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A reduced model is developed for low-Rossby-number convection in a plane layer
geometry with no-slip upper and lower boundaries held at fixed temperatures. A
complete description of the dynamics requires the existence of three distinct regions
within the fluid layer: a geostrophically balanced interior where fluid motions are
predominantly aligned with the axis of rotation, Ekman boundary layers immediately
adjacent to the bounding plates, and thermal wind layers driven by Ekman pumping
in between. The reduced model uses a classical Ekman pumping parameterization
to alleviate the need to resolve the Ekman boundary layers. Results are presented
for both linear stability theory and a special class of nonlinear solutions described
by a single horizontal spatial wavenumber. It is shown that Ekman pumping (which
correlates positively with interior convection) allows for significant enhancement in
the heat transport relative to that observed in simulations with stress-free boundaries.
Without the intermediate thermal wind layer, the nonlinear feedback from Ekman
pumping would be able to generate heat transport that diverges to infinity at finite
Rayleigh number. This layer arrests this blowup, resulting in finite heat transport at
a significantly enhanced value. With increasing buoyancy forcing, the heat transport
transitions to a more efficient regime, a transition that is always achieved within the
regime of asymptotic validity of the theory, suggesting that this behaviour may be
prevalent in geophysical and astrophysical settings. As the rotation rate increases,
the slope of the heat transport curve below this transition steepens, a result that is
in agreement with observations from laboratory experiments and direct numerical
simulations.
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Rotating convection with Ekman pumping 51

1. Introduction
Rotating Rayleigh–Bénard convection (RBC), i.e. a rotating horizontal fluid layer

heated from below and cooled from above, provides a canonical framework for the
study of fluid phenomena influenced by rotation and thermal forcing. It has proven
to be an indispensable framework for understanding fluid motions in geophysical and
astrophysical systems, including planetary atmospheres and interiors (Aurnou et al.
2015), rapidly rotating stars (Miesch 2005) and open ocean deep convection (Marshall
& Schott 1999). In many of these examples, the dominant influence of rotation results
in geostrophy, where the Coriolis force is balanced by the pressure gradient force.
Small departures from this dominant force balance, referred to as quasi-geostrophy, are
known to be capable of producing turbulent fluid motions characterized by anisotropic
eddies elongated along the rotation axis (Sakai 1997). The effect of spatial anisotropy
on fluid mixing and global transport properties such as heat and energy transport
remains an important and largely unanswered question.

In the context of the Boussinesq approximation for incompressible motions, the
rotating RBC problem is completely specified via three non-dimensional parameters,
namely the Rayleigh number Ra, the Ekman number E and the Prandtl number σ ,
defined by

Ra= gα1TH3

νκ
, E= ν

2ΩH2
, σ = ν

κ
. (1.1a−c)

Here, H is the layer depth, 1T > 0 is the destabilizing temperature difference, Ω
is the rotation rate of the system, ν is the kinematic viscosity, κ is the thermal
diffusivity, g is the gravitational acceleration and α is the coefficient of thermal
expansion. The Rayleigh number measures the magnitude of the thermal forcing and
the Ekman number measures the importance of viscous forces relative to the Coriolis
force. The Prandtl number is the ratio of the thermal and viscous diffusion time
scales in the system and describes the thermophysical properties of the working fluid.
Another dimensionless parameter of importance is the convective Rossby number
Rocv = √Ra/σE, which measures the relative importance of thermal forcing and
the Coriolis force. Specifically, rotationally constrained convection is characterized
by (E, Rocv) � 1. Importantly, it is known that rotation imparts rigidity to the
fluid in the RBC problem which delays the onset of convection until a critical
Rayleigh number Rac ∼ E−4/3 (Chandrasekhar 1961) is reached with associated
Rocv ∼ E1/3. At onset, motions are columnar with a horizontal scale L ∼ E1/3H. By
definition of the convective Rossby number, the rotationally constrained branch is
defined as E1/3 . Rocv� 1 and characterized by E−4/3 . Ra� E−5/3, or, equivalently,
1 6 R̃a � E−1/3, where R̃a = RaE4/3 is the reduced Rayleigh number (Julien et al.
2012a). The range of permissible R̃a can thus be vast, covering as much as five
decades in geophysical and astrophysical settings where E . 10−15. Rich dynamics is
observed along this rotationally constrained branch, ranging from coherent laminar to
highly turbulent states (Sprague et al. 2006; Julien et al. 2012b; Rubio et al. 2014).

The efficiency of heat transport, as measured by the non-dimensional Nusselt
number Nu = qH/ρ0cpκ1T , is perhaps the most common result reported in the
literature given that the functional dependence Nu = f (Ra, E, σ ) is tied to the
underlying dynamics. Here, q is the heat flux and ρ0cp is the volumetric heat capacity.
Attempts have been made to characterize the rotationally constrained regime by a heat
transport scaling law of the form Nu ∝ (Ra/Rac)

βrot with βrot > 1 (Rossby 1969; Liu
& Ecke 1997; King et al. 2009; Ecke & Niemela 2014). At fixed E� 1, combined
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FIGURE 1. (Colour online) Laboratory (σ ≈ 7) and DNS (σ = 7) rotating convection
heat transfer data (adapted from Rossby (1969), King, Stellmach & Aurnou (2012) and
Cheng et al. (2015)). The best-fitting heat transfer trend of Nu∝ (Ra/Rac)

3.6 is plotted for
E= 10−7. For comparison, Nu∝ (Ra/Rac)

3 (King et al. 2012) is plotted for E= 10−5 and
Nu∝ (Ra/Rac)

6/5 (King et al. 2009, 2010) for E= 10−3. It should be noted that with each
study at lower E, the scaling exponent becomes larger. This implies that the behaviour of
rotating convection has not reached an asymptotic regime in the currently accessible range
of Nu, Ra and E. Adapted from Cheng et al. (2015).

investigations of laboratory experiments and direct numerical simulations (DNS) with
no-slip boundaries have reported βNS

rot values in the range 6/5 < βNS
rot < 3.6, with a

trend towards the upper bound occurring at the lowest Ekman number E = 10−7

(figure 1) (Cheng et al. 2015). At sufficiently large Ra, a transition to the weakly
rotating or non-rotating regime occurs, characterized by Nu ∝ (Ra/Rac)

βnorot , where
βnorot ∈ (2/7, 1/3) (see figure 1). Comparative studies in the presence of stress-free
boundaries using DNS have reported similar findings to those seen in figure 1 but
with substantially smaller exponents βSF

rot ∈ (3/2, 11/5) at E= 10−7 (King et al. 2009;
Stellmach et al. 2014). Irrespective of the boundary conditions, King et al. (2009)
have established that the transition to the non-rotating scaling law occurs at smaller
and smaller Rocv as the rotation rate increases, i.e. limE→0 Rotrans

cv ∼ Eγ → 0, where
γ > 0. This result is attributed to the loss of geostrophic balance in the thermal
boundary layer where the local Rossby number reaches unity while the Rossby
number in the bulk remains small (Julien et al. 2012a).

The difference in the heat transport scaling exponents βNS
rot and βSF

rot has been
associated with Ekman pumping (Stellmach et al. 2014) – the vertical momentum
transport that results from the transition from an interior geostrophic balance to a
dominant boundary layer force balance between the Coriolis and viscous forces
in the presence of no-slip boundaries. In the linear regime, Ekman pumping
promotes the destabilization of the fluid layer, an effect quantified by the positive
difference RaSF −RaNS=O(E1/6) in the critical Rayleigh numbers (Niiler & Bisshopp
1965; Heard & Veronis 1971). This difference is asymptotically small in the limit
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E → 0, indicating that differing mechanical boundaries become asymptotically
indistinguishable. By contrast, laboratory experiments and supporting DNS indicate
that the discrepancy due to pumping in the fully nonlinear regime appears to remain
finite as E→ 0 (Stellmach et al. 2014; Cheng et al. 2015). Unfortunately, survey of
the high-Ra–low-(Rocv, E) regime remains a prohibitive challenge for both laboratory
experiments and DNS. Laboratory experiments are constrained by their inability
to access the rotationally constrained branch at sufficiently low (Rocv, E) owing
to the decreasing accuracy of global heat transport measurements resulting from
unknown heat leaks (King et al. 2009; Ecke & Niemela 2014). Direct numerical
simulation studies are restricted by spatiotemporal resolution constraints imposed by
the presence of O(E1/2H) Ekman boundary layers and fast inertial waves propagating
on an O(Ω−1) time scale (Nieves, Rubio & Julien 2014; Stellmach et al. 2014).

Although an impediment to DNS, the stiff character of the governing fluid equations
in the limit (Rocv, E) → 0 provides a possible path forward for simplifying, or
reducing, the governing equations. Indeed, a system of reduced non-hydrostatic
quasi-geostrophic equations (NH-QGEs) appropriate for rotating RBC in the presence
of stress-free boundaries has been successfully derived and utilized by Julien and
collaborators (Julien, Knobloch & Werne 1998; Julien et al. 2006; Sprague et al.
2006; Julien & Knobloch 2007; Grooms et al. 2010; Julien et al. 2012a,b; Nieves
et al. 2014; Rubio et al. 2014). The NH-QGEs, which filter fast inertial waves while
retaining inertial waves propagating on slow advective time scales, enable parameter
space explorations in the high-Ra–low-Rocv limit. The NH-QGEs have been used to
identify various flow regimes and heat transfer scaling behaviour as a function of
Ra, thus providing a valuable roadmap for both DNS and laboratory experiments.
Importantly, comparisons with DNS for stress-free boundaries (Stellmach et al.
2014) have established good quantitative agreement in both heat transport and flow
morphology at E = 10−7. For E� 10−7 and large Ra, this approach has established
an ultimate exponent βSF

rot = 3/2, a result that corresponds to a dissipation-free scaling
law in the rotationally constrained turbulence regime (Julien et al. 2012a,b).

In the present work, we extend the asymptotic theory resulting in the NH-QGEs to
the case of no-slip boundary conditions in which Ekman boundary layers are present.
This is the situation pertinent to the laboratory and of relevance to geophysical
scenarios such as convection in the Earth’s liquid iron outer core, which is bounded
from below by the solid iron inner core and above by a rocky mantle. In agreement
with the linear investigation of Heard & Veronis (1971), our nonlinear analysis shows
that the presence of no-slip boundaries requires the existence of three distinct layers,
each characterized by a different dominant physical balance, and hereafter denoted as
the outer (o), middle (m) and inner (i) regions (see figure 2).

The outer region (o) corresponds to the fluid interior (i.e. the bulk region of
depth O(H)). Within this region, fluid motions are horizontally non-divergent and
in pointwise geostrophic balance. The dynamics is asymptotically described by the
NH-QGEs investigated by Julien and collaborators (1998, 2006, 2007, 2012a, 2012b,
2014). As in the classical quasi-geostrophic equations (Charney 1948, 1971; Eady
1949; Pedlosky 1987; Vallis 2006), toroidal or vortical fluid motions aligned with the
axis of rotation are forced solely by the vortex stretching associated with the linear
Coriolis force. The NH-QGEs differ from the classical quasi-geostrophic equations in
that vertical motions required by vortex stretching are now comparable in magnitude
to horizontal motions, and thus the non-hydrostatic inertial acceleration force must
be retained in the vertical momentum balance. This results in a dynamic, as opposed
to a diagnostic, evolution of the vertical velocity field. In the presence of stress-free
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Ekman layer (i)

Thermal wind layer (m)

Geostropic bulk (o)
u

FIGURE 2. (Colour online) A schematic diagram of the boundary layer structure
for the enhanced-thermal-transport regime of rapidly rotating convection. Three distinct
layers characterize the dynamics. The outer layer (o) is geostrophically balanced with
dynamically significant flows and thermal perturbations. The middle layer (m) contains the
largest thermal perturbations, θ , of the entire system. The horizontal flow, u⊥, responds
with a thermal wind driven shear. The inner layer (i) produces a frictional response
that causes the flow to vanish at the physical bottom boundary. This layer contains no
significant thermal perturbations. The Ekman response produces a vertical momentum flux
out of the inner and middle layers and into the bulk fluid. The details of the dynamical
pathway ensure that the Ekman flux correlates with the largest bulk vertical flows, thermal
anomalies and vorticity. This correlation is the means by which no-slip boundary layers
can so significantly enhance the heat flux through the entire system.

boundaries, the NH-QGEs are sufficient to completely describe all of the ‘slow’
dynamics occurring within the fluid layer.

The inner (i) regions are the O(E1/2H) Ekman boundary layers immediately adjacent
to the horizontal boundaries. These layers are required to attenuate the interior
geostrophic velocity fields to zero. Within them, the geostrophic balance of the
interior is relaxed, and as a consequence fluid motions become horizontally divergent
with cross-isobaric flow. Mass conservation requires that vertical motions are induced,
a process referred to as Ekman pumping. The dynamics within the Ekman layers is
described by a classical set of reduced linear equations (Greenspan 1969), where as
a consequence of the L/H = O(E1/3) spatial anisotropy and the vortical magnitude
ζ ∗ observed in rotating RBC (Chandrasekhar 1961), vertical pumping velocities of
magnitude w∗E =O(E1/2ζ ∗H)=O(E1/6ζ ∗L) are found (Niiler & Bisshopp 1965; Heard
& Veronis 1971). As done in large-scale oceanic and atmospheric applications, this
linear property of the dynamics can be successfully utilized, and the effects of this
layer on the fluid interior can be parameterized by the application of simple pumping
boundary conditions (Pedlosky 1987). This parameterized approach has been applied
successfully in numerous previous works, including the investigation of Stewartson
layer instabilities (Schaeffer & Cardin 2005), spherical convection (Aubert, Gillet &
Cardin 2003; Calkins et al. 2012) and rotating RBC (Stellmach et al. 2014), and is
also employed in the present work.
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As shown by Heard & Veronis (1971), Ekman pumping induces thermal fluctuations
that cannot be regulated within the Ekman boundary layer to satisfy the thermal
boundary conditions. Middle layers (m) of depth O(E1/3H) arise that separate the
Ekman boundary layers from the geostrophically balanced fluid interior. Importantly,
the requirement that thermal fluctuations vanish at the fixed-temperature bounding
plates necessitates the introduction of vertical diffusion for temperature fluctuations.
This is an insignificant process in the interior in the rapidly rotating limit (Sprague
et al. 2006; Julien et al. 2012a). However, as shown in this paper, the middle region is
characterized by a thermal wind balance, i.e. a geostrophic and hydrostatic diagnostic
balance, and the dynamics of this region evolves according to an advection–diffusion
equation for the temperature fluctuations forced by Ekman pumping. Specifically, the
magnitude of the vertical advection of the mean temperature field within the middle
layers increases with the Rayleigh number until it becomes a dominant source of
buoyancy production that is comparable to that produced in the geostrophic interior.
This enhancement is due to the intensification of vortical motions, and hence vertical
transport, in the vicinity of the boundaries. Convective fluxes driven by Ekman
transport are also comparable to that produced in the geostrophic interior. Therefore,
O(1) changes to the heat transport are to be expected, as observed in laboratory
experiments and simulations (Stellmach et al. 2014; Cheng et al. 2015).

We show that the asymptotic results for the different regions may be combined
into a single composite system of reduced equations, which we refer to as
the CNH-QGEs (composite non-hydrostatic quasi-geostrophic equations). On the
rotationally constrained branch of RBC, the CNH-QGEs are valid in the interval
O(1) . R̃a . O(E−1/3). The linear stability properties of these equations are
shown to be consistent with earlier work (Niiler & Bisshopp 1965; Heard &
Veronis 1971). Moreover, comparisons with the NH-QGEs for single-mode (or
single-horizontal-wavenumber) solutions show that significant departures in heat
transport occur in the interval O(E−1/9). R̃a . O(E−1/3).

The remainder of this paper is organized as follows. In § 2, we present the
formulation of the rotating RBC problem in terms of the incompressible Navier–
Stokes equations. In § 3, we present the asymptotic development in the presence of
no-slip bounding plates using the ‘method of composite expansions’ (see Nayfeh
(2008, § 4.2)). In particular, the Ekman and thermal wind boundary layers are
identified and analysed. The significance of Ekman pumping is also deduced by
determining the Rayleigh number threshold at which the resulting vertical pumping
velocity induces order-one changes in the heat transport. It is also established that
such a transition always occurs on the rotationally constrained branch of RBC. In § 4,
we present the composite reduced model, i.e. the CNH-QGEs, where the dynamics
of each layer are combined into a unified description (see (4.13a)–(4.15)). Results
from the model are presented in § 5, and establish that this unified model captures
the physics associated with no-slip boundary conditions observed in laboratory
experiments and DNS. Concluding remarks are given in § 6.

2. Governing equations
We consider thermally driven fluid flows that are characterized by the dimensional

scales of length [L], velocity [U], time [L/U], pressure [P] and destabilizing
temperature jump [1T]. Assuming a Cartesian coordinate system x = (x, y, z),
we adopt the Rayleigh–Bénard configuration of a plane-parallel geometry rotating
about the z-axis with constant angular velocity Ω in the presence of constant gravity
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g = −gẑ. The non-dimensional equations of motion are given by the Boussinesq
equations

Dtu+ 1
Ro

ẑ× u=−Eu∇p+ Γ θ ẑ+ 1
Re
∇2u, (2.1)

Dtθ = 1
Pe
∇2θ, (2.2)

∇ · u= 0 (2.3)

for the velocity field u≡ (u, v, w), temperature θ and pressure p, where the material
derivative Dt ≡ ∂t + u · ∇. The non-dimensional parameters that appear are defined as

Ro= U
2ΩL

, Eu= P
ρoU2

, Γ = gα1TL
U2

, Re= UL
ν
, Pe= UL

κ
, (2.4a−e)

respectively denoting the Rossby, Euler, buoyancy, Reynolds and Péclet numbers. In
the present work, we are interested in the rotationally constrained regime characterized
by Ro� 1 and aspect ratio A≡H/L= Ro−1� 1 for columnar structures of depth H
(Julien et al. 1998, 2006; Sprague et al. 2006; Julien et al. 2012b).

For fluid motions in a statistically stationary state, the non-dimensional vertical heat
transport, i.e. the Nusselt number Nu, is given by

Nu= H
L

(
−∂zθ

A ,T + Pe wθ
A ,T

)
, (2.5)

obtained upon averaging equation (2.2) over time T and the horizontal (x, y) cross-
section. Here, f

A ,T = limT→∞(1/A T )
∫

A ,T
f dx dy dt, where A is the horizontal

cross-sectional area. This result indicates that the heat flux Nu through the layer is
constant at every vertical level.

3. Asymptotic development
It is well established that in the geophysically and astrophysically relevant regimes

Ro � 1 the presence of fast inertial waves, propagating on O(Ro−1) time scales,
poses a severe restriction on DNS. This is because the discretized equations resulting
from the Boussinesq equations will, in general, be coupled through the Coriolis force
Ro−1ẑ × u. This coupling is routinely eliminated by an explicit treatment in many
time-stepping algorithms, i.e. by its relegation and evaluation at previous steps. This
favourable numerical situation occurs at the expense of imposing severe time-stepping
restrictions. Implicit treatment circumvents this issue. However, prohibitive time-
stepping restrictions persist due to the Ekman-dependent Courant–Friedrichs–Lewy
(CFL) time constraint associated with advective nonlinearities. The evolution of
turbulent eddies is insensitive to fast inertial waves which can be filtered from the
governing equations by asymptotic reduction methods in much the same manner
as done in atmospheric and oceanic sciences for stably stratified layers. Indeed,
Julien and collaborators (Julien et al. 2006; Sprague et al. 2006; Julien & Knobloch
2007) have established that an asymptotic reduction of the governing equations
(2.1)–(2.3) can be deduced upon using Ro≡ ε as a small parameter and introducing
the distinguished limit

A= ε−1, Eu= ε−2, Γ =O(ε−1), Re= Pe=O(1). (3.1a−d)
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For the appropriate choice of the horizontal diffusive velocity scale, U = ν/L, it
follows that

E= ε3, Γ = Ra
σ
ε3, Re= 1, Pe= σ , (3.2a−d)

such that Γ = Γ̃ ε−1. Here, σ Γ̃ = Raε4 = O(1) corresponds to the reduced Rayleigh
number R̃a= σ Γ̃ involving the Prandtl number σ .

In accord with figure 2, we anticipate the existence of three distinct layers: the bulk
and middle regions, and the Ekman layers, each with their respective non-dimensional
depths O(ε−1),O(1) and O(ε1/2). We therefore employ a multiple-scale expansion in
the vertical direction and time,

∂z→ ε−1/2∂µ + ∂z + ε∂Z, ∂t→ ∂t + ε2∂τ , (3.3a,b)

where the slow vertical coordinate in the bulk is defined by Z= εz, the fast coordinate
of the Ekman layer is defined by µ= ε−1/2z and the slow time is defined by τ = ε2t.
We find that this set-up necessitates the decomposition of the fluid variables into mean
(horizontally averaged) and fluctuating (horizontally varying) components, respectively
denoted by overbars and primes, e.g.

u= u+ u′, u= 1
A

∫

A

u dx dy, u′ = 0. (3.4a,b)

Averaging over the fast time t is also required,

uT = lim
T→∞

1
T

∫

T

u dt. (3.5)

We note a posteriori that, unlike derivations of the reduced dynamics in the presence
of stress-free boundaries (Sprague et al. 2006), the consideration of no-slip boundaries
and Ekman layers requires the separation of spatial and time-averaging operations as
performed here.

To proceed, all fluid variables are decomposed into outer (o), middle (m, ±) and
inner (i,±) components representing the fluid bulk, middle regions and Ekman layers.
For example,

u = U(o)(x, y, Z, t, τ )+U(m,−)(x, y, z, t, τ )+U(m,+)(x, y, z, t, τ )
+U(i,−)(x, y, µ, t, τ )+U(i,+)(x, y, µ, t, τ ). (3.6)

Here, capitalizations are used to identify the individual contributions of the fluid
variables to each region, and the notation ± denotes the upper and lower boundaries
respectively. The boundary layer coordinates µ, z are assumed to increase away from
the physical boundaries at Z = 0, 1. Each region of the fluid layer may be accessed
by the following actions for the outer, middle and inner limits:

lim(u)o ≡ lim
µ→∞
z→∞

(u)=U(o)

⇒ lim(U(o))o =U(o), lim(U(m),U(i))o = 0, (3.7)
lim(u)m ≡ lim

µ→∞
Z→0

(u)=U(o)(0)+U(m)

⇒ lim(U(o))m =U(o)(0), lim(U(m))m =U(m), lim(U(i))m = 0, (3.8)
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lim(u)i ≡ lim
z→0
Z→0

(u)=U(o)(0)+U(m)(0)+U(i)

⇒ lim(U(o) +U(m))i =U(o)(0)+U(m)(0), lim(U(i))i =U(i). (3.9)

Similar expressions hold for the upper inner and middle layers located at Z= 1 upon
replacing (0) with (1). By definition, the middle variables are identically zero in the
outer region, while the inner variables are identically zero in both the middle and
outer regions. Contributions to regions (i) or (m) involving outer variables, indicated
in (3.8) and (3.9), are obtained by Taylor-expanding and then taking the appropriate
limit. Hereafter, for notational convenience, contractions (m,±)→ (m) and (i,±)→ (i)
are used when referring to both upper and lower regions. Furthermore, contractions
such as (0) omit reference to the dependence on other variables (i.e. x, y, t, τ ) and
refer to the vertical coordinate.

Asymptotic series in powers of ε are now introduced for all fluid variables and
substituted into the governing equations (2.1)–(2.3). An order by order analysis is then
performed. The asymptotic procedure using decompositions of the form (3.6) with
(3.7)–(3.9) is referred to as the ‘method of composite expansions’ (see Nayfeh (2008,
§ 4.2)). Specifically, rather than using the ‘method of matched asymptotic expansions’,
i.e. first determining the inner and outer expansions analytically, matching them,
and then forming the composite expansion (Van Dyke 1975), here variables of the
form (3.6) are automatically valid everywhere provided that they satisfy the physical
boundary conditions at the bounding plates.

3.1. The outer region: NH-QGEs
Within the fluid interior, inner (i) and middle (m) variables are identically zero. We
introduce expansions in powers of ε of the form

u(o) = lim(u)o =U(o)
0 + εU(o)

1 + ε2U(o)
2 + · · · , (3.10)

where Ro≡ ε (Julien et al. 2006; Sprague et al. 2006; Julien & Knobloch 2007). The
leading-order mean component satisfies the motionless hydrostatic balance

U(o)
0 = 0, ∂ZP(o)0 =

R̃a
σ
Θ
(o)
0 , (3.11a,b)

together with P′(o)0 =Θ ′(o)0 = 0. The leading-order convective dynamics is found to be
incompressible and geostrophically balanced, i.e.

ẑ×U′(o)0 +∇P′(o)1 = 0,

∇ ·U′(o)0 = 0,
or Lgeo

(
U′(o)0

P′(o)1

)
= 0,

}
(3.12)

where Lgeo denotes the geostrophic operator. By definition, all outer variables are
independent of z, and so ∇ =∇⊥ ≡ (∂x, ∂y, 0). If the small-scale z dependence were
retained, geostrophy would automatically imply the Proudman–Taylor (PT) constraint
∂z(U′(o)0 , P′(o)1 ) ≡ 0 on the small vertical scale z (Proudman 1916; Taylor 1923). The
diagnostic balance given by (3.12) is solved by

U′(o)0 =∇⊥Ψ (o)
0 +W (o)

0 ẑ, P′(o)1 =Ψ (o)
0 , (3.13a,b)
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for the streamfunction Ψ (o)
0 (x, y, Z, t, τ ) and vertical velocity W (o)

0 (x, y, Z, t, τ ). Here,
we adopt the definition ∇⊥Ψ (o)

0 ≡ −∇⊥ × Ψ (o)
0 ẑ with ∇⊥ = (−∂y, ∂x, 0), so that the

pressure is now identified as the geostrophic streamfunction. It follows that leading-
order motions are horizontally non-divergent with ∇⊥ · U′(o)0⊥ = 0. Three-dimensional
incompressibility is captured at the next order, O(ε), where

∇⊥ ·U′(o)1⊥ + ∂ZW (o)
0 = 0. (3.14)

This results in the production of subdominant ageostrophic motions U′(o)1⊥ driven by
vertical gradients in W0. The prognostic evolution of these variables is obtained from
balances at next order,

Lgeo

(
U′(o)1

P′(o)2

)
= RHS

≡

−D⊥0tU

′(o)
0 − ∂ZP1ẑ+ R̃a

σ
Θ
′(o)
1 ẑ+∇2

⊥U′(o)0

−∂ZW0


 , (3.15)

obtained by projecting RHS onto the null space of Lgeo (Sprague et al. 2006; Calkins,
Julien & Marti 2013). This amounts to performing the projections ẑ· and ∇⊥·
on (3.15). On noting that D⊥0t≡ ∂t+U′(o)0⊥ · ∇⊥, this procedure results in asymptotically
reduced equations for the vertical vorticity ζ

(o)
0 = ∇2

⊥Ψ
(o)

0 , vertical velocity W (o)
0 and

thermal anomaly Θ ′(o)1 :

D⊥0tζ
(o)
0 − ∂ZW (o)

0 =∇2
⊥ζ

(o)
0 , (3.16)

D⊥0tW
(o)
0 + ∂ZΨ

(o)
0 =

R̃a
σ
Θ
′(o)
1 +∇2

⊥W (o)
0 , (3.17)

D⊥0tΘ
′(o)
1 +W (o)

0 ∂ZΘ
(o)
0 =

1
σ
∇2
⊥Θ
′(o)
1 . (3.18)

The evolution of the mean temperature field Θ
(o)
0 is deduced at O(ε2) upon averaging

over the fast scales x, y, z, t:

∂τΘ
(o)
0 + ∂Z

(
W (o)

0 Θ
′(o)
1

T )
= 1
σ
∂ZZΘ

(o)
0 . (3.19)

In a statistically stationary state, it follows that

Nu= σ
(

W (o)
0 Θ

′(o)
1

T )
− ∂ZΘ

(o)
0 . (3.20)

Equations (3.16)–(3.18), (3.11) and (3.19) constitute the asymptotically reduced system
referred to as the NH-QGEs. A notable feature in the NH-QGEs is the absence of
(higher-order) vertical advection. This is a hallmark characteristic of quasi-geostrophic
theory. Equation (3.16) states that vertical vorticity, or toroidal motion, is affected
by horizontal advection, vortex stretching arising from the linear Coriolis force and
horizontal diffusion, while (3.17) shows that vertical motion is affected by horizontal
advection, unbalanced pressure gradient, horizontal diffusion and buoyancy. The
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buoyancy forces are captured by the fluctuating and mean temperature equations (3.18)
and (3.19).

The system (3.16)–(3.19) is accompanied by impenetrable boundary conditions

W (o)
0 (0)=W (o)

0 (1)= 0, (3.21)

together with thermal conditions, hereafter taken to be the fixed temperature conditions

Θ
(o)
0 (0)= 1, Θ

(o)
0 (1)= 0. (3.22a,b)

In the presence of impenetrable boundaries, the boundary limits Z→ 0 or Z→ 1
of (3.18) for the temperature fluctuations Θ

(o)
1 reduce to the advection–diffusion

equation

D0tΘ
′(o)
1 =

1
σ
∇2
⊥Θ
′(o)
1 . (3.23)

The horizontally averaged variance Θ ′(o)21 for such an equation evolves according to

∂tΘ
′(o)2
1 =− 1

σ
|∇⊥Θ ′(o)1 |2. (3.24)

Therefore, Θ ′(o)21 decreases monotonically to zero in time, implying the implicit
thermal boundary condition Θ ′(o)1 (0)=Θ ′(o)1 (1)= 0. Together with the impenetrability
condition (3.21), the vertical momentum equation (3.17) implies that motions along
the horizontal boundaries are implicitly stress-free with

∂ZΨ
(o)

0 (0)= ∂ZΨ
(o)

0 (1)= 0. (3.25)

If rapidly rotating RBC in the presence of stress-free boundary conditions is the
primary objective, a well-posed closed system is obtained from (3.16)–(3.18), (3.11)
and (3.19) together with impenetrable boundary conditions (3.21) and fixed mean
temperature boundary conditions (3.22).

3.1.1. Validity of the NH-QGEs
In the presence of stress-free boundary conditions, the NH-QGEs remain valid

throughout the entire flow domain provided that geostrophy, equation (3.12), holds.
This remains so provided that the local Rossby number Rol� 1. Given U∗0 =U(o)

0 ν/L,
one finds

Rol = |U
∗
0|

2ΩL
= |U(o)

0 |E
(

H
L

)2

= |U(o)
0 |E1/3⇒|U(o)

0 | ∼ |ζ (o)0 | = o(ε−1). (3.26)

(The Landau notation lower-case o denotes a function that is of lower order of
magnitude than a given function; that is, the function o(ε−1) is of a lower order than
the function ε−1.) In a detailed investigation of the NH-QGEs, Julien et al. (2012a)
have shown that this criterion is violated at the transitional value

R̃atr =O(ε−4/5), Rotr =O(ε3/5) as ε→ 0. (3.27a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

22
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.225


Rotating convection with Ekman pumping 61
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FIGURE 3. (Colour online) Comparison of the Nusselt number Nu as a function of
the reduced Rayleigh number R̃a = RaE4/3 for NH-QGEs and DNS with (a) stress-free
and (b) no-slip boundary conditions. The filled symbols illustrate DNS data obtained at
E= 10−7 while the open symbols are from the reduced NH-QGEs. Data courtesy of Julien
et al. (2012b) and Stellmach et al. (2014).

In this regime, the thermal boundary layers experience a loss of geostrophic
balance. This provides an upper bound for comparisons of the NH-QGEs with
DNS with stress-free boundary conditions. Indeed, as illustrated in figure 3(a) for
E = 10−7, within the regime of validity, R̃a . 70, good quantitative agreement in
the heat transport measurements is observed (Stellmach et al. 2014). Simulations
(Julien et al. 2012b; Nieves et al. 2014) of the NH-QGEs prior to this transition
have revealed four different flow morphologies subsequently confirmed by both DNS
(Stellmach et al. 2014) and laboratory experiments (Cheng et al. 2015) as R̃a is
increased (see figure 4): a cellular regime, a convective Taylor column (CTC) regime
consisting of weakly interacting shielded columns, a plume regime where the CTCs
have lost stability and finally a geostrophic turbulence regime that is also associated
with an inverse energy cascade that produces a depth-independent large-scale dipole
vortex pair. All regimes are identifiable by changes in the heat transport exponent:
the CTC regime exhibits a steep heat transport scaling law where Nu∝ R̃a

2.1
, whereas

the geostrophic turbulence regime is characterized by a dissipation-free scaling law
Nu∝ σ−1/2R̃a

3/2
(Julien et al. 2012a) and an inverse turbulent energy cascade (Julien

et al. 2012a,b; Favier, Silvers & Proctor 2014; Guervilly, Hughes & Jones 2014;
Rubio et al. 2014; Stellmach et al. 2014). A rigorous upper-bound heat transport
result for the NH-QGEs, Nu< CR̃a

3
, where C is a constant, has also been reported

(Grooms 2015; Grooms & Whitehead 2015).
On the other hand, comparison between the NH-QGEs and DNS with no-slip

boundaries and laboratory experiments (Stellmach et al. 2014) reveals substantial
differences (figure 3b). Specifically, a steep scaling law in the heat transport is
observed in the DNS study. Moreover, DNS and laboratory results both suggest that
the steep scaling continues as E→ 0 (figure 1). It is now evident from the implicitly
enforced stress-free boundary condition (3.25) that the reduced NH-QGE system and
its solutions cannot be uniformly continued to impenetrable no-slip boundaries, where

u0(0)= u0(1)= 0. (3.28)
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FIGURE 4. (Colour online) Comparisons between laboratory experiments, DNS and NH-
QGEs of flow morphologies of rotationally constrained Rayleigh–Bénard convection. As
R̃a increases, the flow transitions between cellular, convective Taylor columns, plumes and
geostrophic turbulence regimes.

In the presence of no-slip boundaries, it is well known that the viscous boundary

layers are Ekman layers of depth O(E1/2H) (Greenspan 1969). Within these layers, the
geostrophic velocity field U(o)

0⊥ in the bulk must be reduced to zero. In the following,

we proceed with an analysis of the rotationally constrained regime with the intent of

extending the NH-QGEs to the case of no-slip boundaries.
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3.2. Inner region: Ekman boundary layers
To avoid duplication, we focus on the lower Ekman boundary layer at Z = 0 with
non-dimensional depth O(ε1/2) (an identical analysis applies for the upper boundary
layer at Z = 1). This depth arises as a result of the spatially anisotropic structure of
rapidly rotating convection (Heard & Veronis 1971). In dimensional terms, the Ekman
layer depth ε1/2L≡ E1/2H since L/H = ε = E1/3.

The equations that capture the Ekman layer dynamics are obtained by taking the
inner limit of the governing equations (2.1)–(2.3) about Z = 0 using (3.9). We pose
an asymptotic inner expansion in powers of ε1/2 of the form

u(i) = lim(u)i =U(i)
0 + ε1/2U(i)

1/2 + εU(i)
1 + · · · , (3.29)

and utilize, a posteriori, knowledge that the middle layer variables have the asymptotic
form

u(m) = εU(m)
1 + · · · , p(m) = ε2P(m)2 + · · · , (3.30a,b)

and therefore do not contribute to leading order. Subtraction of the contributions of
the outer region then yields

ẑ×U(i)
0⊥ =−∇⊥P(i)1 + ∂µµU(i)

0⊥, (3.31)

0=−∂µP(i)1 , (3.32)

∇⊥ ·U(i)
0⊥ + ∂µW (i)

1/2 = 0. (3.33)

Given that the mean components are identically zero, the primed notation is omitted.
It follows from (3.32) that the pressure within the Ekman boundary layer is the same
as that outside it, and we thus take P(i)1 ≡ 0. The classical linear Ekman equations are
therefore

ẑ×U(i)
0⊥ = ∂µµU(i)

0⊥, (3.34)

∇⊥ ·U(i)
0⊥ + ∂µW (i)

1/2 = 0. (3.35)

After a simple reformulation and the introduction of no-slip boundary conditions, we
have

(
∂4
µ + 1

)
U(i)

0⊥ = 0, U(i)
0⊥(0)+U(o)

0⊥(0)= 0, U(i)
0⊥(µ→∞)= 0, (3.36a−c)

where we have utilized in advance that the leading-order middle layer variables
(U(m)

0 ,P(m)1 ) ≡0. Since the flow within the Ekman layer is horizontally divergent, (3.35)
implies the presence of vertical motions with velocity w= ε1/2W (i)

1/2.
The classical solution (Greenspan 1969) is found within the Ekman layer at Z = 0

and is given by

U(i)
0 (x, y, µ, t)=−e−µ/

√
2

(
U(o)

0 (x, y, 0, t) cos
µ√

2
+ V (o)

0 (x, y, 0, t) sin
µ√

2

)
, (3.37)

V (i)
0 (x, y, µ, t)=−e−µ/

√
2

(
V (o)

0 (x, y, 0, t) cos
µ√

2
−U(o)

0 (x, y, 0, t) sin
µ√

2

)
, (3.38)

P(i)1 (x, y, µ, t)= 0. (3.39)
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FIGURE 5. Sample Ekman spiral profiles, i.e. projections of the vertical profiles of the
horizontal velocities u(z), v(z) onto the u, v plane, at two fixed horizontal locations in
the lower viscous layer of the DNS at RaE4/3 = 20, E = 10−7, σ = 7. The dashed
line illustrates the analytic solution (U0, V0) obtained from (3.37), (3.38). Open squares
correspond to different vertical locations in the DNS boundary layer, computed using a
vertical Chebyshev discretization with 385 grid points.

Figure 5 illustrates sample boundary layer profiles obtained from DNS. The projected
horizontal velocities are in perfect agreement with (3.37) and (3.38). These structures
are robust throughout the boundary layer, thus providing confirmation of the
existence of a linear Ekman layer (Stellmach et al. 2014). Application of mass
conservation (3.35) yields the inner and outer vertical velocities

w = W (o)
0 (x, y, 0, t)+ ε1/2W (i)

1/2(x, y, µ, t)

= ε1/2 1√
2
ζ
(o)
0 (x, y, 0, t)− ε1/2 1√

2
ζ
(o)
0 (x, y, 0, t)e−µ/

√
2

[
cos

µ√
2
+ sin

µ√
2

]
. (3.40)

As µ→∞, we see that lim
(

W (i)
1/2

)o = 0 and hence that

W (o)
0 (x, y, 0, t)= ε1/2 1√

2
ζ
(o)
0 (x, y, 0, t). (3.41)

This relation, often referred to as the Ekman pumping boundary condition, constitutes
an exact parameterization of the linear Ekman layer in rotating RBC and represents
Ekman pumping when W (o)

0 > 0 and Ekman suction when W (o)
0 < 0. Hereafter, we do

not distinguish between these two cases and refer to this phenomenon generically as
Ekman pumping. Use of the Ekman pumping boundary condition alleviates the need to
resolve the velocity dynamics that occurs within the Ekman layer. A similar analysis
of the Ekman layer at Z = 1 gives

W (o)
0 (x, y, 1, t)=−ε1/2 1√

2
ζ
(o)
0 (x, y, 1, t). (3.42)

Equations (3.41)–(3.42) exemplify the following important distinction between the
asymptotic procedure performed here and the linear analyses of Niiler & Bisshopp
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(1965) and Heard & Veronis (1971) which implicitly assume that W (o)
1/2=±(1/

√
2)ζ (o)0

as opposed to W (o)
0 = ±ε1/2(1/

√
2)ζ (o)0 (parameterized boundary conditions were

not uncovered in these articles). The latter approach yields a perturbative analysis
that captures a range of R̃a for which the effect of Ekman pumping remains
asymptotically close to the stress-free problem. However, for a sufficiently large
R̃a, determined below in § 3.3.1, the asymptotic expansion breaks down and becomes
non-uniform. For completeness, this result is summarized in appendix A. We find
that the maintenance of asymptotic uniformity requires that the pumping be elevated
to contribute to the leading-order vertical velocity, as pursued here. This approach
enables a complete exploration of Ekman pumping for all values of R̃a for which the
NH-QGEs remain valid.

Several studies (Barcilon 1965; Faller & Kaylor 1966; Dudis & Davis 1971)
have established that solutions to the classical linear Ekman layer are unstable
to small O(E1/2H) horizontal scale disturbances that evolve on rapid time scales
that are filtered from the reduced dynamics. This occurs when the boundary layer
Reynolds number RE=|U(o)

0⊥|E1/6 ∼ 55. Although this is within the realm of possibility
for the rotationally constrained regime according to (3.26), to alter the pumping
parameterization such an instability must also reach amplitudes comparable to the
bulk vorticity. No evidence of this is presently seen in DNS.

The Ekman layer solutions (3.37)–(3.38) together with the application of the exact
parameterizations (3.41)–(3.42) indicate that the outer velocity fields (U(o)

0⊥, W (o)
0 )

can be continued uniformly to the computational boundaries at Z = 0, 1. Evidence
for this two-layer structure is provided in figure 6, which illustrates the root mean
square (r.m.s.) velocity profiles at various magnifications obtained from DNS at
R̃a = 20, E = 10−7, σ = 7. Specifically, the figure demonstrates that the velocity
structure is unaffected by the presence of the thermal boundary layer, defined in
terms of the maxima of the r.m.s. of θ (purple line, plot (b)). These results suggest
that Ekman layers in DNS of rotating RBC may be replaced by the parameterized
pumping boundary conditions

w(x, y, 0, t)= ε1/2 1√
2
ζ (x, y, 0, t), w(x, y, 1, t)=−ε1/2 1√

2
ζ (x, y, 1, t). (3.43a,b)

Stellmach et al. (2014) have demonstrated the accuracy of this boundary layer
parameterization via comparison of the heat transport obtained from DNS with
no-slip boundaries and DNS where the Ekman pumping conditions are used. With all
other details being identical in the two DNS studies, excellent quantitative agreement
is reached. This result establishes that it is the presence of Ekman layers that is
responsible for the strong differences in heat transport observed between stress-free
and no-slip boundaries (figure 3).

The inner component of the pumping velocity W (i)
1/2 defined in (3.40) gives rise to

an inner temperature fluctuation Θ ′(i) satisfying

W (i)
1/2∂ZΘ

(o)
0 (0)=

1
σ
∂µµΘ

′(i)
5/2. (3.44)

Utilizing (3.40), the solution to this equation is given by

Θ
′(i)
5/2(x, y, µ, t)=− 1√

2
e−µ/

√
2

[
cos

µ√
2
− sin

µ√
2

]
ζ
(o)
0 (0)∂ZΘ

(o)
0 (0). (3.45)
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FIGURE 6. (Colour online) Root mean square velocity profiles obtained via DNS with
no-slip boundaries at R̃a= 20, E = 10−7, σ = 7. The blue solid vertical line is the r.m.s.

horizontal velocity
√

u2
⊥ and the black solid vertical line is the r.m.s. vertical velocity√

w2. Shaded regions denote the variance obtained from a time series. (a) Entire layer,
(b) magnification of the O(E1/3H) thermal boundary layer scale and (c) magnification of
the O(E1/2H) lower Ekman boundary layer. The Ekman boundary layer is delineated by
the red horizontal dashed line, while the fluctuating thermal boundary layer (which has no
visible effect on the velocity profiles) is delineated by the purple horizontal dashed line.
The numerical grid points are marked by square and circular symbols in (c). The bulk
velocity profile plotted in (a) transitions at the Ekman layer illustrated in (c).

The limiting values as µ→ 0 and µ→∞ are

Θ ′(i)(0)=−ε5/2 1√
2
ζ
(o)
0 (0) ∂ZΘ

(o)
0 (0), Θ ′(i) (µ→∞)= 0. (3.46a,b)

It thus follows that the temperature fluctuations within the Ekman layer are of
magnitude Θ ′(i) = O(ε5/2ζ

(o)
0 (0) ∂ZΘ

(o)
0 (0)). This observation yields an estimate of the

convective heat transport,

ε3W (i)
1/2(0)Θ

′(i)
5/2(0)∼ ε3(ζ

(o)
0 (0))2 ∂ZΘ

(o)
0 (0), (3.47)

which is smaller in magnitude by a factor of O(ε2) when compared with that occurring
in the convective interior, namely ε(W (o)

0 Θ
′(o)
1 ). We can thus conclude that the observed

enhancement of heat flux as measured by Nu (figure 3) cannot occur directly within
the Ekman layer given the vorticity bound (3.26).

Inspection of the r.m.s. thermal profiles at increasing magnification obtained at E=
10−7 shows no visible boundary layer structure in the vicinity of the Ekman layer
(cf. figure 7b,c). The r.m.s. profiles reveal that the thermal boundary layer extends
much farther into the interior than the Ekman layer observed in figure 6. Indeed, we
recall that the mean temperature Θ

(o)
0 (Z, τ ) is an outer variable independent of the

fast spatial variables µ and z (Sprague et al. 2006).

3.2.1. The significance of Ekman pumping
It now remains to determine the nature of the thermal response in the immediate

vicinity of the Ekman layer. Focusing again on the lower boundary, this requires
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FIGURE 7. (Colour online) Root mean square temperature profiles obtained via DNS
with no-slip boundaries at R̃a = Ra E4/3 = 20, E = 10−7, σ = 7. The blue solid vertical
line is the r.m.s. temperature E−1/3

√
θ ′2 and the black solid vertical line is the r.m.s.

mean temperature θ . Shaded regions denote the variance obtained from a time series.
(a) Entire layer, (b) magnification of the O(E1/3H) thermal boundary layer scale and
(c) magnification of the Ekman boundary layer. The fluctuating thermal boundary layer
is delineated by the purple horizontal dashed line, while the Ekman boundary layer is
delineated by the red horizontal dashed line. The numerical grid points are marked by
square and circular symbols in (c). The thermal profile exhibits no visible boundary layer
structure on the Ekman layer scale (c).

consideration of how the reduced outer equation for the temperature fluctuations (3.18)
can be continued to the physical boundaries. On Taylor-expanding all fluid variables
within the Ekman layer, the outer component of the pumping velocity W (o)

0 (0) induces
outer temperature fluctuations Θ ′(o)1 (0) that satisfy

(∂t +U(o)
0⊥(0) · ∇⊥)Θ

′(o)
1 (0)+ ε

1/2

√
2
ζ
(o)
0 (0)∂ZΘ

(o)
0 (0)=

1
σ
∇2
⊥Θ
′(o)
1 (0). (3.48)

Here, we have set W (o)
0 (0)= (ε1/2/

√
2)ζ (o)0 (0).

In a statistically stationary state, averaging the equation for the thermal variance
obtained from (3.48) gives the balance

ε1/2

√
2
Θ
′(o)
1 (0)ζ (o)0 (0)

T

∂ZΘ
(o)
0 (0)=−

1
σ
|∇⊥Θ ′(o)1 (0)|2

T

. (3.49)

Clearly, in contrast to stress-free boundaries where Θ ′(o)1 (0)≡ 0, pumping induces the
enhanced thermal response

Θ
′(o)
1 (0)=O(ε1/2ζ

(o)
0 (0)∂ZΘ

(o)
0 (0)) (3.50)

immediately outside the Ekman layer. The associated enhancement in the convective
flux is estimated as

W (o)
0 (0)Θ ′(o)1 (0)=O(ε(ζ (o)0 (0))2∂ZΘ

(o)
0 (0)). (3.51)

This equation shows that the convective flux induced by Ekman pumping becomes as
important as the conductive transport −∂ZΘ

(o)
0 (0) when

ζ
(o)
0 (0)=O(ε−1/2). (3.52)
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This threshold is always achieved within the regime of asymptotic validity of the
NH-QGEs that demands ζ (o)0 (0)= o(ε−1) (see § 3.1.1). This result also indicates that
the differences between stress-free and no-slip boundary conditions are asymptotically
O(ε1/2)-small for rotationally constrained RBC when ζ

(o)
0 (0) = o

(
ε−1/2

)
(see

appendix A). Strong O(1) departures are predicted to occur in the range

O(ε−1/2)6 ζ (o)0 (0) <O(ε−1). (3.53)

As we show below, the vast majority of laboratory experiments and DNS studies fall
within this range.

3.3. The middle region: thermal wind layer

It is evident from (3.50) that Θ ′(o)1 (0) cannot satisfy the thermal boundary condition
Θ ′(o)(0)= 0, implying that the thermal response to Ekman pumping in the NH-QGEs
requires a boundary layer regularization. However, temperature fluctuations Θ ′(i)(0)=
O(ε5/2Θ

′(0)
1 (0)) within the Ekman layer are too small to provide compensation

(see (3.46a,b)). This indicates the existence of a middle (m) region O(ε) in depth
(Heard & Veronis 1971).

Within the middle region, the inner (i) variables are identically zero and the bulk
variables achieve their boundary values. We introduce an expansion of the form

u(m) = lim(u)m =U(m)
0 + εU(m)

1 + ε2U(m)
2 + · · · , (3.54)

and retain geostrophic balance as the leading-order fluctuation balance in the middle
region, as in (3.12). Thus, the Proudman–Taylor constraint ∂z(U(m)

0 , P(m)1 )= 0 implies
(U(m)

0 , P(m)1 )= 0. Departures from the NH-QGEs (3.16)–(3.18), (3.11) and (3.19) due
to Ekman pumping can be deduced from the following prognostic equations:

D⊥0tU
′(o)
0⊥ + ẑ×U1 =−∇⊥P′2 +∇2

⊥U′(o)0⊥ , (3.55)

D⊥0tW
′(o)
0 =−∂zP

(m)
2 − ∂ZP(o)1 +

R̃a
σ
Θ1 +∇2

⊥W ′(o)0 , (3.56)

D⊥0tΘ1 +W ′(o)0 (∂zΘ
(m)
1 + ∂ZΘ

(o)
0 )=

1
σ
∇2Θ1, (3.57)

∇ ·U1 + ∂ZW ′(o)0 = 0. (3.58)

Variables without superscripts contribute to both the outer (o) and middle (m) regions
and can be separated by taking the limits (3.7)–(3.9). It should be noted that (3.57)
contains the three-dimensional (3D) Laplacian ∇2 ≡ ∂2

x + ∂2
y + ∂2

z .
Inspection of the momentum equation (3.55) and the continuity equation (3.58) in

the middle region yields the hydrostatic thermal wind balance

ẑ×U′(m)1 =−∇⊥P′(m)2 , (3.59)

∂zP
′(m)
2 =

R̃a
σ
Θ
′(m)
1 , (3.60)

∇⊥ ·U′(m)1 = 0 and W ′(m)1 ≡ 0, (3.61a,b)

from which we find

∂zU′(m)1⊥ =
R̃a
σ
∇
⊥Θ ′(m)1 , s.t. U′(m)1⊥ =∇⊥Ψ (m)

1 , P′(m)2 =Ψ (m)
1 . (3.62a,b)
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The upper and lower middle layer convective dynamics is thus completely reduced to
the determination of Θ ′(m)1 , which from (3.57) evolves according to

D⊥0tΘ
′(m)
1 +W ′(o)0 ∂z

(
Θ
(m)
1 +Θ ′(m)1

)
− ∂z

(
W ′(o)0 Θ ′(m)1

)
= 1
σ
∇2Θ

′(m)
1 . (3.63)

This couples to the mean state via

∂zP
(m)
2 =

R̃a
σ
Θ
(m)
1 , (3.64)

∂tΘ
(m)
1 + ∂z

(
W ′(o)0 Θ ′(m)1

)
= 1
σ
∂zzΘ

(m)
1 . (3.65)

Equations (3.63) and (3.65) yield the thermal variance relation

1
2
∂t

〈(
Θ
(m)
1

)2 +
(
Θ
′(m)
1

)2
〉
=− 1

σ

〈(
∂zΘ

(m)
1

)2 +
(
∂zΘ

′(m)
1

)2
〉
. (3.66)

It follows that non-zero values of Θ
(m)
1 , Θ

′(m)
1 only exist in the middle region if they

are sustained through the regularizing boundary conditions

Θ
′(o)
1 +Θ ′(m)1 = 0, Θ

′(m)
1 (z→∞)= 0, (3.67a,b)

Θ
(o)
1 +Θ (m)

1 = 0, Θ
(m)
1 (z→∞)= 0 (3.68a,b)

at Z = 0 or 1. Importantly, we conclude from (3.67), (3.68) that equations (3.63),
(3.65) are fully coupled to the interior dynamics. Averaging (3.65) over t, followed
by integration with respect to z, generates the heat transport relation

σ

(
W ′(o)0 Θ

′(m)
1

T )
− ∂zΘ

(m)
1

T

= 0. (3.69)

By application of the outer limit to this equation, the constant of integration must be
identically zero. This relation indicates that there is no net heat flux associated with
the middle layer dynamics.

We now see that within the upper and lower middle regions relation (2.5) yields

Nu= σ
(

W ′(o)0

(
Θ
′(o)
1 +Θ ′(m)1

)T
)
−
(
∂ZΘ

(o)
0 + ∂zΘ

(m)
1

T
)
. (3.70)

Given (3.69), we find

Nu= σ
(

W ′(o)0 Θ
′(o)
1

T )
− ∂ZΘ

(o)
0 , (3.71)

valid at every vertical level. This result states that the heat transport within the fluid
layer is determined entirely within the bulk. Moreover, (3.48), (3.50) and (3.51) now
imply that any enhancement in heat transport is entirely due to buoyancy production
in Θ

′(o)
1 arising through the nonlinear advection of the mean temperature gradient

ε1/2ζ
′(o)
0 ∂ZΘ

(o)
0 /
√

2 generated by Ekman pumping.
Direct numerical simulation results indicate that equipartition between convective

and conductive heat transport is achieved within the middle layer (see figure 8). For
comparison, for stress-free boundary conditions, equipartition occurs at a vertical depth
well outside that associated with the middle layer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

22
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.225


70 K. Julien and others

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0.2

0

0.4

0.6

0.8

1.0

0

0.02

0.01

0.03

0

0.001

0.003

0.002

0.004

z

(a) (b) (c)

FIGURE 8. (Colour online) Convective flux σwθ (vertical dashed line) and mean
temperature gradient −∂zθ =Nu− σwθ (vertical solid line) obtained for DNS with no-slip
boundaries at R̃a= 20, E = 10−7, σ = 7 and average Nu= 17. Shaded regions denote the
variance obtained from a time series. (a) Entire layer, (b) magnification of the O(E1/3H)
thermal boundary layer scale and (c) magnification of the Ekman boundary layer. The
fluctuating thermal boundary layer is delineated by the purple horizontal dashed line, while
the Ekman boundary layer is delineated by the red horizontal dashed line. The numerical
grid points are marked by square and circular symbols. Equipartition is reached within the
thermal wind layer (b).

3.3.1. Estimation of the transition threshold, R̃athres

In the following, we determine the threshold Rayleigh number R̃athres at which
Ekman pumping gains significance according to the criterion ζ (o)0 (0)∼ ε−1/2 in (3.53).
This is achieved by assessing the R̃a dependence of the outer fluid variables prior
to the transition threshold where stress-free and no-slip boundary conditions are
presumed to be asymptotically indistinguishable at leading order. Direct numerical
simulations at E= 10−7 (Stellmach et al. 2014, figure 3) have established that Ekman
pumping has a significant effect on the heat transport within the laminar CTC regime.
We therefore make an a priori assumption that the transition occurs within this
regime. Simulations of the NH-QGEs for rotating Rayleigh–Bénard convection (Julien
et al. 2012b) have established that the dynamics within the CTC regime exhibits
power law scalings with respect to R̃a in both the bulk and the thermal boundary
layer. Hence, we pose the following scaling relations:

W (o)
0 = R̃a

ŵ
Ŵ (o)

0 , Ψ
(o)

0 = R̃a
ψ̂
Ψ̂
(o)

0 , ζ
(o)
0 = R̃a

ζ̂
ζ̂
(o)
0 , Θ

′(o)
1 = R̃a

θ̂
Θ̂
(o)
1 ,

∂ZΘ
(o)
0 = R̃a

d̂t
∂̂ZΘ

(o)

0 , Nu= R̃a
β̂
N̂u.



 (3.72)

On noting that ∂t, ∇⊥, ∂Z = O(1) in the core region and that the CTC structures
are known to be axisymmetric to leading order (Grooms et al. 2010), the following
balances hold in the NH-QGEs:

∂tζ
(o)
0 ∼−∂ZW (o)

0 ∼∇2
⊥ζ

(o)
0 , (3.73)

∂tW
(o)
0 ∼ ∂ZΨ

(o)
1 ∼ R̃aΘ ′(o)1 ∼∇2

⊥W (o)
0 , (3.74)

∂tΘ
′(o)
1 ∼W (o)

0 ∂ZΘ
(o)
0 ∼

1
σ
∇2
⊥Θ
′(o)
1 , (3.75)

σW (o)
0 Θ

′(o)
1

T

∼Nu. (3.76)
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The algebraic equations satisfied by the exponents defined in (3.72) are given by

ŵ= ψ̂ = ζ̂ = 1+ θ̂ , ŵ+ d̂t= θ̂ , ŵ+ θ̂ = β̂. (3.77a−c)

On assuming that β̂ is known empirically, we obtain

ŵ= ψ̂ = ζ̂ = β̂ + 1
2

, θ̂ = β̂ − 1
2

, d̂t=−1. (3.78a−c)

This result indicates that as the amplitude of convection intensifies with increasing
R̃a, the mean bulk temperature gradient approaches an increasingly well-mixed interior
according to R̃a

−1
. This is a well-established result of the CTC regime (Sprague et al.

2006; Julien et al. 2012b) that is confirmed by the reduced simulations (Julien et al.
2012b), which yield Nu∼ R̃a

2.1
together with the bulk scalings

∂ZΘ
(o)
0 ∼ R̃a

−0.96
, W (o)

0 = R̃a
1.53
, ζ

(o)
0 ∼ R̃a

1.55
, Θ

′(o)
1 ∼ R̃a

0.62
(3.79a−d)

evaluated at Z = 1/2 for all variables except vorticity which is evaluated at Z = 3/4
owing to its antisymmetry. The empirically measured scalings are in good quantitative
agreement with the choice β̂ ≈ 2, giving

Nu∼ R̃a
2
, W (o)

0 = ζ (o)0 ∼ R̃a
3/2
, Θ

(o)
1 ∼ R̃a

1/2
. (3.80a−c)

In the thermal boundary layers, where it is once again assumed that ∂t,∇⊥=O(1),

but now ∂Z = R̃a
η̂� 1, the following balances hold:

∂tζ
(o)
0 ∼−∂ZW (o)

0 ∼∇2
⊥ζ

(o)
0 , (3.81)

∂ZΨ
(o)

1 ∼ R̃aΘ ′(o)1 , (3.82)

∂tΘ
′(o)
1 ∼W (o)

0 ∂ZΘ
(o)
0 ∼

1
σ
∇2
⊥Θ
′(o)
1 , (3.83)

σW (o)
0 Θ

′(o)
1

T

∼ ∂ZΘ
(o)
0 ∼Nu. (3.84)

The algebraic equations satisfied by the exponents defined in (3.72) now satisfy

η̂+ ŵ= ψ̂ = ζ̂ , η̂+ ψ̂ = 1+ θ̂ , ŵ+ d̂t= θ̂ , ŵ+ θ̂ = d̂t= β̂, (3.85a−d)

with the solution

η̂= ψ̂ = ζ̂ = β̂ + 1
2

, ŵ= 0, θ̂ = d̂t= β̂. (3.86a−c)

From (3.78) and (3.86), it now follows that the vorticity satisfies

ζ
(o)
0 ∼ R̃a

(β̂+1)/2
ζ̂
(o)
0 , (3.87)

and hence that (see (3.53))

ζ
(o)
0 (0)∼ ε−1/2⇒ R̃athres =O(ε−1/(β̂+1))=O(E−1/(3(β̂+1))). (3.88)
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Specifically, for the empirically observed CTC value of β̂ ≈ 2,

R̃athres =O(ε−1/3)=O(E−1/9). (3.89)

At E = 10−7 this gives a value R̃athres ∼ 6.0. This is of the same magnitude as the
critical Rayleigh number R̃ac= 8.05 (Heard & Veronis 1971), indicating an immediate
departure from the stress-free case. This is a conclusion borne out by the recent DNS
(figure 3(b)). At lower values of E, it is found that R̃athres> R̃ac. From the interior and
boundary layer scaling exponents (3.78) and (3.86), we also estimate the magnitude
of Ekman pumping normalized by the midplane velocity as

S= E1/6ζ
(o)
0 (0)/

√
2

w(o)
0 (

1
2)

=O(E1/6), (3.90)

thus confirming the empirical DNS results (see figure 5 of Stellmach et al. (2014)).

4. Composite reduced NH-QGEs
The findings of § 3 are now combined to deduce a composite reduced model capable

of capturing the thermal effect of Ekman pumping in a single domain Z= [0, 1]. This
is accomplished by reconstituting the fluid variables in each region as defined in (3.6),
with the exception that the Ekman layer is now parameterized. For convenience, we
first summarize the reduced asymptotic equations of the outer and middle regions.

In the presence of no-slip boundary conditions, we have established that the outer,
i.e. bulk, region is described by the reduced NH-QGE system:

outer region:

U(o)
0 ≡ 0, U′(o)0 =∇⊥Ψ (o)

0 +W (o)
0 ẑ, P(o) = P(o)0 + εΨ (o)

0 , Θ (o) =Θ (o)
0 + εΘ ′(o)1 ,

(4.1a−d)

with a hydrostatically evolving mean component

∂ZP0 = R̃a
σ
Θ0,

∂τΘ
(o)
0 + ∂Z

(
W (o)

0 Θ
′(o)
1

T )
= 1
σ
∂ZZΘ

(o)
0 ,

Θ
(o)
0 (0)= 1, Θ

(o)
0 (1)= 0,





(4.2)

with fixed mean temperature boundaries. The quasi-geostrophically evolving fluctuating
components are given by

D⊥0tζ
(o)
0 − ∂ZW (o)

0 =∇2
⊥ζ

(o)
0 ,

D⊥0tW
(o)
0 + ∂ZΨ

(o)
0 =

R̃a
σ
Θ
′(o)
1 +∇2

⊥W (o)
0 ,

D⊥0tΘ
′(o)
1 +W (o)

0 ∂ZΘ
(o)
0 =

1
σ
∇2
⊥Θ
′(o)
1 ,

W (o)
0 (0)= ε

1/2

√
2
ζ
(o)
0 (0), W (o)

0 (1)=−ε
1/2

√
2
ζ
(o)
0 (1),





(4.3)
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with parameterized pumping boundary conditions. The requirement of zero thermal
fluctuations on the boundaries was shown to require the introduction of a pair of
middle boundary layer regions:

middle regions at Z ≡ Zb = 0 or 1:

U′(m) = ε∇⊥Ψ (m)
1 , P(m) = ε

(
P(m)1 +Ψ (m)

1

)
, Θ (m) = ε

(
Θ
(m)
1 +Θ ′(m)1

)
, (4.4a−c)

with a hydrostatically evolving mean component

∂zP
(m)
1 =

R̃a
σ
Θ
(m)
1 ,

∂tΘ
(m)
1 + ∂z

(
W (o)

0 Θ
′(m)
1

)
= 1
σ
∂zzΘ

(m)
1 ,

Θ
(m)
1 (∞)= 0,





(4.5)

and a geostrophically evolving fluctuating component ẑ× U′(m)1 =−∇Ψ (m)
1 in thermal

wind balance

∂zΨ
(m)

1 =
R̃a
σ
Θ
′(m)
1 ,

D⊥0tΘ
′(m)
1 +W (o)

0 ∂zΘ
(m)
1 + ∂z

(
W (o)

0 Θ
′(m)
1 −W (o)

0 Θ
′(m)
1

)
= 1
σ
∇2Θ

′(m)
1 ,

Θ
′(m)
1 (Zb)+Θ ′(o)1 (Zb)= 0, Θ

′(m)
1 (∞)= 0.





(4.6)

Notably, the reduced dynamics within the middle layer is captured solely by the
evolution of Θ ′(m)1 in (4.6b), which is coupled to the leading-order outer dynamics
through the regularizing boundary condition (4.6c). It is now observed that Ekman
pumping gives rise to two additional physical effects in (4.6b) that are absent in the
bulk: nonlinear vertical advection and vertical diffusion of thermal fluctuations, each
of which becomes important when ζ (o)0 =O(ε−1/2).

Following (3.6), the outer and middle regions may now be combined into a single
composite system capturing dominant contributions upon defining the following
composite variables:

Θ
(c) =Θ (o)

0 (τ , Z)+ ε
(
Θ
(m,−)
1 (t, τ , Z/ε)+Θ (m,+)

1 (t, τ , 1− Z/ε)
T
)
, (4.7)

P(c) = P(o)0 (τ , Z)+ ε
(

P(m,−)1 (t, τ , Z/ε)+ P(m,+)1 (t, τ , 1− Z/ε)
T
)
, (4.8)

Θ ′(c) =Θ ′(o)1 (x, y, t; τ , Z)+ (Θ ′(m,−)1 (x, y, t; τ , Z/ε)+Θ ′(m,+)1 (x, y, t; τ , 1− Z/ε)),
(4.9)

Ψ (c) =Ψ (o)
0 (x, y, t; τ , Z)+ ε(Ψ (m,−)

1 (x, y, t; τ , Z/ε)+Ψ (m,+)
1 (x, y, t; τ , 1− Z/ε)),

(4.10)
W (c) =W (o)

0 (x, y, t; τ , Z), (4.11)

and reverting to a single vertical coordinate Z. We note that no middle layer
corrections to the vertical velocity are required.
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We thus arrive at the following.

Composite system or CNH-QGEs:

U(c) ≡ 0, U′(c) =∇⊥Ψ (c) +W (c)ẑ, P(c) = P(c) + εΨ (c), Θ (c) =Θ (c) + εΘ ′(c),
(4.12a−d)

with

∂ZP(c) = R̃a
σ
Θ
(c)
, (4.13a)

∂τΘ
(c) + ∂Z

(
W (c)Θ ′(c)

T
)
= 1
σ
∂ZZΘ

(c)
, (4.13b)

Θ
(c)
(0)= 1, Θ

(c)
(1)= 0, (4.13c)

D⊥ctζ
(c) − ∂ZW (c) =∇2

⊥ζ
(c), (4.14a)

D⊥ctW
(c) + ∂ZΨ

(c) = R̃a
σ
Θ ′(c) +∇2

⊥W (c), (4.14b)

D⊥ctΘ
′(c) +W (c)∂ZΘ

(c) + ε∇⊥ ·
(

U(c)
1⊥Θ

′(c)
)
+ ε∂Z

(
W (c)Θ ′(c) −W (c)Θ ′(c)

)

= 1
σ

(∇2
⊥ + ε2∂ZZ

)
Θ ′(c), (4.14c)

W (c)(0)= ε
1/2

√
2
ζ (c)(0), W (c)(1)=−ε

1/2

√
2
ζ (c)(1), (4.14d)

Θ ′(c)(0)=Θ ′(c)(1)= 0. (4.14e)

Here, D⊥ct ≡ ∂t +U(c)
0⊥ · ∇⊥, and U(c)

1⊥ denotes the ageostrophic field determined through
the three-dimensional incompressibility condition

∇⊥ ·U(c)
1⊥ + ∂ZW (c) = 0. (4.15)

Descriptively, the composite system captures the geostrophically balanced domain
(4.12), where Ekman layers are parameterized by (4.14d). The fluctuating dynamics
(4.14a,b) indicates that vortical dynamics is driven by vortex stretching associated with
the linear Coriolis force while vertical motion is driven by buoyancy and unbalanced
pressure gradients. The buoyancy source term in (4.14b) is controlled by the evolution
of the fluctuating temperature (4.14c). Here, nonlinear vertical advection and linear
vertical diffusion appear as new physical terms in the composite model. The latter
is required in order to enforce fixed temperature boundary conditions (4.14e). We
note, however, that it is the vertical advection of a strong mean temperature gradient
that gives rise to new near-boundary source terms activated by Ekman pumping
when W (c) = O(1). The resulting adjustments to the convective fluxes give rise
to significant changes in the mean background state which remains in hydrostatic
balance, equation (4.13a). The ageostrophic advective nonlinearity in (4.14c) is
retained together with the continuity condition (4.15) in order to maintain asymptotic
consistency with known power integrals for the kinetic and thermal energy dissipation,
namely
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Eu ≡
〈(
ζ (c)
)2 + |∇⊥W (c)|2

〉
+ ε

1/2

√
2

(
|∇⊥Ψ (c)(0)|2 + |∇⊥Ψ (c)(1)|2

)
= R̃a
σ 2
(Nu− 1) ,

(4.16a)

EΘ ≡
〈(
∂ZΘ

(c)
)2
〉
+
〈
|∇⊥Θ ′(c)|2 + ε2(∂ZΘ ′(c))2

〉
=Nu. (4.16b)

From the analysis of § 3.3.1 and (4.16a), we deduce that Ekman friction remains a
subdominant contributor to the kinetic energy dissipation and therefore to the Nusselt
number Nu throughout the entire rotationally constrained regime. However, vertical
thermal dissipation becomes dominant in the thermal dissipation rate and Nu within
the thermal wind layer once the critical threshold R̃a=O(E−1/9) is reached.

Several additional and slightly technical comments about the composite system are
in order. The mean temperature equation (4.13b) is obtained upon time filtering the

evolution equations (4.5b) over the fast time t to obtain Θ
(m)
1

T

prior to composition
with (4.2b). As a consequence of this filtering, evaluation of the advection of the mean
temperature in (4.14c) incurs the asymptotically small O(ε) error

εW (o)
0

(
∂ZΘ

(m)
0

T

− ∂ZΘ
(m)
0

)
(4.17)

in the vicinity of the upper and lower bounding plates. We also note that the
composite formulation produces O(ε) errors in horizontal advection terms of the
form εU(c)

1⊥ · ∇⊥
(
ζ (c),W (c)

)
.

5. Results
A comparison of the linear stability results between the reduced composite model

and the incompressible Navier–Stokes (NS) equations is illustrated in the R̃a–E−2

diagram of figure 9 and the data given in table 1. All numerical results were
obtained by solving the two-point boundary value eigenproblem using an iterative
Newton–Raphson–Kantorovich (NRK) scheme (Henrici 1962; Cash & Singhal 1982)
with 1025 spatial grid points placed at the Chebyshev–Gauss–Lobatto points. All
spatial derivatives were computed with fourth-order finite differences. Irrespective
of the mechanical boundary condition selected, the onset of steady convection
corresponds to minimal values (R̃ac, k̃c)= (8.6956, 1.3048) as E→ 0 (dashed line). As
shown in figure 9, for stress-free boundaries excellent convergence to the asymptotic
values is observed when E−2 & 108, or equivalently E . 10−4 (dashed–dotted lines).
For the no-slip case, where Ekman pumping is present, one may observe that the
unapproximated values (solid lines) differ from the asymptotic values by an O(1)
amount. Most strikingly, the asymptotic convergence is very slow, and differences are
still visible at E−2≈ 1020. The inclusion of Ekman pumping in the reduced model and
the associated corrections rectify this difference, and asymptotically accurate values
of R̃a and k⊥ are recovered (cf. solid and dotted lines).

Clearly, the reduced model has an enhanced capability of reaching lower E
with equivalent computational resources. The results of the composite model are
in quantitative agreement with the asymptotic result of Heard & Veronis (1971), who
find the following analytical result for marginal stability:

R̃am =
(

π2

k2
⊥
+ k4
⊥

)
− 2
√

2
π2

k4
⊥
ε1/2 + 6

π2

k6
⊥
ε, ε = E1/3. (5.1)
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2.0102

101

(a) (b)

FIGURE 9. The effect of Ekman pumping on the onset of steady convection. (a) Critical
reduced Rayleigh number R̃a versus E−2 and (b) critical reduced wavenumber kc versus
E−2. The results shown are obtained from the unapproximated Navier–Stokes equations
for no-slip boundaries (solid) and stress-free boundaries (dashed-dotted) for E−2 6 1018.
Asymptotic approximations are obtained from the reduced NH-QGEs with (i) impenetrable
stress-free boundary conditions (dashed), where (R̃ac, kc) = (8.6956, 1.3048), and
(ii) Ekman pumping boundary conditions (dotted). The linear effect of Ekman pumping
is quantified by the interval between the dashed and dotted lines at a given E−2.

Ekman CNH-QGEs NS
E R̃ac kc R̃ac kc

10−6 7.7594 1.2289 7.7832 1.2294
10−7 8.0491 1.2537 8.0572 1.2539
10−8 8.2522 1.2703 8.2550 1.2704
10−10 8.4888 1.2890 — —
10−12 8.5995 1.2975 — —
10−14 8.6510 1.3014 — —
10−15 8.6652 1.3025 — —
10−16 8.6749 1.3032 — —
10−∞ 8.6956 1.3048 — —

TABLE 1. Minimal critical onset value reduced Rayleigh number R̃ac and wavenumber
kc as a function of the Ekman number E for the CNH-QGEs and the unapproximated
Boussinesq equations in the presence of no-slip boundary conditions.

The higher-order asymptotic corrections respectively capture the influence of Ekman
pumping (also reported by Niiler & Bisshopp (1965)) and thermal regularization
within the middle layer.

The quantitative impact of the inclusion of Ekman pumping in the asymptotically
reduced equations can be assessed by computing fully nonlinear single-mode
(or single-horizontal-wavenumber) solutions. Following Julien & Knobloch (1998),
we pose for steady-state solutions with σ > 0.67 the ansatz

(
Ψ (c), ζ (c),W (c), Θ (c)

)= σ−1
(
Ψ̃ (Z), ζ̃ (Z), W̃(Z), σ Θ̃(Z)

)
h(x, y), (5.2)
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where h(x, y) is a real-valued function satisfying the planform equation

∇2
⊥h=−k2

⊥h, (5.3)

with normalization h2 = 1. These planforms include rolls (h = √2 cos k⊥x), squares
(h = cos k⊥x + cos k⊥y), hexagons (h = √2/3(cos k⊥x + cos[(1/2)k⊥(x +

√
3y)] +

cos[(1/2)k⊥(x −
√

3y)])), regular triangles (h = √2/3(sin k⊥x + sin[(1/2)k⊥(x +√
3y)] + sin[(1/2)k⊥(x −

√
3y)])) and the patchwork quilt (h = cos[(1/2)k⊥(x +√

3y)] + cos[(1/2)k⊥(x−
√

3y)]). For such patterns, horizontal advection vanishes, for
instance

∇
⊥Ψ (c)

· ∇⊥ζ (c) = σ−2Ψ̃ 2
0 (Z)∇

⊥h · ∇⊥∇2
⊥h=−k2

⊥σ
−2Ψ̃ 2

0 (Z)∇
⊥h · ∇⊥h≡ 0. (5.4)

The following σ -independent system of ordinary differential equations for the vertical
structure is then obtained:

(
∂ZZ − k6

⊥
)

W̃ + k4
⊥R̃aΘ̃ = 0, (5.5)

(
ε2∂ZZ − k2

⊥
)
Θ̃ − W̃∂ZΘ

(c) = 0, (5.6)

∂ZW̃ − k2
⊥ζ̃ = 0, (5.7)

−∂ZΘ
(c) + W̃Θ̃ =Nu, (5.8)

together with the boundary conditions

W̃(0)= ε
1/2

√
2
ζ̃ (0), W̃(1)=−ε

1/2

√
2
ζ̃ (1), (5.9a,b)

Θ
(c)
(0)= 1, Θ

(c)
(0)= 0, Θ̃(0)= Θ̃(1)= 0. (5.10a−c)

The above single-mode system represents a nonlinear two-point boundary value
problem which we solve by successive over-relaxation on a discretized one-
dimensional mesh. An iterative NRK scheme is used with O(10−10) accuracy in the
L2 norm of the energy functional E(Z) = (W̃2 + |∇⊥Ψ̃ |2)/2. The control parameters
of the problem are the scaled Rayleigh number R̃a, the horizontal wavenumber k⊥
and the parameter ε = E1/3 measuring the strength of Ekman pumping.

In the absence of Ekman pumping (ε = 0), the only remaining nonlinearity in the
reduced equations is the vertical divergence of the horizontally averaged convective
flux appearing in (5.8), which is incapable of generating energy exchanges between
horizontal wavenumbers. Julien & Knobloch (1999) have shown that single-mode
solutions are in fact exact solutions to the reduced system.

Results for the Nu–R̃a relation from the fully nonlinear single-mode theory are
presented in figures 10 and 11. Given no a priori means for selecting the wavenumber
k⊥, it is held fixed at the critical value obtained at linear onset (table 1) in figure 10.
In figure 11, the wavenumber that maximizes Nu at fixed R̃a is selected. In each case,
comparisons with the stress-free Nu–R̃a curve corresponding to ε = 0 in (5.9) (solid
line) reveal strong departures once the predicted threshold R̃athres ∼ E−1/9 is reached.

Estimates of this threshold are given in table 2. For E & 10−9, we observe that this
departure occurs immediately at onset. As R̃a increases, the Nu–R̃a curves exhibit a
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102101
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Nu

FIGURE 10. The Nusselt number Nu versus R̃a corresponding to the critical wavenumbers
k⊥ = kc in the presence of Ekman pumping for single-mode solutions. The solid
curve shows the results for the case of no pumping, ε = 0. The remaining curves
illustrate the enhancement due to Ekman pumping for, from right to left, E = ε3 =
(10−16, 10−14, 10−12, 10−10, 10−8, 10−6). See table 1 for kc.

102101 102101
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(a) (b)

FIGURE 11. (a) The maximal Nusselt number Nu versus R̃a and (b) the corresponding
wavenumber k⊥ in the presence of Ekman pumping for single-mode solutions. The solid
curve shows the results for the stress-free case with no pumping (ε = 0). The remaining
curves illustrate the enhancement due to Ekman pumping for, from right to left, E= ε3=
(10−16, 10−14, 10−12, 10−10, 10−8, 10−6). The stress-free case provides an upper bound for
the horizontal wavenumber that maximizes heat transport in the single-mode theory.

transition region of strong monotonic increase with a positive curvature. This trend
continues until a zero-curvature point is reached. In the range Nu6104, this occurs for
E > 10−14; smaller values of E have yet to attain their zero-curvature points. Beyond
the zero-curvature point, a monotonically increasing curve of negative curvature is
observed before the asymptotic branch is reached. Interestingly, figure 11(b) indicates
that the transition region for maximal Nu is bracketed by two limiting values of k⊥:
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Ekman, E R̃athres ∼ E−1/9

10−6 4.6415
10−8 7.7426
10−10 12.9155
10−12 21.5443
10−14 35.9381
10−16 59.9484
10−∞ ∞

TABLE 2. Estimates for the transitional Rayleigh number R̃athres∼E−1/9 as a function of E.

a monotonically increasing branch prior to transition and a saturated branch with
k⊥ = 1.2434 very close to the critical onset value k⊥ = 1.3048. The latter provides
evidence that all Nu–R̃a curves with ε > 0 are topologically similar.

It is worth providing more precise reasons for the heat transport scaling transition.
In (5.5)–(5.10), the small parameter ε makes two physically distinct appearances.
This first is in the Ekman pumping boundary conditions, equation (5.9). The second
is in the vertical dissipation of thermal fluctuations, equation (5.6). Ostensibly, one
might suppose that the latter is much less significant than the former, ε2 versus√
ε respectively. We can therefore entertain dropping the ε2 and retaining only the√
ε. We already know that the heat transport shows significant enhancement when

R̃a∼ ε−1/3. What part of this results from pumping versus the thermal wind balance
immediately adjacent to the Ekman boundary layer? The answer is that without
thermal dissipation, the Ekman pumping not only enhances the heat transport, but
also causes it to diverge to infinity. However, thermal dissipation acts to arrest the
divergence, resulting in a finite albeit much enhanced value of Nu over that with no
Ekman pumping.

It is evident from figures 10 and 11(a) that at fixed R̃a the maximal heat transport
is achieved for an intermediate value of ε > 0. Moreover, as ε→ 0 the transition from
the stress-free curve corresponding to ε= 0 in (5.9) exhibits increasingly steep slopes.
This is quantified in figure 12, where the instantaneous power exponents

β = d log10 Nu

d log10 R̃a
for Nu∝ R̃a

β
, (5.11)

γ = d log10(Nu− 1)
d log10 η

for Nu∝ ηγ , η≡ R̃a

R̃ac

− 1 (5.12)

are plotted as a function of R̃a. Owing to the inability of laboratory experiments and
DNS to probe deeply into the high-R̃a–low-(E, Ro) regime, it has been suggested
(Ecke 2015) that a more pertinent measure for the heat transport in this regime is
one more closely related to weakly nonlinear theory, i.e. the supercriticality η and the
associated exponent γ in (5.12) and figure 12(b). It can be seen in figure 12 that both
exponents display similar qualitative characteristics.

For stress-free boundaries (corresponding to ε = 0 in (5.9)), we observe that
β = 1.7466 and γ = 1.7171 as R̃a→∞, which are close to the values obtained in
the full simulations of the NH-QGEs (Sprague et al. 2006) where β = 2.1. We note
that the expected weakly nonlinear result γ = 1 is captured near onset at R̃a = R̃ac
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FIGURE 12. (a) Instantaneous heat transport exponent β = d log10 Nu/d log10 R̃a versus
R̃a and (b) γ = d log10(Nu − 1)/d log10 η versus η = (R̃a/R̃ac) − 1. The solid curve
shows the results for the case of no pumping (ε = 0 in (5.9)). The remaining curves
illustrate the enhancement due to Ekman pumping for, from right to left, E = ε3 =
(10−16, 10−14, 10−12, 10−10, 10−8, 10−6).

(Bassom & Zhang 1994; Dawes 2001; Julien et al. 2012b). In contrast, away from
onset and the weakly nonlinear regime, figure 12(a) indicates that β ≈ 2, revealing
only a slight difference from the strongly nonlinear value β = 2.1 determined from
DNS.

For no-slip boundaries with Ekman pumping (ε 6= 0), we observe that β > 2,
indicating a tendency for Ekman pumping to increase heat transport. This trend is
also observed in the supercriticality exponent γ . The maximal exponents all occur
at the zero-curvature points in the Nu–R̃a curves (figures 10 and 11a), and the
value trends to ∞ as ε → 0, where the zero-curvature point becomes inflectional.
These observations within the single-mode setting provide an explanation of the
measured increase in the heat transport exponent βNS

rot in the scaling relation Nu∝ R̃a
β

(see figure 1), and suggest that both laboratory experiments and DNS have yet to
probe the saturated asymptotic state in the presence of Ekman pumping. In figure 12,
we see that the single-mode branches asymptote to saturated exponents β, γ ≈ 1 as
R̃a ∼ η→∞, which are significantly below the stress-free result of β, γ ≈ 2 and
close to that produced by weakly nonlinear theory. Thus, after an initial range of
enhancement in the heat transport it appears that Ekman pumping diminishes heat
transport efficiency as measured by the exponents. This fortuitous result is consistent
with the claim by Ecke (2015) that the Nu–η relation should be interpreted from a
weakly nonlinear standpoint, where η is interpreted as O(1).

The fidelity of the CNH-QGE and single-mode solutions is further demonstrated in
the vertical structure profiles of figure 13. Comparison with DNS at fixed R̃a = 20,
E = 10−7, σ = 7 clearly shows that a periodic array of convection cells described
by a single-mode solution overestimates the DNS amplitudes. This fact is known
from stress-free investigations (Sprague et al. 2006; Stellmach et al. 2014). However,
excellent agreement is found in the topology of the vertical profiles. The stress-free
and no-slip single-mode results respectively constitute lower and upper bounds on the
DNS results. This is also borne out in an explicit comparison of the heat transport
at Pr= 7, E= 10−7 (figure 14).
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FIGURE 13. (Colour online) Vertical structure profiles at R̃a = 20, E = 10−7, σ = 7
obtained from the reduced NH-QGEs with stress-free boundary conditions (black dashed
line), reduced CNH-QGEs (black solid line) and DNS (red solid line). (a) Root mean
square vertical velocity, (b) r.m.s. vertical vorticity, (c) r.m.s. temperature, (d) mean
temperature. The stress-free and no-slip single-mode results respectively constitute lower
and upper bounds on the DNS results.

6. Conclusion
Discrepancies between recent synergistic investigations of rotating thermal convec-

tion performed through laboratory experiments (Cheng et al. 2015), DNS (Stellmach
et al. 2014) and reduced models (Julien et al. 2012b) have drawn attention to the
non-trivial impact of Ekman pumping on the efficiency of heat transport. Laboratory
experiments and DNS are unable to access the geophysically and astrophysically
relevant high-Ra–low-(Ro, E) parameter space. In the present study, this difficulty is
overcome by performing a detailed asymptotic analysis in the limit (Ro, E)→ 0 and
extending the previously developed non-hydrostatic quasi-geostrophic equations to
incorporate the effects of Ekman pumping. The analysis reveals the existence of three
distinct fluid regions, each characterized by a different dominant physical balance:
a geostrophically balanced bulk where fluid motions are predominately aligned with
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FIGURE 14. (Colour online) The Nusselt number Nu versus R̃a at σ = 7 and E = 10−7:
single-mode data for stress-free boundaries at ε = 0 (solid black curve); single-mode data
for no-slip boundaries (black dashed curve); DNS data for stress-free boundaries (red solid
curve, open circles); DNS data for no-slip boundaries (red dashed curve, open circles);
laboratory data (blue dashed curve, crosses). The single-mode solutions provide an upper
bound to the DNS Nusselt number.

the axis of rotation, Ekman layers adjacent to the bounding plates where viscous
stresses attenuate the interior geostrophic velocity field and intermediate thermal
wind layers driven by Ekman pumping. A classical Ekman pumping parameterization
W (o) =±E1/6ζ

(o)
0 /
√

2 is utilized to alleviate the need to resolve the Ekman boundary
layers, and a reduced model, namely the CNH-QGEs, is constructed using the method
of composite expansions (Nayfeh 2008). The model bears all the hallmarks of its
stress-free counterpart, where horizontal advection of momentum and heat, linear
vortex stretching through the Coriolis force, and the vertical advection of the local
mean temperature dominate the buoyancy driven flow (Sprague et al. 2006; Julien
et al. 2012b). However, once a critical threshold R̃a = O(E−1/9) is reached, Ekman
pumping provides a substantial source of buoyancy production in the vicinity of the
bounding plates and the system transitions from asymptotically weak Ekman pumping
to O(1) Ekman pumping.

The physical explanation for this phenomenon is the ascendance to dominance of
a new source of buoyancy production in the thermal wind layer through the vertical
advection of the mean temperature by Ekman pumping. This occurs through the
intensification of the mean temperature gradient and the vortical motions that drive
vertical Ekman transport, resulting in convective fluxes generated by Ekman transport
that are comparable to those generated in the bulk. Thus, O(1) changes to the Nusselt
number are produced when compared with rapidly rotating convection in the presence
of stress-free boundaries.

Single-mode theory for cellular patterns was used to quantify the dramatic
enhancement in the Nusselt number as measured in the Nu ∝ R̃a

β
or Nu − 1 ∝
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((R̃a/R̃ac) − 1)γ scaling relations. Similar single-mode theory applied to isolated
radially symmetric profiles of convective Taylor columns (Grooms et al. 2010)
yields qualitatively similar results. This theory provides an upper bound on the
laboratory and DNS results which have reported heat transport exponents βNS

rot that
appear to increase with decreasing E (see figure 1). Results from single-mode
theory suggest that the current experiments are probing the steeper transition region
before the asymptotic regime is reached. Indeed, as E→ 0, this region exhibits an
ever-steepening scaling (see figures 10 and 11). Measurements of the instantaneous
heat transport exponents show that once the asymptotic regime is reached, the Ekman
pumping reduces the exponents to values below those observed in the stress-free
case. Owing to the challenges in probing the high-Ra–low-(Ro, E) regime, these
investigations are unable to reach the upper parts of the branch which are of
geophysical and astrophysical interest. In addition, we found that at finite E � 1
(and within the regime of validity of the theory), the Nu–Ra heat transport law
achieved by DNS and in the laboratory is bounded from below by single-mode
theory for stress-free boundaries and bounded from above by single-mode theory
for no-slip boundaries at the specified E. In this regard, the results of single-mode
theory have considerable utility. However, a more detailed numerical investigation
of the CNH-QGEs will further our understanding of the rotationally constrained
regime. Specifically, motivated by laboratory experiments, our analysis has focused
primarily on water, for which σ = 7. For smaller Prandtl numbers, σ . 1, geostrophic
turbulence is known to be triggered at much lower reduced Rayleigh numbers (Julien
et al. 2012a; Nieves et al. 2014). Assuming that the physics behind heat transport
enhancement is robust, the quantitative effect of Ekman pumping in this regime and
associated scaling laws can now be explored via simulations of the CNH-QGEs
derived here.

Given that the range of reduced Rayleigh numbers R̃a for which the CNH-QGEs
are valid can span five decades in geophysical and astrophysical settings where
E . 10−15, the flow morphologies of low-Prandtl-number rotationally constrained
convection are likely to be as rich as in non-rotating convection. As illustrated by
Julien et al. (2012a) and Stellmach et al. (2014), multiple heat transport scaling
regimes are therefore likely to exist.
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Appendix A
As deduced in § 3.2.1, in the regime prior to the enhancement of heat transport by

Ekman pumping, i.e. where ζ (o)0 (0)<O(ε−1/2), an asymptotic theory may be developed
based solely on higher-order corrections to the NH-QGEs. Such corrections may be
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considered to be the nonlinear extension of the linear work of Niiler & Bisshopp
(1965) and Heard & Veronis (1971).

On proceeding to O(ε1/2), the mean dynamics is described by

∂ZP(o)1/2 =
R̃a
σ
Θ
(o)
1/2, (A 1)

∂τΘ
(o)
1/2 + ∂Z

(
W (o)

0 Θ
′(o)
3/2 +W (o)

1/2Θ
′(o)
1

T )
= 1
σ
∂ZZΘ

(o)
1/2, (A 2)

Θ
(o)
1/2(0)= 0, Θ

(o)
1/2(1)= 0. (A 3a,b)

Following the perturbation analysis of § 3.1 for the fluctuations to the next order gives

Lgeo

(
U′(o)1/2

P′(o)3/2

)
=RHS. (A 4)

Upon application of the solvability condition, we find that the corrections are
geostrophically balanced, with

U′(o)1/2 =∇⊥Ψ (o)
1/2 +W (o)

1/2ẑ, P′(o)3/2 =Ψ (o)
1/2, (A 5a,b)

and evolve according to

D⊥0tζ
(o)
1/2 +U(o)

1/2 · ∇⊥ζ
(o)
0 − ∂ZW (o)

1/2 =∇2
⊥ζ

(o)
1/2, (A 6)

D⊥0tW
(o)
1/2 +U(o)

1/2 · ∇⊥W (o)
0 + ∂ZΨ

(o)
1/2 =

R̃a
σ
Θ
′(o)
3/2 +∇2

⊥W (o)
1/2, (A 7)

D⊥0tΘ
′(o)
3/2 +U(o)

1/2 · ∇⊥Θ
′(o)
1 +W (o)

0 ∂ZΘ
(o)
1/2 +W (o)

1/2∂ZΘ
(o)
0 =

1
σ
∇2
⊥Θ
′(o)
3/2 . (A 8)

Importantly, it is evident from the underlined term that the temperature fluctuations
at the boundaries remain non-zero, Θ ′(o)3/2 (0), Θ

′(o)
3/2 (1) 6= 0, implying that a middle

layer correction is required. On developing the asymptotics for the middle region, the
corrections are given by the following set of equations:

ẑ×U′(m)3/2 =−∇⊥Ψ (m)
3/2 , (A 9)

∂zΨ
(m)

3/2 =
R̃a
σ
Θ
′(m)
3/2 , (A 10)

D⊥0tΘ
′(m)
3/2 =

1
σ
∇2Θ

′(m)
3/2 , (A 11)

Θ
′(m)
3/2 (Zb)+Θ ′(o)3/2 (Zb)= 0, Θ

′(m)
3/2 (∞)= 0, (A 12a,b)

where Zb= 0 or 1. The dynamics is in thermal wind balance and evolves according to
an advection–diffusion equation. Notable in (A 11) is the absence of vertical advection
of the mean temperature, indicating that buoyancy production by Ekman pumping is
negligible.

We extend the scaling analysis of § 3.3.1 for the CTC regime to the case where
horizontal advection in the reduced dynamics is subdominant, and set

W (o)
1/2 = R̃a

w̃
Ŵ (o)

1/2, Ψ
(o)

1/2 = R̃a
ψ̃
Ψ̂
(o)

1/2, ζ
(o)
1/2 = R̃a

ζ̃
ζ̂
(o)
1/2,

Θ
′(o)
3/2 = R̃a

θ̃
Θ̂
(o)
3/2, ∂ZΘ

(o)
1/2 = R̃a

d̃t
∂̂ZΘ

(o)

1/2.



 (A 13)
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In the bulk, the algebraic equations satisfied by the exponents are identical to those
found in the NH-QGEs (see (3.78)), namely

w̃= ψ̃ = ζ̃ = β̂ + 1
2

, θ̃ = β̂ − 1
2

, d̃t=−1. (A 14a−c)

Inspection of the two highest terms of the asymptotic series for the fluid variables
establishes that the series remains uniform in all variables, e.g.

w≈ R̃a
(β̂+1)/2

(
Ŵ (o)

0 + ε1/2Ŵ (o)
1/2 + · · ·

)
, s.t. ε1/2W (o)

1/2 = o
(

W (o)
0

)
. (A 15)

Similar expressions hold for the other variables. Indeed, this finding always holds
for the NH-QGEs in the region of asymptotic validity for impenetrable stress-free
boundary conditions.

The validity in the presence of impenetrable no-slip boundary conditions is thus a
central question of interest. In the thermal boundary layer, where vertical fluid motions
persist due to Ekman pumping, the exponents satisfy instead

w̃= β̂ + 1
2

, ψ̃ = ζ̃ = β̂ + 1, d̃t= θ̃ = 3β̂ + 1
2

. (A 16a−c)

Comparison with the leading-order exponents (3.86) shows that the vortical and
thermal corrections increase at a much greater rate than in the stress-free case,
suggesting an eventual loss of uniformity in the asymptotic expansion. Since

ζ ≈ R̃a
(β̂+1)/2

(
ζ̂
(o)
0 + ε1/2R̃a

(β̂+1)/2
ζ̂
(o)
1/2

)
,

Ψ ≈ R̃a
(β̂+1)/2

(
Ψ̂
(o)

0 + ε1/2R̃a
(β̂+1)/2

Ψ̂
(o)

1/2

)
,

θ ′ ≈ R̃a
β̂
(
Θ̂
(o)
1 + ε1/2R̃a

(β̂+1)/2
Θ̂
(o)
3/2

)
,

∂ZΘ
(o) ≈ R̃a

β̂
(
∂̂ZΘ

(o)

0 + ε1/2R̃a
(β̂+1)/2

∂̂ZΘ
(o)

1/2

)
,





(A 17)

the loss of uniformity occurs when ε1/2R̃a
(β̂+1)/2 = O(1). A more detailed boundary

layer analysis (not presented here) reveals a particularly grave situation where all
orders in the asymptotic sequence exhibit non-uniformity and become as large as
the leading-order prediction. This situation is resolved by promoting the effect
of Ekman pumping to leading order, as done in this paper. The higher-order
system (A 6)–(A 8) is contained within the CNH-QGEs when the effects of Ekman
pumping are subdominant.
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