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OPTIMAL VERSUS ROBUST
INFERENCE IN NEARLY INTEGRATED
NON-GAUSSIAN MODELS

SAMUEL B. THOMPSON
Harvard University

Elliott, Rothenbergand Stock(1996 Econometricab4, 813—-836 derive a class

of point-optimal unit root tests in a time series model with Gaussian errors
Other authors have proposed “robust” tests that are not optimal for any model
but perform well when the error distribution has thick tailslerive a class of
point-optimal tests for models with non-Gaussian errdhen the true error
distribution is known and has thick tailthe point-optimal tests are generally
more powerful than the tests of Elliott et. 411996 and also than the robust
tests However when the true error distribution is unknown and asymmegthie
point-optimal tests can behave very badius there is a trade-off between ro-
bustness to unknown error distributions and optimality with respect to the trend
coefficients

1. INTRODUCTION

Elliott, Rothenbergand Stock(1996 derive a class of point-optimal unit root
tests in a time series model with Gaussian errditsey show thatby effi-
ciently handling intercept and trend coefficigntiseir tests are generally more
powerful than the standard Dickey—Fuller testéie present paper investi-
gates whether the same power improvements can be attained when using “ro-
bust” testing methods that are designed to improve power for non-Gaussian
error distributions | find that this improvement occurs when the true error
distribution is known or at least is known to be symmettiowever if one
wants to be robust to thick-tailegossibly asymmetricerror distributionsthe
power improvement found by Elliott et.al1996 cannot be attained

First | consider the model with an intercept and no time tréndarge sam-
ples the variation of a nearly integrated process dominates the intercept of the
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processThus the intercept can be set equal to zero when forming test statis-
tics. The resulting point-optimal tests dominate previously proposed robust tests
(see Lucasl1995 Herce 1996 Hasan and Koenket997) which do not set the
intercept to zero

However when the error distribution is unknown and asymmetset-
ting the intercept to zero leads to a test with very bad propertiesarge
samples the zero-intercept tests reject a true null hypothesis with probability
approaching one-halfThe previously proposed inefficient tests perform well
under asymmetric errorsThus there is a trade-off between efficiently han-
dling conditioning variables and robustness with respect to asymmetric error
distributions

Then the model with both an intercept and a linear time trend is considered
and the form of the point-optimal test that is invariant to the time trend is
derived In many cases it is difficult to compute the point-optimal fesi |
use Laplace’s approximation to derive an asymptotically equivalent test that
is easier to calculatd show that tests based on the maximum likelihood esti-
mator (MLE) and the likelihood ratidLR) statistic which were previously
studied by Xiao(2001), are asymptotically admissibl&/hen the error distri-
bution is known and non-Gaussiaa test based on either of these statistics
will in many cases have higher power than the tests suggested by Elliott et al
(1996.

In the model with a time trendan unknown asymmetric error distribution
causes the power of the point-optimal test to approach zero in large samples
The tests based on the MLE and LR statistic have slightly better properties—
they have power approaching zero against local alternativespower ap-
proaching 1 against fixed alternativéhus although asymmetric errors lead
to power losses for these two procedyithe tests do not overreject a true null
and are acceptable for both correctly and incorrectly specified erboate
Carlo results suggest the power losses are substantial for the point-optimal tests
but not as bad for the MLE and LR tests

Thus the viable unit root tests are the traditional robust téstsich in-
efficiently handle intercepts and trendsnd the point-optimal Gaussian tests
proposed in Elliott et al(1996 (which are inefficient in the presence of thick-
tailed errorg. In some situations the efficiency loss due to ignoring thick-tailed
errors is less than that due to inefficiently modeling the intercept and.tFend
example the point-optimal Gaussian test is more powerful than many tradi-
tional robust tests when the errors are drawn from a Studeéilistribution
with five or more degrees of freedom

Although the present paper does not specifically consider the, tthy@ce are
similar implications for the construction of confidence intervals for autoregres-
sive roots close to oneBecause many of the intervals are based on the inver-
sion of testsit appears that the framework for constructing more accurate
intervals described in Elliott and Stog2001) cannot be extended to non-
Gaussian models
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2. THE MODEL WITH NO TIME TREND

The observationgy, }{_, come from the model

Vi = B'% + U,

AU, = yU;_4 + &,

whereB = (B4, 8,)’ is a two-dimensional coefficient vector amd= (1,t)’. |
consider the model with an intercept or{lgg., 8, = 0) and with a linear time
trend (e.g., no restrictions org). The random errorg, are independent and
identically distributed(i.i.d.) and have expectation zero and a finite variance
Under the unit root hypothesiy = 0, and the detrended series is not station-
ary. | will evaluate tests of the unit root hypothesis versus the alternafive®.
Because | am interested in inference wheis close to ongl adopt the local-
to-zero reparameterization= c/T, so the parameter space is a shrinking neigh-
borhood of zero as the sample size grofsllowing Chan and We(1987) and
Phillips (1987), | take c fixed when making limiting argumentsbtaining as-
ymptotic power as a function of the local alternatize

We distinguish between the truenknown density fok, given bye ) and
the density used to construct the likelihood functi@9®. The researcher
chooseg hoping thatg is a reasonable approximationftand also hoping that
the resulting tests perform well wher¥ f. In the model with an intercept and
no time trend

en-Safon- Sxend) :
(C,IBl)_t=29 Yt Tyt—l ,BlT 1)

is the negative of the log-likelihood function evaluated/at c/T, conditional
on the first observation,.

Consider the classical regression mogel ay + a1x + & with nonrandonx
and ii.d. errore. If the true value of the intercept, is zerg then regressing
onx alone leads to a more efficient estimatoragfthan regressing on bothx
and a constantNow consider two estimators far

(1) (¢,8 = argmine > 9(Ay; — cy—1/T — a), with a = —B,¢/T. These are the
usualM-estimators studied by Lucd$995, Hoek Lucas and van Dijk(1995,
Herce(1996, and Hasan and Koenk¢t997).2

(2) ¢ =argmin X g(Ay, — cy,—1/T). | label this statistic the “constrained” MLE

If B4 is zero them is zero andé should be more efficient thati Thus a test
that rejects the null for small values 6fshould be more powerful than a test
that rejects for smalt.

We include the constarat in caseB, is not zero However in large samples
a= —pB,¢/Tis very close to zero no matter what the true valuesgfpandc.
This suggests that asymptotically it does not matter that we omit the constant
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It turns out thatif g equalsf (the true negative log-density of the errprthen
in large samples tests based®dominate tests based @reven wherB,; andc
are not zero
This is the source of the power improvements in the model with no time
trend Many existing robust unit root tests do not take advantage of the fact
that in large samples the variation iin dominates any fixed intercepso 81
can be taken equal to zero without affecting the asymptotic distributiagn of
We will show that in large sampleso test dominates the test basedn
This optimality result comes from the Neyman—Pearson lemmiach states
that the most powerful test af = O versus the alternative = ¢ rejects for
small values oL (¢, B1) — L(0, B1). In large sampleshe ¢-test is just as pow-
erful as the Neyman—Pearson statistic for s@nehis is true even whep, is
not known
Elliott et al. (1996 show that in a Gaussian model with an intercept and no
time trend there is no efficiency loss from, being unknownThe same is true
for nonnormal innovationsSuppose we form the Neyman—Pearson test with an
incorrect value forB, say 0. If g is three times differentiable with bounded
second and third derivatives then by a Taylor series approximation

L(c,0) — L(0,0)

Eg<8t - Cut1+ B1> 29(& )

2

= __29 (U + —/—— Eg”(st)ut 1
+ CBlH >0 (g) + % >9"(e) (% —(c— C)uu)]
6T3 > 9" (e1)((€—C)U_q — CBy)°

—35 29" (i) (cw1)3

where| e — | = [(C—c)u;_1/T — ¢B1/T| and| & — & = |cu_1/T|. Under
regularity conditions given subsequently_,/TY? is O,(1). Therefore be-
causeg” andg’” are boundedmany of the terms are asymptotically negligtble

2

L(c,0) - L(0,0) = —= 2 g'(e)Uiy + ——%— 2 9" (g)UZ 4

+ % E g/(st) + Op(l)-
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If EQ'(g) =0, thenT 13X g'(g) P50, and in large samples the test statistic
does not depend of,. The term E’(s;) will equal zero when the errors are
correctly specifiedmeaning thag = f:

=0.

x=0

_ 9y
B ax()

[ee] a 0
Eg'(er) =f f'(2e f@dz= _a_xJ o120 47

x=0
()

Thus under correct specification of the errptbere is no efficiency loss from
B1 being unknown

In a stationary autoregressive modidle Neyman—Pearson test statistic typ-
ically admits an asymptotic representation in terms of a single scalar sufficient
statistic This allows the construction of a test that is asymptotically uniformly
most powerful against all alternatives< 0. Here the Neyman—Pearson statis-
tic has an asymptotic representation that is a linear combination of the two sca-
lar sufficient statisticsT >, g’ (g)u,_; and T2 g"(g,)uZ_,, with weights
depending ort. As Elliott, Rothenberg and Stoad 996 have notedthis im-
plies that there does not exist a uniformly most powerful,tesen in large
samples Each Neyman—Pearson test is most powerful only against the point
alternativec = €. The Neyman—Pearson tests comprise an infinite family of
admissible testdndexed byc, no one dominating the others for all

Because there is no uniformly most powerful ta¢ke goal is to find feasi-
ble, admissible testd et 7 (c, C) denote the asymptotic power function for the
Neyman-Pearson test indexeddwhen the true value of the local autoregres-
sive parameter is and the size of the test i

m(C,C) = Tliinw Pr{L(c,B;) — L(0,B1) < q(0)],

whereq(€) satisfiesw (0, C) = a. Because the Neyman—Pearson test indexed by
C is asymptotically optimal against the alternative= C, the envelope power
functionII(c) = w(c,c) is the upper bound on power for all tests against each
alternative A test is asymptotically admissible if it has a limiting power func-
tion that is equal and tangent to the envelope function for same

In the next section | show that tigetest is asymptotically admissible whereas
the ¢-test is not There are other interesting test statistics to consitlez
M-estimatort-test which rejects for small values 6= [T 2 X (y,_; — y)?1Y2¢,
and the constrainedand LR statistics

t=4T2Xy2,¢ and = —Z[mcin L(c,0) — min L(0,0)].

The {- and [-tests impose the constraigy = 0, so they will dominate the
M-estimatort-test
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2.1. Asymptotic Power Functions

To justify the claim that thé-, -, and [-tests dominate thkl-tests it will prove
convenient to develop asymptotic representations for the various staiiXtics
sider some of theg functions used for robust regression problems

Least squares g(x) = x%/2,
Least absolute deviationdAD) g(x) = |x|,
regression
gth quantile regression g(x) = gx— x1(x < 0),
Huber'sM function g(x) = (x¥2)1(|x| < k)

+ (kIx| = k%72)1(|x| = k),

where the constaritis chosen by the researchBecausey may not be every-
where differentiablewe cannot approximate the log-likelihood function with
Taylor series expansiongistead of pointwise differentiabilifghe proofs make

use of “stochastic differentiabilifyyan idea described in Pollarid 985. Appli-
cation of the idea requires imposition of smoothness conditions on the error
density to make up for the lack of smoothness in the objective function

Assumption 1 (Smoothness of the Error DensityThe errors{e,}._, are
i.i.d. mean zero with E4|?"° < H for somes > 0. The terme, has a density
functionf(z) that is bounded and uniformly continuous

The g function may have finitely many points of nondifferentiability

Assumption 2 (Objective Functioh g(x) is convex and strictly increasing
in | x|, and g(x) is everywhere twice differentiable except forin P, where
P contains theD pointspy,..., pp. There exists some finite positivid so
that|g”(x)| < H for x not in P. There exists some finite positiiesatisfying
P&[-h— 8, h+ &] for somes > 0, so that for allx andy in [—h, h] we have

lg'(x)| <Hand[g(x) — g(y)| =H|[x—yl.

| assume thag is convex because it simplifies the proofsssuming con-
vexity allows me to extend several pointwise convergence results to apply uni-
formly over the parameter spac€onvexity also greatly simplifies the
demonstration of the rate of convergence of the estimafbings extensive
use of convexity is due to results in Pollat@991) and Hjort and Pollard
(1993.

For nondifferentiableg, it is not possible to define an approximate likeli-
hood in terms of the derivatives andg”. We replaceg’ with the derivative-
like function.

DEFINITION 1. (x) is equal to d(x) if g is differentiable at x and
¥ (x) = 0 otherwise.

If gis everywhere differentiable thegi = . For LAD regressiony(x) =
sign(x), and for Huber’s functions(x) = x1(|x| < k) + k1(|x| = k).
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In standard(non—unit root problems the second derivativg” enters the
asymptotic representation though its expectatigfi(k;). We replace " (&,)
with the parametew = — [R i (X) df(x). Wheng is everywhere twice differen-
tiable w = EQ”(&;). For LAD regressionw = 2f(0), and for Huber’s function
o = Pi[|x| <K].

In large samples the power functions admit representations in terms of
functionals of Brownian motionDefine W(:) to be standard Brownian
motion and defineW,(-) to be the Ornstein—-Uhlenbeck proceds(t) =
f(; exp{c(t — s)} dW(s) with initial condition W,(0) = 0. The asymptotic rep-
resentations make use of the parametefs= Var(s,), p = Corr(e;, ¥ (s)),
ando,; = Vary(s;) and also of the stochastic process

S,(t) = pW(t) + (1 - p)2W(1),

whereW is standard Brownian motigindependent ofV. The following theo-
rem is proved in Appendix A

THEOREM 1 If E¢ (&) = 0, and if Assumptions 1 and 2 hold, then

(1) L(c,0) — L(0,0) = — Co.0y S W,dS, + 27%(¢% — 2C0)wa? [ W2,

2 ¢t= U¢[wang02]7lfWCdSp +c,

3 'E::» (O'SZfWCZ)_l/Z(U'SO',/,fWCdSp + wo? [ W2),

4) I = o™ (o2 W) o0, [W,AS, + wa? [ WE)?,

(5) ¢= o,[wo, [DZ]* [D.dS, + ¢, where R(r) = W,(r) — [ W,(s) ds,
(6) t= (0, /0)[[DZ]"¥?[D.dS, + co,[[ DZ]V2.

Rothenberg and Stodl997) and Xiao(2001) derive similar representations
without assuming convexity af but do not allow for nondifferentiable functions
The large sample power function for the Neyman—Pearson test is

a)a'e2
m(c,C) = Pr{—c‘:%asfwcdsp + (c? — 2co) > fWCZ < q(C)].

Power functions for the other tests may be obtained similarly

Figure 1 plots envelope power functions and asymptotic power for a variety
of tests The curves for LAD errorgfrom the double exponential distributipn
are given and so are standard normal errors and Huber &rPocsirve also is
produced for the mixture distributioflabeled Mixture in the figurewhere a
standard normal variable is drawn with probabilit$® and aN(0,36) variable
is drawn with probability 5.4 Each curve is calculated under the assumption
of correct specificationso thate™ is equal to the true densigy .

The power curves for nonnormal errors are all substantially higher than the
curve for normal errorsThe most powerful test for Gaussian errors achieves
50% power at close to—7.0, and the most powerful test for double exponen-
tial errors(corresponding to LAD estimation under correct specificatamhieves
50% power at close to—3.75.
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Double exponential errors Mixture normal errors
1 - 1
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@ 0.4 — - constrained mle 0.4
— constrained t
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R — M-estimator 0.2
—— M-estimator t stat
0 0
-20 -15 -10 -5 0 -20 -15 -10 -5 0
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Normal errors Huber errors

0 0
-20 -15 -10 -5 0 -20 -15 -10 -5 0

FiGure 1. Asymptotic power curves for unit root tests in the model with no time trend
(x; = (1,0)). The curves are drawn under the assumption of correct specificataine

g function used to form the test statistics is equaf,tthe negative log-density of the
errors (The simulations that appear in this paper were performed by computing stochas-
tic integrals as the realizations of normalized sums of 500 successive draws from a dis-
crete time Gaussian AR) process with autoregressive parameter t/T. There are
100000 Monte Carlo replications

Figure 1 also provides power curves for the tests based on the constrained
MLE ¢ and theM-estimator¢. The ¢-test is asymptotically admissibl&est
power is tangent to the power envelope when envelope power is. [ahge
C-test is not asymptotically admissible and is dominated bytitest The power
curve for¢ touches the envelope function only under the rtal= 0) and for
alternatives so far from zero that any sensible test would have power equal
to 1

The M-estimatort-test is not asymptotically admissibleshereas the con-
strainedi-test is admissibleFigure 1 shows that the constrainetést achieves
tangency to the power envelope function at power close to.5M8¢ figure
also shows that the constrainketst is not admissiblé\s Rothenberg and Stock
(1997 show straightforward manipulations of the asymptotic representations
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demonstrate that rejecting for large valued @ asymptotically equivalent to
rejecting for largef2. Because the tests basedfeamd( are one-sided and two-
sided tests of the same one-sided hypothéisis not surprising that thé-test
dominates the test based bn

We have obtained power improvements by imposing the constraint that the
intercept estimatg, is zero We can obtain identical results by replacing the
requirement thaB; = 0 with the requirement that the estimaf®y is stochas-
tically bounded Consider two more estimators

(1) (€vound Boound = ArgMING g co) Ze=29(AY, — Cy—1/T + B1¢/T), where® is a
compact setlt is common to assume a bounded parameter spaauwek this esti-
mator imposes that assumpticfhe estimatoByound iS Obviously stochastically
boundedand the term supeq |8, ¢/T| disappears from the likelihood function
in IargeAsampIesThusébound has the same limiting distribution &s

(2) (Cinitial » Binitial) = argming z,19(ys — B1) + Z=29(Ay, — ¢y 1/T + B1¢/T)}.
These are the MLES when we assume the initial conditips 0. In an earlier
draft of this paper it was shown th#nia iS stochastically boundedhus
(Einitial éinitim )/T — 0 fast enough so tha};;a has the same distribution &s

2.2. Failure of Robustness to Error Misspecification

These power improvements occur as longgaghe estimating functignis
equal tof, the true negative log-density of the erroheng # f, ¢ may
behave poorlyConsider the classical regression mogier ag + a1X + &.
If the errors come from the double exponential distributierhas zero me-
dian and the maximum likelihood estimates are the LAD estim@igs®,) =
argmin, . 2|y — ag — a;x|. If the true value ofag is zerq then under
correct specification we can get a better estimatorefpby removinga, from
the objective functiona, = argmin, >|y — a;x|. Now suppose that, = 0
and thate comes from an incorrectly specifiedsymmetric error distribution
with zero mean but nonzero medidfor example take = Z2 — 1 whereZ is
standard normallt is well known that in this casé LN mediar(e) and &,
has a limiting distributionlt is also well known that the distribution @, is
not stochastically bounde@ven if oy = 0. Thus the constant, “recenters”
the incorrectly specified errorén the classical setting we include the constant
to protect ourselves from errors with nonzero median

The same thing happens in the unit root prohléterce (1996 shows that
if the interceptB, is zero and the errors have zero medidren ¢ and ¢ both
have limiting distributionsWhen g; has a nonzero mediaf has a limiting
distribution wherea€ blows up This can be seen in Figures 2a-Ehch his-
togram depicts D00 Monte Carlo realizations af, and a4, estimated from
simulated data sets of 500 observations from the model with 0 (so the
null is true, B, = 0 and initial conditionuy = 0. Figures 2a and b show that
when the errors come from the zero median Studerdistribution with four
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Ficure 2. Histograms of 300 Monte Carlo simulations df (on the lefy and ¢ (on

the righd estimated from 500 observations from the model with no trend or intercept
The true value ot is 0. (a) and(b) Here the errors come from the Student’s t4 distri-
bution Because the median is zetds more efficient and has a smaller spread around 0
(c) and(d) Here each error is; = Z2 — 1, whereZ, are ii.d. standard normaBecause
the median is not zer@ has a limiting distribution ané blows up

degrees of freedonboth estimators have limiting distributiarisigures 2c and d
show that when the errors do not have zero medians= Z? — 1 whereZ,
are ii.d. standard normalthe distribution of¢ blows up So for any fixed
critical valueq, the probability of rejecting a true null hypothesis converges to
lim_,.Pr[¢ < q] = .5.

Mathematically this can be understood as failure of an identification condi-
tion. Consider the classical regression model with no intetgepta X + . If
g is differentiable the estimatora; = argmin, > g(y — a;x) will solve the
first-order conditionT 1Y g'(y — @;x)x = 0. Under the usual assumptions
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this will deliver a consistent estimator af; if the identification condition
Eg'(y — a1x)x = 0 holds Becausey — a;1Xx = & and x is not random this
condition is equivalent to &(e) = 0. Thus the identification condition is that
¢ has a distribution with the property thagte) = 0.

In our unit root problent solvesY ¢ (Ay, — €yi_1/T)Y;—1 = 0, which sug-
gests the identification condition

0=E> vy, 1E._1¥ (&) = Identification condition is B (e,) = 0.

For the LAD problemys(e;) = sign(e;) and the identification condition is
E sign(e;) = 0. The condition holds for LAD only if the errors have zero
medians

What assumptions do we need to ensure thiatdp) = 0?

(1) Expressior(2) demonstrates that/He;) = 0 under correct specificatiasof = g).

(2) Ey(g) equals zero for the Gaussian likelihgatb matter what the distribution
of the errors The Gaussian likelihood hag(x) = x%/2 and(x) = X, so the
assumption E; = 0 insures that &(e;) = 0.

(3) Ey(&) equals zero wheh # g and both functions are symmetric around zero

(4) Whenf # g andf is not symmetric E/(g;) can be different from zeroFor
example for LAD estimation applied to the errors, = Z2 — 1, Egi(g) =
Esign(zZ — 1) ~ —.3656

It turns out that the optimal tests are not robust to unknaasymmetric error
distributions To get the tests to workve either need to assume that we know
the distribution ofe, or we need to assume thatcomes from a symmetric
distribution Thus the optimal tests are not robust to unknown asymmetric error
distributions The Gaussian tests of ElligptRothenberg and Stockl 996 are
the one exception—those tests are valid under fairly general forms of misspec-
ification, including asymmetric errors

Figure 2 depicts an example where the optimal tests reject a true null hypoth-
esis too oftenThis is generally a problem with asymmetric errors

PROPOSITION 1 Suppose that g is three times differentiable with bounded
third derivatives and suppose that the errors satisfy assumptiorEi: (i£,) # 0
then in large samples tests based &rf, [ and the Neyman—Pearson statistic
all reject a true null hypothesis with probability approaching .5, no matter what
the nominal size of the test. The M-tests base@ andf have the same limit-
ing representations as in Theoren? In large samples the M-tests have accu-
rate size.

M-tests are robust to asymmetric error densitied n denote the parameter
that solves the equation/is; — n) = 0. So for LAD estimationy(g; — 1) =
sign(e; — 1), andn is the median of the errar§he M-estimator objective func-
tion can be rewritten
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C C C
29<Ayt_ ?ytl_a> =Eg<§t_ ?utfl_ <a_7l_b1?>),

with & = &, — n. These recentered errors satisfiy ;) = 0. Thompson(2004)
shows that if B (&) # 0 then& — 7 in probability andc has the same limiting
distribution as in Theorem, With a slight redefinition of the nuisance param-
eters(see note b Thus estimation of the free parametecauses a power loss
under correct specification but ensures robustness against incorrect specification
We can avoid these centering problems by assuming thhdtE = 0. For
example for LAD estimation we could assume that the medianisfzero and
leave the mean unspecifiefihe zero mean assumption is essential for nearly
integrated models because it identifies the trdhthe mean is not zerahen
the trends behave very differently under the unit root null than for stationary
alternativesBecausay, follows the procesau; = yu,_; + &, we have

t—1 t—1
Yt = B1+ E(&y) _ZO(Y + 1)i + _ZO(Y + 1)i§t—i

with & = & — E(eq). If ¥ = 0, theny, has both a unit root and a nonstochas-

tic trend If y < O, theny, is stationary with the long-run megh + E(e;) X

>Zo(y + 1)'. Thus the zero mean assumption is essential if we wish to test for
mean reversion around an intercephce we assume zero meaadding addi-

tional centering assumptions such as zero medians takes us closer to assuming
symmetric errors

Sketch of proof of Proposition 1.When B/ (g;) # 0, the Neyman—Pearson
statistic is not stochastically boundetb understand whynotice that the sta-
tistic T™1X () u,_, appearing in the approximation to the Neyman—Pearson

statistic is not stochastically boundddemma 31 of Phillips (1988 implies
that we must divide byr /2 to get a limiting distribution

1
T > (e = N(0,0%(c)),

whereo?(c) = (o.Er(g;)/c)?[1+ (e%¢ — 1)/(2c) — 2(e® — 1)/c]. If gis three
times differentiable with bounded third derivatiyédse Neyman—Pearson sta-
tistic must also be divided by ¥/2:

T2{L(G0) ~ LO0) = ~ =35 S (et + (6% — 260) 755 T2

+ 0,(1)

C
== > (e)uy + 0,(1).
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Suppose we form the Neyman—Pearson statistic and use the criticalg(&@ue
constructed under the assumption thgi(E) = 0. If E¢/(g;) # O then under
the null hypothesis the probability of rejecting is

TIim Pr{L(¢,0) — L(0,0) < q(c)] = Pr[N(0,¢c?¢2(0)) < 0] = 0.5,

whereo?(0) = lim_,qo0?(c) = (o.E(g))?/3. In large samples the Neyman—
Pearson test rejects a true null hypothesis 50% of the, thmenatter what the
nominal size of the test

A proof by contradiction shows that error misspecification may also cause
the constrained MLE to be stochastically unbound&appose that = 8, = 0
andg is three times differentiable with bounded third derivativésC is sto-
chastically boundedhe minimized objective function admits the approximation

L0 — Sgle) = —€T S prls)u , + gT*Z S g7 () U2 + 0y(1).

If € is stochastically boundedhen in large sampleé must converge to the
minimizer of L(¢,0) — > g(&,). The minimizer[T 23X g”(g)u? ;] 1T 1 X
> (&) U,_, is not stochastically boundednd we have our contradiction®

2.3. Some Monte Carlo Results

A Monte Carlo study demonstrates the size distortions that occur under incor-
rect specificationTable 1 presents rejection frequencies for 10 tests under var-
ious assumptions about the true data generating protassabbreviations in

the table are as follows

(1) ERS—the Dickey—Fuller generalized least squai2s-GLS) test of Elliott et al
(1996. This test efficiently handles the intercept for Gaussian errors but does not
use the information in thick-tailed error distributions

(2) Adap—the adaptive test of Shin and 8®99. This test adapts to the error dis-
tribution but does not efficiently handle the intercept

(3) ¢ test LAD—The Thompson(2001) version of the test based on the LAD
M-estimatof The test is asymptotically equivalent to the test base@ and in
some cases has more accurate .sidas test does not efficiently handle the
intercept

(4) ¢ test t3—The Thompson(2001) version of the test based on the Student’s
t3M-estimator

(5) Trend-optimal LAD NP¢, andf—these tests are optimal for a double exponen-
tial likelihood. NP denotes the Neyman—Pearson test statistic evaluateéd=at
—3 andB; = 0: L(—3,0) — L(0,0). The three tests efficiently handle the trend
and will be more powerful than the DF-GLS test for many thick-tailed error dis-
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TaBLE 1. Rejection frequencies for selected tests in the model with no time trend

¢ tests Trend-optimal LAD Trend-optimal t3
c T Y ERS Adap LAD t3 NP ¢ f NP ¢ f
Student'st errors 4 degrees of freedom
0 100 0 0076 Q041 Q044 Q044 Q035 Q034 Q025 Q054 Q050 Q054
-5 100 —0.05 0426 0194 0234 0248 Q0257 0281 0230 0461 0414 0469
-10 100 -0.1 0.839 Q477 0568 0625 0381 0682 0528 Q706 0826 0816
0 1,000 0 0051 Q047 Q051 Q051 Q042 Q042 Q035 Q050 Q049 Q050
Cauchy errors
0 100 0 0042 Q010 Q043 Q043 Q001 Q001 Q000 Q004 Q004 Q003
-5 100 —0.05 0285 Q147 Q968 0933 Q973 Q938 0814 Q970 0996 Q965
—10 100 -0.1 0.884 Q0206 Q998 0923 Q993 100 0991 Q942 100 0997
0 1,000 0 Q030 Q000 Q044 Q044 Q000 Q000 Q000 Q000 Q000 Q000
Log normal errorscentered to have zero mean and unit variance
0 100 0 0065 Q020 Q039 Q037 0.395 0.153 0.401 0.277 0.113 0.316
-5 100 —0.05 0396 Q577 0452 Q470 0637 0691 0682 Q775 Q737 Q763
-10 100 -0.1 0.826 0893 0835 0871 0801 0916 Q887 0966 Q973 Q970
0 1,000 0 Q050 Q031 Q049 Q050 0.494 0.485 0.494 0.485 0.418 0.483
Chi-squared errorsentered to have zero mean and unit variance
0 100 0 0070 Q018 Q040 Q037 0.447 0.191 0.458 0.331 0.120 0.352
-5 100 —0.05 0409 0699 0354 0383 0623 Q677 0682 Q766 Q707 Q749
-10 100 -0.1 0.831 Q0929 Q769 0841 Q756 0897 Q870 Q958 Q966 0962
0 1,000 0 0053 Q029 Q053 Q053 0.498 0.486 0.497 0.493 0.405 0.488

Note: The initial condition isug = 0. The trend coefficients areB,, 81) = (1,0). Critical values are calculated by the method described in nofh&re are 2@00 Monte Carlo
repetitions The boldface numbers show the size distortions from using trend-optimal tests with asymmetric errors
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tributions When the errors come from an asymmetric distribution the tests will
overreject a true null hypothesis

(6) Trend-optimal t3 NP¢, and t—the optimal tests for a Student’s t3 likelihood
with B, = 0. These tests are not robust to asymmetric errors

The bold numbers in Table 1 illustrate the size problems with asymmetric
errors’ All of the tests have reasonably accurate sizes for the symmetric Stu-
dent’s t4 errorsHowever the asymmetric log normal and chi-squared errors
cause the trend-optimal tests to overreject true null hypotheseksthe prob-
lem gets worse as the sample size grows ffbm 100 toT = 1,000 Proposi-
tion 1 predicts that as the sample size grows the trend-optimal tests will reject
a true null hypothesis with probability approachin® The Monte Carlo re-
sults seem to confirm the predictioas the rejection frequencies for samples of
1,000 are close t0.60. The ERS adaptive and¢-tests have accurate sizes for
the asymmetric distributions

The results demonstrate that the ERS test is a viable alternative to the robust
tests even when the errors are not Gausdiie ERS test has accurate size and
good power for all four error distributionsSomewhat surprisinglythe ERS
test even has accurate size for the infinite variance Cauchy distribGitfon
adaptive test works well for the asymmetric log normal and chi-squared distri-
butions but has poor power for the Cauchy errdrse ¢-tests have accurate
size for all four distributionsFor the Cauchy errors theetests are very powerful

3. OPTIMAL TESTS WITH A TIME TREND

If the regressors include a linear time trend
T c c c
L(c,B1,B2) = 2 glay, — — Vi1t Bz —B2|1—-(t—1) =
= T T T

is the log-likelihood function conditional on the first observati@uppose we
form the Neyman—Pearson statisti€c, 81, 8,) — L(0, 81, 82) with the un-
known coefficients replaced by the gudss (b;,b,)":

L(C’ bl’ b2) - L(O’ bl’ bz)
C— C c
= 29(8'[_ Tcut—1+(b1_31) ? _(bz_,Bz)(l_(t_l)?))

- g<8t + -lg- Ui—q — (b, — Bz)>~

In large samples the terfip, — B1)C/T disappears from this expressj@o the
guessh; does not matteihe terms(b, — B,)(1 — (t — 1)¢/T) and (b, — B,)
do not disappearso unless we know the try&, we cannot obtain the power
boundII(c) derived in the last sectioiit is important to come up with a good
guess forB,.
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In most situations the trend paramefgris unrelated to the unit root testing
problem Following Dufour and King(1991) and Elliott Rothenberg and Stock
(1996, it is natural to restrict attention to the family of tests that are invariant
to the value ofB,. By the well-known result of Lehman(i1959 p. 249, the
most powerful invariant test of the hypothesis 0 versus the alternative= ¢
rejects for large values of

f exp{—L(c, B4, b)}db/f exp{—L(0, B4, b)} db.
Elliott et al. (1996 encounter a similar integral for the Gaussian likelihpod
whereg(x) = x%2. In the Gaussian cade(c, 84, b) is quadratic inb, and the
method of “completing the square” leads to a closed-form solution for the in-
tegral Because for many non-Gaussian likelihoods it is not obvious how to
solve this integrall approximateL (¢, 81, b) with a quadratic function ob and
show that the approximate solution is asymptotically equivalent to the exact
solution This approach is a variant of Laplace’s methisde Judd1998 p. 525
Laplace uses this approach to approximate a similar integral over the double
exponential distributiof

The quadratic approximation is

Q6.4) = ~S(e)z(cd) + 5 SHEH)

T

¢ = NT(b— B,). In Lemma 1 in Appendix Ait is shown that if B (&) = 0
then

c—c ¢ t—1
7(C,¢) = T U+ W(l— C—>,

L(C,0,B, + T ¥2¢) = > g(&) + Q(C,¢) + 0,().

In large samples the interce@t disappears from the likelihooth the proof of
Theorem 2 in Appendix A it is shown that

J exp{—L(¢, B1,b,)} db, J exp{—Q(c, ¢)} d¢ + 0,(1)

fexp{_L(ov 1317 bz)} de feXp{_ Q(O’ ¢)}' dd) + Op(l)

These integrals admit analytic solutiof®dious algebraic manipulations lead
to the result that the log of this ratio is asymptotically equivalent to

minQ(0, ¢) — MInQ(c, ¢)
¢ ¢

plus terms that do not depend onThis suggests the following theorem
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THEOREM 2 If E¢(g;) = 0 and Assumptions 1 and 2 hold, the most pow-
erful invariant test is asymptotically equivalent to the test that rejects for small
values of

mtin L(¢,0,b) — mgn L(0,0,b).

Let 77(c,c) denote the limiting power function for the best invariant test
indexed byc when the true value of the locally autoregressive parameter is

77 (c,€) = lim Pr[rrtlJin L(¢,0,b) —minL(0,0,b) < qT(C)],

whereq”(€) satisfies77(0,C) = «. The most powerful invariant test against
the alternativec has power equal t@1"(c) = 7 7(c,c), the envelope power
function

Consider two estimators far.

(1) (€, 8y,8,) = argming a, a,) 2 9(AY; — CY-1/T — a1 — ax(t — 1)/T), with a; =
B> — B1¢/T anda, = —cB,. These are the usud-estimators studied by Lucas
(1995, Thompson(2004), and Hasan and Koenkét997) (see note R

(2) (& 62) = argming g, 2 9(Ay, — cyi—1/T — B2 + ¢B2(t — 1)/T). This estimator is
suggested by Xia¢2001).

In large sample@;c/T is close to zeroThis implies that the three parameters
¢, a;, and a, can be written as just twdecause lim_,,ca; = —a,. Under
correct specification of the errgré exploits the parameter restriction and a test
that rejects for smal€ dominates one that rejects for smallin fact the test
based or¢ is asymptotically admissibJebecause its limiting power function
touches the power envelodé’. The test based o@ is not asymptotically
admissible

Another interesting test is thetest based on thkl-estimatoy which rejects
for small values off = [X f2,]¥?¢, wheref,_, is the residual from a least
squares regression gf , on (1,t/T). This test is not asymptotically admissi-
ble and is dominated by the constrairte@nd LR testswhich reject for small
values of

t= \/T‘ZZ(yH— (t—1)B,)?¢ and

[= —Z[min L(c,0,b) — minL(0,0, b)].
c,b b

3.1. Asymptotic Power Functions

To derive the power functions of the various test statisitowill prove useful
to provide a limiting representation for the objective functiBy Lemma 31
of Phillips (1988,
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1 1
Q(¢,¢) = OA(C,¢) = _%fo Pes(r)dS,(r) + %fo PZ,(r)dr,

whereP; 4(r) = 0.(C — c)W,(r) + ¢(1 — Cr) is a stochastic processhe fol-
lowing theorem is proved in Appendix.A

THEOREM 3 If E¢(g;) = 0 and Assumptions 1 and 2 hold, then

(1) minyL(¢,0,b) — minyL(0,0,b) = min, QA(C, ) — min, QA(0,¢),

(2) (€,¢) = (C,B) = argminc, 5 Q*(C,B),

(3) = a.C\S(W.(1) — Bt)2dt,

@) = —2[ming, 3)9 (C,B) — minz QA(0,B)],

(5) ¢ = oy[wo, [DZ]"[D.dS, + ¢, where R(r) = W(r) — 252 — 3s —
r(3 — 6s))W.(s) ds,

(6) T= (0, /w)[fDZ] Y2 [D.dS, + co,[[ DZ]Y2.

Appendix B provides a closed-form expression for pd@f(c,¢) —
min, Q*(0, ¢) in terms of stochastic integralBecauseQ”(c, ¢) is a nonlinear
function of ¢ and ¢, the asymptotic representation fédoes not admit an an-
alytic solution in terms of random mtegralﬂsppendlx B provides a method for
simulating from the asymptotic distribution 6f f, and].

Figure 3 plots the limiting power functions for the various tests in the model
with a time trend The curves are lower than the corresponding power enve-
lopes for the model with an intercept onjower rises as the tails of the error
distribution become thickefor Gaussian errors 50% power is achieved-ae.5,
and for double exponential errors 50% power is achieved at ab6LiL

Figure 3 shows that the constrainédand [-tests are asymptotically ad-
missible Careful examination of the figure leads to the conclusion that the
constrained-statistic is not asymptotically admissibNeitherM-test is asymp-
totically admissible The ¢-test is point optimal when power is highnd the
[-test is point optimal when power is close to one-hRi6thenberg 1984 de-
scribes similar resuli$e notes that in standafdon—unit root models with no
nuisance parametersecond-order asymptotic theory predicts that estimator-
based tests are optimal when power is high and LR tests are optimal when power
is close to 50%

3.2. Failure of Robustness to Error Misspecification

The analysis in the previous section was carried out under the assumption of
correct specificationso g = f whereg is the function used to form the likeli-
hood function ana " is the density ok,. As discussed in Section2 correct
specification insures that the centering conditiafi(k) = 0 holds If g # f

then B/ (e;) may not equal zeroWhen EJ(g;) # O the test statistics can be-
have badly
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Ficure 3. Asymptotic power curves for unit root tests in the model with a time trend
(x¢ = (1,1)). The curves are drawn under the assumption of correct specificatahe

g function used to form the test statistics is equal to the negative log-density of the
errorsf. (The simulations that appear in this paper were performed by computing sto-
chastic integrals as the realizations of normalized sums of 500 successive draws from a
discrete time Gaussian AR) process with autoregressive parameter d/T. There are
100,000 Monte Carlo replications

PROPOSITION 2 Suppose that g is three times differentiable with
bounded third derivatives and suppose that the errors satisfy Assumption 1. If
Ey (&) # 0 then

(1) Under the local alternative = ¢/T, ¢ > 0 andf - 0. Here['is O,(1) but does
not have the distribution given in Theorem 3. Therefore power against any local
alternative approaches zero.

(2) Under the fixed alternativg < 0, ¢ - —oo, f =5 —o0, and[ - +o0. Power
against any fixed alternative approaches 1.
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(3) If g”(x) > B > 0 for all x, then under both local and fixed alternatives the
best invariant test statistiminyek L(C,0,b) — minyex L(0,0,b) 5 +o0, where K
is a compact set. Power against any fixed or local alternative approaches
zero.

(4) The M-tests based ofi and f have the same limiting distributions as in
Theorem 3.

Because the critical values férandt are always negativeests that reject
for small ¢ andt will have size converging to zero and power against any local
alternative also converging to zefbhe [-test has power equal to size for any
local alternative and its actual size will not match its nominal sizaren in
large samplesBecause the critical values for the best invariant test are also
negative the best invariant test has size and power approaching zero against
both fixed and local alternative¥he M-tests are robust to asymmetric errors
No matter what the error distributipthe M-tests have power against local al-
ternatives and are consistent against fixed alternatives

Thus none of the trend-optimal tests have power against local alternatives
but all except the best invariant test have power approaching 1 against fixed
alternativesin a large sample with a local alternatjstae ¢-, f-, and [-tests will
be dominated by the robudi-tests Furthermoreonly the M-tests are useful
for forming confidence intervals for the local parameterbecause that re-
quires inverting a sequence of testach with power against local alternatives
(for the Gaussian cagssee Elliott and Stogk2001).

On the other handthe ¢- and t-tests have many desirable properties even
whenys(g;) # 0: in large samples they reject a true null hypothesis with prob-
ability less than any desired sjzend they reject a fixed alternatiye<< 0 with
probability approaching.lAlthough thel-test may get the size wrongecause
the statistic is stochastically bounded both under the null and alterngatinees
size distortions may be smallhe magnitude of those distortions is evaluated
by Monte Carlo in Section.3.

To understand the propositiprecall that theM-estimators(¢, &,, d,) mini-
mize the objective function

. C—-c c t—1
Eg<8t T Ui— (al n ,32+,31T> (a; + ¢B>) T >,
whereé; = g, — n andn denotes the parameter that solves(k — n) = 0. If
the condition B (e,) = O fails to hold theré; LN B> + m, and the “recentered”
errors & satisfy b)(&,) = 0. Thus ¢ has the same limiting distribution as in
Theorem 3 with a slight redefinition of the nuisance parametésse note b
This result is shown by Thompsd@B004), and it implies that statement 4 of the
proposition will hold Because there is no free “recentering” parameter in the
objective function for¢, the parameter on the time trend accomplishes the re-
centering If E¢/(s,) # O thenb, - B, + n and¢é > 0, no matter what the
local alternativec.
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Sketch of proof of Proposition 2.To establish statement 1 of the proposi-
tion, consider the model with the local alternatige= c/T. Define ¢ =
(o1, 02) = (TY?26,TY%(b, — B, — m)) andm, = T Y?(—q(t — 1)/T,1).
The likelihood function is

- P1 P, t—1 ,
L(@):Zg<8t+ — B T3/2 + T T _mt¢>'

A Taylor series expansigrombined with the usual asymptotic argume(stse
Phillips, 1988 Lemma 31), implies that

2 uZ; + Re(e),

L(g) = 2 9(8) = =2 1y 2-|—2
wherew, = E[¢/'(8)], r = (&) + Cw,U_1/T, and supex |Rr(¢)| P50 for
any compact selK. By the same argument used to prove Lemma 2s sto-
chastically boundedrherefore by the argmax continuous mapping theorem of
Wellner (1996 p. 286), ¢ = argmin,L(¢) converges in probability to the min-
imizer of the approximating quadratic functioso

¢ = o, S mm| [ md | + 0,(D).

Here 3 m,m; converges in probability to a nonrandom magrand > m, i,
converges to a vector of mean zero Gaussian random varialldarge
samplesp has a mean zero Gaussian distributiaich implies that¢ LN 0,
t 20, andb, 2 B, + .

The distribution ofl is obtained by substituting back into the likelihood
function Under the local alternative = c/T, we obtain

[ = —Z[mm L(p) — m|n L(go)] +0,(1)

- w;1{<T-1/221/3t)2 ~(Zdm) (S mm) (2 med )} + 0,(0).

This is anO,(1) variable but the limiting distribution differs from the one in
Theorem 1

Statement 2 of the proposition says that ¢hef-, and[-tests are consistent
against any fixed alternative < 0. The likelihood function evaluated &y, b)
may be written

E (e —m— (¥ = Y)Uq + [(by = B) Y —m] — (b, — B) (L — ¥(t — 1))).

Becausey, - is stationary under the fixed alternatjus it straightforward to
show using Taylor series—based arguments that ¢/T is consistent fory.
Therefore¢ -2 —o andf -2 —co, and an argument based on a Taylor series
expansion demonstrates tHat> +oo. The proofs are omitted to save space
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To show statement 3 of the propositiatefine the parameter, that satisfies
Ey (e + yu_1 —m,) = 0. For fixedy < 0, & + yu,_, is a stationary random
variable and the expectation existBy a Taylor series expansipn

L(C’07 b2) . g(st + ’yutfl - n'y) w(st + ’yutfl - 17')/) *
T2 T P> T “
p'(ef) |,
+ 2 2Tt (21)27

wherez = —Cu_1/T — B1¢/T+ n, — (b — B2)(1 — c((t — 1))/T) and|eg; +
YU—1 — n,| = |Zf]. If b, € K then many of the terms are asymptotically neg-
ligible. We get the approximation

L(C’O’ b2) _ g(st + ’yut*l - 777)
B
"(&f t—1\]2
+Z¢2(-? )|:7’~y_(b2_32)<1_c T ):| +Op(1)'

If ¢ = 0 this expression is minimized bj = B, + 7, SO Min,ex T *L(0,0,b) =
T X g(e + yu_1 — m,) + 0,(2). If ¢ # 0, then becausg”(x) = B we have

L(¢,0,b,) = g(e  + yu_1—m,)
T - T
B t—1\]2
+EE ny_(bz_,Bz) 1_6? +Op(1)
(g, +yu_,—m,) Bn2c?
229 t YUi—1 ny i ny +Op(1),

T 24

Therefore T~ {min,ex L(€,0,b,) — minyek L(G,0,b,)} = (24)?Bnic? +

0p(1), and the best invariant test convergestte under any fixed alternative
Using the same arguments it is also possible to show that the best invariant test
converges toroo under any local valug = ¢/T (including the nullc = 0). The

proof is omitted to save space u

3.3. Some Monte Carlo Results

Table 2 presents rejection frequencies for various tests in the model with a time
trend The tests are the trend versions of the tests that appeared in Table 1
except that thd-test appears in Table 2 in place of theest This substitution
was made because theest is not asymptotically admissible in the model with
a time trend°

The power losses from using the trend-optinialand [-tests are small for
samples of 100 observations but get larger for samplesO®0LFor the asym-
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TABLE 2. Rejection frequencies for selected tests in the model with a time trend

C tests Trend-optimal LAD Trend-optimal t3
c T v ERS Adap LAD t3 NP ¢ f NP ¢ f
Student'st errors 4 degrees of freedom
0 100 0 0048 Q023 Q030 Q028 Q033 Q030 Q028 Q068 Q055 Q061
—10 100 -0.1 0.300 Q180 0254 Q279 Q0290 Q306 0341 0555 0487 0561
—-10 1000 —0.01 0294 Q304 Q0341 Q370 Q338 Q0431 Q429 Q554 Q544 Q605
—100 1000 —-0.1 1.00 0991 100 100 0910 100 100 100 100 100
Cauchy errors
0 100 0 0024 Q009 Q038 Q043 Q001 Q001 Q001 Q004 Q006 Q006
-10 100 -0.1 0.181 Q155 Q984 Q897 0988 Q976 Q991 Q957 Q999 Q980
-10 1,000 -0.01 0184 Q000 100 0980 100 100 100 0991 100 0997
—100 1000 —-0.1 0.998 Q000 100 0953 100 100 100 0766 100 0991
Log normal errorscentered to have zero mean and unit variance
0 100 0 0036 Q011 Q028 Q020 Q022 Q020 Q019 Q045 Q045 Q050
—10 100 -0.1 0.275 0623 Q577 Q610 0.457 0.692 0.619 0.873 0.811 0.877
-10 1,000 -0.01 0288 Q943 Q803 Q806 0.004 0.059 0.078 0.157 0.502 0.378
—100 1,000 -0.1 100 0952 100 100 0027 100 100 0514 100 100
Chi-squared errorsentered to have zero mean and unit variance
0 100 0 0043 Q008 Q030 Q020 Q032 Q028 Q030 Q048 Q055 Q055
—10 100 —-0.1 0.290 Q704 Q477 Q519 0.288 0.628 0.480 0.807 0.765 0.829
—10 1,000 —0.01 0296 100 0568 0623 0.000 0.034 0.034 0.029 0.359 0.210
—100 1,000 -0.1 100 100 100 100 0003 Q999 Q998 Q197 100 100

Note: The initial condition isuy = 0. The trend coefficients ar€8,, 81) = (1,1). NP denotes the best invariant test evaluated at —6, so the test statistic is mi(—6,0,b) —
min, L (0,0, b). Critical values are calculated by the method described in noh@re are 2@00 Monte Carlo repetitionsThe boldface numbers illustrate thatith asymmetric
errors the trend-optimal tests lose power against the local alternative-10 as the sample size increases
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metric log normal and chi-squared error distributiopswer against the local
alternativeC = —10 declines as sample size grovwwer against the fixed
alternativey = —0.1 increases with sample siZehis can be seen by compar-
ing the results for the samples witf,¢) = (100 —10) against the samples
with (T, ¢) = (1,000 —100). In each cases = —0.1. These results are consis-
tent with Proposition 2which states that power agairst —10 converges to
zero as the sample grows and power agajnst —0.1 converges to.1

In the samples of 000 observationsasymmetric errors cause the NP test to
have low power against both the fixed and local alternatiVéss is consistent
with Proposition 2which predicts that power against both kinds of alternatives
converges to zero as the sample size grows

No test dominates the othefBhe ERS test performs poorly for the Caugchy
log normal and chi-squared errar§he adaptive test does well for the asym-
metric distributions but has very low power with Cauchy errdrie ¢-tests
perform well for all the error distributions and sample sizes but are generally
dominated by the trend-optimat and[-tests for samples of 100

NOTES

1. Methods for constructing these intervals appear in S{@8&91), Hansen(1999, and Elliott
and Stock(2001).

2. Hasan and Koenke1997) propose rank tests instead Mftests Thompson(2004 notes
that under the local-to-zero reparameterizatfon each rank test and error distribution there exists
a test based of with the same asymptotic power functiohhus we will not specifically discuss
the rank tests

3. The parametek that appears in Huberl function is set to B45 for all of the figures in
this paperAt this value ofk, the Huber estimate of a location parameter fronal.i standard nor-
mal data has a relative efficiency of 95% with respect to the m8ae HampelRonchettj Rous-
seeuwand Stahe(1986 p. 399.

4. The log of the density for the mixture distribution is not convAkthough this violates the
assumptions used to derive the asymptotic representations in Appensintations not reported
here suggest that the representations are still valid

5. The M-tests have the same limiting representations as in Theorewth the nuisance pa-
rameterarj, p, andw replaced by Vary (e — n)], Corrl e, ¢ (er — 1)), and — [r (X — n) df(x),
wheren denotes the parameter that solves(k — n) = 0.

6. The test rejects for small values 6f= [2(y,—; — V)21 T Z(yi—1 — V¢ (8)], where
& = Ay, — ayr andéy g = argmin, > g(Ay, — a;). Thompson(2001) shows thafw¢ — & 250

7. Critical values for first four tests are obtained using the methods described in Elliott
et al (1996, Shin and S0(1999, and Thompson200J). In all cases the errors ard.d. and
no correction is made for serial correlatio@ritical values for the trend-optimal tests are ob-
tained by simulating from the asymptotic distributions in TheoreniThe representations de-
pend on the nuisance parametets o, p, and w. For all four tests the nuisance parameters
are estimated using the formulds®® = T2 X(8, — 8% 62 = T * 24 (8) — ¥)? andp =
(&S&‘,,)*T*Z(ét — &)y (&), where & is a residual andeé and ¢ are sample averages
For the t3 estimatow = Ey’(s;) is estimated byl ~* > ¢'(&,). For the LAD testw = 2f (1),
which is estimated by the usual kernel estimator of the densit§; @valuated at zerof (1) =
(hT) 13 ¢(&,/h), where ¢ is the density function of a standard normal variable &nis the
bandwidth 1066, T ~¥®. For the Neyman—Pearson tesis not estimated and there is no residual
so we use the nuisance parameters computed fo€ #stimator
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8. | thank Gary Chamberlain for making me aware of the links between Laplace’s integration
problem and this one

9. The M-tests have the same limiting representations as in Theorewtt8the nuisance pa-
rameters redefined as in note 5

10. As was the case for Table the ¢ tests are the Thompsd2001) versions of the testdn

the model with a time trend the test rejects for small value& of[ > r2] [T X r,4(&,)], where
ris the residual from a least squares regression-afon (1,t) andé; = Ay; — & r — &, rt/T With
(81 r, 82,r) = Argmin,, ,,) > 9(Ay, — a; — axt/T). Thompson(2001) shows that w¢ — ¢ 20
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APPENDIX A: PROOFS

In this Appendix we prove Theorems 1-Throughout the Appendix it will prove useful
to make use of the normalized likelihoad(c, by, ) = L(C,by, B + T Y2¢) —
> d(g). The remainder ternR;(C, by, ¢) is defined to be the difference betwegrand
its quadratic approximatio@:

L(C,by, ) = Q(C, ) + Ry (C, by, ).

Preliminary Lemmas

LEMMA 1. Let K denote a compact set.Hi)(e;) = 0, and if Assumptions 1 and 2
hold, thensupe, p,. syc | Rr (€, by, )| - 0.

We will show thatRt (¢, by, ¢) 20 pointwise in(¢, by, ¢). If L(C, by, ¢) were a con-
vex function of(¢, by, ¢) then pointwise convergence would imply uniform convergence
over compact setghis is shown in Hjort and Pollard 993 Lemma 1. However even
thoughg(x) is convex inx, £(C, by, ¢) is not a convex function ofc, by, ¢) because
d(ey + (by — B1)C/T — z(C,¢)) is a nonlinear function of the parameters

A reparameterization allows us to restore the link between pointwise and uniform
convergencelLetw, = T~ Y2(T Y2 T-Y2y,_,,1,(t — 1)/T)" and® = (64,65, 03,604) =
(€(B1 — by),c — c,¢,—¢C)'. We have the reparameterized objective function and re-
mainder term

L(C, by, ) = Lr(0) = E g(ey —w6) — 2 9(ey),
Rr(0) = La(0) + S (e)w0 — 5 S (w(0)?

Becausgy is convex and, — W/ @ is a linear function of), £r(#) is a convex function

of 6. Therefore ifR(6) RN pointwise inf then the convergence is uniform féin a
compact setThe relationship between the original remainder term and the reparameter-
ized remainder is

Rr(C, by, ¢) = Ry (0) + ﬁT,2(0),

0f 0

_ %) [7) [7) t—1
Rro(0) = =0, T 1 X ¢h(e) + 52{1.—2 + 2;(% U1+ TT?}Z + 0, m)}
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The equality holds as long & satisfies the constraim, = —63(6, + c). For any
compact setk C R3, let K C R* denote a compact set large enough so that if
{64, 65,05} € K then{0,, 65, 63,—65(6, + ¢)} € K. We now have a bound for the remain-

derRy:
sup |Ry(Cby,¢)=  sup IR (0) + RJT,2(9)‘
(¢, by, p)EK 0EK, 04=—03(0,+cC)

= sup|Ry(6)| + sup| Ry 2(6)].
oeK oeK

It is straightforward to show that sppz|Rr2(6)| — O in probability for any compact
setK. So to prove the theorem it is enough to show tRatd) 20 pointwise inf. The
pointwise convergence @&&;(6) was proved in Lemma 1 of Thompsé2004). n

LEMMA 2. In the model with a time trend, defir&,b,) = argmin, ,,, L(C,0,b,)
and ¢ = \T (b, — B,). If E¢s(g,) = 0, and if Assumptions 1 and 2 hold, thérand ¢
are both stochastically bounded.

If £(¢,0,¢) were convex in the parameters the argument in Section 3 of P¢llaed)
could be used to show that the estimattésp) are stochastically boundetiowever
even thoughg(x) is convex inx, £(C,0,¢) is not a convex function ofc, ¢) because
g(ey — B1E/T — z(E,¢)) is a nonlinear function of the parameteW¥e will pursue a
related method of proof

A reparameterization allows us to apply the arguments of Po({lE881) to this prob-
lem. Defined = (C—c, ¢ + B1C/T, —¢pC), wy = T Y2(TY2u,_4, 1, (t — 1)/T), and

Lr(8) = £(€,0,¢) =D g(e, — W 0).

Note that this reparameterization differs from the reparameterization in Lemma 1 be-
cause here we takb; = 0. For somek > 0, define the compact s = {(C,):
[c—c|] <k |¢+ T V2B.¢c|l < k}. For any(C,¢) & K, the corresponding vector is
equal tour wherew is a vector with unit length andis a scalar withr > k. Because is
convex ande; — w; 6 is a linear function of), Lr(#) is a convex function of. Sok =

(1= X)0 + Ar for A = k/r, and by the convexity ofg(6),

Lr(wk) = (1— 1) Lg(0) + ALg(vr), and Lg(0) =0,

which implies thatCgr(vr) = (r/k) Lr(vk). In the proof of Lemma 1 it was found that
the approximation

w

5 > (W )% + 0,(1)

Lr(0) = =2 ()W 0 +
will hold uniformly overé in a compact setSo for fixedk,

r
Lg(or) = -

wk?
. [7 v’ <2W1W{>v — kD g(s)Wv + op(l)].
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By Lemma 31 of Phillips (1988, > w,w; converges in distribution to a positive def-
inite matrix with diagonal elements bounded away from zero with probability Timere-
fore there existg > 0 so that inf,_; v" (2 w,W)v > €. So

inf  £(c,0,¢) =L >[@—k”2 ”+ 1}
(C,Izp)%K (€.0,¢) = Lilvr) = 2 Wt (&) Op() .

Because|X w, ¢/ (g;)| is stochastically boundetsee Phillips 1988 Lemma 31), we
can choosek large enough so that?we/2 — K||> W, i/ (g,)|| > € with probability arbi-
trarily close to 1 We have that in large samples

inf  £(c,0,4) = e + 0,(1) > 0= £(0,0,0) = inf £(,0,$) = L(6,0, ).
(¢, p)EK C. ¢

So in large samples the estimatarsind ¢ must be contained itlK. Thus (¢ ¢) are
stochastically bounde@nd the theorem is proved n

Proofs of Theorems
Proof of Theorem 1. Notice thatL(¢,0) — L(0,0) = £(¢,0,0) — £(0,0,0) and that
¢ = argmin. £(¢,0,0). By Lemma 1

£(6,0,0) = —(€— )T S (81 + (C— )2 ET*Z S 2, +0,(1).

The asymptotic representation foKc,0) — L(0,0) follows from the following weak
convergence resulivhich was proved by Phillip§1988 see Lemma 3):

(Tl E l/j(st)utfla T72 E ut21> = <0-So-l//JWCdSp7 a-aszcz>

Becausey is convex £(¢,0,0) is convex inc. By slightly modifying the argument in
Section 3 of Pollard1991), it can be shown that the convexity 6f¢,0,0) implies that
¢ converges weakly to the minimizer of the quadratic approximagg,0,0), so

_ T712 J(e)Upq

¢
wT 2 2 uz 4

+c+0,(1).

Therefore¢ = a'w[wO'EfWCZ]’lfWCdSp + ¢, and the distribution of and [ follows
similarly. The representations f@randt are provided in Theorem 1 of Thomps(2004).
|

Proof of Theorem 2. To prove the theorem it is sufficient to show that

| expi-ricpuando= [ expi-atcands + o m. A1)
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To see that this is indeed sufficiemtotice that the best invariant test rejects for large
values of

fexp{fL(C, By, b)kdb fexp{—L(c,,el, b) + 3 g(e,) | db

fexp{—L(o, B1,b)} db fexp{—L(o,,el, b) + ¥ g(e,) | db

[expi-c(c.pr o a0

[ exvi-c0.p, 0100

where the last equality follows from the change of variahles VT (b — ,). The
discussion in Section 3 indicates that if the approximatiofArl) holds then the best
invariant test is asymptotically equivalent to rejecting for small values of

This is asymptotically equivalent to mjh(¢,0,b) — min,L(0,0,b). To see thisnotice
that

mbin L(¢,0,b) — mbin L(0,0,b) = min £(¢,0,¢) — min £(0,0, ¢).
) ®

The convexity ofg implies that for fixedc, £(C,0, ¢) is convex in¢g. By slightly mod-
ifying the method in Section 3 of Pollafd991), one can use the convexity to show that
ming L£(C,0, ¢) is asymptotically equal to miyQ(C¢, ¢), the quadratic approximation given
in Lemma 1 So in large samples myr(C,0,¢) — ming, £(0,0, ¢) is equivalent to the
statistic in(A.2). Thus verifying the condition ifA.1) is sufficient to prove the theorem

To verify (A.1) it will prove convenient to break the integral into two pafsr any
positivek,

© k
f eXp{—ﬁ(C,ﬁ1,¢)}d¢:ﬁkexm—£(5,31,¢)}d¢+I°(k,C),

with Z¢(k,€) = [ge[—k k1€XP{—L(C, B1, $)} d. For any fixedk, Lemma 1 implies that

k k
| expi-ccpuonas = [ ewi-oands o,

The integral on the right-hand side admits an analytic solulitging that analytic so-
lution it is straightforward to show that for adl> 0 we can pickk large enough so that

lim Pr[ < e] =1.
T—oo —

k ©
[ et onas | exst-arc.ondp
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It remains to show thaf ¢(k, ¢) is asymptotically negligibleBecauseL(C, B1, ¢) is
convex ing (for fixed €), then if ¢ > kthenk = (1 — A)0 + A¢ and L(C, B, k) =
(1= A)L(C,B1,0) + AL(C, B1, d) with A = k/¢p. Therefore

(if p > k) thenL(c,Bq,¢) = % [L(C,B1, k) — L(C,B1,0)] + L(C,B1,0).

Similarly,

if $ < —k thenL(c,B.,¢) = Li‘ [£(c,B1,—k) — L(C, B1,0)] + L(C, B1,0).

By Lemma 1 for fixed k we have

R s P

2T T

w(C— t—1
+ k[%}:utﬂ(l— C?>:| +0,().

By the usual asymptotic argumentsn_, T 1>(1 — ¢(t — 1)/T)2=¢c%3 — ¢ +
1= 3, and the other terms a@,(1). So if |¢| > k then

|¢|
L(C,B1,¢) = m [k?%/4 + kO, (1) + 0,(1)] + O, (D).
Plugging this bound into the integrale obtain

Z°(k,¢) = exp[O,(1)] Lﬂim exp{fl%‘ [k%4 + kO,(1) + op(l)]} do

2k exp{—[k%4 + kO, (1) + 0,(1)]}
k%4 + kO,(1) + 0,(1)

= exp[0,(1)]

Thus for anye > 0, we can choosk large enough so that lif, .. Pr{Z¢(k,¢) < e] = 1.
Thus the condition ifA.1) holds and the theorem is proved n

Proof of Theorem 3. In the proof of Theorem 2wve showed that

mgn L(¢,0,b) — mbin L(0,0,b) = mdinQ(C, ¢) — m(gnQ(O, ¢) + 0p(1).

Lemma 31 of Phillips (1988 implies thatQ(c, ¢) = QA(C, ¢). Lemma 31 of Phillips
(1988 also implies that argmjnQ(c, ¢) is stochastically boundednd min, Q(¢, ¢) =
min, QA(C, ¢p) by the argmax continuous mapping theorem of Well(96 p. 286).
We have derived the limiting representation for the best invariant test

The argmax continuous mapping theorem also provides the limiting resudt fo-
tice that(¢, $) = argmin. , £(C,0,¢). Because by Lemma @ and ¢ are stochastically
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bounded ¢ and ¢ converge weakly tdC, B) = argmine, 5 Q*(C, B). The limiting dis-
tributions off and{ follow from a similar argument

Limiting representations fot andf are provided in Theorem 1 of Thomps@004).

|

APPENDIX B: SIMULATING THE
ASYMPTOTIC DISTRIBUTIONS

Theorem 3 provides asymptotic representations for various test statistics in the model
with a time trendIn this Appendix we describe how to simulate from those distributions
The best invariant test converges to p@*(c, ) — min, Q*(0, ¢). This is equal to

—o, [t o - veroras,m + 2 [z e - vewoyat

where

f(lf cr){o,dS,(r) — o,w(C— c)W,(r)dr}(1—Cs)

Vc(t’ C) = O-S(C - C)WC(S) + w(l —Cc+ 52/3)

Simulating from this distribution is straightforward

The normalized MLE< and¢ = \T (b, — B,) converge weakly to the random vari-
ablesC and B that minimize the stochastic objective functig(C, B). | was unable to
derive a simple expression fGrand B. Instead the variables are expressed implicitly as
solutions to the minimization problerRewrite the objective functian

QAC,B) = o, Aq+ Co, A, + BA; + BCA,

A A A A
+ [Eagfwg}cu — B2— —— BC- [Afrwc]schr o R

20 20, a,

& & &

whereA = wo, /oy, and

A
Ay = fwc(r)dSp(r) + > cszcz,

A = —jWC(r)dSp(r) - Achcz,
A;=S,(1) — Acfwc(r),
A= ffrdsp(r) + /\fwc(r) + Acfrwc(r).
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The expressio®”(C, B) has at least one minimurfiake the derivatives of the function
with respect taC and B:

IQA(C,B)

=0, A+ BA, + /\UfWZ C—LBZ— ZAfrW BC+LBZC
ac e M1 4 & c 2 (o] 3 )

O, &

d0A(C,B) A A A
———— =A;+CA,+ —B——BC— || W, [C?2+ — BC2
B g, g, 3

Te

The values o and B that minimizeQ*(C, B) set the partial derivatives to zerBolve
90QA(C,B)/aB = 0 for B to obtain

[)\frwc] C2—A;—CA,

(o
B(C) ==
©=5 1-Cc+C¥3

Substitute the solution foB(C) into the equatioQ*(C, B)/dC = 0 to show that is
the root of a fifth-order polynomial

0= [18AA, — 18A,A, — 9AZ]

+ C[GA?, —18A2 — 36A, A + 18A2JWC2 + 36<frwc> AA3]

+C2|9A2 + 30A, A + BALA, — 36)\2wa2 +18A(3A, — As) Jch]

I 2

+c? 30A2fwg - 36<frwc> A2 —12A, ) — 36A4)\frwc}
I 2

+c* 27/\2< f ch> — 122 f W2 + 2A, X + 6A, A f rWC}
I 2

+C5 2,\2fwg—6<frwc) ,\2].

Notice that becaus@,, A;, As, and A, depend orp and A and on no other nuisance
parametersthe distribution ofC depends only op and A.

There is no known closed-form solution for the root of a general fifth-order poly-
nomial Simulation was done from the asymptotic distribution ébby the following
method Simulate a draw from the joint distribution of the five coefficients of the poly-
nomial Use a software packag®atlab version 3 was used hejeo numerically cal-
culate the roots of the resulting polynomi@he real root that maximizeQA(C, B(C))
is the simulated draw from the asymptotic distribution(ofThe corresponding draw
from the asymptotic distribution of thiestatistic is

nt | [we o 5 e - 25 fooan
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The stochastic integrals were computed as the realizations of normalized sums of 500
successive draws from a discrete time GaussialARrocess with autoregressive pa-
rameter 1- ¢/500

The simulation procedure was repeated,000 times for each value of, p, andc.
The asymptotic critical value for a size 1&% test that rejects for smadl was calcu-
lated as the 1Q00xth element of the vector of sorted draws farThe power of the
test at the alternative was calculated as the proportion of draws below the critical
value A similar procedure was used to calculate the critical value and power of the test
based on thé-statistic
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