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Billions of dollars are spent annually on cancer 
research. Yet, despite some progress in some 
cancers, the majority of patients with advanced 

cancer still have few good treatment options. In recent 
years, the concept of biomarker-guided treatment 
has swept through cancer research. But despite some 
promising results, the hoped-for benefits to patients 
have not been widely realized. 

One reason that research into biomarker-guided 
treatments is slow is that it is hard to find good treat-
ments for cancer to begin with, and harder still to 
associate them with biomarkers. But the limited num-
ber of useful treatments is not the root of the problem. 
Indeed, there are thousands of potential treatments in 
the pharmaceutical pipelines, and thousands of poten-
tially-useful combinations of approved therapies that 
have yet to be tested. In fact, as we shall see, search-
ing for targeted treatments — that is, treatments that 
work only in a narrow molecular subtype of the dis-
ease — is actually fundamental to why progress for 
cancer biomarkers is so challenging. 

In this essay, we argue that the major obstacle to 
discovering new, effective biomarker guided treat-
ments is what computer scientists call “The Curse of 
Dimensionality.”1 We begin, in the next section, by 
explaining what the curse is, and how the structure 
of biomarker-guided cancer treatment leads us into 
this situation. Then we chart a course that utilizes 
untapped resources to minimize the impact of the 
curse, if not entirely lift it. 

Science as Search and The Curse of 
Dimensionality
Computer and cognitive scientists have long thought 
of problem-solving in terms of the search for good 
solutions in a potentially very large space of possible 
solutions.2 More recently, this way of thinking about 
research and problem-solving has been generalized 
to other areas of science, such as astronomy, phys-
ics, chemistry, and biology.3 When applied to medical 
research, the relevant search is through the space of all 
possible decision rules that relate particular observa-
tions (e.g., a patient’s biomarkers) to particular treat-
ments that most effectively alleviate pain and suffer-
ing.4 How quickly we can search this space for highly 
effective treatments, guided by specific biomarkers, 
depends upon how large the space is, and upon the 
efficiency of our search strategy.
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Classically, this search space was not considered 
to be very large, so a fairly simplistic search strat-
egy based upon large clinical trials was effective. At 
the peak of the success of classical clinical trials, say 
25 years ago, cancer was thought of as what might 
be called a “10 by 10” disease: There were roughly 
10 types of cancer, corresponding to tissue of origin, 
crossed with roughly 10 types of chemotherapy. This 
way of thinking is represented by the 100-cell matrix, 
shown on the left in Figure 1. Each cell in this matrix 
represents a biomarker-treatment relationship which 
needs to be tested, with the biomarkers here being the 
tissue of origin of the cancer, and some other high-
level features such as stage and node involvement. For 
example, non-small cell lung cancer might be a col-
umn in this matrix, and the search for the right treat-
ment would involve conducting large, randomized 
controlled trials for each of the 10 chemotherapies. 
The roughly 200,000 lung cancer patients each year 

would provide roughly 10,000 patients per matrix 
cell (in the lung cancer column), which is plenty of 
patients to run several large clinical trials of each pro-
posed therapy.

However, as our understanding of cancer has 
evolved — recognizing that there are potentially thou-
sands of molecular biomarkers that influence whether 
a treatment will be effective — we are now facing a 
very different kind of problem. The space of possible 
treatment decisions is enormously larger, represented 
by the matrix on the right in Figure 1. With thousands 
of molecular features, leading to tens of thousands of 
combinatorial subtypes, and hundreds of plausible 
combination therapies, there may be many millions of 
treatment-decision rules (i.e., matrix cells) that have 
to be tested. Yet, because (thankfully) there are only 
about a million advanced cancer patients in the US 
each year, each cell in this matrix will have, on aver-
age, approximately zero observations.

The number of features that determine the size of 
this search space is called the “dimensionality” of the 
data, and the number of independent observations is 

sometimes referred to as the sample size, or “n” of a 
study. As a result of the combinatorial structure of the 
problem, each new feature grows the size of the search 
space exponentially. This is what computer scientists 
call “The Curse of Dimensionality”; there will simply 
never be enough patients and clinical trials to fully 
explore this space and identify the optimal treatments 
in the traditional way. In fact, even modern adaptive 
trials, which can potentially test many decision rules, 
are impotent in the face of this challenge. Therefore, 
if we are to make progress in identifying effective bio-
marker-guided treatment strategies, a new, more effi-
cient search strategy is needed.

AI and Big Data to the Rescue?
Now you may be thinking: “Perhaps ‘Big Data’ and 
artificial intelligence (AI) can solve this problem. Isn’t 
this problem exactly what those tools are supposed 
to help us do?” Unfortunately, Big Data and AI can-

not solve this problem. Let us take a short (self-)drive 
through some of the details of modern AI, examine 
why it is so successful in some settings, and then see 
why cancer research is not analogous to these settings. 

The settings in which modern AI has been success-
ful typically share one or more of the following five 
properties:

1.	There are well-defined criteria of success, 
and the signal of success or failure is rapidly 
available;

2.	Data are cheap and plentiful, so that there is a 
very large amount of data, relative to the size of 
the search space;

3.	There are expert teachers; 
4.	It is easy and cheap to run experiments;
5.	There are highly veridical simulators based upon 

detailed (e.g., formal, mathematical) models of 
the underlying physical processes.

These five properties are closely inter-related. For 
instance, good simulations and models can be used 
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to create simulated data, to simulate a teacher, to run 
simulated experiments, and — as we will describe 
later — to analytically reduce the size of the search 
space. Games such as chess and Go, and even domains 
as seemingly complex as self-driving cars, have all or 
most of the above properties: Go and chess have been 
played by humans for hundreds or thousands of years. 
The rules, and what counts as a win or loss, are com-
pletely clear, we have a plethora of expert teachers, 
and we can build perfect simulators. And, for better 
or worse, pretty much every teenager drives — or can 
learn to drive — acceptably well.

We therefore have both an existence proof that Go, 
chess, and driving can be solved — at least to a nominal 
level — and we know that we can use human players 
and drivers to train the self-driving cars and Go/chess 
computers. Moreover, we can build very good simula-
tors for games because we completely understand, and 
can perfectly model those problem settings. This is 
only slightly less the case for driving, where there is a 
significant social aspect, but the physics of driving can 
at least be modeled in near-perfect detail, enabling 
near-perfect simulations.

The domain of medicine, by contrast, has almost 
none of the above five properties: Medical experi-
ments are extremely costly and we lack good treat-
ments for most diseases, and correspondingly lack 
expert guidance. Indeed, unlike games and puzzles, 
or even self-driving cars, it is unclear whether some 
medical problems have solutions at all. There are no 
existence proofs for most of medicine. You can’t just 
teach your robot doctor to cure cancer by observing 
good doctors curing cancer, because there are no such 
doctors and cures. Moreover, there may well not be a 
cure for cancer at all.

We also cannot create near perfect simulations of 
disease. In fact, we struggle to create even good simu-
lations for disease, except for certain simple functions, 
such as those for which we have dynamical models, 
such as drug metabolism. The immune-system, which 
is a critical participant in the preponderance of human 
disease, is of the order of magnitude of complexity of 
the human brain, and is similarly a self-modifying 
machine, so that to model someone’s immune profile 
in detail is similar in difficulty to modeling their entire 
brain, including all of their learned skills and memo-
ries. This is well beyond our current, or even our fore-
seeable simulation capabilities.

In some fields, experiments are extremely expensive 
— planetary science, for example, might pay millions 
of dollars to recover a tiny amount of asteroid dust. Yet 
medical experiments are in some ways worse. Beyond 
the in vitro and in silico experiments, medical experi-
ments are both extremely expensive and ethically 

fraught, both in terms of privacy and because data 
from in vivo and in-patient experiments can subject 
the participants to extreme pain and suffering, per-
haps even death. For example, a phase 2 cancer clini-
cal trial may need 100 to 500 patients, can cost tens 
of millions of dollars, and can take years to complete.5 
Consider, by contrast, that Facebook ran an experi-
ment involving almost 700,000 unpaid subjects in the 
space of a single week.6 This volume and efficiency of 
data generation in Facebook’s experiment is what is 
usually referred to as “Big Data.” Data in medicine is 
nothing like this.7 

Global Cumulative Treatment Analysis 
One might, at this point, despair that medicine will 
ever succeed. We are cursed by dimensionality, with 
no possibility of simulation, very small amounts of 
extremely expensive, very high dimensionality data 
whose gathering may well harm or kill people or ani-
mals, and not even an existence proof, with rare excep-
tion, that medicine works at all! 

But there remain untapped resources that can help 
us climb out of this admittedly very deep hole. We will 
describe two of these: (1) Treatment Rationales and 
(2) System-wide Coordination.

Dimensionality Origami: Folding the Map and the 
Special Role of Treatment Rationales 
One way to make a space easier to search is to make 
it smaller. Think of the matrix like an old-style paper 
map — one of those giant pieces of paper with well-
worn creases at various places, which, if you could just 
figure it all out, folds into a conveniently glove-com-
partment-sized package. If you imagine those creases 
in our matrix (depicted on the right in Figure 2), each 
crease allows us to bring together some columns and/
or rows, and thereby reduces the overall dimensional-
ity of the space, hence reducing the size of the search 
space, and improving the efficiency of any search 
method. 

But how are we to discover these “creases” in the 
map/matrix? The “big data” way to do this is to empir-
ically observe correlations between features. But, as 
discussed above, this requires much more data than 
is available, or is likely to become available. Another 
approach is to use prior knowledge such as formal 
models, or even partial models. For example, reducing 
thousands of ACGT base sequences into genes enor-
mously reduces the 3 billion bases of DNA sequence 
information to around 20,000 features, and this can 
be reduced even further by recording only aberrations 
from a standard genome, or by using pathway models, 
such as BioCyc8 to relate the genes to one another via 
their associated protein-catalyzed reactions.
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Unfortunately, highly veridical biochemical models 
of mammalian processes, and especially about abnor-
malities in these processes, are rare.9 Sweetnam, et 
al.10 proposed to augment the sparse existing data and 
models through the collection of what they termed 
“Treatment Rationales” (TRs). A TR is an explanation 
for why a particular course of action (e.g., test, treat-
ment, watchful waiting, etc.) was either recommended 
or rejected.11 TRs are distinct from, and complemen-
tary to the many other, already duly recorded aspects of 
treatment such as case history, test results, treatment 
hypotheses, and outcomes. All of these are critically 
important to the progress of the search that is biomedi-
cine, but having TRs which represent the explanations 
underlying the treatment hypotheses, is, in our view, a 
critical overlooked resource, given the dearth of good 
biological models. These TRs represent expert knowl-
edge, contextualized by real cases, that help to reduce 
the dimensionality of the problem by providing hints 
as to how to fold the space (Fig. 2, left).12 

The capture and use of TRs also honors both 
patients’ and physicians’ knowledge, and the whole 
process honors their decision authority. Not only do 
we encourage complete autonomy, but we want to 
know the reason for physicians’ and patients’ deci-
sions because these almost certainly provide valuable 
insights into the domain.

Improving Search Efficiency via Coordination
Reducing the size of the search space is one way to 
improve search efficiency, another is to improve the 
search method. Medical research is not being carried 
out linearly, one patient at a time. There is a great 
deal of in vitro, in vivo, and in silico work being done 
in hundreds of labs, and each of these experiments 
provides some data that can guide our search. Just 
sticking to patients, there are over a million advanced 
cancer patients in the US each year, so many of them 
are being treated at the same time, and large subsets 
may be being treated for what is, by hypothesis, the 

same indication. This should afford us over a million 
in-patient experimental opportunities every year — 
one for each patient/treatment experience (perhaps 
several for each, if they undergo several lines of treat-
ment). Unfortunately, in order to take advantage of 
these opportunities, we need to efficiently coordinate 
what is done with each patient across the whole medi-
cal system, efficiently gather all the data, efficiently 
integrate it, and efficiently get it back to the front lines 
where each next patient appears at the door of each 
next oncologist’s office. But medicine is poorly orga-
nized to operate this sort of system-wide coordina-
tion, depending instead upon results slowly appearing 
in journals, and upon very slow moving and roughly 
reasoned coordination through either industrial or 
government funding processes, which themselves rely 
upon inefficient peer review processes.

Remarking on the inefficiency of the current sys-
tem in the face of the vastness of the search problem, 
Hey and Kesselheim13 proposed that funding agen-

cies could award responsibility for exploring specific 
regions of the search space through their grants. 
However, as Shrager14 observed, bureaucratic funding 
agencies cannot react quickly enough to facilitate effi-
cient search of a space this large. Shrager suggested 
instead that researchers utilize electronic networks 
and adaptive algorithms to rapidly and adaptively 
refocus their coordinated research efforts immediately 
as results become available. Shrager15 likened this to 
a “giant distributed robotic discovery system” or bio-
medical “air traffic control system,” or, more precisely, a 
global adaptive prospective trial, which Shrager called 
“Global Cumulative Treatment Analysis” (GCTA).16 
Under internet-operated GCTA coordination, all 
patients would be monitored and treated based on the 
best available knowledge. When there is uncertainty 
about whether a treatment will be beneficial, the deci-
sion algorithm (be it computational, human, or more 
likely a combination) assigns treatments to patients 
in accord with a decision algorithm that incorporates 

Current medical research tries to minimize risk to the individual while 
maximizing benefit to society. Yet, in traditional research, no attempt is made 

to calculate the value to society of what may be gained by research.  
In contrast, GCTA seeks to maximize both individual and societal benefit 
based upon explicit quantification for each. One quantitative measure of 

societal benefit is information gain, which enables the prioritization of one 
option versus another at a specific moment in time. 
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patient utility to define a set of equipoise options, and 
then calculates system-wide information-gain among 
that set of options. Importantly, because the equipoise 
set is created before the information-gain calculation, 
the welfare of the individual patient is not subjugated 
to the needs of society. The parameters of this algo-
rithm would be continuously updated, rapidly inte-
grating response information as soon as it becomes 
available, and adjusting the course of the system-wide 
experiment as soon as statistically possible.

Just as in the real air traffic control system (ATC), 
Shrager’s imagined biomedical ATC would be a 
human-machine system wherein decisions are made 
locally, and autonomously, but based upon guidance 
from the “controllers,” who have system-wide infor-
mation and can algorithmically guide this always-on, 
global, many-armed adaptive experiment. The GCTA 
process is analogous to the way that granting agencies 
operate, as envisioned by Hey and Kesselheim, but 
operating at a much faster pace, and using computa-
tional tools that can take advantage of the data in real 
time in order to guide the search by “vectoring” each 
next patient in accord with a balance between what is 
best for that person, and what is best for the system as 
a whole (i.e., what gains the most information). 

Current medical research tries to minimize risk to 
the individual while maximizing benefit to society. 
Yet, in traditional research, no attempt is made to cal-
culate the value to society of what may be gained by 
research. In contrast, GCTA seeks to maximize both 
individual and societal benefit based upon explicit 
quantification for each. One quantitative measure of 
societal benefit is information gain, which enables the 
prioritization of one option versus another at a spe-
cific moment in time. 

Conclusion 
No invisible hand can hold a half-a-million pounds of 
747 in the air, nor keep a hundred thousand commercial 
flights a day safely separated from one another while 
taking off and landing more-or-less on schedule. These 
are large scale engineering problems that have been 
mastered through large-scale engineering solutions. 
Efficiently searching a space as large as that faced by 
medicine, especially in the face of limited, expensive, 
and ethically fraught data, and the near impossibility 
of simulation, is a large-scale engineering problem that 
must be similarly addressed. GCTA is one large-scale 
engineering approach to the wicked problem of the 
search for effective treatments for cancer.

At Cancer Commons and xCures we have begun 
taking baby steps towards GCTA. One such step is 
the “XCELSIOR” trial (NCT03793088), which is cur-
rently accruing advanced cancer patients with a focus 

on glioma and pancreatic cancer. Under the trial’s 
“perpetual protocol,” each patient’s case is reviewed 
by a “virtual tumor board,” supported by a platform 
designed to eventually deploy the human-plus-AI 
decision-making, analogous to air traffic control, envi-
sioned by GCTA. While we are developing this AI, the 
Virtual Tumor Boards are populated by natural, not 
artificial intelligences. (Baby steps!)

Coordinated teams of experts and algorithms 
enable the air traffic control system to efficiently and 
safely fly millions of passengers all over the world 
every day. Similarly, teams of experts and algorithms 
will enable GTCA to efficiently and safely coordinate 
the thousands of treatment decisions made every day 
across the whole medical system, in theory deliver-
ing the best possible treatment to every patient while 
optimally searching the vast space that is the realm of 
medical research for effective treatments, and some-
times even cures. 

No part of GCTA is free from significant theoretical 
and practical challenges. Yet, to paraphrase a famous 
philosopher: We are pursuing GCTA not because 
it is easy, but because it is hard; because it will effi-
ciently organize our energies, skills, and knowledge, 
and because it is a challenge that we are unwilling to 
postpone.
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