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Considering structure functions of the streamwise velocity component in a framework
akin to the extended self-similarity hypothesis (ESS), de Silva et al. (J. Fluid
Mech., vol. 823, 2017, pp. 498–510) observed that remarkably the large-scale
(energy-containing range) statistics in canonical wall-bounded flows exhibit universal
behaviour. In the present study, we extend this universality, which was seen to
encompass also flows at moderate Reynolds number, to Taylor–Couette flow. In
doing so, we find that also the transversal structure function of the spanwise velocity
component exhibits the same universal behaviour across all flow types considered. We
further demonstrate that these observations are consistent with predictions developed
based on an attached-eddy hypothesis. These considerations also yield a possible
explanation for the efficacy of the ESS framework by showing that it relaxes the
self-similarity assumption for the attached-eddy contributions. By taking the effect
of streamwise alignment into account, the attached-eddy model predicts different
behaviour for structure functions in the streamwise and in the spanwise directions
and that this effect cancels in the ESS framework – both consistent with the data.
Moreover, it is demonstrated here that also the additive constants, which were
previously believed to be flow dependent, are indeed universal at least in turbulent
boundary layers and pipe flow where high Reynolds number data are currently
available.
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798 Krug and others

1. Introduction

Structure functions, which characterize the turbulent velocity field in terms of the
velocity difference between two points with varying separations, play a vital role in
turbulence theory ever since Kolmogorov (1941) formulated his famous ‘K41’ scaling
law in the inertial subrange (ISR). Later on, universal deviations from the K41 scaling
were experimentally found in the ISR scaling of velocity structure functions of various
orders (e.g. Anselmet et al. 1984; Frisch 1995). To firmly establish the universality
of the ISR statistics, the so-called extended self-similarity (ESS) hypothesis of Benzi
et al. (1993, 1995) played a central role (Arneodo et al. 1996; Belin, Tabeling &
Willaime 1996). In this framework, instead of evaluating the scaling of the structure
functions directly as a function of distance, the relative scaling exponent is sought
by plotting one structure function against another one of different order on log–log
scales. Doing so has been shown to greatly increase the scaling range, rendering the
ISR scalings accessible even at only moderate Reynolds numbers. An application of
this concept to channel flow was reported by Toschi et al. (1999).

While these seminal findings date back a quarter of a century, a more recent
string of research is concerned with the scaling of structure functions in the
energy-containing range (ECR) in wall-bounded flows. Related studies were initiated
by Davidson, Krogstad & Nickels (2006a), Davidson, Nickels & Krogstad (2006b)
who showed that the spatial equivalent to the k−1-spectral scaling (where k is the
streamwise wavenumber) of the streamwise kinetic energy (Nickels et al. 2005), is a
logarithmic behaviour of the second-order structure function. Davidson et al. (2006a)
argued that the latter is more readily discernible in the data since it is not subject
to aliasing effects present in the spectral domain. Later on, de Silva et al. (2015)
provided evidence for logarithmic scaling also for higher-order structure functions
and gave a theoretical underpinning for this observation based on an attached-eddy
framework and the results of Woodcock & Marusic (2015). Specifically, de Silva
et al. (2015) investigated even-order streamwise longitudinal structure functions

Sp(sx; ux)≡ 〈[1u+x (sx)]
2p
〉

1/p. (1.1)

Here, 〈·〉 is an ensemble average, 2p denotes the order, ux the streamwise velocity
component and

1ui(si)= ui(x)− ui(x+ isi) (1.2)

is the velocity increment of a given velocity component ui between two points x and
x+ isi, where si is the separation distance along the unit vector i which points in the
direction of the ui-component. Throughout this paper, we indicate normalizations by
inner scales Uτ (mean friction velocity) and ν (kinematic viscosity) by superscript +.
de Silva et al. (2015) found that at a distance y0 from the wall and for the range
y0 < sx� δ (i.e. the ECR), Sp(sx; ux) scales according to

Sp(sx; ux)= Ep +Dp ln
sx

y0
, (1.3)

where δ is an outer length scale of the flow and Ep,Dp are constants. However, their
work highlighted that high Reynolds numbers of Reτ = δUτ/ν∼O(104) are required to
clearly observe the scaling according to (1.3) directly. Moreover, comparison of single-
point statistics in the ECR in turbulent boundary layers and channel flows (Sillero,
Jiménez & Moser 2013) and the analysis of the second-order structure function in
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Statistics of turbulence in the energy-containing range 799

pipe flows (Chung et al. 2015) suggest that differences with regard to (1.3) exist in
different flow geometries. Nonetheless, borrowing inspiration from the original ESS
analysis of Benzi et al. (1993, 1995), de Silva et al. (2017) were recently able to
demonstrate universality for the ECR scales in wall-bounded flows. In particular, they
showed that when evaluating Sp(sx; ux) with respect to a reference structure function
Sm(sx; ux)≡ 〈(1u+x )

2m
〉

1/m of arbitrary order 2m, the ‘ESS form’ of (1.3), given by

Sp(sx; ux)=
Dp

Dm
Sm(sx; ux)+ Ep −

Dp

Dm
Em︸ ︷︷ ︸

E∗p,m

, (1.4)

holds over a larger range of wall distances and at significantly lower Reτ than the
direct representation (1.3). It was further established that the ratios Dp/Dm exhibit
universality for canonical wall-bounded flows, i.e. for flat plate turbulent boundary
layers (TBL), channel flow (CH) and pipe flow. This universality was seen to also
comprise the transversal structure functions of ux defined by

ST
p (s j; ux)= 〈[∆

Tu+x (sz)]
2p
〉

1/p, (1.5)

with
∆Tui(sj)= ui(x)− ui(x+ jsj) (1.6)

where j denotes a unit vector perpendicular to i in the wall-parallel plane and sj is
a distance along j. The reference structure function is denoted as ST

m(sj; ux) for this
case.

The opportunity created by these results lies in the fact that the formulation of (1.4)
allows us to study the scaling relations pertinent to (1.3) at Reynolds numbers that
are accessible via direct numerical simulations (DNS). We will exploit this benefit
in the present paper to investigate the ECR scalings for Taylor–Couette (TC) flow in
the gap between two coaxial independently rotating cylinders. The rich flow physics
of this problem are well studied in many aspects and we refer to the recent reviews
by Fardin, Perge & Taberlet (2014), which focusses on flow patterns emerging at
moderate Reynolds numbers, and in particular to the one by Grossmann, Lohse
& Sun (2016) for a comprehensive overview on high Reynolds number dynamics.
Our interest here lies in the highly turbulent state, the so-called ultimate regime,
in which the bulk flow as well as the boundary layers are turbulent (Grossmann &
Lohse 2011; Huisman et al. 2013b; Ostilla-Mónico et al. 2014; Grossmann et al.
2016). For this case, Huisman et al. (2013b) recently confirmed the existence of a
logarithmic region within the boundary layers and measured a von Kármán constant
κ ≈ 0.4 closely matching values established in other wall-bounded flows (Nagib &
Chauhan 2008; Marusic et al. 2013). This agreement may appear surprising when
noting that unlike in pipe flow, the streamwise curvature in TC flow gives rise to an
additional centrifugal instability of the flow, which manifests itself in the presence
of Taylor rolls (Taylor 1923). Further, these large-scale coherent structures extend
across the entire gap width and significantly modify the mean flow. Their presence
is not limited to the transitional regime, where the boundary layers are laminar
and only the bulk flow is turbulent, but also affects the fully turbulent, or ultimate
regime (Ostilla-Mónico et al. 2014; Ostilla-Mónico et al. 2016b) up to very high
Reynolds numbers (Huisman et al. 2014). In this context, it appears interesting to
check whether the similarity between TC and other wall-bounded flows observed
so far also extends to two-point statistics. In particular our focus in this paper is
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800 Krug and others

to investigate (i) whether a scaling according to the ESS form (1.4) also exists in
turbulent TC flow and (ii) whether turbulent TC flow adheres to the same universality
observed in other geometries.

However, before we proceed to address these questions in § 5, we will extend
the analysis of de Silva et al. (2017) in some aspects. Specifically, we will derive
the scaling of higher-order even structure functions according to (1.3) using an
attached-eddy argument in the spirit of the hierarchical random additive process
(Meneveau & Marusic 2013; Yang, Marusic & Meneveau 2016a) in § 2. This analysis
also suggests an explanation as to why the ESS form (1.4) extends the scaling
range by demonstrating that it relaxes the strong self-similarity assumption required
for (1.3). Another issue that has not yet received any attention is the behaviour of the
additive constant in the ESS form, which we label E∗p,m as indicated in (1.4). As our
data presented in § 4 reveal, E∗p,m also exhibits a certain degree of universality when
plotted as a function of the variance 〈u′x

2
〉, where the velocity fluctuation u′i ≡ ui −Ui

and the mean Ui ≡ 〈ui〉. Additionally, we give a short summary of all the datasets
employed in this study in § 3, consider higher-order structure functions in § 5 and
present our conclusions in § 6.

2. Analysis within an attached-eddy framework
2.1. Calculation of the structure functions

We consider a simplified version of the attached-eddy model (e.g. Townsend 1976;
Perry & Chong 1982; Perry, Henbest & Chong 1986), by adopting a hierarchical
random additive process (HRAP) proposed by Meneveau & Marusic (2013) and
Yang et al. (2016b). Here, velocity fluctuations at a given point in the flow are
modelled as a result of an instantaneous superposition of attached-eddy contributions.
For simplicity, we will restrict the discussion to the streamwise velocity component
initially, where the fluctuating part is given by the sum

u+x (y)=
N(y)∑
l=1

al. (2.1)

The random additives al signify contributions from single, spatially self-similar wall-
attached ‘eddy’ structures. The summation is over different hierarchies of eddies, with
small l representing the large eddies. Assuming the eddy population density to be
inversely proportional to y as originally proposed by Townsend (1976), the number
of summands contributing at y is related to the distance off the wall by

N(y)∝
∫ δ

y

1
y

dy= ln(δ/y), (2.2)

where δ is an outer length scale. A schematic representation of this simple conceptual
model is provided in figure 1(a). Following Kolmogorov (1962), we make the
simplifying assumption that the random additives follow a Gaussian distribution with
zero mean and variance σ denoted by N (0, σ 2). The mean is zero since we only
consider velocity fluctuations. Indeed, the arrival of an attached eddy can be assumed
to follow roughly a Poisson process (e.g. Woodcock & Marusic 2015) and the velocity
fluctuations are results of the superposition of the eddy-induced velocity fields such
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FIGURE 1. (Colour online) (a) Side view sketch of the random additives at different
hierarchies I–V with an arbitrarily chosen scaling factor of 1.5; hierarchies that contribute
to single-point statistics at point 1 are marked blue, those contributing to the difference
between 1 and 2 in red. (b) Top view illustration of the effect of long streamwise
structures on the structure functions in different directions. Individual a-eddy contributions
at a single hierarchy are represented as boxes and coloured red (blue) if they belong to
a high (low) speed structure. The bounds of the large-scale structures (dashed lines) may
be interpreted as b-eddies.

that the Gaussian approximation appears justified. In this case, we can restate (2.1)
as

u+x (y)=N
(

0,
N(y)∑
l=1

a2
l

)
=N (0,N(y)〈a2

〉), (2.3)

where the second step exploits the self-similarity of the eddies. From this and (2.2), it
follows from the properties of the Gaussian distribution that for even-order moments

〈(u+x (y))
2p
〉>1/p

= B̂p − [(2p− 1)!!]1/pÂ1 ln(y/δ), (2.4)

which recovers the result of Meneveau & Marusic (2013) with the ‘Townsend–Perry’
constant Â1 denoting the slope of the log law for the variance 〈(u+x (y))

2
〉 (for which

the double factorial (2− 1)!! = 1) and B̂p is an additive constant. Note that the hat is
used here to differentiate from the actual experimentally obtained constants since (2.1)
is only an approximation of the actual velocity field.

Taking the difference between velocity fluctuations at two points cancels out the
contributions of common eddies as they are assumed to affect both points equally.
Therefore only eddies that affect each point individually remain in this case. We
assume that a typical attached eddy has an aspect ratio Rx given by its streamwise
extent over its height. Then for a given streamwise separation sx only eddies smaller
than yd = sx/Rx contribute to the difference, i.e. large eddies that are shared between
the two points (corresponding to small l) drop out as illustrated in figure 1(a). As a
result

u+x (x, y)− u+x (x+ sx, y)=1u+x (sx)=

N(y)∑
l=N(yd)

al −

N(y)∑
l=N(yd)

a′l, (2.5)

where the prime denotes independent eddy contributions at a second point x+ sx. The
same Gaussian approximation leading to (2.3) yields in this case

1u+x (sx)=N
(

0,
N(y)∑

l=N(yd)

(a2
l + a′l

2
)

)
. (2.6)
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802 Krug and others

Assuming al and a′l, which relate to the same hierarchy at different positions, to be
identically distributed based on their self-similarity and again using (2.2), we arrive at

1u+x (sx)=N
(
0, 2[N(y)−N(yd)]〈a2

〉
)
=N (0, 2 ln(yd/y)〈a2

〉). (2.7)

We would like to caution the reader that the exact cancelling of ‘shared’ eddies
(leading to (2.5)) or the complete independence of eddies at different locations
(leading to (2.6)) have to be viewed as first-order approximations and cannot be
expected to hold exactly in practice (see also Davidson 2004; Davidson et al. 2006a,
in this regard). We present in § 2.3 how the framework can be refined to account for
streamwise alignment, i.e. incomplete decorrelation, of eddies.

From the result in (2.7), the scaling relation for even-order structure functions is
obtained analogous to (2.4) as

Sp(sx; ux)= [(2p− 1)!!]1/p2〈a2
〉 ln(yd/y)= [(2p− 1)!!]1/p2Â1 ln(sx/y)+ Êp, (2.8)

where Êp is a constant. The logarithmic scaling of higher-order structure functions
predicted here was recently observed by de Silva et al. (2015). Typically, the actual
slopes in the semi-logarithmic plots Sp(sx; ux) versus ln(sx/y) will be smaller than the
ones predicted in (2.4) and (2.8) as wall-bounded flows are known to be sub-Gaussian
(Jiménez 1998; Meneveau & Marusic 2013). We will test this for the ECR slopes in
§ 5.3.

2.2. Extended self-similarity for structure functions
In the following, we will show that the ESS framework relaxes the strong self-
similarity assumption necessary to derive (2.7) using an approach similar to Yang et al.
(2016b). This is useful as in practice self-similarity may be broken by large-scale
effects as well as viscous (small-scale) effects such that the scaling according to (2.8)
may not be discernible. Without the strong self-similarity assumption we have

Sp(sx; ux)= [(2p− 1)!!]1/p
(

2
N(y)∑

l=N(yd)

〈a2
l 〉

)
, (2.9)

but now 〈a2
l 〉 6= 〈a

2
k〉 if l 6= k. Although no scaling according to (2.8) can be obtained

directly in this case, forming the ratio in the spirit of ESS gives

Sp(sx; ux)

Sm(sx; ux)
=

[(2p− 1)!!]1/p
(

2
N(y)∑

l=N(yd)

〈a2
l 〉

)

[(2m− 1)!!]1/m
(

2
N(y)∑

l=N(yd)

〈a2
l 〉

) = [(2p− 1)!!]1/p

[(2m− 1)!!]1/m
. (2.10)

This shows that even if the self-similarity of the eddies is broken, ESS establishes a
linear relationship between Sp(sx; ux) and Sm(sx; ux). We note that although (2.10)
is trivial under the Gaussian assumption employed here, it is still valuable in
demonstrating the functional principle of ESS. In general, 1u+x (sx) is non-Gaussian,
which e.g. is reflected in the presence of a non-zero additive constant in (1.4), such
that this result is non-trivial. Formally, (2.10) holds for all y0 and sx. However, at
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Statistics of turbulence in the energy-containing range 803

small scales η� sx � y0, where the Kolmogorov scale η is the length scale of the
smallest, dissipative structures in the flow, the scaling of the inertial subrange will
prevail. Unlike the logarithmic relationship (1.3) for the ECR, the ISR scaling has
the form of a power law. Hence, instead of (2.10), the classical ESS in the inertial
range (Benzi et al. 1993, 1995) manifests itself as the ratio of the logarithms of the
structure functions according to

ln[Sp(sx; ux)]

ln[Sm(sx; ux)]
= const. (2.11)

This serves to highlight the differences between the original ESS hypothesis and the
related framework introduced in de Silva et al. (2017) and employed here. We will
not pursue ISR scaling further in the following.

2.3. Extension to the transversal direction and the spanwise velocity component
It is easy to see that the above arguments can readily be extended to transversal
structure functions. To this end, we define the spanwise aspect ratio Rz as the ratio
of the spanwise extent of the attached eddies to their height. With this definition, we
have yd= sz/Rz as the height of the largest eddy contributing to the velocity difference
between two points separated by sz in the spanwise direction, leading to the same
result as (2.8). However, since Rx/Rz > 1, we expect the logarithmic scaling range at
smaller separations in the spanwise direction than in the streamwise direction.

It is noteworthy that under the assumptions leading to (2.1), the slope in (2.8)
remains unchanged between the streamwise and spanwise directions regardless of
Rx/Rz since the aspect ratio only affects the additive constant. A more realistic
prediction can be obtained, however, when experimental evidence for the existence of
very long structures (Hutchins & Marusic 2007), whose streamwise extent far exceeds
the logarithmic scaling region, is taken into account. Similar to Tomkins & Adrian
(2003), it may be assumed that in this case eddy contributions remain correlated over
large streamwise distances as is illustrated in figure 1(b). Hence, the assumption of
independence between eddy contributions al and a′l for points separated in x, which
was made in deriving (2.8), is no longer readily applicable. Mathematically, we model
this effect by considering an additional type of eddy contributions denoted as bl (and
referred to as ‘b eddies’ in the following as opposed to the ‘a eddies’ considered
so far). Doing so is in line with e.g. Perry & Marusic (1995), who – albeit for
different reasons – considered a total of three eddy types. The streamwise length of
the structures (O(10δ)) is large compared to the upper bound of the ECR scaling (δ),
such that we assume that Rb

x →∞ (superscript b denotes quantities pertaining to b
eddies), while Rb

z remains finite and all other assumptions for a eddies apply. This
implies that Nb(y) = N(y) and instead of (2.1) the model velocity is then given to
leading order by

u+x (y)=
N(y)∑
l=1

al +

N(y)∑
l=1

bl. (2.12)

For structure functions in the streamwise direction, the model prediction (2.8)
remains unchanged since yb

d → 0 for Rb
x →∞, i.e. the b eddies always affect both

points and therefore do not contribute to the velocity difference. However, for the
spanwise direction using (2.12) leads to

1u+x (sz)=

N(y)∑
l=N(yd)

al −

N(y)∑
l=N(yd)

a′l +
N(y)∑

l=N(yd)

bl −

N(y)∑
l=N(yd)

b′l, (2.13)
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804 Krug and others

from which under the assumption of independent Gaussian random processes and
following the same arguments leading to (2.7)–(2.8), the logarithmic scaling according
to

ST
p (sz; ux)= [(2p− 1)!!]1/p2〈a2

+ b2
〉 ln(sz/y)+ Êp (2.14)

is obtained. Comparing this result to the equivalent for Sp(sx; ux) in (2.8), it becomes
evident that the logarithmic slope in the spanwise direction is predicted to be greater.
Nevertheless, the ESS approach will cancel this effect in a similar vein to (2.10) even
if bl 6= bk if l 6= k as is seen from

ST
p (sz; ux)

ST
m(sz; ux)

=

[(2p− 1)!!]1/p2
N(y)∑

l=N(yd)

(〈a2
l 〉 + 〈b

2
l 〉)

[(2m− 1)!!]1/m2
N(y)∑

l=N(yd)

(〈a2
l 〉 + 〈b

2
l 〉)

=
[(2p− 1)!!]1/p

[(2m− 1)!!]1/m
, (2.15)

such that the prediction for the relative slopes Dp/Dm from the attached-eddy model
is the same in streamwise and spanwise directions. We will test these implications on
the data in § 5.

Moreover, an equivalent ansatz to (2.1) or (2.12) can also be made for the spanwise
velocity component uz from which it follows that all of the results of this section
are also applicable in this case. Investigations on the spanwise velocity component in
wall-bounded flows are generally scarce (Pirozzoli & Bernardini 2013; Sillero et al.
2013; Stevens, Wilczek & Meneveau 2014; Talluru et al. 2014) and evidence of an
ECR scaling according to (1.3) in this case is missing to date. The data necessary
for such an investigation will be available from the simulations employed here. We
will therefore include a study of the ECR framework applied to uz in the following.
Especially for the TC case, this is of great interest since unlike for the streamwise
velocity component, the Taylor rolls directly contribute to uz.

3. Flow geometries and datasets
3.1. Numerical dataset for TC flow

The geometry of the TC problem is sketched in figure 2(a). Our results are based
on the simulation labelled ‘R3’ in Ostilla-Mónico et al. (2016b) and we refer to the
original work for additional details on the numerical set-up. We restrict the discussion
to the case of pure inner-cylinder rotation (with angular velocity ωi) and a radius
ratio η ≡ ri/ro = 0.909 (subscripts ‘i’ and ‘o’ label quantities related to the inner
and outer cylinder, respectively). The Reynolds number based on half the gap width
d = ro − ri and the shear stress at the inner cylinder is Reτ ,i = Uτ ,id/(2ν)= 3920. In
order to be able to afford such a relatively high Reynolds number, the computational
domain is kept small by making use of axial as well as an imposed azimuthal
symmetry of order 20, that is only a 1/20th segment of the domain is simulated.
The simulation employs Nφ × Nr × Nz = 2048 × 1536 × 3072 grid points resulting
in spatial resolutions at mid gap in inner wall units of D+φ (ri + ro)/2 = 12.6 and
D+z = 5.1, where Dφ and Dz are grid spacings in φ and z, respectively. Due to
its limited axial extent, the box only contains one pair of Taylor rolls, which was
however shown to be sufficient to represent the relevant flow statistics (Brauckmann
& Eckhardt 2013; Ostilla-Mónico, Verzicco & Lohse 2015). Further, the effect of the
number of rolls on the flow statistics has been studied in detail by Ostilla-Mónico,
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(a) (b)

FIGURE 2. (Colour online) Sketches of the geometries of Taylor–Couette (a) and channel
flow (b). Also shown are the configurations of structure functions along the streamwise
directions.

Lohse & Verzicco (2016a). The rolls are oriented along the azimuthal direction (i.e.
they contribute predominantly to the wall-normal and axial velocity components) and
we will refer to their axial wavelength as λTR. As depicted in figure 2(a), we define
the wall-normal coordinate y as the distance from the inner cylinder, while z and φ

denote the spanwise and azimuthal directions, respectively. We will present results for
the boundary layer at the inner cylinder only. Therefore, we define uφ as the velocity
deficit uφ = ωiri − ũφ with ũφ denoting the actual azimuthal velocity whose mean
profile is sketched in figure 2(a). For convenience, we nevertheless refer to uφ as
the ‘azimuthal’ or ‘streamwise’ velocity component in this paper. Figure 2(a) further
includes a sketch of the definitions for structure functions with separations along
the streamwise directions. In the case of TC, the distance sφ is measured along the
circumference such that sφ = δφ(ri+ y), where δφ denotes the difference in φ between
the two points. Apart from the spatial averages over homogeneous directions, our
results for TC are averaged over 5 independent snapshots in time, which is sufficient
for statistical convergence if not stated otherwise.

3.2. Numerical dataset for channel flow and comparison

For comparison to a canonical wall-bounded flow, we also include results based on
the channel simulations of Del Alamo et al. (2004), where 15 independent snapshots
are available. The corresponding geometry is shown in figure 2(b). Even though
with Reτ = Uτh/ν ≈ 1900 (h being the half-width), the nominal Reynolds number is
somewhat lower in this case compared to the TC data, the flows are indeed quite
similar in the proximity of the wall as figure 3 shows. In that figure we plot the
mean (figure 3a) and the streamwise variance (figure 3b) for both geometries, which
display similar behaviour and magnitudes up to y+ ≈ 1000. Beyond that, the U+φ
profile in TC flattens out in a bulk flow region which has no correspondence in the
channel flow. It is important to note that following Ostilla-Mónico et al. (2016b), we
employ a z-dependent mean for TC according to 〈u′2i 〉

+
=〈(u+i −〈u

+

i 〉φ,t)
2
〉z, where 〈·〉i

denotes an average with respect to i. Due to the presence of the Taylor rolls, using
the conventional approach of averaging over all directions simultaneously results in
a significantly different distribution (cf. the dashed line in figure 3b). The symbols
in figure 3 correspond to the wall-normal positions, y+ = 30 and y+ = 90, for which
results for the structure functions will be reported in § 5.
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FIGURE 3. (Colour online) Mean (a) and variance (b) of the streamwise (for channel flow)
and azimuthal (for TC) velocity component; dashed dotted line in (a) is U+ ∝ 2.6 ln(y+)
for reference, red solid line in (b): TC variance based on y-dependent mean, dashed line:
TC variance based on a conventional mean. Diamonds mark the position for which the
structure functions are investigated in § 5.

3.3. Experimental high Reτ data from TBL and pipe flows
In order to explore the universality of E∗p,m across Reynolds numbers and flow types,
we employ two sets of high Re measurements. For the TBL, we resort to the hot-wire
measurements performed in the Melbourne wind tunnel as first reported in Hutchins
et al. (2009). This dataset encompasses 5 different Reτ ranging from 2800 to 19 000
at various wall-normal locations. Additionally, we make use of data recorded in the
Princeton Superpipe using the so-called NSTAP probe (Vallikivi et al. 2011). These
measurements span a range of 2000 < Reτ < 98 000 (based on the pipe radius) and
are described in more detail in the original publication of Hultmark et al. (2012). As
both datasets consist of time resolved point measurements, we make use of Taylor’s
hypothesis based on the local mean velocity to transform them into the spatial domain.

For all datasets employed, convergence of the structure functions up to tenth
order (p = 5) was verified by plotting the probability density functions P(1ui) in
premultiplied form, i.e. (1ui)

pP, at various separation distances for all datasets (not
shown). The integral of the plotted quantity then represents the desired structure
function and its convergence is judged by ensuring that the tails of (1ui)

pP have
converged. This procedure has been employed previously by Meneveau & Marusic
(2013), Huisman, Lohse & Sun (2013a) and others.

4. Universality of the additive constant E∗p,m
In figure 4(a–c), we show longitudinal structure functions for the TBL at fourth,

sixth and tenth order as a function of S1(sx; ux) (i.e. we chose 2m = 2 as reference
order in (1.4)). All plots include a range of wall distances from y+ = 10 to
y+ = δ+ = Reτ , spanning almost the entire boundary layer at Reτ = 13 700. The
remarkable result of de Silva et al. (2017) is that when plotted in this form (instead
of versus separation distance si), all curves for a given order attain the same slope
Dp/Dm beyond S1(sx ≈ y0). However, as becomes more prominent with increasing
order, there is a y+0 dependence for the additive constants E∗p,1. In particular, it is
evident for 〈(1u+x )

10
〉

1/5 in figure 4(c) that E∗5,1 decreases with increasing y+0 . In
order to further investigate this observation, we plot the compensated form (according
to (1.4) and using the Dp/Dm ratios given by de Silva et al. 2017) of the respective
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FIGURE 4. (Colour online) (a–c) ESS relations of higher-order structure functions for
the range 10 < y+ < δ+ computed from the data of Hutchins et al. (2009) at Reτ =
13 700. Black lines indicate the slopes Dp/D1 reported in de Silva et al. (2017). (d,e)
Compensated form of the ESS relations in (a–c); the range of S1(sx; ux) corresponds to
sx > y for each wall-normal location.

structure functions in figure 4(a–c) in panels (d–f ) of the same figure. In this way,
deviations from the respective slope Dp/Dm are scrutinized as aberrations from straight
horizontal lines. Compared to the absolute values of 〈(1u+x )

2p
〉

1/p, the agreement
with (1.4) is generally good even outside the logarithmic region (defined using the
bounds 3Re1/2

τ < y+ < 0.15Reτ , Marusic et al. 2013) with the largest differences
occurring close to the wall. The even more important point in the present context is
however that the trend of decreasing E∗p,1 with increasing y+0 emerges for all orders.

This is also verified in figure 5(a–c), where we show E∗p,m taken as the mean of
the quantity plotted in figure 4(d–f ) as a function of y+0 . Additional data at different
Reynolds numbers included in figure 5(a–c) reveal that E∗p,1 further depends on Reτ .
To the trained eye, this dependency and the shape of the profiles are reminiscent
of plots of the streamwise variance and indeed the same data are seen to collapse
when plotted versus the local value of 〈u′2x 〉

+ in figure 5(d–f ). Such a behaviour is
not purely heuristic, however, as it can be derived by the following considerations: in
the limit s/y→∞ the two points contributing to 1u can be considered independent
and 〈(1u+x )

2p
〉

1/p
→Cp = const. Evaluating (1.4) for this case with m= 1 yields

E∗p,1 =Cp −
Dp

D1
C1. (4.1)

For the second order, we have C1 = 2〈u′2x 〉
+ but generally Cp is a combination of

higher-order moments of u′+x . However, de Silva et al. (2015) provide the rather simple
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FIGURE 5. (Colour online) Additive constant E∗p,m in the ESS form as defined in (1.4)
as a functions of y+0 (a–c) and 〈u′2x 〉

+ (d–f ). In addition to the data at Reτ = 13 700
(shown using the same colour map as in figure 4), other measurements from the dataset of
Hutchins et al. (2009) spanning the range 28006Reτ 6 19 000 are represented by varying
shades of grey. Dashed-dotted lines in (d–f ) show the slopes suggested by the estimate
of (4.3).

approximation

Cp ≈Gp ln
(

cδ
y

)
, (4.2)

where Gp are constants given by a combination of the logarithmic slopes of higher-
order moments of u′+x provided by Meneveau & Marusic (2013). Making use of this
approximation and employing the log law for 〈u′2x 〉

+
= B1 − A1 ln(y/δ) we arrive at

E∗p,1 =
(

Gp

A1
− 2

Dp

D1

)
〈u′2x 〉

+
+ const. (4.3)

We note that the choice m = 1 is not a prerequisite for this form and a similar
expression can be derived for arbitrary references m. The slopes suggested by the
linear relation (4.3) are included as red dashed-dotted lines in figure 5(d–f ). While the
agreement with the data is excellent for p = 1 even slightly beyond the logarithmic
region, for which (4.3) was derived, conformance becomes somewhat worse with
increasing order. This is consistent with the fact that the approximation (4.2)
also becomes progressively weaker with increasing p (cf. de Silva et al. 2015).
Nevertheless, the collapse of E∗p,1 on 〈u′2x 〉

+ is robust for all orders and across the
entire boundary layer. We will revisit this result and examine universality across flow
geometries in § 5.4.
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FIGURE 6. (Colour online) Longitudinal (a–c) and transversal (d–f ) structure function of
the streamwise (azimuthal) velocity component ux (uφ) for Taylor–Couette (shades of red)
and channel (shades of blue). Two different wall-normal positions are shown for structure
functions of second (a,d), fourth (b,d) and tenth order (c,f ). Pictograms in (a,d) illustrate
the geometry of the respective structure function and the black lines represent logarithmic
slopes at the respective order for the longitudinal direction from de Silva et al. (2015).
The legend in (b) applies to all panels.

5. Comparison of higher-order structure function in Taylor–Couette and channel
flow

5.1. Streamwise velocity component

We start out by considering structure functions of the streamwise velocity components
in the conventional form as a function of si/y0. Results for the longitudinal direction,
which is the most accessible experimentally, are plotted in figure 6(a–c) at increasing
orders. For both TC and channel flow data at y+0 = 30 and y+0 = 90 are displayed.
After an initial increase, all curves are observed to level off at a constant value. The
subsequent drop back to zero is an artefact of the periodic boundary conditions used
in the simulations, which implies periodicity also for the structure functions. de Silva
et al. (2015) were able to determine the logarithmic slopes Dp in (1.3) directly based
on high Reτ data. Comparing their results (included as black lines in figure 6(a–c)
to the present data clearly shows that the scaling according to (1.3) does not hold
for either of the datasets or wall-normal positions plotted. Apart from not following
a straight line, the structure functions also exhibit distinctively different slopes at
different wall-normal positions y0. The differences between TC and channel flow in
figure 6(a–c) are minimal conforming with the good agreement observed for the 〈u′2x 〉
profile in figure 3(b).
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Similar observations can be made for the transversal structure functions of uφ,x
displayed at increasing orders in figure 6(d–f ). Generally, the initial increase is steeper
for ST

p (sz; uφ,x) and the curves level off at lower normalized distances sz/y0. In the
attached-eddy picture, this implies that the eddies have an aspect ratio Rx/Rz > 1.
Using the slopes Dp determined by de Silva et al. (2015) for the longitudinal
component (black lines in figure 6d–f ) as reference, it becomes clear that indeed
the increase of ST

p (sz; uφ,x) is steeper than that of Sp(sx; ux) at the same y0. This
observation is in line with the predictions in § 2 and with findings in the spectral
domain by Lee & Moser (2015) and Chandran et al. (2017). However, the striking
feature of the transversal structure functions is a pronounced peak at large separations
that is uniquely observed in TC flow. This peak occurs at values of sz for which
turbulent fluctuations have already become uncorrelated (i.e. the curves have levelled
off). Based on this along with the fact that the locations of the peaks correspond
to λTR as indicated in figure 6(d), the peaks can be related to the existence of
high and low speed streaks induced by the Taylor rolls. These velocity differences
are substantial. From the fact that the maximum of S1(sx; ux) is located at about
twice the turbulence level, their magnitude can be estimated to be ≈ (2〈u′2φ 〉)

1/2 at
the investigated wall-normal positions. Also here, the eventual decline to zero is an
artefact of the finite box size; further peaks above the turbulence level with a spacing
of λTR would be expected for domains containing additional pairs of rollers.

Next, we return to the analysis in the spirit of the ESS method. For this purpose,
we present higher-order structure functions in the longitudinal direction with reference
to S1(sx; ux) (in figure 7a–c) and with reference to ST

1 (sz; ux) (in figure 7d–f ), which
were displayed in figure 6(a,d), respectively. In order to establish the correspondence
to the separation distance, we mark values of S1(sx; ux) and ST

1 (sz; ux) corresponding
to sφ,x/y0 = 1, 10, 100 and sz/y0 = 0.2, 1, 10, respectively, with circles of increasing
size in figure 7 which are also shown in figure 6(a,d). Additionally, we mark the
location of the peak in figure 6(d–f ) with a triangle. Altogether, good agreement with
the slopes measured in de Silva et al. (2017) (indicated by black lines) is observed for
the longitudinal direction in figure 7(a,b) at sφ,x/y0 > 1 for both channel and TC. The
only small limitation is at the position closer to the wall (y+0 = 30), where due to an
initial ‘overshoot’ whose intensity increases with order p, the slope is only recovered
at slightly higher values of r/y0. A similar effect is also present in the TBL data as
evidenced by the small ‘hump’ at low values of S1 for small y+0 in figure 4.

Consistent with the above discussion on the aspect ratio of attached eddies, the
plots for the transversal direction in figure 7(d–f ) attain the respective slopes Dp/D1
at lower multiples of y0 in both flows considered. Besides that, it is remarkable in
view of the distinctively different behaviour in figure 6(d–f ) how well the Taylor roll
peaks align with those slopes even for the tenth-order moment in figure 7(d).

5.2. Spanwise velocity component
While structure functions in both directions of the streamwise component were
already considered in de Silva et al. (2017) for TBLs, we go beyond their work
by investigating the spanwise velocity component in the following. Results for the
longitudinal structure functions Sp(sz; uz), where the separation distance is along the
spanwise direction of the flow, are plotted in figure 8(a–c). At a first glance, these
plots look very similar to the ones for uφ,x in the transversal directions (figure 6d–f )
with close agreement between channel and TC before once again the Taylor rolls
lead to a sharp peak at sz = λTR/2. The important difference between the peaks in
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FIGURE 7. (Colour online) Higher-order structure functions plotted versus second order
for the streamwise/azimuthal velocity component in longitudinal (a–c) and transversal
direction (d–f ). Circles of increasing size mark locations where sφ,x/y0 is equal to 1, 10
and 100 (a–c) or where sz/y0 is 0.2, 1 and 10 (d,e). The triangles in (d–f ) mark the
position of the Taylor roll peak. All these positions are also marked in figure 6(a,c) for
reference. Black lines indicate the respective values of Dp/Dm determined by de Silva
et al. (2017) for the longitudinal structure function of ux in TBL flow.

ST
p (sz; uφ) and Sp(sz; uz) is that in the latter case, their occurrence is a direct effect of

the Taylor rolls, i.e. the rolls contribute directly to uz. This in contrast to the previous
case where their action was indirect in transporting low velocity fluid away from the
wall and vice versa. A noticeable consequence is that the relative magnitude of the
peaks is now inverted such that the peak closer to the wall, where the contribution
of the Taylor roll is apparently reduced, is lower for Sp(sz; uz).

The transversal direction for uz runs along the axis of the Taylor rolls. Hence, their
contribution cancels out and the structure functions ST

p (sx; uz) in figure 8(d–f ) exhibit
no distinct peaks for TC flow. It is however noteworthy that the curves for ST

p (sx; uz) in
TC keep increasing even at distances at which their counterparts in channel flow have
already saturated. This can be explained by the fact that the Taylor rolls fluctuate in
size and position (Ostilla-Mónico et al. 2015) which introduces correlations at scales
larger than those of the turbulence field. The longest correlation possible is limited
by half the box size; thus the fact that the end of the increase of ST

p (sx; uz) coincides
with λTR is simply a consequence of choosing the domain size equal to λTR. It should
therefore not be given physical significance beyond demonstrating that modulations of
the Taylor rolls with wavelengths up to at least this size are possible.

The plots of figure 8 for the spanwise velocity component are repeated in figure 9
in ESS form. For the longitudinal direction (figure 9a–c), it remains inconclusive
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FIGURE 8. (Colour online) Same as figure 6 for the spanwise velocity component uz. The
legend in (b) applies to all panels. Circles of increasing size mark locations where sz/y0
is 0.2, 1 and 10 (a–c) or where sφ,x/y0 is equal to 1, 10 and 100 (d,e).

whether or not the channel results attain a linear relationship due to the limited
scaling range. In the case of TC flow, however, it is obvious that the description
by (1.4) does not hold since the slope of the curves at both wall-normal positions
is continuously changing. It appears likely that this breakdown is related to the fact
that for Sp(sz; uz) the direct contribution of the Taylor rolls does not cancel out.
Consequently, the statistics are influenced by structures that are not directly related
to the presence of the wall which may be responsible for deviation from the ECR
scaling observed in other cases.

In agreement with such a reasoning, it is evident from figure 9(d–f ) that ST
p (sx; uz),

for which the uz contribution of the Taylor rolls does cancel out largely, complies with
the linear scaling of (1.4) for both channel and TC. Even more so, the slopes in the
data for the spanwise velocity component seem consistent with those measured for
ux by de Silva et al. (2017). Thus, there is evidence that at least in the transversal
direction, also the structure function of the spanwise velocity adheres to the same
universality as uφ,x.

5.3. Universality of the ratios Dp/D1

In order to address the question of universality for the slopes in the ESS form
in a more structured manner, we plot results for Dp/D1 in figure 10. In all cases,
the data were fitted over a range corresponding to si/y0 > 1 and at y+0 = 90 where
the scaling is generally more robust. The TBL results of de Silva et al. (2017)
included here are obtained at Reτ = 19 000 and therefore also serve as a high Reτ
reference for the present numerical datasets. The most obvious result in this plot
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FIGURE 9. (Colour online) Same as figure 7 for the spanwise velocity component uz. The
legend in (b) applies to all panels.

is that the actual slopes in all geometries considered significantly deviate from
the Gaussian estimates of (2.10) for both the streamwise (figure 10a) and the
spanwise (b) velocity component. This is similar to Meneveau & Marusic (2013)
who observed sub-Gaussian behaviour for higher-order moments of the velocity
fluctuations u′. Our results indicate that also the distributions of 1ui and ∆Tui are
sub-Gaussian. Figure 10(a) reinforces the result from figure 7 that for the streamwise
velocity the ratios Dp/D1 agree closely up to tenth order for longitudinal as well as
transversal separations. This strongly supports universality of this characteristic across
all geometries considered – now also including TC.

For the spanwise velocity component uz, the scaling for the longitudinal direction
remained either inconclusive (channel) or – in violation of (1.4) – a clearly nonlinear
relation was found (TC). Therefore, only the results for ST

p (sx; uz) are displayed in
figure 10(b). For these results, the agreement with the TBL results for ux is good for
both channel and TC flow and it may be concluded that the universality also extends
to the spanwise velocity component in at least the transversal direction.

5.4. Universality of E∗p,m across flow geometries
We now return to the question of how the additive constants E∗p,m change across flow
geometries. For pipe flow, the Superpipe dataset of Hultmark et al. (2012) provides
access to Reynolds numbers even exceeding those achieved in TBL experiments. In
figure 11(a–c), we compare results from the Superpipe to those of the TBL previously
reported in figure 5(d–f ). The pipe data are plotted for y+ > 10 at the lowest three
Reτ (Reτ 6 5400) but only for y+ > 300 at higher Reτ in order to stay clear of
spatial resolution issues (cf. Smits et al. 2011). In general, very good agreement is
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FIGURE 10. (Colour online) Result from fitting the slopes Dp/D1 in the ESS form for
the streamwise (a) and spanwise (b) velocity component in the longitudinal and transversal
direction. Fits are computed for a range corresponding to si/y> 1 at y+0 = 90. The legend
in (a) applies to both panels, however, only the transversal direction is shown in (b). The
boundary layer result is taken from de Silva et al. (2017); grey dots represent the Gaussian
prediction from (2.10).

observed between the two geometries even at tenth order with possibly a slight trend
of increasing E∗p,1 with increasing Reτ in the pipe. It is further noteworthy, that the
pipe results for Reτ 6 5400 ‘peel off’ the TBL data at 〈u′2x 〉

+-values corresponding
to the vicinity of the inner peak, i.e. 〈u′2x 〉

+ > 6. A comparable trend is not observed
for higher Reτ and it therefore appears plausible that the peel off is a low-Reτ effect
rather than geometry related even though data very close to the inner peak (located at
y+ ≈ 15) are not available at the highest Reτ . The fact that at nominally comparable
Reτ the low-Reτ behaviour is different for the TBL might be related to the difficulty
to define consistent outer length scales (and hence consistent values of Reτ ) across
different flow geometries (Marusic et al. 2010).

The results for the streamwise velocity component of the channel in figure 11(d–f )
(shown as filled blue symbols) display similar behaviour to the pipe at low Reynolds
numbers. At lower values of 〈u′2x 〉

+ (further from the wall), the agreement with the
TBL results is good but there are significant deviations when approaching the inner
peak that start at slightly lower values of 〈u′2x 〉

+ in this case. It is further striking how
closely the results for the longitudinal (circles) and transversal (triangles) directions
agree.

Values of E∗p,1 corresponding to structure functions of uφ in TC flow in both
longitudinal and transversal directions (red filled symbols in figure 11d–f ) are
observed to agree closely with the channel flow results closer to the wall ( higher
values of 〈u′2x 〉

+). In doing so, they also approach the TBL data around 〈u′2x 〉
+
≈ 4

(equivalent to y+≈ 100 cf. figure 3b). Unlike for the channel, both directions are seen
to deviate upwards from the TBL results in the case of TC flow already at slightly
lower values of 〈u′2x 〉

+. At this point, also the agreement between longitudinal and
transversal structure functions ceases. This anisotropy hints that this deviation from
the behaviour of the other geometries may be related to the strong large-scale roll
modes (Taylor rolls) present in the bulk region of TC flow. It further remains open
whether there is indeed a range of universality for E∗p,1 that also encompasses TC
flow at higher Reτ , where a more pronounced logarithmic region is present.

For completeness, we also report the E∗p,1 values for the spanwise velocity
component uz in the transversal direction in figure 11(d–f ) for channel and TC
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FIGURE 11. (Colour online) (a–c) Results for E∗p,1 from the Superpipe data over a range
2000 < Reτ < 94 400 (shades of green) as a function of the streamwise variance 〈u′2x 〉

+.
The legend in (a) also applies to (b,c). (d–f ) Additive constant E∗p,1 for channel and TC
flow for different directions and velocity components (cf. legend in d); results are shown
for 30 6 y+ . 500. In all panels, the TBL results from figure 5(d–f ) serve as a reference
and are plotted in shades of grey.

flow plotted versus 〈u′2z 〉
+. However, due to the lack of reference data at high Reτ for

this case, not much more can be stated than that – similar to the observations for
ux,φ - also the results for uz differ at lower values of 〈u′2z 〉

+.

6. Summary, conclusions and outlook

Various aspects of the analysis in the spirit of the extended self-similarity framework
applied to the energy-containing range of structure functions in wall-bounded flows
were considered in this work. A simple model based on the attached-eddy hypothesis
proved helpful in providing a theoretical underpinning to the key features of the
analysis in the spirit of the ESS hypothesis. Namely, it was shown that when
considering relative scalings, the self-similarity assumption for the eddies is relaxed.
In the relative form, the scaling relationships are therefore more robust against
viscous effects or large-scale perturbations, leading to more robust scaling regions
that are also discernible at low values of Reτ , which are accessible through direct
numerical simulations. Further, different logarithmic slopes in longitudinal and
transversal structure functions were seen to exist in the present data as well as
previous studies. The attached-eddy model explains this observation in terms of a
tendency of the eddies to align in the streamwise direction, which is consistent
with the well-documented presence of long streamwise structures in the logarithmic
region of wall-bounded flows. This effect, too, cancels out in the ESS framework,
conforming with the observations here (for TC and channel flow) and in de Silva et al.
(2017) (for TBL) that the ratios Dp/Dm for the streamwise velocity component are
approximately the same in both directions. The model further predicts an analogous
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behaviour for uz, which could be confirmed at least for the transversal direction of
TC and channel flow in this work. Further work at higher Reτ will be needed to see
if this prediction holds also for Sp(sz; uz) in canonical wall-bounded flows.

Focussing on TC flow, we found generally good agreement with ESS results in other
geometries. This applies to the mere existence (at least in the ESS framework) of a
logarithmic scaling region, which had not been established before in TC flow, but also
the magnitude of the ratios Dp/Dm. This is remarkable, especially in view of the fact
that the presence of the large-scale Taylor rolls significantly alters the appearance of
ST

p (sz; ux) in the direct representation in figure 6(d–f ) compared to the corresponding
channel flow result. The only exception to this agreement is Sp(sz; uz), where the data
distinctively deviate from the linear relationship predicted in the ESS form. For this
configuration, there is a direct contribution of the Taylor rolls to the structure function,
which, unlike for ST

p (sx; uz), does not approximately cancel out in the mean when
taking the velocity difference between two points. From an attached-eddy perspective,
these results can be interpreted as follows: the boundary layer in TC flow consists
of wall attached structures which are modulated by the super-imposed Taylor rolls.
For ST

p (sz; ux), there is no superposition from the TRs since their uφ component is
zero. Nevertheless, their modulation of the attached eddies leads to pronounced low
and high velocity streaks but this effect gets cancelled out when taking the ratios in
the ESS framework. However, for structure functions of uz, the TR directly contribute
such that additional summands enter in (2.1) or (2.12), which do not adhere to the
hierarchical organization of the wall-attached eddies. Unless their contribution drops
out in the mean when taking the velocity difference (as is the case for ST

p (sx; uz)),
these will alter the distribution of 1uz in which case a scaling according to (2.10)
can no longer be expected. The latter applies for Sp(sz; uz) and is consistent with the
failure to observe ESS scaling there.

In another aspect of this work, we addressed the behaviour of the additive constants
E∗p,m, which constitutes the only other constant in the ESS form (1.4). Our analysis for
ux in the TBL revealed that E∗p,m exhibits significant dependencies on the wall-normal
position (increasing with increasing y+0 ) and the Reynolds number (increasing with
increasing Reτ ). However, the data collapse when plotted versus 〈u′2x 〉

+ instead of y+0
– a behaviour that can be explained by considering (1.4) in the limit of si → ∞.
Doing so yields a linear dependence of E∗p,m on 〈u′2x 〉

+ in the logarithmic region with
slopes that are largely consistent with the data. Further, E∗p,m was seen to display
universal behaviour in this form at least for pipe flow, where data at large Reτ are
available. The present low Reτ datasets do not allow for a conclusive judgement as
to whether this universality extends to channel flow or potentially even TC. While
this appears likely for the former, there are indications that, presumably due to the
presence of the TR, there are significant deviations from the TBL results in the outer
regions of the boundary layer in TC flow. Future TC data at higher Reτ will help
to shed light on this as well as on the behaviour of E∗p,m for uz, which could not be
assessed from the present data.
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