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DE FINETTI ON RISK AVERSION
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According to Mark Rubinstein (2006) ‘In 1952, anticipating Kenneth Arrow
and John Pratt by over a decade, he [de Finetti] formulated the notion of
absolute risk aversion, used it in connection with risk premia for small
bets, and discussed the special case of constant absolute risk aversion.’ The
purpose of this note is to ascertain the extent to which this is true, and at the
same time, to correct certain minor errors that appear in de Finetti’s work.

1. INTRODUCTION

Bruno de Finetti (1906–1985) was an Italian philosopher, statistician and
mathematician. His work was not so well-known in the English-speaking
world until his last few years. Through his work as an actuary, he studied
decision-making under uncertainty, and is now regarded, with L. J. Savage
and F. Ramsey, as one of the founders of the modern subjective Bayesian
school.

In 1952, de Finetti participated in a conference in Paris on utility theory,
also attended by G. T. Guilbaud, L. J. Savage, K. J. Arrow, M. Friedman,
M. Allais, H. Wold, P. A. Samuelson, P. Massé, G. Morlat, J. Marschack,
R. Frisch, M. Boiteux, F. Divisia, J. Ville, and D. van Dantzig (what a
group!). De Finetti’s 1952 paper apparently contains both the content of
his talk at the Paris meeting, and his response to several of the other talks
given there.

This paper concerns only a small section of de Finetti’s 1952 paper, the
section concerning risk aversion. A translation of that section is given here
as Appendix A. Appendix B reviews and gives proofs of the results claimed
by de Finetti (and corrects some minor errors in them). Section 2 gives
comments on the context of de Finetti’s work, and section 3 concludes.
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2. BACKGROUND AND CONTEXT OF DE FINETTI’S WORK

Bruno de Finetti is writing in the context of the maximization of expected
utility. His technique is to expand the utility function in a Taylor series
around an arbitrary point. Because he is looking for the change in expected
utility as a consequence of a (bounded and small) random prospect, the
constant term cancels. The first order term yields the mean, of course. It
is the second order term that gives the correction for risk aversion. Not
surprisingly, the correction for risk aversion operates on the variance of
the random prospect. This is the heart of de Finetti’s treatment of risk
aversion, and is expressed in equation (B.9).

Why was de Finetti’s work on risk aversion not recognized at the
time? Perhaps one clue is that other important work of de Finetti was
also overlooked, namely his work on mean-variance analysis of portfolios
with correlated risks, which de Finetti published in 1940 and Markovitz
rediscovered in 1952 (see de Finetti 1940, Markovitz 1952, 2006). Bruno
de Finetti wrote in Italian, and in a formal, difficult style. It is, of course,
commonplace that when the groundwork is ‘ready’ for an idea, it can be
discovered independently in several places. Both Pratt (1964) and Arrow
(1971) agree that their work on risk aversion was independent of the other.
Neither acknowledges de Finetti, although Arrow apparently attended the
1952 meeting where de Finetti gave his paper.

Bruno de Finetti’s work on risk aversion appears almost as an
afterthought in his paper, most of which concerns his insistence on
operational definitions. For example, de Finetti rejects interpersonal utility
comparisons, for lack of an experiment that would show that person
1 cares more strongly about the preference of A over B than does
person 2.

Bruno de Finetti was a powerful mathematician. This makes it a bit
surprising that we find errors in his work. Leaving aside sign errors, there
is only one error of importance, the result (c), where he says that, for all
probabilities p, the price of a gain equal to h with probability p (and to
0 otherwise) is ph(1 + h/λ). But this can’t be right, because in the special
case when p = 1 (so the gain h is certain), the price must be h. But de
Finetti’s expression specializes to h(1 + h/λ) > h. So de Finetti would pay
more than h for a certain gain of h, which is incoherent. The alternative
expression I derive, ph(1 − (1 − p)h/λ) does simplify to h when p = 1. A
referee suggests that perhaps there is a typographical error, and that what
de Finetti meant was ph(1 − qh/λ), where q = 1 − p.

3. CONCLUSION

Each of Rubinstein’s claims for de Finetti is sustained by this reading of his
work. While there are some minor errors in his paper, he deserves credit for
having anticipated many of the results subsequently published by others.

https://doi.org/10.1017/S0266267109990022 Published online by Cambridge University Press

https://doi.org/10.1017/S0266267109990022


DE FINETTI ON RISK AVERSION 155

Although de Finetti’s work on risk aversion was not apparently influential,
while Arrow’s and Pratt’s was, that observation does not diminish the
originality of this work.

APPENDIX A. A PASSAGE FROM DE FINETTI (1952) (PP. 700–1)

Note: These authors’ comments are [in brackets].
The introduction of the [utility] function u(x) serves to bring the most

general coherent behavior in the probabilistic sense to the classical one based
on mathematical expectation (i.e. on the concept of a fair bet); everything is
reduced to performing the calculation in terms of u instead of in terms of x.
The mathematical aspect brings to the discussion associative means15 and their
properties, in particular the relationships with variances brought to light by A.
Chimenti16 will help us in the following.

It’s easy to see that the probabilistic behavior in a neighborhood of a certain
value of x depends on the degree of relative convexity of u, where, by relative
convexity I mean the ratio −u′′/2u′ between the second and first derivatives (half,
because it will be convenient). Denote by λ(x) the inverse of the relative convexity
(λ = −2u′/u′′) (to have a magnitude of the same dimensions as a ‘value’ instead of
the reciprocal of a value). The significance of λ, together with the characteristics
of probabilistic behavior for small bets, is brought to light by the following
relationships (all asymptotically valid for h → 0).17

a) The risk to gain or lose h with the same probability (±h with probability 1/2)
is equivalent to a sure loss of h2/λ;

b) to make this operation indifferent, the probability of winning must exceed
that of losing by d = h/λ (i.e. gain ±h with probability (1 ± d)/2);

c) the price of a gain h (loss if h < 0) with probability p is ph(1 + h/λ) [this should
be ph(1 − (1 − p)h/λ].

d) in general, a bet involving an uncertain gain X (with X certainly lying between
±h) is advantageous, disadvantageous, indifferent if σ 2 is less, greater than,
or equal to −λm [this should be λm] (m and σ are respectively the expectation
and standard deviation of X).

15 A. Kolmogorov, Sur la notion de moyenne, ‘Rend. Licei,’ 1930; O. Chisini, Sul concetto di
media, ‘Period. di Matematiche,’ 1929; B. de Finetti, Sul concetto di media, ‘Giorn. Ist. It.
Attuari,’ 1931.

16 Chimenti, Disuguaglianze tra medie associative, ‘Statistica,’ 1947.
17 For proof, it will be enough to observe that

u(x + h) = u + hu′ + (1/2)h2(u′′ + ε)

(denoting briefly with u, u′, and u′′ the values at x, and with ε a function of h that goes to
0 with h; we will have for example for a:

u(x + h) + u(x − h) = 2u(x − d)h2(u′′ + ε) = 2du′ + d2(u′′ + ε), etc.
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We note that, for h → 0, the expectation rule holds, to a first approximation;
the correction provided by λ (in the general form (d) and in special cases (a)–(c)),
serves as a second approximation.

Besides, it is easy to see how, assigning or determining experimentally,
according to one of a) – d) the value of λ corresponding to different x, we can
construct u integrating the differential equation u′′/u′ = 2/λ [should be −2/λ], thus
u = ∫

e−2
∫

1/λ(x)dx , (with two integration constants corresponding to the inessential
linear transformation u = A+ Bu0). In particular, we should have u = K − e−2x/λ

for λ = constant, u = log x for λ = 2x and, in greater generality, u = x1−2c for λ = x/c
(c = 1/2 gives us the previous case).

APPENDIX B. DE FINETTI’S RESULTS

Suppose u(x) : R → R is an increasing (and typically concave) utility function with
several derivatives, so that u′ > 0 and (typically) u′′ < 0. Then de Finetti defines
the function λ as follows: λ(x) = −2u′(x)/u′′(x).

The principal result of de Finetti may now be stated as:

Theorem 1. Let X be a random variable such that P{−h ≤ X ≤ h} = 1, with mean
m and standard deviation σ . Then, asymptotically as h → 0 the uncertain gain X is
respectively advantageous, disadvantageous or indifferent if σ 2 is less than, greater than
or equal to λm.

Proof: Let g be the certain amount that would make the decision-maker
indifferent between the uncertain gain X − g and the status quo. Then by definition,
g satisfies the implicit equation

0 = Eu(x + X − g) − u(x).(B.1)

By assumption, X = Op(h), which means that X/h is a bounded random variable,
and g = O(h), which means that g/h is bounded.

Expanding u in a Taylor series to first order around x yields

0 = E[u + (X − g)u′ + Op(X − g)2] − u(B.2)

where u and its derivatives are evaluated at x.
Evaluating the expectation, we have

0 = u + (m − g)u′ + O(h2) − u.(B.3)

Solving for g yields

g = m + O(h2).(B.4)

[This is what de Finetti means by his remark that the first approximation is valid
for the expectation rule. It amounts to the observation that locally to first order
every smooth function is linear.]
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Now expanding to second order, we have

0 = E

[
u + (X − g)u′ + (X − g)

2

2

u′′ + Op(h3)

]
− u.(B.5)

The new term in this expansion is

E
(X − g)2

2
= 1

2
E(X − m + m − g)2

= 1
2

E(X − m)2 + E [(X − m)(m − g)] + 1
2

E(m − g)2

= 1
2
σ 2 + 0 + 1

2
(m − g)2.(B.6)

But (B.4) implies that

(m − g)2 = O(h4)(B.7)

so this term can be neglected. Then, returning to (B.5),

0 = (m − g)u′ + σ 2u′′

2
+ O(h3).(B.8)

Again solving for g, we have

g = m + σ 2u′′

2u′ = m − σ 2/λ + O(h3).(B.9)

Thus the sign of g is the sign of λm − σ 2, which completes the proof.

Corollary 1. The risk of a gain or loss of h with equal probability (±h with probability
1
2 ) is equivalent to the sure loss of h2/λ.

Proof:
Let

X1 =
{

h with probability 1/2
−h with probability 1/2.

Then
m = E(X1) = 0

σ 2 = E(X2
1) = h2/2 + h2/2 = h2.

Then, using (B.9), g = m − σ 2/λ = 0 − h2/λ = −h2/λ.

Corollary 2. A gain of ±h with respective probabilities (1 ± d)/2 is indifferent if
d = h/λ.

Proof:
Let

X2 =
{

h with probability (1 + d)/2
−h with probability (1 − d)/2.
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Then

E(X2) = h(1 + d)/2 − h(1 − d)/2 = hd/2 + hd/2 = hd

E(X2
2) = h2(1 + d)/2 + h2(1 − d)/2 = h2.

Since (B.9) implies that

σ 2 = E
(

X2
2

)
+ O(h4), we have

0 = g = m − σ 2/λ = hd − h2/λ

if d = h/λ.

Corollary 3. The price of a gain h (loss if h < 0) with probability p is
ph(1 − (1 − p)h/λ).

Proof:
Let

X3 =
{

h with probability p
0 with probability 1 − p,

Then X3 is h times a Bernoulli (p) random variable, with mean m = hp and variance
σ 2 = h2 p(1 − p).

Consequently

g = m − σ 2/λ = hp − h2 p(1 − p)/λ = hp(1 − (1 − p)h/λ).

De Finetti then shows how to derive u(x) from λ(x) as follows: since λ =
−2u′/u′′, we have u′′/u′ = −2/λ.

Then

−2
λ(x)

= u′′

u′ = d
dx

log u′.(B.10)

Thence

log u′ =
∫ −2

λ(x)
dx + c1,(B.11)

so

u′ = e
∫ −2/λ(x)dx+c1 = ec1 e

∫ −2/λ(x) dx(B.12)

Hence

u = ec1

∫
e

∫ −2/λ(x)dx + c2

= c3

∫
e

∫ −2/λ(x)dx + c2,(B.13)
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where c1 and c2 are constants of integration and c3 = ec1 . He drops the constants
c2 and c3 because utilities are defined only up to an affine transformation, which
means that u1(x) and u2(x) = au1(x) + b, where a > 0 order each pair of uncertain
prospects identically.

The special cases mentioned by de Finetti are checked most easily by
differentiation: If u = K − e−2x/λ then u′(x) = 2/λe−2x/λ and u′′(x) = −4/λ2e−2x/λ,
so −2u′/u′′ = −2(2/λ)e−2x/λ/ − 4/λ2e−2x/λ = λ.

Similarly, if u = log x, u′ = 1
x and u′′ = − 1

x2 . Hence λ(x) = −2u′/u′′ =
−2/x/ − 1/x2 = 2x. Also, if u = x1−2c , u′ = (−2c)x−2c and u′′ = 4c2x−1−2c , so

λ(x) = −2u′/u′′ = −2(−2c)x−2c

4c2x−1−2c
= x/c.

Thus, with minor amendments, de Finetti’s statements are correct.
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