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Let Ω ⊂ R
N be an open bounded connected set. We consider the eigenvalue problem

−Δu = λρu in Ω with Dirichlet boundary condition, where ρ is an arbitrary function
that assumes only two given values 0 < α < β and is subject to the constraint∫
Ω ρ dx = αγ + β(|Ω| − γ) for a fixed 0 < γ < |Ω|. Cox and McLaughlin studied the

optimization of the map ρ �→ λk(ρ), where λk is the kth eigenvalue. In this paper we
focus our attention on the case when N � 2, k = 2 and Ω is a ball. We show that,
under suitable conditions on α, β and γ, the minimizers do not inherit radial
symmetry.

1. Introduction

We consider a vibrating membrane Ω with clamped boundary ∂Ω and density ρ.
The displacement u satisfies the eigenvalue problem

−Δu = λρu in Ω,

u = 0 on ∂Ω,

}
(1.1)

where Ω ⊂ R
N is an open bounded connected set with C2-boundary ∂Ω, ρ ∈ L∞(Ω)

and is positive, and λ ∈ R; u ∈ W 1,2
0 (Ω) is a weak solution of (1.1) if∫

Ω

∇u · ∇v dx = λ

∫
Ω

ρuv dx ∀v ∈ W 1,2
0 (Ω).

Note that densities that differ from each other by a subset of null measure give the
same eigenvalue problem. The constant λ associated with a non-trivial solution u
is called an eigenvalue, and u is the corresponding eigenfunction. The set of all
eigenfunctions of an eigenvalue λ is a linear space, called the eigenspace associated
with λ; its dimension is the multiplicity of λ. If the eigenspace is one-dimensional,
λ is said to be simple.

It is well known that the eigenvalues of (1.1), repeated according to their multi-
plicity, form a sequence

0 < λ1(ρ) � λ2(ρ) � · · · ,

and that λ1(ρ) is simple.
The physical meaning of λk(ρ) is the kth natural frequency of vibration of the

membrane.
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A detailed treatment of this classical argument can be found in [7] and [20].
We restrict our attention to membranes made with only two homogeneous mate-

rials of densities α and β, with 0 < α < β. Moreover, we require that the portion
of the membrane with density α has a fixed Lebesgue measure 0 < γ < |Ω|, where
|Ω| denotes the measure of Ω.

Mathematically, this means that we consider ρ = αχE + β(1 − χE), where χE is
the characteristic function of a set E ⊂ Ω such that |E| = γ. Following Cox and
McLaughlin [9, 10], we denote this class of densities by adγ .

An interesting problem is to understand how these two materials must be placed
in order to minimize or maximize the kth eigenvalue. Again using the notation
in [9, 10], ρ̌k (ρ̂k) stands for a minimizer (maximizer) of ρ �→ λk(ρ).

The analogous problem in the case of a string (the one-dimensional case) was
posed and fully solved in 1955 by Krein [18], who explicitly found the minimizers
ρ̌k and the maximizers ρ̂k for all eigenvalues. We remark that, for each k, these
extremizers are unique and symmetric with respect to the midpoint of the string.

For N � 2, in 1977, Friedland (see [13, theorem 2]) proved the existence of ρ̌k

for all k. In 1990, Cox and McLaughlin [9, 10] established the continuous depend-
ence of eigenvalues with respect to ρ and some stability properties. Moreover, they
gave a useful characterization of minimizers in terms of level sets of associated
eigenfunctions, which is of fundamental importance in the present paper.

From results in [9,10] (which are consistent with those of [13]) it is clear that, in
order to minimize λk, we should place the more dense material where the membrane
(or the string) displacement is greatest.

If Ω is a ball, the natural question about the radial symmetry of optimizers
arises. In this case, the optimizers ρ̌1 and ρ̂1 are unique and radially symmetric
(see [11,16]). In particular, [16] is a complete survey on the optimization of eigenval-
ues related to elliptic problems. Similar problems are also considered in [4–6,8,15].

In this paper we prove that, if N � 2, contrary to the one-dimensional case, for
some values of α, β and γ every minimizer ρ̌2 associated with the second eigen-
value is not radially symmetric (see theorem 3.5). This is suggested by the relation
between the level sets of eigenfunctions and the density ρ, and by the fact that a
second eigenfunction of the Dirichlet–Laplacian in a disk is not radially symmetric.

This article is organized as follows. In § 2 we give some preliminary tools that
will be used in the following, and § 3 contains the main result.

2. Preliminaries

First, we list some further regularity properties of the eigenfunctions. If u is an
eigenfunction of (1.1), then

u ∈ W 1,2
0 (Ω) ∩ W 2,2(Ω) ∩ C1(Ω̄)

(it is assumed that ∂Ω is C2), and the equation in (1.1) holds almost everywhere
(a.e.). Furthermore, λ1(ρ) is simple, every first eigenfunction u1 is either positive
or negative in Ω and every kth eigenfunction, with k � 2, changes sign in Ω
(see [9, 10,14]).

We denote by Sk(ρ) the eigenspace associated with λk(ρ).
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Definition 2.1. Let u ∈ Sk(ρ), k � 2. The connected components of the open sets

{x ∈ Ω : u(x) > 0} and {x ∈ Ω : u(x) < 0}

are called the nodal domains of u.

We now recall some well-known variational characterizations of the eigenvalues.

Rayleigh’s principle

Let λ1(ρ) and λ2(ρ) be the first two eigenvalues of (1.1). Then,

λ1(ρ) = min
u∈W 1,2

0 (Ω)
u �=0

∫
Ω

|∇u|2 dx∫
Ω

ρu2 dx
and λ2(ρ) = min

u∈W 1,2
0 (Ω)

〈ρu,u1〉=0
u �=0

∫
Ω

|∇u|2 dx∫
Ω

ρu2 dx
,

where u1 is an eigenfunction with respect to λ1(ρ) and 〈·, ·〉 denotes the usual inner
product in L2(Ω). The quantity

∫
Ω

|∇u|2 dx/
∫

Ω
ρu2 dx is called Rayleigh’s quotient.

Rayleigh’s principle extends to each eigenvalue λk(ρ) (see, for instance, [7, 9, 10]).

Auchmuty’s principle

Let λ1(ρ) and λ2(ρ) be the first two eigenvalues of (1.1), let ‖ · ‖2 be the usual
norm in L2(Ω) and let ‖u‖ρ = 〈ρu, u〉1/2. Then,

− 1
2λ1(ρ)

= inf
u∈W 1,2

0 (Ω)
A1(ρ, u), A1(ρ, u) = 1

2‖∇u‖2
2 − ‖u‖ρ

and

− 1
2λ2(ρ)

= inf
u∈W 1,2

0 (Ω)
A2(ρ, u), A2(ρ, u) = 1

2‖∇u‖2
2 − (〈ρu, u〉 − 〈ρu, u1〉2)1/2,

(2.1)
where the minimum is attained at a kth eigenfunction normalized according to

‖∇uk‖2
2 = ‖uk‖ρ = λ−1

k (ρ), k = 1, 2, (2.2)

and u1 is a first eigenfunction such that ‖u1‖ρ = 1. Auchmuty’s principle also
extends for all λk(ρ) (see [9, 10]).

We denote by ρ̌k ∈ adγ = {αχE + β(1 − χE) : E ⊂ Ω, |E| = γ} a minimizer of
the map ρ �→ λk(ρ), that is,

λk(ρ̌k) = inf
ρ∈adγ

λk(ρ). (2.3)

From results in [13], such a minimizer exists. Actually, a stronger result holds; there
exist minimizers in the wider class of densities{

ρ ∈ L∞(Ω) : α � ρ(x) � β a.e. in Ω,

∫
Ω

ρ dx = αγ + β(|Ω| − γ)
}

,

and they all belong to adγ (see [16, theorem 9.2.3]). To emphasize the dependence
of the minimum in (2.3) on the constants α, β and γ, we introduce the further
notation

λ̌k(α, β, γ) = λk(ρ̌k).
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The following proposition of Cox and McLaughlin [9,10, proposition 6.4] is crucial
in proving symmetry breaking.

Proposition 2.2. If ∂Ω is C2 and there exists u ∈ Sk(ρ̌k) with k nodal domains
{Ωi}k

i=1, then there exists a set {ľi}k
i=1, ľi � 0, such that, for each x ∈ Ωi,

ρ̌k(x) =

{
β if |u(x)| > ľi,

α if |u(x)| � ľi.

Remark 2.3. Consider k = 2. By Courant’s nodal theorem the number of nodal
domains of u2 is less than or equal to 2. Therefore, since a second eigenfunction is
sign changing in Ω, u2 always has two nodal domains, and then proposition 2.2
applies to this case. By the unique continuation theorem (see [12, 17]) the set
{x ∈ Ω : u(x) = 0} has null measure. Changing {x ∈ Ω : ρ̌2(x) = β} for a set of
null measure, we can assume that {x ∈ Ω : ρ̌2(x) = β} ∩ {x ∈ Ω : u(x) = 0} = ∅
and, by proposition 2.2, that {x ∈ Ω : ρ̌2(x) = β} is open.

Proposition 2.2 states that, for each minimizing density ρ̌2, the set with more
dense material is a superlevel set of the modulus of a corresponding eigenfunction.

In order to prove our result we need to strengthen proposition 2.2 in the case
k = 2.

Proposition 2.4. If ∂Ω is C2, 0 < γ < |Ω|, u2 ∈ S2(ρ̌2) and Ω1, Ω2 are the nodal
domains of u2, then there exist positive numbers l1, l2 such that, for each x ∈ Ωi,
i = 1, 2,

ρ̌2(x) =

{
β if |u2(x)| > li,

α if |u2(x)| � li.
(2.4)

Proof. Note that, without loss of generality, we can assume that u2 satisfies (2.2).
By proposition 2.2 and the subsequent remark, there exist non-negative numbers
l1, l2 that satisfy (2.4); we show that l1 and l2 are actually positive. Since γ > 0 and
by remark 2.3, we can assume that l1 > 0. By contradiction, suppose that l2 = 0.
Let u1 ∈ S1(ρ̌2) be positive such that ‖u1‖ρ̌2 = 1. Choose n ∈ N with l1 − 1/n > 0;
therefore, there exist two measurable sets

An ⊆
{

|u2| <
1
n

}
⊂ Ω2, (2.5)

Bn ⊆
{

l1 − 1
n

< |u2| < l1

}
⊂ Ω1 \ {ρ̌2 = β}, (2.6)

with |An| = |Bn| > 0. Note that |An| → 0 as n → ∞. We define

ρn(x) =

⎧⎪⎨
⎪⎩

ρ̌2(x), x �∈ An ∪ Bn,

α, x ∈ An,

β, x ∈ Bn,

and we observe that
ρn = ρ̌2 + (β − α)(χBn − χAn). (2.7)
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Moreover, ρn ∈ adγ and ρn
∗
⇀ ρ̌2 in L∞(Ω). Let u1,n ∈ S1(ρn) be positive such

that ‖u1‖ρn = 1; by [9, 10, proposition 4.3], λ1(ρn) → λ1(ρ̌2) and u1,n → u1 in
W 1,2

0 (Ω). Thus, it is enough to prove that, for n large,

A2(ρ̌2, u2) > A2(ρn, u2) (2.8)

holds, where A2(ρ, u) is defined in (2.1). Indeed, if (2.8) is true, we have that

− 1
2λ2(ρ̌2)

= A2(ρ̌2, u2) > A2(ρn, u2) � inf
u∈W 1,2

0 (Ω)
A2(ρn, u) = − 1

2λ2(ρn)
,

from which the contradiction (since λ2(ρ̌2) is the minimum) that λ2(ρ̌2) > λ2(ρn)
follows, which in turn proves the proposition.

We now prove (2.8). By (2.1), (2.8) is equivalent to∫
Ω

ρnu2
2 dx −

( ∫
Ω

ρnu2u1,n dx

)2

>

∫
Ω

ρ̌2u
2
2 dx −

( ∫
Ω

ρ̌2u2u1 dx

)2

.

Since u1 and u2 are orthogonal,
∫

Ω
ρ̌2u2u1 dx = 0. Moreover, by using (2.7) and

rearranging, we find that

(β − α)
∫

Bn

u2
2 dx > (β − α)

∫
An

u2
2 dx +

( ∫
Ω

ρnu2u1,n dx

)2

.

Recalling that |An| = |Bn| > 0, the previous inequality is equivalent to

β − α

|Bn|

∫
Bn

u2
2 dx >

β − α

|An|

∫
An

u2
2 dx +

1
|An|

( ∫
Ω

ρnu2u1,n dx

)2

. (2.9)

If (2.9) is true for n → ∞, then it can be proved for n large. We observe that,
by (2.6),

1
|Bn|

∫
Bn

u2
2 dx → l21 as n → ∞

and, by (2.5),

1
|An|

∫
An

u2
2 dx → 0 as n → ∞.

More work is needed to show that

1
|An|

( ∫
Ω

ρnu2u1,n dx

)2

→ 0 as n → ∞. (2.10)

Writing the equation of (1.1) in weak form for u2 and u1,n we find that∫
Ω

∇u2 · ∇u1,n dx = λ2(ρ̌2)
∫

Ω

ρ̌2u2u1,n dx

and ∫
Ω

∇u2 · ∇u1,n dx = λ1(ρn)
∫

Ω

ρnu2u1,n dx.
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Comparing these last two equations and using (2.7) we obtain that

(λ2(ρ̌2) − λ1(ρn))
∫

Ω

ρnu2u1,n dx = λ2(ρ̌2)(β − α)
∫

Ω

(χBn − χAn)u2u1,n dx,

from which we have that∫
Ω

ρnu2u1,n dx =
λ2(ρ̌2)

λ2(ρ̌2) − λ1(ρn)
(β−α)

( ∫
Bn

u2u1,n dx−
∫

An

u2u1,n dx

)
. (2.11)

By the Sobolev imbedding theorem (see [3]) there exists p > 2 such that W 1,2
0 (Ω) ↪→

Lp(Ω). Therefore, u1,n, u1 ∈ Lp(Ω) and u1,n → u1 in Lp(Ω). Let 1/p + 1/q = 1; by
the Hölder inequality we have that

∫
An

u2u1,n dx �
( ∫

An

up
1,n dx

)1/p( ∫
An

|u2|q dx

)1/q

� ‖u2‖L∞(Ω)‖u1,n‖Lp(Ω)|An|1/q; (2.12)

similarly, ∫
Bn

u2u1,n dx � ‖u2‖L∞(Ω)‖u1,n‖Lp(Ω)|An|1/q. (2.13)

From (2.11), (2.12) and (2.13) it follows that

1
|An|

( ∫
Ω

ρnu2u1,n dx

)2

�
(

2λ2(ρ̌2)
λ2(ρ̌2) − λ1(ρn)

)2

(β − α)2‖u2‖2
L∞(Ω)‖u1,n‖2

Lp(Ω)|An|(p−2)/p.

Since λ1(ρn) → λ1(ρ̌2), ‖u1,n‖Lp(Ω) → ‖u1‖Lp(Ω) and p > 2, (2.10) follows. Then,
as n → ∞, (2.9) becomes l21 > 0, i.e. it is true for n → ∞.

Remark 2.5. By the same argument used in the proof it can be shown that l1 = l2.

In the next section we use the following classical result (see, for example, [16]).
Let λ1(Ω) be the first eigenvalue of the Laplacian–Dirichlet in Ω.

Theorem 2.6 (Faber–Krahn theorem). Let c be a positive number and let B be the
ball of volume c. Then,

λ1(B) = min{λ1(Ω) : Ω ⊂ R
N open, |Ω| = c}.

In the following we need some results about the singular Sturm–Liouville problem

−u′′ − N − 1
r

u′ = λρu in (0, R),

u(x) = O(1), x → 0, u(R) = 0,

⎫⎬
⎭ (2.14)

where ρ = ρ(r) assumes only two positive values α and β, and O(1) is a bounded
quantity as x goes to 0.
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Symmetry breaking in the minimization of the second eigenvalue 7

Consider (2.14) in weak form. Let W 1,2((0, R), ρrN−1) be the weighted Sobolev
space (with weight ρrN−1) and let H = {u ∈ W 1,2((0, R), ρrN−1) : u(R) = 0}. We
call u ∈ H an eigenfunction, relative to λ, of (2.14) if∫ R

0
u′v′rN−1 dr = λ

∫ R

0
uvρrN−1 dr ∀v ∈ H.

From general theory (see [3, 19–21, 23]) the existence of positive eigenvalues and
their minimax characterization follows. The first eigenvalue is simple, and the cor-
responding eigenfunction does not change sign in (0, R). Moreover, if E2 denotes
an arbitrary two-dimensional subspace of H, for the second eigenvalue we have

η2(ρ) = min
E2⊂H

max
u∈E2
u �=0

∫ R

0 rN−1(u′)2 dr∫ R

0 ρrN−1u2 dr
. (2.15)

3. Symmetry breaking

Let N � 2. Let ν1(δ) and ν2(δ) be the first and the second eigenvalues, respectively,
of the problem

−Δu = λu in B,

u = 0 on ∂B,

}
(3.1)

where B is a ball of measure δ.
It is well known that ν1(δ) and ν2(δ) can be expressed in terms of δ and of zeros of

Bessel functions of the first kind Jn (see [7, pp. 302–304] and [16, pp. 11]). Precisely,
denoting by kn,m the mth zero of Jn, n ∈ R and m = 1, 2, . . . , we have that

ν1(δ) =
(

ωN

δ

)2/N

k2
N/2−1,1 and ν2(δ) =

(
ωN

δ

)2/N

k2
N/2,1,

where ωN denotes the measure of the unit ball in R
N . This result can be easily

extended to the case
−Δu = λσu in B,

u = 0 on ∂B,

}
(3.2)

with σ > 0. Note that λ �→ λ/σ yields a bijection between the eigenvalues νk(δ)
of (3.1) and νk(δ, σ) of (3.2), k = 1, 2. Consequently, we have that

ν1(δ, σ) =
1
σ

(
ωN

δ

)2/N

k2
N/2−1,1 and ν2(δ, σ) =

1
σ

(
ωN

δ

)2/N

k2
N/2,1. (3.3)

Recall that
adγ = {αχE + β(1 − χE) : E ⊂ Ω, |E| = γ},

with 0 < α < β and 0 < γ < |Ω|, and we consider densities ρ ∈ adγ .
From now on we assume that Ω is a ball. We prove that, for some values of α, β

and γ, the eigenspace relative to λ̌2(α, β, γ) is one dimensional.
We begin by proving the following.
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Lemma 3.1. Let Ω = B(0, R) ⊂ R
N , N � 2, be the ball centred at the origin of

radius R. Let ν1(δ, σ) and ν2(δ, σ) be as defined above. If α, β and γ are such that

β

α
<

ν1(|Ω| − γ, 1)
ν2(|Ω|, 1)

=
(

|Ω|
|Ω| − γ

)2/N k2
N/2−1,1

k2
N/2,1

,

then βλ̌2(α, β, γ) is less than the first eigenvalue of the problem

−Δv = λv in F,

v = 0 on ∂F,

}
(3.4)

where F is an arbitrary domain with |F | = |Ω| − γ.

Proof. Let μ1 be the first eigenvalue of (3.4). Then, by the Faber–Krahn inequality,
it follows that

ν1(|Ω| − γ, 1) � μ1.

On the other hand, from the assumption, we have that

ν1(|Ω| − γ, 1) >
β

α
ν2(|Ω|, 1) = βν2(|Ω|, α) = βλ̌2(α, β, |Ω|) � βλ̌2(α, β, γ),

where in the last inequality we have used a monotonicity property of eigenvalues
with respect to γ (see [9, 10, proposition 5.6]).

Then, μ1 > βλ̌2(α, β, γ). The lemma follows.

Theorem 3.2. Let Ω = B(0, R) ⊂ R
N , N � 2. Let ρ̌2 be a minimizer in (2.3) with

k = 2. If 0 < γ < |Ω| and

β

α
<

ν1(|Ω| − γ, 1)
ν2(|Ω|, 1)

=
(

|Ω|
|Ω| − γ

)2/N k2
N/2−1,1

k2
N/2,1

,

then λ2(ρ̌2) is simple.

Proof. Let u2, ũ2 ∈ S2(ρ̌2). Let D be a connected component of the open set
{x ∈ Ω : ρ̌2(x) = β}. Note that |D| � |Ω| − γ. By proposition 2.4, there exists
a nodal domain Ω1 of u2 containing D, and a constant l > 0 such that |u2(x)| > l
in D and |u2(x)| = l in ∂D. Setting t = l−1 sgn u2, where sgn u2 is the sign of u2
in Ω1, we have tu2(x) = 1 in ∂D. By the same argument we find a constant t̃ such
that t̃ũ2(x) = 1 in ∂D.

We observe that v = tu2 − t̃ũ2 is a solution of the eigenvalue problem

−Δv = λv in D,

v = 0 on ∂D,

}
(3.5)

with λ = βλ̌2(α, β, γ); we call η1 the first eigenvalue of (3.5). Let F be a domain
such that F ⊇ D and |F | = |Ω| − γ, and we call μ1 the first eigenvalue of (3.4). If
u ∈ W 1,2

0 (D), calling ũ the extension of u in F obtained setting u = 0 in F \ D, we
have that ∫

D
|∇u|2 dx∫
D

u2 dx
=

∫
F

|∇ũ|2 dx∫
F

ũ2 dx
� μ1.

Taking the infimum in W 1,2
0 (D) we find that η1 � μ1.
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Moreover, by lemma 3.1 it follows that μ1 > βλ̌2(α, β, γ). Therefore, η1 >
βλ̌2(α, β, γ), and then (3.5) with λ = βλ̌2(α, β, γ) has only the trivial solution;
thus, tu2 − t̃ũ2 = 0 in D. Now, by the unique continuation theorem (see [1,12,17]),
it follows that tu2 − t̃ũ2 = 0 in Ω. This means that λ2(ρ̌2) is simple.

Theorem 3.3. Let Ω = B(0, R) ⊂ R
N , N � 2, and let ρ ∈ adγ be radially sym-

metric. If

β

α
<

k2
N/2−1,2

k2
N/2,1

(3.6)

and λ2(ρ) is the second eigenvalue of (1.1), then λ2(ρ) has multiplicity greater
than 1.

Proof. By contradiction, let λ2(ρ) be simple.
By [9, 10, lemma 3.2] we have that

λ2(ρ) � ν2(|Ω|, α) =
1
α

(
ωN

|Ω|

)2/N

k2
N/2,1 =

k2
N/2,1

αR2 , (3.7)

where ν2(|Ω|, α) denotes the second eigenvalue of the Dirichlet problem (3.2) with
B = Ω and density σ = α.

Now let u1 ∈ S1(ρ) and u2 ∈ S2(ρ) be, respectively, a first and a second eigen-
function of (1.1). Fix an oriented plane P passing through the origin. Let Tθ be the
rotation of the angle θ, 0 � θ < 2π, that moves parallel to P . Note that ρ ◦ Tθ = ρ
for all θ. We define u1,θ = u1 ◦ Tθ. By a change of variable we find that

‖∇u1,θ‖2
2 = ‖∇u1‖2

2 and ‖u1,θ‖2
ρ = ‖u1‖2

ρ.

The Rayleigh quotients of u1,θ and u1 are then the same, that is, u1,θ is a first
eigenfunction for each θ. By the simplicity of λ1(ρ), there exists a constant cθ such
that u1,θ = cθu1; therefore, cθu1 = u1 ◦ Tθ. Fixing x0 ∈ Ω with u1(x0) �= 0, we
obtain that cθ = u1◦Tθ(x0)/u1(x0) is a continuous function of θ. On the other hand,
from ‖u1,θ‖2

ρ = ‖u1‖2
ρ, it follows that c2

θ = 1. Note that c0 = 1; then, cθ = 1 and
u1 = u1 ◦ Tθ for all θ. Since P is arbitrary, it follows that u1 is radially symmetric.

Similarly, defining u2,θ = u2 ◦ Tθ, observing that

〈ρu2,θ, u1〉 = 〈ρu2, u1〉 = 0

and using the simplicity of λ2(ρ), it can be shown that u2 is also radially symmet-
ric (u2 = u2(r)).

The pair (λ2(ρ), u2(r)) is then a solution of the problem

−u′′ − N − 1
r

u′ = λρu in (0, R),

u(R) = u′(0) = 0.

⎫⎬
⎭ (3.8)

Note that, since u2 is sign changing, λ2(ρ) cannot be the first eigenvalue of (3.8),
i.e. λ2(ρ) � η2(ρ), where η2(ρ) is the second eigenvalue of (3.8).
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We now compare the eigenvalues of (3.8) with those of the problem

−u′′ − N − 1
r

u′ = λβu in (0, R),

u(R) = u′(0) = 0.

⎫⎬
⎭ (3.9)

We observe that this last equation can be transformed in a Bessel equation (see [2,
p. 117]); it is not difficult to find that the second eigenvalue of (3.9) is equal to

k2
N/2−1,2

R2β
.

By using the minimax characterization (2.15) we obtain that

k2
N/2−1,2

R2β
� η2(ρ) � λ2(ρ).

Comparing this inequality with (3.7) we have that

β

α
�

k2
N/2−1,2

k2
N/2,1

.

This contradiction concludes the proof.

Remark 3.4. By the interlacing of zeros of Bessel functions (see [22, p. 479]), it
follows that

k2
N/2−1,2

k2
N/2,1

> 1,

and then condition (3.6) is not meaningless.

Theorem 3.5. Let Ω = B(0, R) ⊂ R
N , N � 2. If 0 < γ < |Ω|,

β

α
< min

{(
|Ω|

|Ω| − γ

)2/N k2
N/2−1,1

k2
N/2,1

,
k2

N/2−1,2

k2
N/2,1

}

and ρ̌2 is a minimizer of (3.1) with k = 2, then ρ̌2 cannot be radially symmetric.

Proof. Comparing theorem 3.2 and theorem 3.3, the assertion follows.
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