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Penetration of a magnetic field into plasma that is faster than resistive diffusion can be
induced by the Hall electric field in a non-uniform plasma. This mechanism explained
successfully the measured velocity of the magnetic field penetration into pulsed
plasmas. Major related issues have not yet been resolved. Such is the theoretically
predicted, but so far not verified experimentally, high magnetic energy dissipation, as
well as the correlation between the directions of the density gradient and of the field
penetration.
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1. Introduction

The penetration of a magnetic field into plasma is an important basic process.
The rate of magnetic field penetration is expected to be determined by the plasma
resistivity. In a common configuration, the magnetic field has one component and
the associated current flows in only one direction (perpendicular to the magnetic
field). In high-power pulsed plasmas of such configuration, experimental evidence by
probes (Weber et al. 1984), followed by thorough studies employing spectroscopy
at the Weizmann Institute (Sarfaty et al. 1995; Shpitalnik et al. 1998; Weingarten
et al. 2001; Arad et al. 2003; Doron et al. 2004, 2008; Rubinstein et al. 2016),
showed magnetic field penetration that was much faster than expected by classical
resistivity. Theorists at the Kurchatov Institute (Kingsep, Mokhov & Chukbar 1984;
Kalda & Kingsep 1989; Kingsep, Chukbar & Yan‘kov 1990; Gordeev, Kingsep &
Rudakov 1994) and in other research groups (Fruchtman 1991, 1992a,b; Fruchtman &
Gomberoff 1992, 1993; Fruchtman & Rudakov 1992, 1994; Oliver et al. 1992; Huba,
Grossmann & Ottinger 1994; Swanekamp et al. 1996; Fruchtman, Ivanov & Kingsep
1998; Chuvatin, Ivanov & Rudakov 2004; Richardson et al. 2013, 2016) explained
the measurements by showing that the Hall electric field can induce a fast magnetic
field penetration if the plasma is non-uniform, even if the resistivity is small (but not
zero). The velocity of the penetration was shown by the theory to be larger than the
hydrodynamic velocity of the plasma pushed by magnetic field pressure, when the
scale length of the plasma non-uniformity was smaller than the ion skin depth. In
such a regime, electron magnetohydrodynamics (EMHD) modelling is usually needed.
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2 A. Fruchtman

In a configuration in which the magnetic field has more than one non-zero
component, and in which magnetic field and current oscillate, the magnetic field
can penetrate into the plasma in the EMHD regime as linear or nonlinear whistler
waves (Urrutia & Stenzel 1989; Fruchtman & Maron 1991; Degeling, Borg &
Boswell 2004; Stenzel, Urrutia & Strohmaier 2006, 2009; Karavaev et al. 2010). In
particular, whistler waves have been shown to penetrate nonlinearly into an initially
unmagnetized plasma (Stenzel et al. 2009). The measurements so far indicate that
the magnetic field penetrates without noticeable oscillations, and we therefore assume
that whistler waves are not dominant in the configuration we address here.

The theory of Hall-induced magnetic field penetration in a non-uniform plasma has
been successful in explaining the observed fast velocity of penetration. In addition,
various questions that arose about the Hall penetration have been solved theoretically.
It was demonstrated how the non-uniformity of the plasma results in the Hall electric
field becoming inductive, and not only electrostatic, as the Hall electric field usually
is. Although the Hall electric field itself is not dissipative, the Hall theory predicts
that a large magnetic energy should be dissipated, as dictated by energy conservation
(Fruchtman 1992a), inside a current layer that is narrower for a smaller resistivity.

Within the assumptions of the Hall penetration theory, if the resistivity is zero,
the magnetic field should obey the frozen-in law, so that the magnetic field cannot
penetrate the electron fluid. It has been shown that during the Hall penetration, the
magnetic field does penetrate the electron fluid, so that the deviation from the frozen-
in law is large, even if the resistivity is low (but not zero). A relation was derived
between the deviation from the frozen-in law and the dissipation of magnetic energy
per electron along its trajectory (Fruchtman 1992b).

Although the discovery and the research of Hall-induced magnetic field penetration
enjoyed theoretical success and experimental verification, there are still unanswered
questions. The fate of the large dissipated magnetic energy is a major question. If
the magnetic field propagates into the plasma, so that the ions acquire a velocity
smaller than the velocity of the magnetic field, a large fraction of the dissipated
energy should end up in electron kinetic energy. Indeed, a large electron heating
is a result of the Hall theory (Fruchtman & Gomberoff 1993; Fruchtman et al.
1998). Even if the electrons are not thermalized, the electron kinetic energy should
be high. Spectroscopic measurements, however, indicate that the kinetic energy of
the electrons accounts only for a small fraction of the dissipated energy (Doron
et al. 2008). Another important question arises from the prediction of the Hall
theory that the magnetic field penetration should rely on the direction of the density
non-uniformity, a prediction that is not supported by observations.

In § 2, the magnetic energy dissipation during the magnetic field propagation in a
volume is evaluated through flux and energy conservation. The basic Hall-induced
magnetic field penetration, described by a travelling wave solution of Burgers equation
(Kingsep et al. 1984), is described in § 3. The solution is generalized to describe
a penetration into plasma that is not necessarily unmagnetized initially. The power
partitioning and the rate of magnetic field dissipation in the plasma and near the
electrodes are calculated in § 4. According to the theory, the magnetic energy is
dissipated during the penetration described here through Joule heating inside a narrow
current layer. As measurements (Doron et al. 2008) indicate that the kinetic energy
of the electrons is much smaller than that predicted by the Hall model, we discuss
in § 5 other processes that could explain the power partitioning. We also discuss in
§ 5 the dependence of the Hall-induced magnetic field penetration on the direction of
the density non-uniformity.
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FIGURE 1. Magnetic field penetrates a plasma as a travelling wave with a narrow current
channel. The configuration is quite general but has a similarity to the plasma opening
switch. The plasma density gradient (not denoted) is in the positive x direction. Shown
by arrows is the direction of the electrons motion in the current channel. The sheath size
is enlarged. The magnetic flux and energy flow into the plasma along the current channel,
in the x direction, perpendicular to the direction of propagation of the travelling wave
in the z direction. There is a loop voltage along the dotted rectangle as a result of the
non-uniform Hall electric field.

2. Magnetic field propagation and magnetic energy dissipation
In this section we determine the rate of magnetic energy dissipation during magnetic

field propagation in the configuration shown in figure 1. The shaded area denotes the
presence of a plasma. The current flows along the anode (located at x= x0) to the right,
then in the negative x direction (down in the figure) and back to the left along the
cathode (located at x= 0). The electrons flow in the opposite direction, and inside the
plasma they flow in the current channel in the anode direction (upward in the figure),
their trajectories denoted by vertical arrows. The magnetic field in the plasma and in
the vacuum to the left of the current channel is B1 and to the right of the current
channel it is B2, both B1 and B2 pointing into the page, in the negative y direction.
Thus, the magnetic field has one non-zero component only. The system variables are
uniform in y for a distance that is much longer than x0 and the length of the plasma
in z. This configuration characterizes (although more often in a cylindrical geometry)
the plasma opening switch (POS) (Mendel Jr & Goldstein 1977; Weber et al. 1987),
but the questions addressed, we believe, are of a general interest.

Motivated by the experimental measurements in the POS (Weber et al. 1984;
Sarfaty et al. 1995; Shpitalnik et al. 1998; Weingarten et al. 2001; Arad et al. 2003;
Doron et al. 2004, 2008; Rubinstein et al. 2016), we assume that the magnetic field
propagates as a travelling wave to the right with a constant velocity vB and that B1
and B2 are uniform in space and constant in time. In experiments, the magnetic field
on the upstream side of the current layer is not exactly uniform due to the finite rise
time of the current. We choose a uniform B1 to simplify the analysis.

In this section, we employ magnetic flux and energy conservation to evaluate the
magnetic energy dissipation. In the evaluation, we use only Maxwell’s equations for
the electromagnetic fields and do not analyse the interaction between the magnetic
field and the plasma. We do not specify at this stage the mechanism of magnetic field
penetration into the plasma and we will associate the evolution of the magnetic field
with Hall penetration only later in the analysis.

Due to the magnetic field propagation, the rate of magnetic flux penetration into
the plasma between the electrodes is (B1 − B2)x0vB, which, according to Faraday’s
law, should equal the voltage along a loop that encloses the plasma. The electric field
parallel to the electrodes is zero, Ez = 0. The electric field in the plasma where the
magnetic field is B2 is also zero. The voltage along a loop that encloses the plasma
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therefore equals V1, the voltage between the electrodes in the vacuum to the left of
the plasma. We therefore obtain that

V1 =−

∫ x0

0
Ex dx= (B2 − B1)x0vB H⇒ Ex = (B1 − B2)vB. (2.1)

Note that V1 > 0 and Ex < 0 (pointing towards the cathode).
We turn now to analysing the energy flow and calculate the total electromagnetic

energy that flows from the vacuum to the right. The Poynting flux to the right,
Pz = ExBy/µ0 is integrated between the electrodes and we find that the power flow
between the electrodes, per unit length in the y direction, is

PzT =

∫ x0

0
dxPz = Pzx0 =

(B1 − B2)B1vBx0

µ0
. (2.2)

The rate that magnetic energy is accumulated in the plasma is

PBT =

∫ x0

0
dx
(

B2
1 − B2

2

2µ0

)
vB =

(B2
1 − B2

2)

2µ0
vBx0. (2.3)

The electric energy is much smaller than the magnetic energy, since we assume that
vB is much smaller than c, the speed of light. The difference between the magnetic
energy flowing into the plasma and the magnetic energy accumulated in the plasma is
the magnetic energy dissipated in the plasma. The rate of magnetic energy dissipation
is therefore

DT = PzT − PBT =
(B1 − B2)

2vBx0

2µ0
. (2.4)

The ratio of power dissipated to the rate of magnetic energy accumulation is

r3 ≡
DT

PBT
=

B1 − B2

B1 + B2
=

1− r
1+ r

, (2.5)

where

r≡
B2

B1
. (2.6)

The dissipated magnetic field energy is smaller when r is larger.
For B2=0 (or r=0), there is equipartition of energy. The dissipated electromagnetic

energy is equal to the magnetic energy accumulated between the electrodes. This
equipartition of energy is not general. When the plasma is initially magnetized, when
r 6= 0 in our notation, the magnetic field can penetrate as an oscillating wave so
that magnetic field energy is not necessarily dissipated. In electromagnetic waves
in vacuum, the energy is carried by both electric and magnetic components without
dissipation. In plasma, even in slow evolution in which the electric field is small,
magnetic field and current reversal, associated with wave oscillations, allow magnetic
flux penetration into the volume with no magnetic energy dissipation. Such is the
magnetic field penetration during whistler linear and nonlinear wave propagation,
mentioned in the introduction. In whistler waves, magnetic energy is carried in more
than one wave component (Urrutia & Stenzel 1989; Fruchtman & Maron 1991;
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Degeling et al. 2004; Stenzel et al. 2006, 2009; Karavaev et al. 2010). In particular,
as mentioned in the introduction, whistler waves have been shown to penetrate
nonlinearly into an initially unmagnetized plasma (Stenzel et al. 2009). However, with
no field reversal or oscillation, for a penetration in which the magnetic field behind
the current layer is uniform, as analysed here, a large magnetic energy dissipation is
expected. The energy dissipated is half the energy flowing into the plasma, according
to (2.5) for r= 0. A finite rise time of the magnetic field may result in a somewhat
smaller dissipation (see § II in (Fruchtman 2003)), but the expected dissipation is still
large.

3. Hall-induced magnetic penetration

In the previous section we determined the amount of dissipation by applying
conservation laws. In this section, we discuss where the dissipated magnetic energy
ends.

Rosenbluth showed several decades ago (Rosenbluth 1963) that a collisionless
plasma can be specularly reflected by the propagating magnetic field, acquiring a
velocity that is twice the velocity of the magnetic piston. In such elastic scattering,
the dissipated magnetic energy is converted into directed kinetic energy of the ions
and no heat is generated. The ions are reflected by the moving potential hill at
the plasma boundary of the width of an electron skin depth. The energy acquired
by the collisionless electrons that are reflected by the magnetic field is negligible
because of their small mass. This one-dimensional description (1-D) of the specular
reflection of the plasma (in the moving frame of the magnetic field) can describe
approximately the interaction if the plasma width (in the x direction here) is at least
the ion skin depth, since this is the distance in x travelled by the electrons reflected
by the magnetic field (Fruchtman & Gomberoff 1993).

As mentioned above, measurements indicate that the magnetic field penetrates into
the plasma with a velocity significantly larger than the velocity acquired by the
plasma. We therefore present a case that is an opposite limit to specular reflection.
The magnetic field is assumed to penetrate the plasma quickly, so that ion motion
is small and neglected. The consistency of this assumption should be checked once
a solution is derived. The governing equations are the momentum equation for the
(assumed) cold electron fluid,

E=−v×B+ ηj, (3.1)

where the electron inertia is neglected, Faraday’s law

∂B
∂t
=−∇×E, (3.2)

and Ampere’s law,

µ0 j=∇×B. (3.3)

Here, E and B are the electric and magnetic fields, j is the current density, v is the
velocity of the electron fluid and µ0 is the permeability of free space. Displacement
current has been neglected in Ampere’s law, therefore the current becomes divergence
free, ∇ · j= 0. Since ions are motionless, the current is only carried by the electrons,
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j = −env, n is the electron density and e the elementary charge. The current being
divergence free results in ∇ · nv = 0. From the electron continuity equation,

∂n
∂t
=−∇ · (nv)= 0, (3.4)

so that the (quasi-neutral) plasma density does not vary in time.
The electric field has two terms. The first term on the right-hand side of (3.1)

is the Hall electric field, which is non-dissipative, the second term is the resistivity
contribution to the electric field.

We now present the travelling wave solution (Kingsep et al. 1984). As in the
configuration shown in figure 1, we assume a simple geometry in which the magnetic
field has one non-zero component only,

B= ŷB(z, x). (3.5)

Faraday’s law is then written as

∂B
∂t
=
∂Ex

∂z
−
∂Ez

∂x
, (3.6)

while Ampere’s law becomes

µ0jx =−
∂B
∂z
, µ0jz =

∂B
∂x
. (3.7a,b)

The two components of the electron momentum equation are

Ez,x = ηjz,x ∓ vx,zB, (3.8)

while

vx,z =−
jx,z

en
. (3.9)

Let us now assume that the plasma density varies along one direction, say x, only,

n= n(x), (3.10)

so that

∂n
∂x
> 0. (3.11)

The equations are combined to

∂B
∂t
+

1
eµ0

∂

∂x

(
1
n

)
B
∂B
∂z
=
η

µ0

(
∂2B
∂z2
+
∂2B
∂x2

)
. (3.12)

Here, the resistivity η was assumed uniform. The nonlinear convective term is due
to the Hall electric field. If the plasma density is uniform, the second term vanishes
and the magnetic field evolution is determined by the resistivity. The plasma non-
uniformity makes the Hall electric field inductive, as will be discussed.
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If ∂/∂x(1/n) varies slowly with x, there are solutions in which B varies mostly
with z, due to the convective term. The second term on the right-hand side of (3.12)
is then smaller than the first term on the right-hand side and is therefore neglected.
Equation (3.12) is approximated as

∂B
∂t
− αB

∂B
∂z
=
η

µ0

∂2B
∂z2

, (3.13)

where

α ≡−
1

eµ0

∂

∂x

(
1
n

)
> 0. (3.14)

Equation (3.13), the governing equation, is the 1-D Burgers equation. The Burgers
equation admits a travelling wave solution,

B= B(ξ), ξ ≡ z− vH(x)t, (3.15)

for the following boundary conditions:

B−→ B2,
∂B
∂ξ
−→ 0 ξ −→∞ (3.16)

B−→ B1,
∂B
∂ξ
−→ 0 ξ −→−∞ (3.17)

B1 < B2 6 0. (3.18)

Although the case B2 = 0 is of most interest, we derive here a more general solution.
Equation (3.13) with the above boundary conditions is solved as

B= B2 +
(B1 − B2)

2

{
1− tanh

[
1

2d(x)
(z− vH(x)t)

]}
. (3.19)

The velocity of propagation of the magnetic field vB is the Hall velocity vH ,

vB = vH ≡−α

(
B1 + B2

2

)
, (3.20)

and the width of the current layer is

d=
(

B1 + B2

B1 − B2

)
η

µ0vH
. (3.21)

For simplicity, let us assume that the constant-in-time electron density is

n=
n0x0

x0 − x
0 6 x 6 x0. (3.22)

In this case,

α =
1

eµ0n0x0
. (3.23)
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The 1-D solution is then exact,

B= B(z− vHt), jz = 0, (3.24a,b)

and vH is constant,

vH =−
B1 + B2

2eµ0n0x0
. (3.25)

Note that the electrons carrying the current move from a region where the plasma
density is low to a region where the plasma density is high. Such electron motion is
a requirement for the magnetic field penetration that is governed by (3.13).

We now assume that (3.19) describes the 1-D propagation of the magnetic field and
the current channel in figure 1. The electric field parallel to the electrodes is zero,
Ez= 0, while inside the current channel Ez is not zero. A narrow sheath is expected to
separate the electrode from the quasi-neutral plasma, and across the sheath Ez should
vary from zero to its value in the plasma. A model for the sheath has been given in
Fruchtman (1992a). Here, a model for the sheath is not presented except in deriving
properties from conservations laws. The sheath is assumed of a negligible thickness
relative to x0, the distance between the electrodes.

Magnetic flux penetrates into the dotted rectangle in figure 1, which is inside the
plasma. Since the vertical sides are in regions of plasma in which the magnetic field is
uniform and the current is zero, the electric field there is zero. The inductive voltage
in the plasma is due to the axial electric field inside the current layer. Magnetic flux
flows into the plasma since the Hall electric field is stronger near the cathode than
near the anode. A finite loop voltage exists along the dashed rectangle. The voltage
across the horizontal lower side in the figure is larger than the voltage across the
horizontal upper side of the rectangle. It is a remarkable property of the Hall-induced
magnetic field penetration into a non-uniform plasma that the flow of the magnetic
flux is perpendicular to the direction of propagation of the magnetic front. This is
opposite to the usual resistive case in which the magnetic flux flow is in the direction
of diffusion. The flow of energy is in the direction of the flow of the magnetic flux
and is also perpendicular to the direction of propagation of the magnetic front.

In our specific example, the density at the anode was chosen as infinite, so that
vx(x = x0) = 0 and Ez(x = x0) = 0. The loop voltage into the plasma at x = 0 (but
above the sheath) is

V(x= 0)= V3 =−

∫
∞

−∞

dzEz(x= 0)=
(B2

2 − B2
1)

2en0µ0
= (B2 − B1)x0vH = V1. (3.26)

The inductive voltage between the electrodes in the vacuum to the left of the plasma
(due to Ex) falls in the plasma across the current layer (due to Ez).

We note in passing that in the frame of the travelling wave the ions move with
velocity −vH in the z direction and slow down as they climb a potential hill of height
V3 (at x= 0). In the case of fast penetration, the ion velocity does not change much
in the travelling wave frame, and in the laboratory frame the ions acquire a velocity
vion
∼= e(B2−B1)x0/mi, where mi is the ion mass. Our analysis is valid if vion� vH , or

2(B1−B2)/(B2+B1)� (c/ωpix0)
2, ωpi≡ (e2n0/ε0mi)

1/2 being the ion skin depth (ε0 is
the permittivity of the vacuum).

We turn to completing the estimates of the potential drops. By applying Faraday’s
law along a vertical line between the electrodes to the left of the current layer (with
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the assumption that the sheath is narrow), we conclude that the voltage between the
electrodes along that line (denoted as V1) should equal the voltage across the current
layer in the vicinity of the cathode (denoted as V2). Therefore,

V1 = V2 = V3. (3.27)

These relations will be used in the analysis of the energy balance.

4. Energy partitioning

In this section, we examine the partitioning of the electromagnetic energy that flows
into the volume between magnetic energy that accumulates in the plasma and energy
dissipated through Joule heating. The electromagnetic flows calculated here are in
units of power per unit length in y.

Inside the plasma, the magnetic energy flows along the current layer from the
cathode to the anode. The flow at the anode out of the plasma is zero (since we
chose an infinite density plasma there). The Poynting vector inside the plasma is
written as

Px =−
EzBy

µ0
=

1
3enµ2

0

∂B3

∂z
. (4.1)

This flux is zero at the anode and

PxT ≡

∫
∞

−∞

dzPx(z, x= 0)=
(B3

2 − B3
1)

3en0µ
2
0
, (4.2)

at the cathode. The energy that flows into the plasma is a part only of the energy that
flows between the electrodes. Using (2.2), we write

PxT =
2
3

(
1+ r2

+ r
1+ r

)
PzT . (4.3)

If the magnetic field is penetrating an unmagnetized plasma, r= 0, two-thirds of the
energy flow into the plasma, while a third is dissipated in the sheath. The dissipation
in the sheath is smaller for a finite r.

The rate of magnetic energy accumulated in the plasma, PBxT , equals PBT calculated
above. With the specific expression for vB = vH , it is written as

PBxT =−
(B1 + B2)(B2

1 − B2
2)

4en0µ
2
0

. (4.4)

We now write an expression for the dissipation in the plasma. The difference
between the magnetic energy flowing into the plasma and the magnetic field energy
accumulated in the plasma is the magnetic field energy dissipated in the plasma. The
energy dissipated in the plasma is therefore

Dp = PxT − PBxT =
(B3

2 − B3
1)

3en0µ
2
0

[
1−

3
4

(B1 + B2)
2

(B2
1 + B2

2 + B1B2)

]
. (4.5)
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Energy is dissipated also in the sheath. This energy has to be the difference between
the energy flow through the vacuum and the energy flow along the current channel,

Ds = PzT − PxT =
(B2

2 − B2
1)B1

2en0µ
2
0

[
1−

2
3
(B2

1 + B2
2 + B1B2)

B1(B1 + B2)

]
. (4.6)

In Fruchtman (1992a) these values have been obtained for a particular model for the
sheath. Here the partitioning is calculated without specifying a model for the sheath.

We now write various relations between power flows as functions of r = B2/B1.
These are

r1 ≡
Dp

PzT
=

2
3
(1+ r+ r2)

1+ r

[
1−

3
4
(1+ r)2

1+ r+ r2

]
,

r2 ≡
Ds

PzT
= 1−

2
3

1+ r+ r2

1+ r
,

r3 ≡
Ds +Dp

PBxT
=

1− r
1+ r

,

r4 ≡
Dp

PxT
= 1−

3
4
(1+ r)2

1+ r+ r2
,

r5 ≡
PBxT

PzT
=

1+ r
2
= 1− (r1 + r2),



(4.7)

and

r6 ≡
PBxT

PxT
=

3
4
(1+ r)2

1+ r+ r2
= 1− r3. (4.8)

The most interesting case in the POS research is penetration into an unmagnetized
plasma, r= 0. In this case, the energy partitioning is the following

r1 =
1
6
, r2 =

1
3
, r3 = 1, r4 =

1
4
, r5 =

1
2
, r6 =

2
3
. (4.9a−f )

When r is close to unity, as in a weak shock, the dissipation is small. At that limit

r1 = r2 = r3 = r4 = 0, r5 = r6 = 1. (4.10a,b)

Figure 2 shows r1, r2, r3 and r5 as functions of r. When the plasma is initially
unmagnetized, r = 0, the dissipation is large, and the total dissipated magnetic
field energy equals the magnetic field energy accumulated in the plasma. There is an
equipartition of magnetic field energy between that accumulated and that dissipated in
the plasma and in the sheath. The dissipation in the plasma is through Joule heating,
while the dissipation in the sheath has not been treated here. The dissipation in the
plasma is only a third of the total dissipated energy. In the configuration analysed
here, the energy dissipated in the sheath is twice larger than the energy dissipated in
the plasma. However, if the energy in the sheath is dissipated in accelerating electrons
into the current channel, that dissipated energy should end up in the plasma. When
the plasma is magnetized initially, the dissipation is smaller.

In the momentum equation for the electrons, equation (3.1), we used the assumption
of a cold electron fluid. This assumption is not consistent with the large energy
dissipated through Joule heating if this energy ends up in a high temperature electrons.
A self-consistent analysis that included the gradient of the electron pressure in the
electron momentum was presented in Fruchtman et al. (1998). The velocity of the
Hall-induced penetration was shown to be enhanced by the electron heating.
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FIGURE 2. The energy partitioning during the Hall-induced magnetic field penetration as
a function of B2/B1. Shown are the ratio of the energy dissipated in the plasma to the
total magnetic energy flux (r1), the ratio of the energy dissipated in the sheath to the total
magnetic energy flux (r2), the ratio of the total energy dissipated in the plasma and in the
sheath to the total magnetic energy accumulated in the plasma (r3) and the total magnetic
energy accumulated in the plasma to the total magnetic energy flux (r5).

5. Discussion

The theoretical demonstration of a Hall-induced magnetic field penetration provides
explanations for important questions raised by the measurements. A mechanism for
fast field penetration exists with a velocity that is independent of the resistivity (as
long as the resistivity is not too small). Large magnetic energy dissipation that is
expected due to energy conservation should occur inside the narrow current layer, even
if the resistivity is small.

The fate of the dissipated magnetic field is still not clear. In the case analysed
here, where magnetic field penetrates a motionless plasma, the magnetic field energy
is dissipated through Joule heating. The electron temperature is thus expected to be
high. A calculation based on the dissipated magnetic field energy and the number of
electrons in the POS suggests that the electron temperature should be on the keV level.
Spectroscopic measurements suggest the presence of electrons in the plasma of 600 eV
energy. However, the electron average energy estimated by spectroscopy is less than
200 eV (Doron et al. 2008).

In an attempt to explain the low electron temperature, it has been suggested that
a large part of the dissipated magnetic energy is carried by the electrons out of
the plasma into the anode (Fruchtman & Rudakov 1992). Such replacement of the
electrons would make the effective number of electrons larger, so that the energy
converted into thermal energy per electron becomes smaller. The electron temperature
was estimated to be reduced up to twice due to the electron replacement. Therefore,
electron replacement seems to provide a partial explanation to the low temperature.

For the model used here, the electron collision frequency has to be at least the
lower hybrid frequency (Fruchtman 1992b). If the electron collisionality is smaller, the
electron inertia has to be included in the electron momentum equation. Fluid models
that included the electron inertia showed magnetic field propagation accompanied
by oscillations (Kalda & Kingsep 1989; Fruchtman & Rudakov 1994). Part of the
dissipated magnetic energy becomes in this case electron directed energy, instead
of thermal energy. Particle simulations show the generation of vortices (Swanekamp
et al. 1996; Richardson et al. 2013, 2016), their existence was also indicated by

https://doi.org/10.1017/S0022377817000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000046


12 A. Fruchtman

measurements (Shpitalnik et al. 1998). Vortices imply a larger magnetic energy and
in addition, energy is stored as directed, instead of thermal, electron kinetic energy.
Analysing the electron dynamics with a kinetic model or with particle simulations
is more accurate than with a fluid picture. However, as said above, whatever the
electron energy distribution function is, the experimental results indicate that the
electron kinetic energy by itself does not account for the whole dissipated magnetic
energy (Doron et al. 2008).

The measurements showed that the magnetic field propagates in the plasma (Weber
et al. 1984; Sarfaty et al. 1995; Shpitalnik et al. 1998). More recent spectroscopic
measurements (Weingarten et al. 2001; Rubinstein et al. 2016) showed that there is
also a significant ion motion. Moreover, they demonstrated a most interesting process;
ion separation in a multi-ion species plasma. The magnetic field was found to
penetrate the lower charge-to-mass ratio ion plasma and simultaneously to specularly
reflect the higher charge-to-mass ratio ion plasma. A large part of magnetic energy
is dissipated in this case in the kinetic energy of the reflected ions. Although the
temperature of the electrons in the penetrated plasma was expected to be high, the
ion reflection does account for a significant part of the dissipated magnetic energy.

In addition to the fate of the dissipated magnetic energy, the dependence of the field
penetration on the direction of the density gradient, shown in § 2, is also not clear.
Magnetic field penetration is only expected if the current-carrying electrons move
in the direction of the density gradient. If the plasma density is constant along the
electron trajectory, no field penetration is expected. Moreover, if the current-carrying
electrons move in an opposite direction to that of the density gradient, magnetic
field expulsion is predicted by the theory (Fruchtman 1991). In experiments so far
no correlation was observed between magnetic field penetration and the direction
of the plasma density gradient. Various mechanisms are discussed that could make
the penetration independent of the initial plasma density distribution. A penetration
into an initially uniform density plasma has been theoretically shown (Fruchtman &
Rudakov 1992, 1994), in which plasma pushing by the magnetic pressure generates
a density gradient that induces the field penetration by the Hall field mechanism. Ion
separation modifies the plasma density substantially, perhaps generating sometimes a
density gradient that favours magnetic field penetration.

The fate of the dissipated magnetic energy, the mechanism of ion separation and
the effect of the direction of magnetic field penetration are issues related to Hall-field-
induced magnetic field penetration that call for further research.

Finally, the Hall-induced penetration has been analysed in a laboratory configuration,
where a current is driven through a plasma between electrodes. The process of
magnetic field penetration is of a general nature and is expected to occur in
astrophysical plasmas as well. The Hall effect is often used to describe processes in
space plasmas, such as reconnection (Huba & Rudakov 2004; Cassak, Shay & Drake
2005) and tearing modes (Bulanov, Pegoraro & Sakharov 1992; Fruchtman & Strauss
1993; Bian & Vekstein 2007). However, a Hall-induced magnetic field penetration as
a travelling wave has not been yet identified theoretically or experimentally in space
plasmas. An identification of magnetic field penetration in space plasmas due to the
Hall mechanism could contribute to our understanding of processes in astrophysical
plasmas and of plasma physics.
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