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This paper is concerned with the initial boundary-value problem for the p-system
with nonlinear damping. We prove the existence of a global smooth solution under
the assumption that only the C0-norm of the derivative of the initial data is
sufficiently small, while the C0-norm of the initial data is not necessarily small. The
proof is based on several key a priori estimates, the maximum principle and the
characteristic method.

1. Introduction

In this paper, we consider the existence of a global smooth solution to the initial
boundary-value problem for the so-called p-system with nonlinear damping

vt − ux = 0,

ut + p(v)x = −αu − g(u), x ∈ R
+, t > 0,

}
(1.1)

with the initial data
(v(x, 0), u(x, 0)) = (v0(x), u0(x)) (1.2)

and the null Dirichlet boundary condition

u|x=0 = 0. (1.3)

System (1.1) can be used to model the compressible flow through porous media.
Here, v > 0 is the specific volume, u is the velocity, α is a positive constant and
g(u) is a smooth function satisfying g(0) = 0 and g′(u) � 0. The pressure p(v)
satisfies the assumptions in (P).

(P) p(v) ∈ C2(0, ∞), p′(v) < 0, p′′(v) > 0 for v ∈ (0, ∞).

The motion of the adiabatic gas flow through porous media can be modelled by the
damped hyperbolic system

vt − ux = 0,

ut + p(v, s)x = −αu, t > 0,

st = 0.

⎫⎪⎬
⎪⎭ (1.4)
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For the isentropic flow, namely, s = const., (1.4) takes the form as in (1.1), that is,

vt − ux = 0,

ut + p(v)x = −αu, x ∈ R, t > 0.

}
(1.5)

The global existence of smooth solutions for the Cauchy problem of system (1.4)
has been studied by many authors (see [5,23]). For the Cauchy problem of (1.5), the
global existence of smooth solutions with small or large initial data has been stud-
ied by many authors (see [12–16, 22]). For the p-system under other damping and
relaxation conditions, we refer the reader to [16,18]. Yang and Zhu [18] considered
the Cauchy problem of the p-system with relaxation:

vt − ux = 0,

ut + p(v)x =
1
ε
(f(v) − u),

⎫⎬
⎭ (1.6)

with the initial data (1.2), where ε > 0 is the relaxation time and f(v) ∈ C1(0, ∞)
satisfies the subcharacteristic condition

−
√

−p′(v) < f ′(v) <
√

−p′(v).

They proved the global existence of the smooth solution under the assumption that
only the C0-norm of the derivative of the initial data is sufficiently small, while the
C0-norm of the initial data is not necessarily small. Wang and Li [16] studied the
damping p-system

vt − ux = 0,

ut + p(v)x = −2αu,

}
(1.7)

and pointed out that the Cauchy problem (1.7) admits a unique global smooth
solution under the assumption that only the C0-norm of the initial data is suitably
small, while the C1-norm of the initial data is not necessarily small. Consequently,
Zhu and Zhao [25] extended the results of [16] to the case of nonlinear dissipation
and found the same results. For other related results in this direction, we refer the
reader to [1, 3, 7–11,17,19,24,26].

For the initial boundary-value problem, because of the effect of the boundary
value, the characteristic method becomes more difficult. Hsiao and Pan [4] consid-
ered system (1.4) with the initial data

(v, u, s)(x, t) = (v0, u0, s0)

and the boundary value

u(0, t) = u(1, t) = 0, t � 0.

When p(v, s) = (γ − 1)v−γes(1 < γ < 3), they prove the global existence of the
smooth solution by using the characteristic method. For the generalized function
p(v), the global existence of the solution was proved by Jiang and Ruan [6]. However,
the existence of global smooth solutions to the initial boundary-value problem for
a p-system with nonlinear damping is still an open problem. The main purpose of
this paper is to give a conclusive answer to this problem.
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Remark 1.1. In this paper, we only consider the case of the isentropic flow; for
the non-isentropic flow, we can get the same results by using a similar method and
the proof will be more complicated.

2. Existence of a global smooth solution

In this section, we consider the existence of global smooth solutions for the ini-
tial boundary-value problem (1.1)–(1.3). Since the local existence and unique-
ness of a C1-solution can be proved by standard arguments, such as the Brouwer
fixed-point theorem, we need only establish the uniform C1-estimates for the solu-
tion (v(x, t), u(x, t)) of (1.1)–(1.3) on the domain where the classical solution exists.

System (1.1) has two eigenvalues:

λ = −
√

−p′(v), µ =
√

−p′(v), (2.1)

and the Riemann invariants are taken as

r = u + h(v), s = u − h(v), (2.2)

where
h(v) =

∫ v

1
µ(τ) dτ. (2.3)

First, we rewrite (1.1)–(1.3) in the diagonal form

rt + λ(v)rx = −α

2
(r + s) − g

(
r + s

2

)
,

st + µ(v)sx = −α

2
(r + s) − g

(
r + s

2

)
,

(r(x, 0), s(x, 0)) = (u0(x) + h(v0), u0(x) − h(v0)), x ∈ R
+,

(r + s)(0, t) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

According to the local existence theorem of classical solutions to first-order quasilin-
ear hyperbolic systems (see [2]), for the diagonal form (2.4), there exists a constant
T > 0 that depends only on the C1-norm of the initial data such that, in the domain

π(T ) = {(x, t) : x ∈ R
+, 0 � t � T},

(2.4) possesses a unique smooth solution (r(x, t), s(x, t)), provided the a priori
hypothesis (H) holds.

(H) 0 < v < ∞.

In order to get the global existence of the smooth solutions on t � 0, it is sufficient
to prove that the C1-norm of the solution is bounded on the domain where the
classical solution exists. To do this, we first give C0-norm estimates of the solution.

Lemma 2.1. Under the assumptions in (P), if the initial data (r0(x), s0(x)) ∈
C1(R+) and there exists a positive constant M0 such that

|r0(x)| � M0, |s0(x)| � M0, (2.5)
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then, under the a priori hypothesis in (H), the solution (r(x, t), s(x, t)) to the initial
boundary-value problem (2.4) satisfies the estimates

|r(x, t)| � M0, |s(x, t)| � M0. (2.6)

Proof. We prove the lemma by applying the maximum principle (see [18,20]).
Let

r(x, t) = r̄(x, t) + M0 +
N

L
(x + Cet),

−s(x, t) = s̄(x, t) + M0 +
N

L
(x + Cet),

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

where C is a positive constant to be defined below, L is a constant, which can
be arbitrary large, N is an upper bound of |r(x, t)|, |s(x, t)| on π(T ) (N can be
obtained by the local existence of the smooth solution).

From (2.4) and (2.7), it is easy to deduce that r̄(x, t), s̄(x, t) satisfy

r̄t + λ(v)r̄x +
N

L
(Cet + λ) = − 1

2 (α + g′(ξ))(r̄ − s̄),

s̄t + µ(v)s̄x +
N

L
(Cet + µ) = − 1

2 (α + g′(ξ))(s̄ − r̄),

⎫⎪⎪⎬
⎪⎪⎭ (2.8)

where ξ is between 0 and 1
2 (r̄ − s̄). We consider system (2.8) in the region [0, L] ×

[0, T ]; then, the initial and boundary conditions are

r̄(x, 0) = r(x, 0) − M0 − N

L
(x + C) < 0,

s̄(x, 0) = −s(x, 0) − M0 − N

L
(x + C) < 0,

r̄(L, t) = r(L, t) − M0 − N − N

L
Cet < 0,

s̄(L, t) = −s(L, t) − M0 − N − N

L
Cet < 0,

r̄(0, t) − s̄(0, t) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

From (2.8) and (2.9), we claim that

r̄(x, t) < 0, s̄(x, t) < 0, (x, t) ∈ [0, L] × [0, T ]. (2.10)

Otherwise, we let

t̄ = sup
t

{t | r̄(x, τ) < 0, s̄(x, τ) < 0, ∀x ∈ [0, L], τ ∈ (0, t)}.

Then,
0 < t̄ � T < +∞.

By the continuity of r̄(x, t) and s̄(x, t), there exists (x̄, t̄) with x̄ ∈ [0, L) such that
one of the following cases holds.
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(1) When x̄ ∈ (0, L),

r̄(x̄, t̄) = 0, s̄(x̄, t̄) � 0,
∂r̄(x, t)

∂x

∣∣∣∣
(x̄,t̄)

= 0,
∂r̄(x, t)

∂t

∣∣∣∣
(x̄,t̄)

� 0

or

s̄(x̄, t̄) = 0, r̄(x̄, t̄) � 0,
∂s̄(x, t)

∂x

∣∣∣∣
(x̄,t̄)

= 0,
∂s̄(x, t)

∂t

∣∣∣∣
(x̄,t̄)

� 0.

(2) When x̄ = 0, from (2.4)4 and (2.7), we have that

r̄(x̄, t̄) = s̄(x̄, t̄) = 0; then
∂r̄(x, t)

∂x

∣∣∣∣
(x̄,t̄)

� 0,
∂r̄(x, t)

∂t

∣∣∣∣
(x̄,t̄)

� 0.

For the above cases, using the maximum principle (see [18, 20]), when C > 2 supµ
for all v under consideration, we will have a contradiction. Therefore, (2.10) holds.

From (2.7) and (2.10), we get that

r(x, t) < M0 +
N

L
(x + Cet),

s(x, t) > −M0 − N

L
(x + Cet).

⎫⎪⎪⎬
⎪⎪⎭ (2.11)

Since L can be arbitrarily large, by letting L → ∞ we have that

r(x, t) � M0, s(x, t) � −M0.

Similarly, if we let

r(x, t) = ¯̄r(x, t) − M0 − N

L
(x + Cet),

−s(x, t) = ¯̄s(x, t) − M0 − N

L
(x + Cet),

⎫⎪⎪⎬
⎪⎪⎭ (2.12)

we can show that
r(x, t) � −M0, s(x, t) � M0.

Hence,
|r(x, t)| � M0, |s(x, t)| � M0.

Lemma 2.1 is proved.

Lemma 2.2. Consider the following condition.

(G) M0 < min{−h(0), h(∞)}.

Under the hypothesis of lemma 2.1, if the initial data (r(x, 0), s(x, 0)) satisfy (G),
then the smooth solution of (v(x, t), u(x, t)) of (1.1)–(1.3) satisfies

|u(x, t)| � M0, 0 < v∗ � v(x, t) � v∗ < ∞, (2.13)

where v∗ and v∗ are constants that depend only on M0, but are independent of α.
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Proof. From (2.2), we have that

u =
r + s

2
, 2h(v) = 2

∫ v

1

√
−p′(τ) dτ = r − s. (2.14)

Hence, we get from (2.6), (G) and (2.14) that

|u(x, t)| � 1
2 (|r| + |s|) � M0,

2h(0) < −2M0 � 2h(v) = r − s � 2M0 < 2h(∞).

From h′(v) =
√

−p′(v) > 0, there exist v∗ > 0 and v∗ < ∞ such that

0 < v∗ � v � v∗ < ∞.

This completes the proof of lemma 2.2.

We next estimate the derivatives of r(x, t) and s(x, t). Because the value ux(0, t)
cannot be determined, we cannot use the maximum principle as in [18]. But, noting
that |r(0, t)| = |s(0, t)| from (2.4)4, we can prove the following lemma by using the
characteristic method as in [4, 6, 21].

Lemma 2.3. Under the assumptions of lemmas 2.1 and 2.2, and if there exists a
small enough constant M1 such that

|r′
0(x)| � αM1, |s′

0(x)| � αM1, (2.15)

then the solution (r(x, t), s(x, t)) of (2.4) in the domain where the classical solution
exists has the following estimates:

|rx(x, t)| � αM2, |sx(x, t)| � αM2, (2.16)

where M2 is a positive constant independent of α.

Proof. From (2.2)–(2.4) and (1.1), we have that

d
dλt

(r − s) = 2µsx,
d

dµt
(r − s) = 2µrx, (2.17)

dv

dλt
= sx,

dv

dµt
= rx, vx =

1
2
√

−p′(v)
(rx − sx), (2.18)

where
d

dλt
=

∂

∂t
+ λ

∂

∂x
,

d
dµt

=
∂

∂t
+ µ

∂

∂x
.

Differentiating (2.4)1 and (2.4)2 with respect to x we have, respectively,

(rx)t + λ(v)(rx)x = −α

2
(rx + sx) +

p′′(v)
4p′(v)

(rx − sx)rx − 1
2
g′

(
r + s

2

)
(rx + sx),

(sx)t + µ(v)(sx)x = −α

2
(rx + sx) +

p′′(v)
4p′(v)

(sx − rx)sx − 1
2
g′

(
r + s

2

)
(rx + sx).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.19)
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Let
F (x, t) = (−p′(v))1/2rx, G(x, t) = (−p′(v))1/2sx. (2.20)

From (2.17)–(2.19), we deduce that (F (x, t), G(x, t)) satisfies

Ft + λ(v)Fx = −A1(F + G),
Gt + µ(v)Gx = −A2(F + G),

}
(2.21)

with the initial boundary data

F (x, 0) := F0 = ((−p′(v))1/2rx)(x, 0),

G(x, 0) := G0 = ((−p′(v))1/2sx)(x, 0),

F (0, t) − G(0, t) = 0,

⎫⎪⎬
⎪⎭ (2.22)

where

A1(v, u, F ) =
α

2
+

p′′(v)
4(−p′(v))3/2 F +

g′(u)
2

,

A2(v, u, G) =
α

2
+

p′′(v)
4(−p′(v))3/2 G +

g′(u)
2

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.23)

Let

B1 = sup
v∈[v∗,v∗]

p′′(v)
4(−p′(v))3/2 .

If we assume that in the domain where the smooth solution exists

|F (x, t)| � α

4B1
, |G(x, t)| � α

4B1
, (2.24)

noting that g′(u) � 0, we have that

A1(v, u, F ) > 0, A2(v, u, G) > 0. (2.25)

Next, we show that

sup
0�τ�t

max{‖F (·, τ)‖L∞ , ‖G(·, τ)‖L∞} � max{‖F0‖L∞ , ‖G0‖L∞}. (2.26)

Let
M(t) = sup

0�τ�t
max{‖F (·, τ)‖L∞ , ‖G(·, τ)‖L∞}.

Let xλ = xλ(a, t) and xµ = xµ(b, t) be the λ-characteristic curve and the µ-charac-
teristic curve passing through the points (a, 0) and (b, 0), respectively, i.e.

dxλ(a, t)
dt

= λ(v(xλ(a, t)), t),

xλ(a, 0) = a

⎫⎬
⎭ (2.27)

and
dxµ(b, t)

dt
= µ(v(xµ(b, t)), t),

xµ(b, 0) = b.

⎫⎬
⎭ (2.28)

For every fixed T > 0, there are only three cases.
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Case 1. M(T ) is reached by F (x, t) first at some point (x, t) ∈ [0, ∞) × [0, T ].
Then, integrating (2.21)1 along the λ-characteristic curve that intersects t = 0 at
(x1, 0), we have that

F (x, t) = F0(x1) exp
(

−
∫ t

0
A1 ds

)
+

∫ t

0
(−A1G) exp

(
−

∫ t

τ

A1 ds

)
dτ. (2.29)

Then,

|F (x, t)| � |F0(x1)| exp
(

−
∫ t

0
A1 ds

)
+

∫ t

0
| − A1G| exp

(
−

∫ t

τ

A1 ds

)
dτ

� |F0(x1)| exp
(

−
∫ t

0
A1 ds

)
+ M(T )

∫ t

0
A1 exp

(
−

∫ t

τ

A1 ds

)
dτ

� |F0(x1)| exp
(

−
∫ t

0
A1 ds

)
+ M(T )

(
1 − exp

(
−

∫ t

0
A1 ds

))
. (2.30)

Case 2. M(T ) is reached by G(x, t) first at some point (x, t) ∈ [0, ∞) × [0, T ].
From (x, t), we draw a forward characteristic that intersects x = 0 at (0, t1). Then,
integrating (2.21)2 along the µ-characteristic curve, we have that

|G(x, t)| � |G(0, t1)| exp
(

−
∫ t

t1

A2 ds

)
+

∫ t

t1

| − A2F | exp
(

−
∫ t

τ

A2 ds

)
dτ

� |G(0, t1)| exp
(

−
∫ t

t1

A2 ds

)
+ M(T )

(
1 − exp

(
−

∫ t

t1

A2 ds

))
. (2.31)

Then, from (0, t1), we draw a λ-characteristic curve that intersects t = 0 at (x2, 0),
along this characteristic, similarly to (2.30), and, noting (2.22)3, we have that

|G(0, t1)| = |F (0, t1)|

� |F0(x2)| exp
(

−
∫ t1

0
A1 ds

)
+

∫ t1

0
| − A1G| exp

(
−

∫ t1

τ

A1 ds

)
dτ

� |F0(x2)| exp
(

−
∫ t1

0
A1 ds

)
+ M(T )

∫ t1

0
A1 exp

(
−

∫ t1

τ

A1 ds

)
dτ

� |F0(x2)| exp
(

−
∫ t1

0
A1 ds

)
+ M(T )

(
1 − exp

(
−

∫ t1

0
A1 ds

))
.

(2.32)

Substituting (2.32) into (2.31), we have that

|G(x, t)| � exp
(

−
∫ t

t1

A2 ds

)
exp

(
−

∫ t1

0
A1 ds

)
|F0(x2)|

+
(

1 − exp
(

−
∫ t

t1

A2 ds

)
exp

(
−

∫ t1

0
A1 ds

))
M(T ). (2.33)

Case 3. M(T ) is reached by G(x, t) first at some point (x, t) ∈ [0, ∞) × [0, T ].
From (x, t), we draw a forward characteristic that intersects t = 0 at (x3, 0). Then,
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integrating (2.21)2 along the µ-characteristic curve, we have that

G(x, t) = G0(x3) exp
(

−
∫ t

0
A2 ds

)
+

∫ t

0
(−A2F ) exp

(
−

∫ t

τ

A2 ds

)
dτ. (2.34)

Then,

|G(x, t)| � |G0(x3)| exp
(

−
∫ t

0
A2 ds

)
+

∫ t

0
| − A2F | exp

(
−

∫ t

τ

A2 ds

)
dτ

� |G0(x3)| exp
(

−
∫ t

0
A2 ds

)
+ M(T )

∫ t

0
A2 exp

(
−

∫ t

τ

A2 ds

)
dτ

� |G0(x3)| exp
(

−
∫ t

0
A2 ds

)
+ M(T )

(
1 − exp

(
−

∫ t

0
A2 ds

))
. (2.35)

Noting that A1, A2 > 0 from (2.25), then

exp
(

−
∫ t

0
A1 ds

)
< 1, exp

(
−

∫ t

0
A2 ds

)
< 1

and

exp
(

−
∫ t

t1

A2 ds

)
exp

(
−

∫ t1

0
A1 ds

)
< 1.

From (2.30), (2.33) and (2.35), we can prove (2.26). Finally, we show that the a
priori assumption (2.24) can be closed. In fact, from (2.22), we have that

|F0| � B2αM1, |G0| � B2αM1, (2.36)

where
B2 = sup

v∈[v∗,v∗]

√
−p′(v).

Therefore, (2.24) holds provided that M5 is sufficiently small, i.e. M1 < 1/8B1B2.
Then, combining (2.20) and (2.24), we prove (2.16). This completes the proof of
lemma 2.3.

By lemmas 2.1–2.3, we have the following main theorem.

Theorem 2.4. Assume that (P) and (G) hold, and that if there exist positive con-
stants v1, v2, M ′, M ′′ such that

v1 � v0(x) � v2, |u0(x)| � M ′, (2.37)

|r′
0(x)| � αM ′′, |s′

0(x)| � αM ′′, (2.38)

where M ′′ is a sufficiently small constant, then the initial boundary-value problem
(1.1)–(1.3) admits a unique global smooth solution (v(x, t), u(x, t)) satisfying

v∗ � v(x, t) � v∗, |u(x, t)| � M ′, (2.39)

|vx(x, t)| � CM ′′, |ux(x, t)| � CM ′′, (2.40)

where v∗, v∗ are two positive constants depending only on v1, v2, M ′, M ′′.
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