al+ ~1996! ~which are inefficient in the presence of thick-
tailed errors!+ In some situations the efficiency loss due to ignoring thick-tailed
errors is less than that due to inefficiently modeling the intercept and trend+ For
example, the point-optimal Gaussian test is more powerful than many tradi-
tional robust tests when the errors are drawn from a Student’st-distribution
with five or more degrees of freedom+

Although the present paper does not specifically consider the topic, there are
similar implications for the construction of confidence intervals for autoregres-
sive roots close to one+1 Because many of the intervals are based on the inver-
sion of tests, it appears that the framework for constructing more accurate
intervals described in Elliott and Stock~2001! cannot be extended to non-
Gaussian models+
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2. THE MODEL WITH NO TIME TREND

The observations$ yt %t51
T come from the model

yt 5 b 'xt 1 ut ,

Dut 5 gut21 1 «t ,

whereb 5 ~b1,b2!' is a two-dimensional coefficient vector andxt 5 ~1, t !' + I
consider the model with an intercept only~e+g+, b2 5 0! and with a linear time
trend ~e+g+, no restrictions onb!+ The random errors«t are independent and
identically distributed~i+i+d+! and have expectation zero and a finite variance+
Under the unit root hypothesis, g 5 0, and the detrended series is not station-
ary+ I will evaluate tests of the unit root hypothesis versus the alternativesg , 0+
Because I am interested in inference wheng is close to one, I adopt the local-
to-zero reparameterizationg 5 c0T, so the parameter space is a shrinking neigh-
borhood of zero as the sample size grows+ Following Chan and Wei~1987! and
Phillips ~1987!, I take c fixed when making limiting arguments, obtaining as-
ymptotic power as a function of the local alternativec+

We distinguish between the true, unknown density for«, given bye2f ~«! , and
the density used to construct the likelihood function, e2g~«! + The researcher
choosesg hoping thatg is a reasonable approximation tof and also hoping that
the resulting tests perform well wheng Þ f+ In the model with an intercept and
no time trend,

L~c,b1! 5 (
t52

T

gSDyt 2
c

T
yt21 1 b1

c

T
D (1)

is the negative of the log-likelihood function evaluated atg 5 c0T, conditional
on the first observationy1+

Consider the classical regression modely 5 a0 1 a1x 1 « with nonrandomx
and i+i+d+ error «+ If the true value of the intercepta0 is zero, then regressingy
on x alone leads to a more efficient estimator ofa1 than regressingy on bothx
and a constant+ Now consider two estimators forc+

~1! ~ Ic, Ia! 5 argmin~c,a! ( g~Dyt 2 cyt210T 2 a!, with a 5 2b1c0T+ These are the
usualM-estimators studied by Lucas~1995!, Hoek, Lucas, and van Dijk~1995!,
Herce~1996!, and Hasan and Koenker~1997!+2

~2! [c 5 argminc ( g~Dyt 2 cyt210T !+ I label this statistic the “constrained” MLE+

If b1 is zero thena is zero and [c should be more efficient thanIc+ Thus a test
that rejects the null for small values of[c should be more powerful than a test
that rejects for smallIc+

We include the constanta in caseb1 is not zero+ However in large samples
a 5 2b1c0T is very close to zero no matter what the true values forb1 andc+
This suggests that asymptotically it does not matter that we omit the constant+
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It turns out that, if g equalsf ~the true negative log-density of the errors!, then
in large samples tests based on[c dominate tests based onIc even whenb1 andc
are not zero+

This is the source of the power improvements in the model with no time
trend+ Many existing robust unit root tests do not take advantage of the fact
that in large samples the variation inut dominates any fixed intercept, so b1

can be taken equal to zero without affecting the asymptotic distribution of[c+
We will show that in large samples, no test dominates the test based on[c+

This optimality result comes from the Neyman–Pearson lemma, which states
that the most powerful test ofc 5 0 versus the alternativec 5 Sc rejects for
small values ofL~ Sc,b1! 2 L~0,b1!+ In large samples, the [c-test is just as pow-
erful as the Neyman–Pearson statistic for someSc+ This is true even whenb1 is
not known+

Elliott et al+ ~1996! show that in a Gaussian model with an intercept and no
time trend, there is no efficiency loss fromb1 being unknown+ The same is true
for nonnormal innovations+ Suppose we form the Neyman–Pearson test with an
incorrect value forb1, say, 0+ If g is three times differentiable with bounded
second and third derivatives then by a Taylor series approximation,

L~ Sc,0! 2 L~0,0! 5 ( gS«t 2
Sc 2 c

T
ut21 1

Sc
T

b1D2 ( gS«t 1
c

T
ut21D

5 2
Sc

T ( g'~«t !ut21 1
Sc2 2 2 Scc

2T 2 ( g''~«t !ut21
2

1 Scb1F 1

T ( g'~«t ! 1
1

T 2 ( g''~«t !S Scb1

2
2 ~ Sc 2 c!ut21DG

2
1

6T 3 ( g'''~«t
*!~~ Sc 2 c!ut21 2 Scb1!3

2
1

6T 3 ( g'''~«t
**!~cut21!3,

where6«t
*2 «t 6# 6~ Sc 2 c!ut210T 2 Scb10T 6 and6«t

**2 «t 6# 6cut210T 6+ Under
regularity conditions given subsequently, ut210T 102 is Op~1!+ Therefore, be-
causeg'' andg''' are bounded, many of the terms are asymptotically negligible:

L~ Sc,0! 2 L~0,0! 5 2
Sc

T ( g'~«t !ut21 1
Sc2 2 2 Scc

2T 2 ( g''~«t !ut21
2

1
Scb1

T ( g'~«t ! 1 op~1!+
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If Eg'~«t ! 5 0, thenT21 ( g'~«t !
p
&& 0, and in large samples the test statistic

does not depend onb1+ The term Eg'~«t ! will equal zero when the errors are
correctly specified, meaning thatg 5 f:

Eg'~«t ! 5E
2`

`

f '~z!e2f ~z! dz5 2
]

]x
E

2`

`

e2f ~z1x! dz*
x50

5 2
]

]x
~1!*

x50
5 0+

(2)

Thus, under correct specification of the errors, there is no efficiency loss from
b1 being unknown+

In a stationary autoregressive model, the Neyman–Pearson test statistic typ-
ically admits an asymptotic representation in terms of a single scalar sufficient
statistic+ This allows the construction of a test that is asymptotically uniformly
most powerful against all alternativesc , 0+ Here the Neyman–Pearson statis-
tic has an asymptotic representation that is a linear combination of the two sca-
lar sufficient statisticsT21 ( g'~«t !ut21 and T22 ( g''~«t !ut21

2 , with weights
depending on Sc+ As Elliott, Rothenberg and Stock~1996! have noted, this im-
plies that there does not exist a uniformly most powerful test, even in large
samples+ Each Neyman–Pearson test is most powerful only against the point
alternativec 5 Sc+ The Neyman–Pearson tests comprise an infinite family of
admissible tests, indexed by Sc, no one dominating the others for allc+

Because there is no uniformly most powerful test, the goal is to find feasi-
ble, admissible tests+ Let p~c, Sc! denote the asymptotic power function for the
Neyman–Pearson test indexed bySc when the true value of the local autoregres-
sive parameter isc and the size of the test isa:

p~c, Sc! 5 lim
Tr`

Pr@L~ Sc,b1! 2 L~0,b1! , q~ Sc!# ,

whereq~ Sc! satisfiesp~0, Sc! 5 a+ Because the Neyman–Pearson test indexed by
Sc is asymptotically optimal against the alternativec 5 Sc, the envelope power

function P~c! [ p~c,c! is the upper bound on power for all tests against each
alternative+ A test is asymptotically admissible if it has a limiting power func-
tion that is equal and tangent to the envelope function for somec+

In the next section I show that the[c-test is asymptotically admissible whereas
the Ic-test is not+ There are other interesting test statistics to consider: the
M-estimatort-test, which rejects for small values ofIt 5 @T22 (~ yt21 2 Ty!2#102 Ic,
and the constrainedt and LR statistics

[t 5 MT22 ( yt21
2 [c and Zl 5 22Fmin

c
L~c,0! 2 min L~0,0!G +

The [t- and Zl-tests impose the constraintb1 5 0, so they will dominate the
M-estimatort-test+
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2.1. Asymptotic Power Functions

To justify the claim that the[c-, [t-, and Zl-tests dominate theM-tests, it will prove
convenient to develop asymptotic representations for the various statistics+ Con-
sider some of theg functions used for robust regression problems:

Least squares g~x! 5 x202,
Least absolute deviations~LAD !

regression
g~x! 5 6x6,

qth quantile regression g~x! 5 qx 2 x1~x , 0!,
Huber’sM function g~x! 5 ~x202!1~6x6 , k!

1 ~k6x6 2 k202!1~6x6 $ k!,

where the constantk is chosen by the researcher+ Becauseg may not be every-
where differentiable, we cannot approximate the log-likelihood function with
Taylor series expansions+ Instead of pointwise differentiability, the proofs make
use of “stochastic differentiability,” an idea described in Pollard~1985!+ Appli-
cation of the idea requires imposition of smoothness conditions on the error
density to make up for the lack of smoothness in the objective function+

Assumption 1+ ~Smoothness of the Error Density!+ The errors$«t %t51
T are

i+i+d+ mean zero with E6«1621d , H for somed . 0+ The term«1 has a density
function f ~z! that is bounded and uniformly continuous+

The g function may have finitely many points of nondifferentiability+

Assumption 2+ ~Objective Function!+ g~x! is convex and strictly increasing
in 6x6, and g~x! is everywhere twice differentiable except forx in P, where
P contains theD points p1, + + + , pD+ There exists some finite positiveH so
that 6g''~x!6 , H for x not in P+ There exists some finite positiveh satisfying
P [ @2h 2 d, h 1 d# for somed . 0, so that for allx andy in @2h, h# we have
6g'~x!6 , H and 6g~x! 2 g~ y!6 # H 6x 2 y6+

I assume thatg is convex because it simplifies the proofs+ Assuming con-
vexity allows me to extend several pointwise convergence results to apply uni-
formly over the parameter space+ Convexity also greatly simplifies the
demonstration of the rate of convergence of the estimators+ This extensive
use of convexity is due to results in Pollard~1991! and Hjort and Pollard
~1993!+

For nondifferentiableg, it is not possible to define an approximate likeli-
hood in terms of the derivativesg' andg'' + We replaceg' with the derivative-
like function c+

DEFINITION 1+ c~x! is equal to g'~x! if g is differentiable at x and
c~x! 5 0 otherwise.

If g is everywhere differentiable theng' 5 c+ For LAD regressionc~x! 5
sign~x!, and for Huber’s functionc~x! 5 x1~6x6 , k! 1 k1~6x6 $ k!+
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In standard~non–unit root! problems, the second derivativeg'' enters the
asymptotic representation though its expectation Eg''~«1!+ We replace Eg''~«1!
with the parameterv 5 2*Rc~x! df ~x!+Wheng is everywhere twice differen-
tiable, v 5 Eg''~«t !+ For LAD regressionv 5 2f ~0!, and for Huber’s function
v 5 Pr@6x6 , k# +

In large samples the power functions admit representations in terms of
functionals of Brownian motion+ Define W~{! to be standard Brownian
motion and defineWc~{! to be the Ornstein–Uhlenbeck processWc~t ! 5
*0

t exp$c~t 2 s!% dW~s! with initial condition W0~0! 5 0+ The asymptotic rep-
resentations make use of the parameterss«

2 5 Var~«t !, r 5 Corr~«t ,c~«t !!,
andsc

2 5 Var c~«t ! and also of the stochastic process

Sr~t ! 5 rW~t ! 1 ~12 r!102 GW~t !,

where GW is standard Brownian motion, independent ofW+ The following theo-
rem is proved in Appendix A+

THEOREM 1+ If Ec~«t ! 5 0, and if Assumptions 1 and 2 hold, then

~1! L~ Sc,0! 2 L~0,0! n 2 Scs«sc * WcdSr 1 221~ Sc2 2 2 Scc!vs«
2 * Wc

2,
~2! [c n sc @vs« * Wc

2#21 * Wc dSr 1 c,
~3! [t n ~s«

2 * Wc
2!2102~s« sc * Wc dSr 1 vs«

2 * Wc
2!,

~4! Zl n v21~s«
2 * Wc

2!21~s« sc * Wc dSr 1 vs«
2 * Wc

2!2,
~5! Ic n sc @vs« * Dc

2#21 * Dc dSr 1 c, where Dc~r ! 5 Wc~r ! 2 * Wc~s! ds,
~6! It n ~sc 0v!@* Dc

2#2102 * Dc dSr 1 cs« @* Dc
2#102.

Rothenberg and Stock~1997! and Xiao~2001! derive similar representations
without assuming convexity ofg but do not allow for nondifferentiable functions+

The large sample power function for the Neyman–Pearson test is

p~c, Sc! 5 PrF2 Scsc s«EWc dSr 1 ~ Sc2 2 2 Scc!
vs«

2

2
EWc

2 , q~ Sc!G+
Power functions for the other tests may be obtained similarly+

Figure 1 plots envelope power functions and asymptotic power for a variety
of tests+ The curves for LAD errors~from the double exponential distribution!
are given and so are standard normal errors and Huber errors+3 A curve also is
produced for the mixture distribution~labeled Mixture in the figure! where a
standard normal variable is drawn with probability 0+95 and aN~0,36! variable
is drawn with probability 0+05+4 Each curve is calculated under the assumption
of correct specification, so thate2g is equal to the true densitye2f +

The power curves for nonnormal errors are all substantially higher than the
curve for normal errors+ The most powerful test for Gaussian errors achieves
50% power atc close to27+0, and the most powerful test for double exponen-
tial errors~corresponding to LAD estimation under correct specification! achieves
50% power atc close to23+75+
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Figure 1 also provides power curves for the tests based on the constrained
MLE [c and theM-estimator Ic+ The [c-test is asymptotically admissible+ Test
power is tangent to the power envelope when envelope power is large+ The
Ic-test is not asymptotically admissible and is dominated by the[c-test+ The power

curve for Ic touches the envelope function only under the null~c 5 0! and for
alternatives so far from zero that any sensible test would have power equal
to 1+

The M-estimatort-test is not asymptotically admissible, whereas the con-
strained [t-test is admissible+ Figure 1 shows that the constrainedt-test achieves
tangency to the power envelope function at power close to 50%+ The figure
also shows that the constrainedZl-test is not admissible+As Rothenberg and Stock
~1997! show, straightforward manipulations of the asymptotic representations

Figure 1. Asymptotic power curves for unit root tests in the model with no time trend
~xt 5 ~1,0!!+ The curves are drawn under the assumption of correct specification, so the
g function used to form the test statistics is equal tof, the negative log-density of the
errors+ ~The simulations that appear in this paper were performed by computing stochas-
tic integrals as the realizations of normalized sums of 500 successive draws from a dis-
crete time Gaussian AR~1! process with autoregressive parameter 12 c0T+ There are
100,000 Monte Carlo replications+!
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demonstrate that rejecting for large values ofZl is asymptotically equivalent to
rejecting for large[t 2+ Because the tests based on[t and Zl are one-sided and two-
sided tests of the same one-sided hypothesis, it is not surprising that thet-test
dominates the test based onZl+

We have obtained power improvements by imposing the constraint that the
intercept estimateZb1 is zero+ We can obtain identical results by replacing the
requirement that Zb1 5 0 with the requirement that the estimatorZb1 is stochas-
tically bounded+ Consider two more estimators+

~1! ~ [cbound, Zbbound! 5 argmin~c,b1[Q! (t$2 g~Dyt 2 cyt210T 1 b1c0T !, whereQ is a
compact set+ It is common to assume a bounded parameter space, and this esti-
mator imposes that assumption+ The estimator Zbbound is obviously stochastically
bounded, and the term supb1[Q 6b1c0T 6 disappears from the likelihood function
in large samples+ Thus [cbound has the same limiting distribution as[c+

~2! ~ [cinitial , Zbinitial ! 5 argmin~c,b1! $g~ y1 2 b1! 1 (t$2 g~Dyt 2 cyt210T 1 b1c0T !% +
These are the MLES when we assume the initial conditionu0 5 0+ In an earlier
draft of this paper it was shown thatZbinitial is stochastically bounded+ Thus
~ [cinitial Zbinitial !0T r 0 fast enough so that[cinitial has the same distribution as[c+

2.2. Failure of Robustness to Error Misspecification

These power improvements occur as long asg, the estimating function, is
equal to f, the true negative log-density of the errors+ When g Þ f, [c may
behave poorly+ Consider the classical regression modely 5 a0 1 a1x 1 «+
If the errors come from the double exponential distribution, « has zero me-
dian and the maximum likelihood estimates are the LAD estimates~ Ja0, Ja1! 5
argmin~a0,a1! (6y 2 a0 2 a1x6+ If the true value ofa0 is zero, then under
correct specification we can get a better estimator fora1 by removinga0 from
the objective function: [a1 5 argmina1 (6y 2 a1x6+ Now suppose thata0 5 0
and that« comes from an incorrectly specified, asymmetric error distribution
with zero mean but nonzero median+ For example take« 5 Z2 2 1 whereZ is
standard normal+ It is well known that in this caseJa0

p
&& median~«! and Ja1

has a limiting distribution+ It is also well known that the distribution of[a1 is
not stochastically bounded, even if a0 5 0+ Thus the constanta0 “recenters”
the incorrectly specified errors+ In the classical setting we include the constant
to protect ourselves from errors with nonzero median+

The same thing happens in the unit root problem+ Herce~1996! shows that
if the interceptb1 is zero and the errors have zero median, then Ic and [c both
have limiting distributions+ When «t has a nonzero medianIc has a limiting
distribution whereas[c blows up+ This can be seen in Figures 2a–d+ Each his-
togram depicts 5,000 Monte Carlo realizations ofJa1 and [a1, estimated from
simulated data sets of 500 observations from the model withc 5 0 ~so the
null is true!, b1 5 0 and initial conditionu0 5 0+ Figures 2a and b show that
when the errors come from the zero median Student’st-distribution with four
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degrees of freedom, both estimators have limiting distributions+ Figures 2c and d
show that when the errors do not have zero medians~«t 5 Zt

2 2 1 whereZt

are i+i+d+ standard normal! the distribution of [c blows up+ So for any fixed
critical valueq, the probability of rejecting a true null hypothesis converges to
limTr`Pr@ [c , q# 5 +5+

Mathematically this can be understood as failure of an identification condi-
tion+ Consider the classical regression model with no intercept: y 5 a1x 1 «+ If
g is differentiable, the estimator [a1 5 argmina1 ( g~ y 2 a1x! will solve the
first-order conditionT21 ( g'~ y 2 [a1x!x 5 0+ Under the usual assumptions

Figure 2. Histograms of 5,000 Monte Carlo simulations ofIc ~on the left! and [c ~on
the right! estimated from 500 observations from the model with no trend or intercept+
The true value ofc is 0+ ~a! and ~b! Here the errors come from the Student’s t4 distri-
bution+ Because the median is zero[c is more efficient and has a smaller spread around 0+
~c! and~d! Here each error is«t 5 Zt

2 2 1, whereZt are i+i+d+ standard normal+ Because
the median is not zero, Ic has a limiting distribution and[c blows up+
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this will deliver a consistent estimator ofa1 if the identification condition
Eg'~ y 2 a1x!x 5 0 holds+ Becausey 2 a1x 5 « and x is not random, this
condition is equivalent to Eg'~«! 5 0+ Thus the identification condition is that
« has a distribution with the property that Eg'~«! 5 0+

In our unit root problem [c solves( c~Dyt 2 [cyt210T !yt21 5 0, which sug-
gests the identification condition

0 5 E( yt21Et21c~«t ! n Identification condition is Ec~«t ! 5 0+

For the LAD problemc~«t ! 5 sign~«t ! and the identification condition is
E sign~«t ! 5 0+ The condition holds for LAD only if the errors have zero
medians+

What assumptions do we need to ensure that Ec~«t ! 5 0?

~1! Expression~2! demonstrates that Ec~«t ! 5 0 under correct specification~sof 5 g!+
~2! Ec~«t ! equals zero for the Gaussian likelihood, no matter what the distribution

of the errors+ The Gaussian likelihood hasg~x! 5 x202 and c~x! 5 x, so the
assumption E«1 5 0 insures that Ec~«1! 5 0+

~3! Ec~«t ! equals zero whenf Þ g and both functions are symmetric around zero+
~4! When f Þ g and f is not symmetric, Ec~«t ! can be different from zero+ For

example, for LAD estimation applied to the errors«t 5 Zt
2 2 1, Ec~«t ! 5

E sign~Zt
2 2 1! ' 2+3656+

It turns out that the optimal tests are not robust to unknown, asymmetric error
distributions+ To get the tests to work, we either need to assume that we know
the distribution of«, or we need to assume that« comes from a symmetric
distribution+ Thus the optimal tests are not robust to unknown asymmetric error
distributions+ The Gaussian tests of Elliott, Rothenberg and Stock~1996! are
the one exception—those tests are valid under fairly general forms of misspec-
ification, including asymmetric errors+

Figure 2 depicts an example where the optimal tests reject a true null hypoth-
esis too often+ This is generally a problem with asymmetric errors+

PROPOSITION 1+ Suppose that g is three times differentiable with bounded
third derivatives and suppose that the errors satisfy assumption 1. IfEc~«t ! Þ 0
then in large samples tests based on[c, [t, Zl and the Neyman–Pearson statistic
all reject a true null hypothesis with probability approaching .5, no matter what
the nominal size of the test. The M-tests based onIc and It have the same limit-
ing representations as in Theorem 1.5 In large samples the M-tests have accu-
rate size.

M-tests are robust to asymmetric error densities+ Let h denote the parameter
that solves the equation Ec~«t 2 h! 5 0+ So for LAD estimation, c~«t 2 h! 5
sign~«t 2 h!, andh is the median of the errors+ TheM-estimator objective func-
tion can be rewritten
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( gSDyt 2
c

T
yt21 2 aD 5 ( gS I«t 2

c

T
ut21 2 Sa 2 h 2 b1

c

T
DD,

with I«t 5 «t 2 h+ These recentered errors satisfy Ec~ I«t ! 5 0+ Thompson~2004!
shows that if Ec~«t ! Þ 0 then Ia r h in probability and Ic has the same limiting
distribution as in Theorem 1, with a slight redefinition of the nuisance param-
eters~see note 5!+ Thus estimation of the free parametera causes a power loss
under correct specification but ensures robustness against incorrect specification+

We can avoid these centering problems by assuming that Ec~«t ! 5 0+ For
example for LAD estimation we could assume that the median of« is zero and
leave the mean unspecified+ The zero mean assumption is essential for nearly
integrated models because it identifies the trend+ If the mean is not zero, then
the trends behave very differently under the unit root null than for stationary
alternatives+ Becauseut follows the processDut 5 gut21 1 «t , we have

yt 5 b1 1 E~«1! (
i50

t21

~g 1 1! i 1 (
i50

t21

~g 1 1! i I«t2i

with I«i 5 «i 2 E~«1!+ If g 5 0, thenyt has both a unit root and a nonstochas-
tic trend+ If g , 0, thenyt is stationary with the long-run meanb 1 E~«1! 3

(i50
` ~g 1 1! i + Thus the zero mean assumption is essential if we wish to test for

mean reversion around an intercept+ Once we assume zero means, adding addi-
tional centering assumptions such as zero medians takes us closer to assuming
symmetric errors+

Sketch of proof of Proposition 1.When Ec~«t ! Þ 0, the Neyman–Pearson
statistic is not stochastically bounded+ To understand why, notice that the sta-
tistic T21 ( c~«t !ut21 appearing in the approximation to the Neyman–Pearson
statistic is not stochastically bounded+ Lemma 3+1 of Phillips ~1988! implies
that we must divide byT 102 to get a limiting distribution:

1

T 302 ( c~«t !ut21 n N~0,s2~c!!,

wheres2~c! 5 ~s«Ec~«t !0c!2@11 ~e2c 2 1!0~2c! 2 2~ec 2 1!0c# + If g is three
times differentiable with bounded third derivatives, the Neyman–Pearson sta-
tistic must also be divided byT 102:

T2102$L~ Sc,0! 2 L~0,0!% 5 2
Sc

T 302 ( c~«t !ut21 1 ~ Sc2 2 2 Scc!
v

2T 502 ( ut21
2

1 op~1!

5 2
Sc

T 302 ( c~«t !ut21 1 op~1!+
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Suppose we form the Neyman–Pearson statistic and use the critical valueq~ Sc!
constructed under the assumption that Ec~«t ! 5 0+ If Ec~«t ! Þ 0 then under
the null hypothesis the probability of rejecting is

lim
Tr`

Pr@L~ Sc,0! 2 L~0,0! , q~ Sc!# 5 Pr@N~0, Sc2s2~0!! , 0# 5 0+5,

wheres2~0! 5 limcr0s2~c! 5 ~s«Ec~«t !!
203+ In large samples the Neyman–

Pearson test rejects a true null hypothesis 50% of the time, no matter what the
nominal size of the test+

A proof by contradiction shows that error misspecification may also cause
the constrained MLE to be stochastically unbounded+ Suppose thatc 5 b1 5 0
and g is three times differentiable with bounded third derivatives+ If [c is sto-
chastically bounded, the minimized objective function admits the approximation

L~ [c,0! 2 ( g~«t ! 5 2 [cT21 ( c~«t !ut21 1
[c

2
T22 ( g''~«t !ut21

2 1 op~1!+

If [c is stochastically bounded, then in large samples[c must converge to the
minimizer of L~ [c,0! 2 ( g~«t !+ The minimizer@T22 ( g''~«t !ut21

2 #21T21 3

( c~«t !ut21 is not stochastically bounded, and we have our contradiction+ n

2.3. Some Monte Carlo Results

A Monte Carlo study demonstrates the size distortions that occur under incor-
rect specification+ Table 1 presents rejection frequencies for 10 tests under var-
ious assumptions about the true data generating process+ The abbreviations in
the table are as follows+

~1! ERS—the Dickey–Fuller generalized least squares~DF-GLS! test of Elliott et al+
~1996!+ This test efficiently handles the intercept for Gaussian errors but does not
use the information in thick-tailed error distributions+

~2! Adap—the adaptive test of Shin and So~1999!+ This test adapts to the error dis-
tribution but does not efficiently handle the intercept+

~3! Ic test, LAD—The Thompson~2001! version of the test based on the LAD
M-estimator+6 The test is asymptotically equivalent to the test based onIc and in
some cases has more accurate size+ This test does not efficiently handle the
intercept+

~4! Ic test, t3—The Thompson~2001! version of the test based on the Student’s
t3M-estimator+

~5! Trend-optimal LAD NP, [c, and [t—these tests are optimal for a double exponen-
tial likelihood+ NP denotes the Neyman–Pearson test statistic evaluated atSc 5
23 andb1 5 0: L~23,0! 2 L~0,0!+ The three tests efficiently handle the trend
and will be more powerful than the DF-GLS test for many thick-tailed error dis-
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Table 1. Rejection frequencies for selected tests in the model with no time trend

Ic tests Trend-optimal LAD Trend-optimal t3

c T g ERS Adap LAD t3 NP [c [t NP [c [t

Student’st errors, 4 degrees of freedom
0 100 0 0+076 0+041 0+044 0+044 0+035 0+034 0+025 0+054 0+050 0+054

25 100 20+05 0+426 0+194 0+234 0+248 0+257 0+281 0+230 0+461 0+414 0+469
210 100 20+1 0+839 0+477 0+568 0+625 0+381 0+682 0+528 0+706 0+826 0+816

0 1,000 0 0+051 0+047 0+051 0+051 0+042 0+042 0+035 0+050 0+049 0+050

Cauchy errors
0 100 0 0+042 0+010 0+043 0+043 0+001 0+001 0+000 0+004 0+004 0+003

25 100 20+05 0+285 0+147 0+968 0+933 0+973 0+938 0+814 0+970 0+996 0+965
210 100 20+1 0+884 0+206 0+998 0+923 0+993 1+00 0+991 0+942 1+00 0+997

0 1,000 0 0+030 0+000 0+044 0+044 0+000 0+000 0+000 0+000 0+000 0+000

Log normal errors, centered to have zero mean and unit variance
0 100 0 0+065 0+020 0+039 0+037 0.395 0.153 0.401 0.277 0.113 0.316

25 100 20+05 0+396 0+577 0+452 0+470 0+637 0+691 0+682 0+775 0+737 0+763
210 100 20+1 0+826 0+893 0+835 0+871 0+801 0+916 0+887 0+966 0+973 0+970

0 1,000 0 0+050 0+031 0+049 0+050 0.494 0.485 0.494 0.485 0.418 0.483

Chi-squared errors, centered to have zero mean and unit variance
0 100 0 0+070 0+018 0+040 0+037 0.447 0.191 0.458 0.331 0.120 0.352

25 100 20+05 0+409 0+699 0+354 0+383 0+623 0+677 0+682 0+766 0+707 0+749
210 100 20+1 0+831 0+929 0+769 0+841 0+756 0+897 0+870 0+958 0+966 0+962

0 1,000 0 0+053 0+029 0+053 0+053 0.498 0.486 0.497 0.493 0.405 0.488

Note: The initial condition isu0 5 0+ The trend coefficients are~b0,b1! 5 ~1,0!+ Critical values are calculated by the method described in note 7+ There are 20,000 Monte Carlo
repetitions+ The boldface numbers show the size distortions from using trend-optimal tests with asymmetric errors+
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tributions+ When the errors come from an asymmetric distribution the tests will
overreject a true null hypothesis+

~6! Trend-optimal t3 NP, [c, and [t—the optimal tests for a Student’s t3 likelihood
with b1 5 0+ These tests are not robust to asymmetric errors+

The bold numbers in Table 1 illustrate the size problems with asymmetric
errors+7 All of the tests have reasonably accurate sizes for the symmetric Stu-
dent’s t4 errors+ However the asymmetric log normal and chi-squared errors
cause the trend-optimal tests to overreject true null hypotheses, and the prob-
lem gets worse as the sample size grows fromT 5 100 toT 5 1,000+ Proposi-
tion 1 predicts that as the sample size grows the trend-optimal tests will reject
a true null hypothesis with probability approaching 0+50+ The Monte Carlo re-
sults seem to confirm the prediction, as the rejection frequencies for samples of
1,000 are close to 0+50+ The ERS, adaptive, and Ic-tests have accurate sizes for
the asymmetric distributions+

The results demonstrate that the ERS test is a viable alternative to the robust
tests even when the errors are not Gaussian+ The ERS test has accurate size and
good power for all four error distributions+ Somewhat surprisingly, the ERS
test even has accurate size for the infinite variance Cauchy distribution+ The
adaptive test works well for the asymmetric log normal and chi-squared distri-
butions but has poor power for the Cauchy errors+ The Ic-tests have accurate
size for all four distributions+ For the Cauchy errors theIc-tests are very powerful+

3. OPTIMAL TESTS WITH A TIME TREND

If the regressors include a linear time trend,

L~c,b1,b2! 5 (
t52

T

gSDyt 2
c

T
yt21 1 b1

c

T
2 b2S12 ~t 2 1!

c

T
DD

is the log-likelihood function conditional on the first observation+ Suppose we
form the Neyman–Pearson statisticL~ Sc, b1, b2! 2 L~0, b1, b2! with the un-
known coefficients replaced by the guessb 5 ~b1,b2!' :

L~ Sc,b1,b2! 2 L~0,b1,b2!

5 ( gS«t 2
Sc 2 c

T
ut21 1 ~b1 2 b1!

Sc
T

2 ~b2 2 b2!S12 ~t 2 1!
Sc

T
DD

2 ( gS«t 1
c

T
ut21 2 ~b2 2 b2!D+

In large samples the term~b1 2 b1! Sc0T disappears from this expression, so the
guessb1 does not matter+ The terms~b2 2 b2!~1 2 ~t 2 1! Sc0T ! and ~b2 2 b2!
do not disappear, so unless we know the trueb2 we cannot obtain the power
boundP~c! derived in the last section+ It is important to come up with a good
guess forb2+
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In most situations the trend parameterb2 is unrelated to the unit root testing
problem+ Following Dufour and King~1991! and Elliott, Rothenberg and Stock
~1996!, it is natural to restrict attention to the family of tests that are invariant
to the value ofb2+ By the well-known result of Lehmann~1959, p+ 249!, the
most powerful invariant test of the hypothesisc 5 0 versus the alternativec 5 Sc
rejects for large values of

E
2`

`

exp$2L~ Sc,b1,b!% dbYE
2`

`

exp$2L~0,b1,b!% db+

Elliott et al+ ~1996! encounter a similar integral for the Gaussian likelihood,
whereg~x! 5 x202+ In the Gaussian caseL~ Sc,b1,b! is quadratic inb, and the
method of “completing the square” leads to a closed-form solution for the in-
tegral+ Because for many non-Gaussian likelihoods it is not obvious how to
solve this integral, I approximateL~ Sc,b1,b! with a quadratic function ofb and
show that the approximate solution is asymptotically equivalent to the exact
solution+ This approach is a variant of Laplace’s method~see Judd, 1998, p+ 525!+
Laplace uses this approach to approximate a similar integral over the double
exponential distribution+8

The quadratic approximation is

Q~ Sc,f! 5 2( c~«t !zt ~ Sc,f! 1
v

2 ( zt
2~ Sc,f!,

zt ~ Sc,f! 5
Sc 2 c

T
ut21 1

f

MT
S12 Sc

t 2 1

T
D,

f 5 MT ~b 2 b2!+ In Lemma 1 in Appendix A, it is shown that if Ec~«t ! 5 0
then

L~ Sc,0,b2 1 T2102f! 5 ( g~«t ! 1 Q~ Sc,f! 1 op~1!+

In large samples the interceptb1 disappears from the likelihood+ In the proof of
Theorem 2 in Appendix A it is shown that

Eexp$2L~ Sc,b1,b2!% db2

Eexp$2L~0,b1,b2!% db2

5

Eexp$2Q~ Sc,f!% df 1 op~1!

Eexp$2Q~0,f!% df 1 op~1!

+

These integrals admit analytic solutions+ Tedious algebraic manipulations lead
to the result that the log of this ratio is asymptotically equivalent to

min
f
Q~0,f! 2 min

f
Q~ Sc,f!

plus terms that do not depend onc+ This suggests the following theorem+

38 SAMUEL B. THOMPSON

https://doi.org/10.1017/S0266466604201025 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604201025


THEOREM 2+ If Ec~«t ! 5 0 and Assumptions 1 and 2 hold, the most pow-
erful invariant test is asymptotically equivalent to the test that rejects for small
values of

min
b

L~ Sc,0,b! 2 min
b

L~0,0,b!+

Let pt~c, Sc! denote the limiting power function for the best invariant test
indexed by Sc when the true value of the locally autoregressive parameter isc:

pt~c, Sc! 5 lim
Tr`

PrFmin
b2

L~ Sc,0,b! 2 min
b2

L~0,0,b! , qt~ Sc!G,
whereqt~ Sc! satisfiespt~0, Sc! 5 a+ The most powerful invariant test against
the alternativec has power equal toPt~c! [ pt~c, c!, the envelope power
function+

Consider two estimators forc+

~1! ~ Ic, Ia1, Ia2! 5 argmin~c,a1,a2! ( g~Dyt 2 cyt210T 2 a1 2 a2~t 2 1!0T !, with a1 5
b2 2 b1c0T anda2 5 2cb2+ These are the usualM-estimators studied by Lucas
~1995!, Thompson~2004!, and Hasan and Koenker~1997! ~see note 2!+

~2! ~ [c, Zb2! 5 argmin~c,b2! ( g~Dyt 2 cyt210T 2 b2 1 cb2~t 2 1!0T !+ This estimator is
suggested by Xiao~2001!+

In large samplesb1c0T is close to zero+ This implies that the three parameters
c, a1, and a2 can be written as just two, because limTr`ca1 5 2a2+ Under
correct specification of the errors, [c exploits the parameter restriction and a test
that rejects for small[c dominates one that rejects for smallIc+ In fact, the test
based on [c is asymptotically admissible, because its limiting power function
touches the power envelopePt + The test based onIc is not asymptotically
admissible+

Another interesting test is thet-test based on theM-estimator, which rejects
for small values of It 5 @( [rt21

2 #102 Ic, where [rt21 is the residual from a least
squares regression ofyt21 on ~1, t0T !+ This test is not asymptotically admissi-
ble and is dominated by the constrainedt- and LR tests, which reject for small
values of

[t 5 MT22 (~ yt21 2 ~t 2 1! Zb2!2 [c and

Zl 5 22Fmin
c,b

L~c,0,b! 2 min
b

L~0,0,b!G+

3.1. Asymptotic Power Functions

To derive the power functions of the various test statistics, it will prove useful
to provide a limiting representation for the objective function+ By Lemma 3+1
of Phillips ~1988!,
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Q~ Sc,f! n QA~ Sc,f! [ 2scE
0

1

P Sc,f~r ! dSr~r ! 1
v

2
E

0

1

P Sc,f
2 ~r ! dr,

whereP Sc,f~r ! 5 s«~ Sc 2 c!Wc~r ! 1 f~1 2 Scr! is a stochastic process+ The fol-
lowing theorem is proved in Appendix A+

THEOREM 3+ If Ec~«t ! 5 0 and Assumptions 1 and 2 hold, then

~1! minbL~ Sc,0,b! 2 minbL~0,0,b! n minfQA~ Sc,f! 2 minfQA~0,f!,
~2! ~ [c, Zf! n ~ ZC, ZB! 5 argmin~C,B!QA~C,B!,

~3! [t n s« ZCM*~Wc~t ! 2 ZBt !2 dt,
~4! Zl n 2 2@min~C,B!QA~C,B! 2 minBQA~0,B!# ,
~5! Ic n sc @vs« * Dc

2#21 * Dc dSr 1 c, where Dc~r ! 5 Wc~r ! 2 2 * 0
1~2 2 3s 2

r ~3 2 6s!!Wc~s! ds,
~6! It n ~sc 0v!@* Dc

2#2102 * Dc dSr 1 cs« @* Dc
2#102.

Appendix B provides a closed-form expression for minfQA~ Sc,f! 2
minfQA~0,f! in terms of stochastic integrals+ BecauseQA~ Sc,f! is a nonlinear
function of Sc andf, the asymptotic representation for[c does not admit an an-
alytic solution in terms of random integrals+ Appendix B provides a method for
simulating from the asymptotic distribution of[c, [t, and Zl+

Figure 3 plots the limiting power functions for the various tests in the model
with a time trend+ The curves are lower than the corresponding power enve-
lopes for the model with an intercept only+ Power rises as the tails of the error
distribution become thicker; for Gaussian errors 50% power is achieved at212+5,
and for double exponential errors 50% power is achieved at about26+0+

Figure 3 shows that the constrained[c- and Zl-tests are asymptotically ad-
missible+ Careful examination of the figure leads to the conclusion that the
constrained[t-statistic is not asymptotically admissible+ NeitherM-test is asymp-
totically admissible+ The [c-test is point optimal when power is high, and the
Zl-test is point optimal when power is close to one-half+ Rothenberg~1984! de-
scribes similar results; he notes that in standard~non–unit root! models with no
nuisance parameters, second-order asymptotic theory predicts that estimator-
based tests are optimal when power is high and LR tests are optimal when power
is close to 50%+

3.2. Failure of Robustness to Error Misspecification

The analysis in the previous section was carried out under the assumption of
correct specification, so g 5 f whereg is the function used to form the likeli-
hood function ande2f is the density of«t + As discussed in Section 2+2, correct
specification insures that the centering condition Ec~«t ! 5 0 holds+ If g Þ f
then Ec~«t ! may not equal zero+ When Ec~«t ! Þ 0 the test statistics can be-
have badly+
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PROPOSITION 2+ Suppose that g is three times differentiable with
bounded third derivatives and suppose that the errors satisfy Assumption 1. If
Ec~«t ! Þ 0 then

(1) Under the local alternativeg 5 c0T, [c p
&& 0 and [t p

&& 0. Here Zl is Op~1! but does
not have the distribution given in Theorem 3. Therefore power against any local
alternative approaches zero.

(2) Under the fixed alternativeg , 0, [c p
&& 2`, [t p

&& 2`, and Zl p
&& 1`. Power

against any fixed alternative approaches 1.

Figure 3. Asymptotic power curves for unit root tests in the model with a time trend
~xt 5 ~1, t !!+ The curves are drawn under the assumption of correct specification, so the
g function used to form the test statistics is equal to the negative log-density of the
errorsf+ ~The simulations that appear in this paper were performed by computing sto-
chastic integrals as the realizations of normalized sums of 500 successive draws from a
discrete time Gaussian AR~1! process with autoregressive parameter 12 c0T+ There are
100,000 Monte Carlo replications+!
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(3) If g''~x! . B . 0 for all x, then under both local and fixed alternatives the
best invariant test statisticminb[K L~ Sc,0,b! 2 minb[K L~0,0,b!

p
&& 1`, where K

is a compact set. Power against any fixed or local alternative approaches
zero.

(4) The M-tests based onIc and It have the same limiting distributions as in
Theorem 3.9

Because the critical values for[c and [t are always negative, tests that reject
for small [c and [t will have size converging to zero and power against any local
alternative also converging to zero+ The Zl-test has power equal to size for any
local alternative, and its actual size will not match its nominal size, even in
large samples+ Because the critical values for the best invariant test are also
negative, the best invariant test has size and power approaching zero against
both fixed and local alternatives+ The M-tests are robust to asymmetric errors+
No matter what the error distribution, the M-tests have power against local al-
ternatives and are consistent against fixed alternatives+

Thus none of the trend-optimal tests have power against local alternatives,
but all except the best invariant test have power approaching 1 against fixed
alternatives+ In a large sample with a local alternative, the [c-, [t-, and Zl-tests will
be dominated by the robustM-tests+ Furthermore, only theM-tests are useful
for forming confidence intervals for the local parameterc, because that re-
quires inverting a sequence of tests, each with power against local alternatives
~for the Gaussian case, see Elliott and Stock, 2001!+

On the other hand, the [c- and [t-tests have many desirable properties even
whenc~«t ! Þ 0: in large samples they reject a true null hypothesis with prob-
ability less than any desired size, and they reject a fixed alternativeg , 0 with
probability approaching 1+ Although the Zl-test may get the size wrong, because
the statistic is stochastically bounded both under the null and alternatives, the
size distortions may be small+ The magnitude of those distortions is evaluated
by Monte Carlo in Section 3+3+

To understand the proposition, recall that theM-estimators~ Ic, Ia1, Ia2! mini-
mize the objective function

( gS I«t 2
Sc 2 c

T
ut21 2 Sa1 2 h 2 b2 1 b1

Sc
T
D2 ~a2 1 Scb2!

t 2 1

T
D,

where I«t 5 «t 2 h andh denotes the parameter that solves Ec~«t 2 h! 5 0+ If
the condition Ec~«t ! 5 0 fails to hold then Ia1

p
&& b2 1 h, and the “recentered”

errors I«t satisfy Ec~ I«t ! 5 0+ Thus Ic has the same limiting distribution as in
Theorem 3, with a slight redefinition of the nuisance parameters~see note 5!+
This result is shown by Thompson~2004!, and it implies that statement 4 of the
proposition will hold+ Because there is no free “recentering” parameter in the
objective function for [c, the parameter on the time trend accomplishes the re-
centering+ If Ec~«t ! Þ 0 then Zb2

p
&& b2 1 h and [c p

&& 0, no matter what the
local alternativec+

42 SAMUEL B. THOMPSON

https://doi.org/10.1017/S0266466604201025 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604201025


Sketch of proof of Proposition 2.To establish statement 1 of the proposi-
tion, consider the model with the local alternativeg 5 c0T+ Define w 5
~w1,w2!' 5 ~T 102 Sc,T 102~b2 2 b2 2 h!!' and mt 5 T2102~2h~t 2 1!0T,1!' +
The likelihood function is

L~w! 5 ( gS I«t 1
c

T
ut21 2 b1

w1

T 302 1
w1w2

T

t 2 1

T
2 mt

'wD+
A Taylor series expansion, combined with the usual asymptotic arguments~see
Phillips, 1988, Lemma 3+1!, implies that

L~w! 2 ( g~ I«t ! 5 2( Dct mt
'w 1

vh

2
w '( mt mt

'w 1
cvh

2T 2 ( ut21
2 1 RT~w!,

wherevh 5 E@c '~ I«t !# , Dct 5 ct~ I«t ! 1 cvhut210T, and supw[K 6RT~w!6
p
&& 0 for

any compact setK+ By the same argument used to prove Lemma 2, w is sto-
chastically bounded+ Therefore, by the argmax continuous mapping theorem of
Wellner ~1996, p+ 286!, [w 5 argminw L~w! converges in probability to the min-
imizer of the approximating quadratic function, so

[w 5 Fvh ( mt mt
'G21F( mt DctG1 op~1!+

Here ( mt mt
' converges in probability to a nonrandom matrix, and ( mt Dct

converges to a vector of mean zero Gaussian random variables+ In large
samples [w has a mean zero Gaussian distribution, which implies that [c p

&& 0,
[t p

&& 0, andb2
p
&& b2 1 h+

The distribution of Zl is obtained by substituting[w back into the likelihood
function+ Under the local alternativeg 5 c0T, we obtain

Zl 5 22Fmin
w

L~w! 2 min
w,w150

L~w!G1 op~1!

5 vh
21HST2102 ( DctD2 2 S( Dct mt

'DS( mt mt
'D21S( mt DctDJ 1 op~1!+

This is anOp~1! variable, but the limiting distribution differs from the one in
Theorem 1+

Statement 2 of the proposition says that the[c-, [t-, and Zl-tests are consistent
against any fixed alternativeg , 0+ The likelihood function evaluated at~ Tg,b!
may be written

( g~«t 2 h 2 ~ Tg 2 g!ut21 1 @~b1 2 b1! Tg 2 h# 2 ~b2 2 b2!~12 Tg~t 2 1!!!+

Becauseut21 is stationary under the fixed alternative, is it straightforward to
show using Taylor series–based arguments that[g 5 [c0T is consistent forg+
Therefore [c p

&& 2` and [t p
&& 2`, and an argument based on a Taylor series

expansion demonstrates thatZl p
&& 1`+ The proofs are omitted to save space+
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To show statement 3 of the proposition, define the parameterhg that satisfies
Ec~«t 1 gut21 2 hg! 5 0+ For fixed g , 0, «t 1 gut21 is a stationary random
variable, and the expectation exists+ By a Taylor series expansion,

L~ Sc,0,b2!

T
5 (

g~«t 1 gut21 2 hg!

T
1 (

c~«t 1 gut21 2 hg!

T
zt
*

1 (
c '~«t

*!

2T
~zt
*!2,

wherezt
*5 2 Scut210T 2 b1 Sc0T 1 hg 2 ~b2 2 b2!~1 2 Sc~~t 2 1!!0T ! and6«t

*1
gut21 2 hg6 # 6zt

* 6+ If b2 [ K then many of the terms are asymptotically neg-
ligible+ We get the approximation

L~ Sc,0,b2!

T
5 (

g~«t 1 gut21 2 hg!

T

1 (
c '~«t

*!

2T Fhg 2 ~b2 2 b2!S12 Sc
t 2 1

T
DG2

1 op~1!+

If Sc 5 0 this expression is minimized atb2 5 b2 1 hg, so minb[K T21L~0,0,b! 5
T21 ( g~«t 1 gut21 2 hg! 1 op~1!+ If Sc Þ 0, then becauseg''~x! $ B we have

L~ Sc,0,b2!

T
$ (

g~«t 1 gut21 2 hg!

T

1
B

2T (Fhg 2 ~b2 2 b2!S12 Sc
t 2 1

T
DG2

1 op~1!

$ (
g~«t 1 gut21 2 hg!

T
1

Bhg
2 Sc2

24
1 op~1!+

Therefore T21$minb[K L~ Sc,0,b2! 2 minb[K L~ Sc,0,b2!% $ ~24!22Bhg
2 Sc2 1

op~1!, and the best invariant test converges to1` under any fixed alternative+
Using the same arguments it is also possible to show that the best invariant test
converges to1` under any local valueg 5 c0T ~including the nullc 5 0!+ The
proof is omitted to save space+ n

3.3. Some Monte Carlo Results

Table 2 presents rejection frequencies for various tests in the model with a time
trend+ The tests are the trend versions of the tests that appeared in Table 1,
except that theZl-test appears in Table 2 in place of the[t-test+ This substitution
was made because the[t-test is not asymptotically admissible in the model with
a time trend+10

The power losses from using the trend-optimal[c- and Zl-tests are small for
samples of 100 observations but get larger for samples of 1,000+ For the asym-
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Table 2. Rejection frequencies for selected tests in the model with a time trend

Ic tests Trend-optimal LAD Trend-optimal t3

c T g ERS Adap LAD t3 NP [c Zl NP [c Zl

Student’st errors, 4 degrees of freedom
0 100 0 0+048 0+023 0+030 0+028 0+033 0+030 0+028 0+068 0+055 0+061

210 100 20+1 0+300 0+180 0+254 0+279 0+290 0+306 0+341 0+555 0+487 0+561
210 1,000 20+01 0+294 0+304 0+341 0+370 0+338 0+431 0+429 0+554 0+544 0+605

2100 1,000 20+1 1+00 0+991 1+00 1+00 0+910 1+00 1+00 1+00 1+00 1+00

Cauchy errors
0 100 0 0+024 0+009 0+038 0+043 0+001 0+001 0+001 0+004 0+006 0+006

210 100 20+1 0+181 0+155 0+984 0+897 0+988 0+976 0+991 0+957 0+999 0+980
210 1,000 20+01 0+184 0+000 1+00 0+980 1+00 1+00 1+00 0+991 1+00 0+997

2100 1,000 20+1 0+998 0+000 1+00 0+953 1+00 1+00 1+00 0+766 1+00 0+991

Log normal errors, centered to have zero mean and unit variance
0 100 0 0+036 0+011 0+028 0+020 0+022 0+020 0+019 0+045 0+045 0+050

210 100 20+1 0+275 0+623 0+577 0+610 0.457 0.692 0.619 0.873 0.811 0.877
210 1,000 20+01 0+288 0+943 0+803 0+806 0.004 0.059 0.078 0.157 0.502 0.378

2100 1,000 20+1 1+00 0+952 1+00 1+00 0+027 1+00 1+00 0+514 1+00 1+00

Chi-squared errors, centered to have zero mean and unit variance
0 100 0 0+043 0+008 0+030 0+020 0+032 0+028 0+030 0+048 0+055 0+055

210 100 20+1 0+290 0+704 0+477 0+519 0.288 0.628 0.480 0.807 0.765 0.829
210 1,000 20+01 0+296 1+00 0+568 0+623 0.000 0.034 0.034 0.029 0.359 0.210

2100 1,000 20+1 1+00 1+00 1+00 1+00 0+003 0+999 0+998 0+197 1+00 1+00

Note: The initial condition isu0 5 0+ The trend coefficients are~b0,b1! 5 ~1,1!+ NP denotes the best invariant test evaluated atSc 5 26, so the test statistic is minbL~26,0,b! 2
minbL~0,0,b!+ Critical values are calculated by the method described in note 7+ There are 20,000 Monte Carlo repetitions+ The boldface numbers illustrate that, with asymmetric
errors, the trend-optimal tests lose power against the local alternativec 5 210 as the sample size increases+

4
5

https://doi.org/10.1017/S0266466604201025 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0266466604201025


metric log normal and chi-squared error distributions, power against the local
alternative Sc 5 210 declines as sample size grows+ Power against the fixed
alternativeg 5 20+1 increases with sample size+ This can be seen by compar-
ing the results for the samples with~T, Sc! 5 ~100,210! against the samples
with ~T, Sc! 5 ~1,000,2100!+ In each caseg 5 20+1+ These results are consis-
tent with Proposition 2, which states that power againstSc 5 210 converges to
zero as the sample grows and power againstg 5 20+1 converges to 1+

In the samples of 1,000 observations, asymmetric errors cause the NP test to
have low power against both the fixed and local alternatives+ This is consistent
with Proposition 2, which predicts that power against both kinds of alternatives
converges to zero as the sample size grows+

No test dominates the others+ The ERS test performs poorly for the Cauchy,
log normal, and chi-squared errors+ The adaptive test does well for the asym-
metric distributions but has very low power with Cauchy errors+ The Ic-tests
perform well for all the error distributions and sample sizes but are generally
dominated by the trend-optimal[c- and Zl-tests for samples of 100+

NOTES

1+ Methods for constructing these intervals appear in Stock~1991!, Hansen~1999!, and Elliott
and Stock~2001!+

2+ Hasan and Koenker~1997! propose rank tests instead ofM-tests+ Thompson~2004! notes
that under the local-to-zero reparameterization, for each rank test and error distribution there exists
a test based onIc with the same asymptotic power function+ Thus we will not specifically discuss
the rank tests+

3+ The parameterk that appears in Huber’sM function is set to 1+345 for all of the figures in
this paper+ At this value ofk, the Huber estimate of a location parameter from i+i+d+ standard nor-
mal data has a relative efficiency of 95% with respect to the mean+ See Hampel, Ronchetti, Rous-
seeuw, and Stahel~1986, p+ 399!+

4+ The log of the density for the mixture distribution is not convex+ Although this violates the
assumptions used to derive the asymptotic representations in Appendix B, simulations not reported
here suggest that the representations are still valid+

5+ The M-tests have the same limiting representations as in Theorem 1, with the nuisance pa-
rameterssc

2, r, andv replaced by Var@c~«t 2 h!# , Corr@«t ,c~«t 2 h!# , and2*Rc~x 2 h! df ~x!,
whereh denotes the parameter that solves Ec~«t 2 h! 5 0+

6+ The test rejects for small values ofI I Ic 5 @(~ yt21 2 Ty!2#21 @T (~ yt21 2 Ty!c~ [«t !# , where
[«t 5 Dyt 2 Ia1,R and Ia1,R 5 argmina1 ( g~Dyt 2 a1!+ Thompson~2001! shows that6v Ic 2 I I Ic6 p

&& 0+
7+ Critical values for first four tests are obtained using the methods described in Elliott

et al+ ~1996!, Shin and So~1999!, and Thompson~2001!+ In all cases the errors are i+i+d+ and
no correction is made for serial correlation+ Critical values for the trend-optimal tests are ob-
tained by simulating from the asymptotic distributions in Theorem 1+ The representations de-
pend on the nuisance parameterss«, sc, r, and v+ For all four tests the nuisance parameters
are estimated using the formulas[s«

2 5 T21 (~ [«t 2 S«!2, [sc
2 5 T21 (~c~ [«t ! 2 Oc!2, and [r 5

~ [s« [sc!21T21 (~ [«t 2 S«!c~ [«t !, where [«t is a residual and S« and Oc are sample averages+
For the t3 estimatorv 5 Ec '~«t ! is estimated byT21 ( c '~ [«t !+ For the LAD testv 5 2f ~h!,
which is estimated by the usual kernel estimator of the density of[«t evaluated at zero: Zf ~h! 5
~hT!21 ( f~ [«t 0h!, where f is the density function of a standard normal variable andh is the
bandwidth 1+06 [s«T2105+ For the Neyman–Pearson testc is not estimated and there is no residual,
so we use the nuisance parameters computed for theIc estimator+
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8+ I thank Gary Chamberlain for making me aware of the links between Laplace’s integration
problem and this one+

9+ The M-tests have the same limiting representations as in Theorem 3, with the nuisance pa-
rameters redefined as in note 5+

10+ As was the case for Table 1, the Ic tests are the Thompson~2001! versions of the tests+ In
the model with a time trend the test rejects for small values ofI I Ic 5 @( rt

2#21 @T ( rt c~ [«t !# , where
rt is the residual from a least squares regression ofyt21 on ~1, t ! and [«t 5 Dyt 2 Ia1,R 2 Ia2,Rt0T with
~ Ia1,R, Ia2,R! 5 argmin~a1,a2! ( g~Dyt 2 a1 2 a2t0T !+ Thompson~2001! shows that6v Ic 2 I Ic6 p

&& 0+
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APPENDIX A: PROOFS

In this Appendix we prove Theorems 1–3+ Throughout the Appendix it will prove useful
to make use of the normalized likelihoodL~ Sc,b1,f! 5 L~ Sc,b1, b2 1 T2102f! 2

( g~«t !+ The remainder termRT~ Sc,b1,f! is defined to be the difference betweenL and
its quadratic approximationQ:
L~ Sc,b1,f! 5 Q~ Sc,f! 1 RT~ Sc,b1,f!+

Preliminary Lemmas

LEMMA 1 + Let K denote a compact set. IfEc~«t ! 5 0, and if Assumptions 1 and 2
hold, thensup~ Sc,b1,f![K 6RT~ Sc,b1,f!6

p
&& 0.

We will show thatRT~ Sc,b1,f!
p
&& 0 pointwise in~ Sc,b1,f!+ If L~ Sc,b1,f! were a con-

vex function of~ Sc,b1,f! then pointwise convergence would imply uniform convergence
over compact sets~this is shown in Hjort and Pollard, 1993, Lemma 1!+ However, even
thoughg~x! is convex inx, L~ Sc,b1,f! is not a convex function of~ Sc,b1,f! because
g~«t 1 ~b1 2 b1! Sc0T 2 zt~ Sc,f!! is a nonlinear function of the parameters+

A reparameterization allows us to restore the link between pointwise and uniform
convergence+ Let wt 5 T2102~T2102,T2102ut21,1, ~t 2 1!0T !' andu 5 ~u1,u2,u3,u4!' 5
~ Sc~b1 2 b1!, Sc 2 c,f,2f Sc!' + We have the reparameterized objective function and re-
mainder term

L~ Sc,b1,f! 5 LR~u! 5 ( g~«t 2 wt
'u! 2 ( g~«t !,

ERT~u! 5 LR~u! 1 ( c~«t !wt
'u 2

v

2 (~wt
'u!2+

Becauseg is convex and«t 2 wt
'u is a linear function ofu, LR~u! is a convex function

of u+ Therefore if ERT~u!
p
&& 0 pointwise inu then the convergence is uniform foru in a

compact set+ The relationship between the original remainder term and the reparameter-
ized remainder is

RT~ Sc,b1,f! 5 ERT~u! 1 ERT,2~u!,

ERT,2~u! 5 2u1T21 ( c~«t ! 1
v

2 (H u1
2

T 2 1 2
u1

T
S u2

T
ut21 1

u3

T 102 1 u4

t 2 1

T 302DJ +
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The equality holds as long asu satisfies the constraintu4 5 2u3~u2 1 c!+ For any
compact setK , R3, let EK , R4 denote a compact set large enough so that if
$u1,u2,u3% [ K then$u1,u2,u3,2u3~u2 1 c!% [ EK+We now have a bound for the remain-
der RT:

sup
~ Sc,b1,f![K

6RT~ Sc,b1,f!6 # sup
u[ EK, u452u3~u21c!

6 ERT~u! 1 ERT,2~u!6

# sup
u[ EK
6 ERT~u!61 sup

u[ EK
6 ERT,2~u!6+

It is straightforward to show that supu[ EK 6 ERT,2~u!6 r 0 in probability for any compact
set EK+ So to prove the theorem it is enough to show thatERT~u!

p
&& 0 pointwise inu+ The

pointwise convergence ofERT~u! was proved in Lemma 1 of Thompson~2004!+ n

LEMMA 2 + In the model with a time trend, define~ [c, Zb2! 5 argmin~ Sc,b2! L~ Sc,0,b2!
and Zf 5 MT ~ Zb2 2 b2!. If Ec~«t ! 5 0, and if Assumptions 1 and 2 hold, then[c and Zf
are both stochastically bounded.

If L~ Sc,0,f! were convex in the parameters the argument in Section 3 of Pollard~1991!
could be used to show that the estimators~ [c, Zf! are stochastically bounded+ However,
even thoughg~x! is convex inx, L~ Sc,0,f! is not a convex function of~ Sc,f! because
g~«t 2 b1 Sc0T 2 zt~ Sc,f!! is a nonlinear function of the parameters+ We will pursue a
related method of proof+

A reparameterization allows us to apply the arguments of Pollard~1991! to this prob-
lem+ Define u 5 ~ Sc 2 c, f 1 b1 Sc0T, 2f Sc!', wt 5 T2102~T2102ut21, 1, ~t 2 1!0T !' , and

LR~u! 5 L~ Sc,0,f! 5 ( g~«t 2 wt
'u!+

Note that this reparameterization differs from the reparameterization in Lemma 1 be-
cause here we takeb1 5 0+ For somek . 0, define the compact setK 5 $~ Sc,f! :
6 Sc 2 c6 , k, 6f 1 T2102b1 Sc6 , k% + For any~ Sc,f! Ó K, the correspondingu vector is
equal tovr wherev is a vector with unit length andr is a scalar withr . k+ Becauseg is
convex and«t 2 wt

'u is a linear function ofu, LR~u! is a convex function ofu+ So k 5
~1 2 l!0 1 lr for l 5 k0r, and by the convexity ofLR~u!,

LR~vk! # ~12 l!LR~0! 1 lLR~vr !, and LR~0! 5 0,

which implies thatLR~vr ! $ ~r0k!LR~vk!+ In the proof of Lemma 1 it was found that
the approximation

LR~u! 5 2( c~«t !wt
'u 1

v

2 (~wt
'u!2 1 op~1!

will hold uniformly over u in a compact set+ So for fixedk,

LR~vr ! $
r

k
Fvk2

2
v 'S( wt wt

'Dv2 k( c~«t !wt
' v1 op~1!G +
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By Lemma 3+1 of Phillips ~1988!, ( wt wt
' converges in distribution to a positive def-

inite matrix with diagonal elements bounded away from zero with probability one+ There-
fore there existse . 0 so that inf7v751 v '~( wt wt

'!v . e+ So

inf
~ Sc,f!ÓK

L~ Sc,0,f! 5 LR~vr ! $ F k2ve

2
2 k**( wt c~«t !**1 op~1!G +

Because7( wt c~«t !7 is stochastically bounded~see Phillips, 1988, Lemma 3+1!, we
can choosek large enough so thatk2ve02 2 k7( wt c~«t !7 . e with probability arbi-
trarily close to 1+ We have that in large samples,

inf
~ Sc,f!ÓK

L~ Sc,0,f! $ e 1 op~1! . 0 5 L~0,0,0! $ inf
Sc,f

L~ Sc,0,f! 5 L~ [c,0, Zf!+

So in large samples the estimators[c and Zf must be contained inK+ Thus ~ [c, Zf! are
stochastically bounded, and the theorem is proved+ n

Proofs of Theorems

Proof of Theorem 1. Notice thatL~ Sc,0! 2 L~0,0! 5 L~ Sc,0,0! 2 L~0,0,0! and that
[c 5 argminScL~ Sc,0,0!+ By Lemma 1,

L~ Sc,0,0! 5 2~ Sc 2 c!T21 ( c~«t !ut21 1 ~ Sc 2 c!2
v

2
T22 ( ut21

2 1 op~1!+

The asymptotic representation forL~ Sc,0! 2 L~0,0! follows from the following weak
convergence result, which was proved by Phillips~1988, see Lemma 3+1!:

ST21 ( c~«t !ut21, T22 ( ut21
2 D' n Ss« scEWc dSr , s«

2EWc
2D'+

Becauseg is convex, L~ Sc,0,0! is convex in Sc+ By slightly modifying the argument in
Section 3 of Pollard~1991!, it can be shown that the convexity ofL~ Sc,0,0! implies that
[c converges weakly to the minimizer of the quadratic approximationQ~ Sc,0,0!, so

[c 5
T21 ( c~«t !ut21

vT22 ( ut21
2

1 c 1 op~1!+

Therefore [c n sc @vs« * Wc
2#21*Wc dSr 1 c, and the distribution of [t and Zl follows

similarly+ The representations forIc and It are provided in Theorem 1 of Thompson~2004!+
n

Proof of Theorem 2. To prove the theorem it is sufficient to show that

E
2`

`

exp$2L~ Sc,b1,f!% df 5E
2`

`

exp$2Q~ Sc,f!% df 1 op~1!+ (A.1)
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To see that this is indeed sufficient, notice that the best invariant test rejects for large
values of

Eexp$2L~ Sc,b1,b!% db

Eexp$2L~0,b1,b!% db

5

EexpH2L~ Sc,b1,b! 1 ( g~«t !J db

EexpH2L~0,b1,b! 1 ( g~«t !J db

5

Eexp$2L~ Sc,b1,f!% df

Eexp$2L~0,b1,f!% df

,

where the last equality follows from the change of variablesf 5 MT ~b 2 b2!+ The
discussion in Section 3 indicates that if the approximation in~A+1! holds, then the best
invariant test is asymptotically equivalent to rejecting for small values of

min
f

Q~ Sc,f! 2 min
f

Q~0,f!+ (A.2)

This is asymptotically equivalent to minb L~ Sc,0,b! 2 minb L~0,0,b!+ To see this, notice
that

min
b

L~ Sc,0,b! 2 min
b

L~0,0,b! 5 min
f

L~ Sc,0,f! 2 min
f

L~0,0,f!+

The convexity ofg implies that for fixed Sc, L~ Sc,0,f! is convex inf+ By slightly mod-
ifying the method in Section 3 of Pollard~1991!, one can use the convexity to show that
minfL~ Sc,0,f! is asymptotically equal to minfQ~ Sc,f!, the quadratic approximation given
in Lemma 1+ So in large samples minfL~ Sc,0,f! 2 minfL~0,0,f! is equivalent to the
statistic in~A+2!+ Thus verifying the condition in~A+1! is sufficient to prove the theorem+

To verify ~A+1! it will prove convenient to break the integral into two parts+ For any
positivek,

E
2`

`

exp$2L~ Sc,b1,f!% df 5E
2k

k

exp$2L~ Sc,b1,f!% df 1 I c~k, Sc!,

with I c~k, Sc! 5 *fÓ@2k, k# exp$2L~ Sc,b1,f!% df+ For any fixedk, Lemma 1 implies that

E
2k

k

exp$2L~ Sc,b1,f!% df 5E
2k

k

exp$2Q~ Sc,f!% df 1 op~1!+

The integral on the right-hand side admits an analytic solution+ Using that analytic so-
lution it is straightforward to show that for alle . 0 we can pickk large enough so that

lim
Tr`

PrF*E
2k

k

exp$2L~ Sc,b1,f!% df 2E
2`

`

exp$2Q~ Sc,f!% df* , eG5 1+
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It remains to show thatI c~k, Sc! is asymptotically negligible+ BecauseL~ Sc,b1,f! is
convex inf ~for fixed Sc!, then if f . k then k 5 ~1 2 l!0 1 lf andL~ Sc,b1, k! #
~1 2 l!L~ Sc,b1,0! 1 lL~ Sc,b1,f! with l 5 k0f+ Therefore

~ if f . k! thenL~ Sc,b1,f! $
6f6

k
@L~ Sc,b1, k! 2 L~ Sc,b1,0!# 1 L~ Sc,b1,0!+

Similarly,

if f , 2k thenL~ Sc,b1,f! $
6f6

k
@L~ Sc,b1,2k! 2 L~ Sc,b1,0!# 1 L~ Sc,b1,0!+

By Lemma 1, for fixed k we have

L~ Sc,b1, k! 2 L~ Sc,b1,0! 5 k2F v

2T (S12 Sc
t 2 1

T
D2G2 kF( c~«t !

T 102 S12 Sc
t 2 1

T
DG

1 kFv~ Sc 2 c!

2T 302 ( ut21S12 Sc
t 2 1

T
DG1 op~1!+

By the usual asymptotic arguments, limTr` T21 (~1 2 Sc~t 2 1!0T !2 5 Sc203 2 Sc 1
1 $ 1

4
_ , and the other terms areOp~1!+ So if 6f6 . k then

L~ Sc,b1,f! $
6f6

k
@k204 1 kOp~1! 1 op~1!# 1 Op~1!+

Plugging this bound into the integral, we obtain

I c~k, Sc! # exp@Op~1!#E
fÓ@2k, k#

expH2
6f6

k
@k204 1 kOp~1! 1 op~1!#J df

5 exp@Op~1!#
2k exp$2@k204 1 kOp~1! 1 op~1!#%

k204 1 kOp~1! 1 op~1!
+

Thus, for anye . 0, we can choosek large enough so that limTr`Pr@I c~k, Sc! , e# 5 1+
Thus the condition in~A+1! holds, and the theorem is proved+ n

Proof of Theorem 3. In the proof of Theorem 2, we showed that

min
b

L~ Sc,0,b! 2 min
b

L~0,0,b! 5 min
f

Q~ Sc,f! 2 min
f

Q~0,f! 1 op~1!+

Lemma 3+1 of Phillips ~1988! implies thatQ~ Sc,f! n QA~ Sc,f!+ Lemma 3+1 of Phillips
~1988! also implies that argminfQ~ Sc,f! is stochastically bounded, and minfQ~ Sc,f! n
minfQA~ Sc,f! by the argmax continuous mapping theorem of Wellner~1996, p+ 286!+
We have derived the limiting representation for the best invariant test+

The argmax continuous mapping theorem also provides the limiting result for[c+ No-
tice that~ [c, Zf! 5 argmin Sc,fL~ Sc,0,f!+ Because by Lemma 2[c and Zf are stochastically
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bounded, [c and Zf converge weakly to~ ZC, ZB! 5 argmin~C,B!QA~C,B!+ The limiting dis-
tributions of [t and Zl follow from a similar argument+

Limiting representations forIc and It are provided in Theorem 1 of Thompson~2004!+
n

APPENDIX B: SIMULATING THE
ASYMPTOTIC DISTRIBUTIONS

Theorem 3 provides asymptotic representations for various test statistics in the model
with a time trend+ In this Appendix we describe how to simulate from those distributions+

The best invariant test converges to minfQA~ Sc,f! 2 minfQA~0,f!+ This is equal to

2scE$Vc~t, Sc! 2 Vc~t,0!% dSr~t ! 1
v

2
E$Vc

2~t, Sc! 2 Vc
2~t,0!% dt,

where

Vc~t, Sc! 5 s«~ Sc 2 c!Wc~s! 1
E~12 Scr!$sc dSr~r ! 2 s« v~ Sc 2 c!Wc~r ! dr%~12 Scs!

v~12 Sc 1 Sc203!
+

Simulating from this distribution is straightforward+
The normalized MLEs[c and Zf 5MT ~ Zb2 2 b2! converge weakly to the random vari-

ables ZC and ZB that minimize the stochastic objective functionQA~C,B!+ I was unable to
derive a simple expression forZC and ZB+ Instead the variables are expressed implicitly as
solutions to the minimization problem+ Rewrite the objective function:

QA~C,B! 5 s« A0 1 Cs« A1 1 BA3 1 BCA4

1 F l

2
s«EWc

2GC2 1
l

2s«

B2 2
l

2s«

B2C 2 FlErWcGBC2 1
l

6s«

B2C2,

wherel 5 vs«0sc and

A0 5EWc~r ! dSr~r ! 1
l

2
c2EWc

2,

A1 5 2EWc~r ! dSr~r ! 2 lcEWc
2,

A3 5 Sr~1! 2 lcEWc~r !,

A4 5 2Er dSr~r ! 1 lEWc~r ! 1 lcErWc~r !+
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The expressionQA~C,B! has at least one minimum+ Take the derivatives of the function
with respect toC andB:
]QA~C,B!

]C 5 s« A1 1 BA4 1 Fls«EWc
2GC 2

l

2s«

B2 2 F2lErWcGBC 1
l

3s«

B2C,

]QA~C,B!

]B 5 A3 1 CA4 1
l

s«

B 2
l

s«

BC 2 FlErWcGC2 1
l

3s«

BC2+

The values ofC andB that minimizeQA~C,B! set the partial derivatives to zero+ Solve
]QA~C,B!0]B 5 0 for B to obtain

B~C ! 5
s«

l

FlErWcGC2 2 A3 2 CA4

12 C 1 C203
+

Substitute the solution forB~C ! into the equation]QA~C,B!0]C 5 0 to show that ZC is
the root of a fifth-order polynomial:

0 5 @18lA1 2 18A4 A3 2 9A3
3#

1 CF6A3
2 2 18A4

2 2 36A1l 1 18l2EWc
2 1 36SErWcDlA3G

1 C2F9A4
2 1 30A1l 1 6A3 A4 2 36l2EWc

2 1 18l~3A4 2 A3!ErWcG
1 C3F30l2EWc

2 2 36SErWcD2

l2 2 12A1l 2 36A4lErWcG
1 C4F27l2SErWcD2

2 12l2EWc
2 1 2A1l 1 6A4lErWcG

1 C5F2l2EWc
2 2 6SErWcD2

l2G +
Notice that becauseA0, A1, A3, and A4 depend onr and l and on no other nuisance
parameters, the distribution of ZC depends only onr andl+

There is no known closed-form solution for the root of a general fifth-order poly-
nomial+ Simulation was done from the asymptotic distribution forZC by the following
method+ Simulate a draw from the joint distribution of the five coefficients of the poly-
nomial+ Use a software package~Matlab version 5+3 was used here! to numerically cal-
culate the roots of the resulting polynomial+ The real root ZC that maximizesQA~C,B~C !!
is the simulated draw from the asymptotic distribution ofZC+ The corresponding draw
from the asymptotic distribution of thet-statistic is

s« ZC!EWc
2~t ! dt 1

1

2
~B~ ZC !!2 2 2B~ ZC !EtWc~t ! dt+
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The stochastic integrals were computed as the realizations of normalized sums of 500
successive draws from a discrete time Gaussian AR~1! process with autoregressive pa-
rameter 12 c0500+

The simulation procedure was repeated 100,000 times for each value ofl, r, andc+
The asymptotic critical value for a size 100a% test that rejects for small[c was calcu-
lated as the 100,000ath element of the vector of sorted draws forZC+ The power of the
test at the alternativec was calculated as the proportion of draws below the critical
value+ A similar procedure was used to calculate the critical value and power of the test
based on thet-statistic+
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