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Lattice Boltzmann and immersed boundary methods are used to conduct direct
numerical simulations of suspensions of massless, spherical gas bubbles driven by
buoyancy in a three-dimensional periodic domain. The drag coefficient CD is computed
as a function of the gas volume fraction φ and the Reynolds number Re = 2RUslip/ν

for 0.03 � φ � 0.5 and 5 � Re � 2000. Here R, Uslip and ν denote the bubble radius,
the slip velocity between the liquid and the gas phases and the kinematic viscosity
of the liquid phase, respectively. The results are rationalized by assuming a similarity
between the CD(Reeff)-relation of the suspension and the CD(Re)-relation of an
individual bubble, where the effective Reynolds number Reeff =2RUslip/νeff is based
on the effective viscosity νeff which depends on the properties of the suspension. For
Re � 100, we find νeff ≈ ν/(1−0.6φ1/3), which is in qualitative agreement with previous
proposed correlations for CD in bubble suspensions. For Re � 100, on the other hand,
we find νeff ≈ RUslipφ, which is explained by considering the turbulent kinetic energy
levels in the liquid phase. Based on these findings, a correlation is constructed for
CD(Re, φ). A modification of the drag correlation is proposed to account for effects
of bubble deformation, by the inclusion of a correction factor based on the theory of
Moore (J. Fluid Mech., vol. 23, 1995, p. 749).

Key words: bubble dynamics, gas/liquid flows, turbulence simulation

1. Introduction
We examine the drag force acting on a statistically homogeneous and statistically

steady assembly of monodisperse gas bubbles rising in a liquid under the action of
buoyancy.

In experiments, breakup and coalescence of bubbles result in a dynamic distribution
of bubble sizes, and inhomogeneous distributions of bubbles arise due to wall effects.
Furthermore at large gas volume fraction, the homogeneous bubbly flow transitions to
heterogeneous bubbly flow, which is characterized by a strong coupling between large
scale fluid circulation and bubble coalescence (Harteveld, Mudde & Van Den Akker
2003). In addition, small amounts of impurities in the carrying liquid can have large
effects on the bubble dynamics. For instance, Maxworthy et al. (1996) used mixtures
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of triply distilled water and glycerin and measured a 30 % larger drag coefficient than
Duineveld (1995) who performed experiments in ‘hyper clean water’.

In simulations, the above mentioned complexities can be excluded which provides
a way to gain insight into the essential dynamics. In this work, we use numerical
simulations of highly idealized systems and use the results to construct a model for
the drag coefficient in bubble swarms.

In the present analysis, we ignore effects of walls and polydispersivity. In this way,
the problem can be reduced to relating the drag coefficient CD ,

CD =
4
3
R (1 − φ) g

U 2
slip

, (1.1)

to three independent, dimensionless parameters. These parameters are chosen to be
the gas volume fraction φ, the bubble Reynolds number,

Re =
Uslip2R

ν
, (1.2)

and the bubble Weber number,

We =
ρU 2

slip2R

σ
. (1.3)

Here g is the gravitational acceleration, ρ is the liquid mass density, Uslip is the velocity
difference between the gas and the liquid, ν is the liquid kinematic viscosity, σ is the
surface tension of the gas–liquid system and R = (3VB/4π)1/3 is the bubble equivalent
radius, where VB is the bubble volume. The relation for the drag coefficient (1.1) is
derived in the Appendix.

For uniform flow around a spherical bubble with free-slip boundary conditions at
the bubble surface, Mei & Klausner (1992) proposed the following CD(Re)-correlation
that asymptotically matches the theoretical cases of Re � 1 and Re � 1 as well as
accurately approximates numerical simulation data in the intermediate regime:

CD =
16

Re

{
1 +

[
8

Re
+

1

2

(
1 + 3.315Re−(1/2)

)]−1
}

. (1.4)

Departure from the spherical shape occurs when the hydrodynamic forces acting on
the bubble surface exceed the surface tension forces, i.e. when We � 1. For air bubbles
rising in water, significant departure from the spherical shape to the ellipsoidal
shape is expected when the bubble radius exceeds a value of R ≈ 0.5 mm (Duineveld
1995), corresponding to an aspect ratio χ ≈ 1.2, a Weber number of We ≈ 1 and
a Reynolds number of Re ≈ 260, respectively. At larger We ≈ 2.5, when the bubble
aspect ratio exceeds χ ≈ 1.7, a recirculation wake develops (Blanco & Magnaudet
1995). In the air–water system, this corresponds to R ≈ 0.7 mm and Re ≈ 520. By
increasing We even further, the bubble shape transitions from ellipsoidal to spherical
cap (Maxworthy et al. 1996). Assuming that the bubble shape is ellipsoidal and that
there is no recirculating wake, Moore derived a relation between We and the bubble
aspect ratio χ ((1.5) in Moore 1965) as well as the leading order correction G to
the drag coefficient as a function of χ ((2.12) in Moore 1965). Combining these
relations gives a relation between G and We, which for We < 3.5 can accurately be
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approximated by

G =

[
1 −

(
We

4

)1.16
]−0.92

. (1.5)

Including this factor into (1.4) gives the following expression for CD in terms of Re

and We for an individual deformable gas bubble:

CD =

[
1 −

(
We

4

)1.16
]−0.92

16

Re

{
1 +

[
8

Re
+

1

2

(
1 + 3.315Re−(1/2)

)]−1
}

. (1.6)

Equation (1.6) is valid in the absence of a recirculating wake, which for the air–water
system is up to We ≈ 2.5. Within this range (1.6) is within 15 % of the experimental
data of Duineveld (1995). While the CD for an individual rising gas bubble can be
captured reasonably well by a relation such as (1.6), there is to date no equivalent
relation for bubble swarms.

The aim of the present paper is to propose a CD-relation that captures and thereby
provides insight into the dynamics of rising bubble swarms over a wide range of φ

and Re. The complexity of bubble swarms at large Re stems from the combination of
bubble deformation and random velocity fluctuations in the interstitial liquid, referred
to as pseudo-turbulence.

We tackle this complexity in two steps. First we ignore bubble deformation and
conduct direct numerical simulations (DNS) of spherical gas bubbles. From the
simulation data, we derive a CD(Re, φ)-relation where the role of the pseudo-
turbulence is incorporated via an effective viscosity. Second, we extend the model
to account for bubble deformation by including the distortion factor G (1.5) into the
expression for CD . The final result constitutes a CD(Re, φ, We)-relation. This relation
is tested against experimental data from the literature.

Previous DNS studies on bubble suspensions (see for instance: Esmaeeli &
Tryggvason 2005; Van Sint Annaland et al. 2006) focused on shape deformations
and higher order velocity statistics, but the relation between CD , φ, Re and We has
not yet been systematically explored. To our knowledge, the widest parameter range
that has been explored using DNS is due to Yin & Koch (2008), who studied systems
of spherical gas bubbles for 5 < Re < 20 and 0 <φ < 0.25. Sangani & Didwania
(1993) used potential flow simulations to analyse spherical bubble suspensions at
Re ≈ 500. These simulations predicted a strong tendency of bubbles to cluster in
horizontal planes. The effect of fluid vorticity, which is excluded in their potential
flow calculations, on such clustering remains unexplored.

2. Numerical method
2.1. Governing equations

In this work, we simulate the buoyancy-driven rise of spherical gas bubbles in a
three-dimensional periodic volume V . Gravity acts on the system in the negative
x-direction. The volume is decomposed into a volume containing the liquid phase VL

with a mass density ρ and a volume containing the gas phase VG with a negligible
mass density; V = VL + VG. The gas phase consists of NB spherical bubbles of radius
R. Elastic, hard-sphere collisions of the bubbles are assumed (Chen, Kontomaris &
McLaughlin 1998). To illustrate the computational setup, we have provided in figure 1
contour plots of the fluid velocity in a vertical cross-section of the computational
domain.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.125


104 J. J. J. Gillissen, S. Sundaresan and H. E. A. Van Den Akker

(a)

(c) (d)

(b)

Figure 1. Fluid velocity component normal to the plane of view uy for φ = 0.11 and Re ≈ 5
(a), Re ≈ 50 (b), Re ≈ 500 (c) and Re ≈ 2000 (d ). Black and white correspond to negative uy

and positive uy , respectively. For clarity, we set uy = 0 in the bubbles. For Re ≈ 5, Re ≈ 50 and
Re ≈ 500, the linear domain size is L/R = 211

3
, while for Re ≈ 2000 the linear domain size is

L/R = 102
3
. For clarity, we show this latter case on an equal domain size as the other cases by

displaying four periodic images of the same field. Gravity is pointing down. The circles in the
figure indicate the cross-sections of the bubbles with the plane.

The flow inside the liquid phase is described by the continuity equation,

∇ · u = 0, ∀x ∈ VL, (2.1a)

and the incompressible Navier–Stokes equation,

ρ

(
∂u
∂t

+ u · ∇u
)

= −φρgex + ∇· (−pδ + 2µS) , ∀x ∈ VL. (2.1b)

Here t is time, u is the liquid velocity, p is the dynamic pressure,
S =(1/2)

[
(∇u)T + ∇u

]
is the rate of strain tensor, µ = ρν is the liquid viscosity,

ν is the liquid kinematic viscosity, g is the gravitational acceleration, ex is the unit
vector in the x-direction and δ is the unit tensor. The body force term −φρgex in
(2.1b) is composed of gravity and hydrostatic pressure and is derived in the Appendix.
In the present numerical method (2.1b), modified as described below, is solved over
the entire domain covering both the liquid phase as well as the gas phase. Since the
mass density inside the gas phase is different to that being used in (2.1b), the flow
solution is considered physically meaningful only in the liquid phase.
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The liquid flow field is subjected to periodic boundary conditions at the domain
boundaries and free-slip and no-penetration boundary conditions on the moving,
spherical bubbles. Denoting the surface of the bubble by S and the bubble velocity
by uB , the no-penetration condition is written as

(u − uB) · n = 0 ∀x ∈ S, (2.2)

and the zero tangential stress condition is written as

2µS · n · (δ − nn) = 0. ∀x ∈ S. (2.3)

Here n is the unit outward normal vector on S. The no-penetration and the zero
tangential stress conditions are enforced by adding a force field F and a stress field
σ to the right-hand side of (2.1b). This approach is an extension of the method of
Uhlmann (2005). This immersed boundary method involves interpolations from the
Eulerian grid that is used to compute the fluid field onto a Lagrangian grid that
is used to describe the particle surface. Although physically irrelevant, information
from the inside of the particle is used to perform the interpolations. This is a well-
established method for enforcing boundary conditions on solid particles, which has
previously been used to simulate turbulent flows of particle suspensions (Uhlmann
2008; Lucci, Ferrante & Elghobashi 2010).

In addition to adding F and σ to (2.1b), we also modify the body force term in
(2.1b) to ensure that the gas bubbles experience the correct buoyancy force. Therefore,
∀x ∈ VG the term −φρgex is replaced by (1 − φ) ρgex . The resulting equation of fluid
motion therefore reads

ρ

(
∂u
∂t

+ u · ∇u
)

= (GLΨ (x) + GG [1 − Ψ (x)]) ex + F + ∇· (−pδ + 2µS + σ ),

(2.4a)
where GL and GG are body forces due to gravity and hydrostatic pressure in the
liquid phase and the gas phase,

GL = −φρg, GG = (1 − φ) ρg, (2.4b)

and Ψ is a marker function being 0 inside the gas phase and 1 inside the liquid
phase.

The fluid equation of motion (2.4) is discretized on a cubic and homogeneous mesh.
The locations of the grid points are given by: xi,j,k = �x

(
iex + j ey + kez

)
, where �x

is the grid spacing and i, j and k are integers. The domain sizes and number of
grid points in the x, y and z direction are denoted (Lx, Ly, Lz) and (Nx, Ny, Nz),
respectively.

2.2. Boundary conditions

2.2.1. No-penetration

The no-penetration condition (2.2) is enforced by the addition of the force field F
to (2.4a). This force field is localized around the bubble surface S and has a direction
normal to the bubble surface n. The force F is defined such that it drives the normal
component of the fluid velocity u at the bubble surface to the normal component
of the bubble velocity uB . The force field is constructed by means of a set of N

control points which are distributed equidistantly over S. The fluid velocity on these
control points is interpolated from the values at the grid points. On each control
point, a force is computed that counteracts the normal component of the difference
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between the interpolated fluid velocity and uB . This force is then distributed to the
neighbouring grid points using the following weights:

K (x − y) =

3∏
i=1

δ
(xi − yi

�x

)
. (2.5a)

Here y is the location of the control point, x is the location of a grid cell and δ(x)
is a regularized delta-function, which is smoothed over three grid cells �x (Roma,
Peskin & Berger 1999; Uhlmann 2005),

δ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
3
(1 +

√
−3x2 + 1), if |x| < 1

2
,

1
6
(5 − 3x −

√
−3(1 − x)2 + 1), if 1

2
< |x| < 3

2
,

0, if 3
2

< |x|.

(2.5b)

In contrast to the weights corresponding to Lagrangian interpolation, these weights
provide a smooth temporal variation of the hydrodynamic forces while the bubble
moves continuously with respect to the fixed Eulerian grid.

The no-penetration force, due to a single control point at position yα takes the
form of a smoothed delta function, which is centred around yα , and whose strength
is proportional to (uα − uB) · nα . Here uα and nα are the fluid velocity and bubble
normal at control point α. Taking all N control points on S into account, the
no-penetration force field F reads

F(x) =

N∑
α=1

FαK(x − yα), (2.6a)

where

Fα =
ρ�S

�t�x2
(uB − uα) · nαnα. (2.6b)

Here �S is the surface area corresponding to a single control point �S = 4πR2/N . We
used �S = 0.5�x2, since smaller values did not improve the accuracy of the method.
The kernel given by (2.5) is also used to perform the interpolation. For a field u,
the value uα on point yα is interpolated from the values at the grid points ui,j,k as
follows:

uα =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

K(xi,j,k − yα)ui,j,k. (2.7)

2.2.2. Zero tangential stress

In addition to no-penetration, free-slip on the bubble surface also requires zero
tangential stress (2.3). This condition is satisfied by adding the stress field σ to
(2.4a). Similar to the no-penetration force field F, this tangential stress field σ is
non-zero only in the vicinity of the bubble surfaces. The stress field counterbalances
the shear components of 2µS on the bubble surfaces. The procedure of computing σ

is analogous to that of F, involving the control points on the bubble surface. On each
control point, the shear components of 2µS with respect to the bubble tangent plane
are computed, using the interpolation scheme given in (2.7). The stress tensor σ ′ that
counterbalances these components is distributed to the neighbouring grid nodes using
the weights given in (2.5). In this procedure, we identify at each control point the
shear components of 2µS with respect to the bubble tangent plane. For this purpose,
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x

n

y z

t1

t2

θ

φ

Figure 2. Sketch of the bubble normal unit vector n and the bubble tangent unit vectors t1
and t2 at spherical coordinates θ and φ.

we define at each control point an orthogonal coordinate system spanned by the unit
normal n and two unit tangents t1 and t2. A sketch of this system is provided in
figure 2. Using spherical coordinates (θ , φ), the transformation matrix between the
(ex , ey , ez)-frame and the (n, t1, t2)-frame reads

M =

⎛
⎝ cos θ − sin θ 0

sin θ cos φ cos θ cos φ − sinφ

sin θ sinφ cos θ sinφ cos φ

⎞
⎠. (2.8)

We construct a tensor σ ′ that when added to 2µS produces zero viscous shear stress
with respect to the tangent plane of the sphere, without affecting the normal stress
components. In the (n, t1, t2)-frame, the 12, 21, 13 and 31 components correspond to
this shear stress. Therefore, in the (n, t1, t2)-frame, the 12, 21, 13 and 31 components
of σ ′ are given opposite values as those of 2µS, while all others are set to be zero. In
the (ex , ey , ez)-frame, this tensor is written as

σ ′
ij = −2µijklSkl, (2.9a)

where the fourth-order viscosity tensor equals

µijkl = µ(Mi1Mj2M1kM2l +Mi2Mj1M2kM1l +Mi1Mj3M1kM3l +Mi3Mj1M3kM1l). (2.9b)

Adding σ ′ to 2µS satisfies zero tangential stress at a single point. Taking all control
points on the surface into account, the tangential stress field is written as

σ (x) =
�S

�x2

N∑
α=1

σ ′
αK(x − yα), (2.10)

where σ ′
α correspond to σ ′ (2.9) at control point α.

2.2.3. Bubble motion

The numerical integration of Newton’s second law for a bubble, having a small
mass, requires a small time step. In order to maintain the computational efficiency of
the present numerical method, we circumvent this problem by assuming a zero bubble
mass, which eliminates the acceleration term from the equation of bubble motion.
Without the acceleration term, the equation of bubble motion (A 11) states that the
hydrodynamic forces integrate to zero over the bubble surface. In addition to the
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hydrodynamic forces, the simulated gas bubble also experiences a contribution from
the force field F(x) (2.6), which is introduced to satisfy the no-penetration condition.
The contribution of the artificial force field F can be minimized by equating its total
sum to zero,

N∑
α=1

Fα = 0, (2.11)

where Fα is defined in (2.6b). Combining (2.6b) and (2.11) gives the following equation
of bubble motion:

N∑
α=1

(uB − uα) · nαnα = 0. (2.12)

By approximating
∑N

α=1 nαnα = Nδ/3, we arrive at the following expression for the
bubble velocity:

uB =
3

N

N∑
α=1

uα · nαnα. (2.13)

It is noted that the model can be easily extended to account for non-zero bubble
mass by incorporating an inertia term into (2.13).

2.3. Lattice Boltzmann method

To approximate the solution to (2.4), we use our in-house lattice Boltzmann (LB)
code (Ten Cate et al. 2004). The LB method is based on discretizing the Boltzmann
equation, which governs the distribution function f over the space of the molecular
velocity v and position x (Cercignani 1988),

∂f

∂t
+ v · ∇f + a · ∇vf =

f (0) − f

τ
. (2.14a)

Here ∇v is the nabla operator in velocity space, and a is the acceleration due to
gravity, mean pressure gradient and the no-penetration force field,

a = gex {−φΨ (x) + (1 − φ) [1 − Ψ (x)]} + F/ρ. (2.14b)

The right-hand side of (2.14a) is the BGK approximation for the redistribution
of probability due to molecular collisions, which is modelled as a relaxation process
towards the Maxwell Boltzmann distribution f (0) corresponding to maximum entropy
(Bhatnagar, Gross & Krook 1954).

The key of the LB method is to discretize the velocity space into a minimum set of
velocities vα , that is still large enough to represent the essential features of f that play
a role in the Navier–Stokes limit. Therefore, the set vα is chosen such that it facilitates
a spectral representation of f in Hermitian basis functions up to second order by
using the Gauss–Hermite quadrature (He & Luo 1997; Philippi et al. 2006). The
Hermite polynomials play a special role, since it can be shown that the corresponding
expansion coefficients gα are identical to the microscopic velocity moments of the
distribution function, which represent the macroscopic flow quantities. Since the
velocity directions vα are such that �tvα equal the distances between neighbouring
lattice points, the Lagrangian derivative in (2.14a) is numerically integrated over one
time step �t by simply shifting fα between neighbouring lattice points, where fα equals
f evaluated at vα , multiplied with the corresponding weight of the Gauss–Hermite
quadrature.
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R/�x Lx/�x Re CD

CD − CD,0

CD,0

�/δV

4.5 48 4.92 4.48 0.02 0.35
4.5 48 16.9 1.42 −0.13 0.64
4.5 48 56.3 0.53 −0.13 1.2
6 64 53.6 0.59 −0.08 0.86
9 96 50.8 0.64 −0.04 0.56

12 128 50.4 0.67 −0.008 0.42
9 96 140 0.300 0.08 1.4

12 128 436 0.114 0.16 1.2

Table 1. Parameters and numerical results for steady, individual bubble rise. The domain
dimensions are Lx = 2Ly = 2Lz, the time step is �tUslip/�x = 0.05, the CD,0 corresponds to a

correlation from the literature (1.4), δV = R
√

2/Re is the boundary layer thickness.

In the present LB method, the acceleration a · ∇vf and the collision operator
(f (0) − f )/τ in (2.14) are applied in the space spanned by the hydrodynamical
moments gα which are linear combinations of fα . These moments represent the mass
density ρ, the components of the momentum density ρu and the components of the
momentum flux ρuu − 2µS − σ . With the present set of 18 discrete velocities, only
moments up to second order can be accurately calculated and therefore the third- and
higher-order moments have no physical significance in the present numerical method.
It is noted that these higher order moments can be incorporated by extending the
set of discrete velocities, which then lead to higher-order approximations of the
Boltzmann equation describing fluid mechanics beyond the Navier–Stokes equations
(Shan, Yuan & Chen 2006; Colosqui 2010). In the present method, the acceleration
and the collision operator are applied in gα-space, by adding �tρa to the momentum
density and adding (4/3)ρc2

s �tS to the momentum flux, where cs is the speed of sound

which in the present LB method equals cs = �x/(
√

2�t). The spurious higher-order
components are relaxed towards zero. Further details of this LB method can be found
in Somers (1993).

The combination of the LB and the immersed boundary methods provides several
advantages over conventional Navier–Stokes solvers. Firstly, the method provides a
direct control over the hydrodynamic stresses. This property allows the use of a very
efficient algorithm to drive the shear stresses on the bubble to zero. Secondly, all the
hydrodynamic quantities are defined on the same grid, which provides more accuracy
when performing the velocity and stress interpolations. Thirdly, since the LB method
permits a small compressibility to the fluid, there is no need for a Poisson solver.
In incompressible flow simulations, the Poisson solver alters the immersed boundary
force field. The costly operations needed to negate the corresponding errors in the
boundary conditions (Kim, Kim & Choi 2001) do not have to be applied when using
the LB method.

2.4. Single bubble

In this section, we verify the accuracy of this method for the case of a single, steadily
rising, spherical gas bubble by comparing the drag coefficient to a correlation from
the literature (1.4). Results of these test cases are presented in table 1, showing the
computed CD and the corresponding difference to (1.4) for different grid resolutions
and Reynolds numbers.
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When simulating single bubble rise in a periodic domain, the size of the domain
should be chosen to be sufficiently large, so that the hydrodynamic interaction
between the bubble and its periodic images can be ignored. The dominant interaction
is due to the wake produced by its upstream image, whose strength increases with
increasing Reynolds number. Reducing these effects requires a rather large domain
size in the x-direction corresponding to a large number of computational grid cells.
In the single bubble simulations, we have alleviated these computational loads by
changing the boundary conditions in the x-direction from periodic to inflow and
outflow, thereby excluding the wake of the periodic upstream image. The inflow and
the outflow conditions correspond to a uniform velocity on the (x = xB +Lx/2)-plane,
and zero derivatives in x of all hydrodynamic quantities on the (x = xB −Lx/2)-plane,
where xB is the x-coordinate of the bubble centre. Being determined by xB , the
inflow and outflow planes move periodically in the x-direction. It is noted that the
inflow and outflow conditions are only applied in the single bubble simulations. They
are not applied in the bubble swarm simulations of § 3. Using these conditions in
the x-direction and using periodic boundary conditions in the y- and z-directions,
the model predicts a CD within 10 % of the literature value, using domain sizes of
Lx/R ≈ 10 and Ly/R = Lz/R ≈ 5. For smaller domain sizes, the drag coefficient is
generally predicted to be larger.

In addition to the domain size, the second parameter that determines the accuracy
of the numerical result is the grid resolution. Obtaining an accurate numerical
solution requires that the grid spacing �x is smaller than the viscous boundary
layer thickness δV = R

√
2/Re (Blanco & Magnaudet 1995). In the present work,

we study bubble swarms at large Reynolds numbers up to Re ≈ 2000. In order to
keep the computational loads within feasible limits, we have used �x ≈ δV , which
corresponds to R/�x =12 for Re = 500 and R/�x =24 for Re = 2000. Although this
resolution is somewhat too coarse to fully resolve the velocity profile inside the viscous
boundary layer, the CD results for single bubble rise are reasonable. As shown in
table 1, this resolution yields a drag coefficient within 15 % of the literature value for
Re ≈ 56, 140 and 440. For smaller Reynolds numbers Re � 20, however, a resolution
of �x ≈ δV , yields a too small value for R/�x, such that the spherical object can no
longer be represented accurately in the grid. We found that for Re � 20 a minimum
of R/�x = 4.5 must be used to obtain a CD within 15 % of the literature value.
This minimum of R/�x =4.5 is related to the immersed boundary method, which
effectively smears out the gas–liquid interface over three grid nodes. Apparently the
bubble diameter must be at least a few times as large as this thickness in order to
obtain reasonable results.

In table 1, we illustrate the grid dependence of the method for Re ≈ 50. For
this purpose, we show results for four simulations with increasing grid resolution,
corresponding to �x/δV = 1.2, 0.9, 0.6 and 0.4. Table 1 shows that with increasing
grid resolution CD approaches the literature and reaches a value within 1% of the
literature value for �x/δV =0.4.

In figure 3, we examine for these four cases the accuracy of the immersed
boundary method to satisfy the free-slip boundary condition. In that figure,
we show the penetration velocity ur scaled with Uslip and the shear stress on
the bubble 2µSrθ + σrθ scaled with CD(1/2)ρU 2

slip. These variables are shown
as functions of the spherical coordinate θ , which is defined in figure 2. From
figure 3, we conclude that the no-penetration condition is satisfied within 2 %
of the slip velocity and the zero tangential stress condition is satisfied within
0.5 % of the average stress on the bubble. These results are roughly independent
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Figure 3. Penetration velocity (a) and shear stress (b) on the bubble surface for steady isolated
bubble rise using Re = 50, R/�x = 4.5 (solid line), R/�x = 6.0 (dashed line), R/�x = 9.0
(dotted line) and R/�x =12.0 (dash-dotted line). Additional numerical parameters are given
in table 1.
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Figure 4. Simulation results of a single rising gas bubble. The grey scale indicates the
velocity difference magnitude, in Uslip-units, between our method and the method of Mei &

Klausner (1992). The results from our method are obtained using Re =10, Lx/R = 422
3
,

Ly/Lx = Lz/Lx = 1/2, R/∆x = 6, Lx/∆x =256 (a) and R/�x = 12, Lx/�x = 512 (b). The
vectors in the left figure correspond to the velocity field predicted by our method. We have set
the vectors in the gas bubble to zero.

of grid resolution. With diminishing grid size, the shear stress is seen to increase
slightly.

In figure 4, we examine the accuracy of the method to produce the correct velocity
field around the bubble. For this purpose, we compare our result for Re = 10 to the
finite difference result of Mei & Klausner (1992), who used a finite difference method
on a spherical grid with a fine grid spacing in the radial direction close to the bubble
surface. From figure 4, it is seen that the difference between our result and the result
of Mei & Klausner (1992) is � 0.1Uslip for R/�x = 6 and � 0.04Uslip for R/�x = 12.
The maximum difference occurs within one �x of the bubble surface, due to the
presence of the unphysical immersed boundary force and stress fields.

Finally it is noted that the numerical results are insensitive to the time step, provided
that �tUslip/�x � 0.1.
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NB R/�x Lx/�x φ Re CD

64 4.5 96 0.027 5.1 4.9
256 4.5 96 0.110 5.0 5.9

1024 4.5 96 0.442 5.0 8.2
64 6 128 0.027 50 0.87

256 6 128 0.110 49 1.2
1024 6 128 0.442 49 2.0

64 12 256 0.027 532 0.26
256 12 256 0.110 508 0.51

1024 12 256 0.442 479 1.60
32 24 256 0.110 2084 0.64

Table 2. Parameters and numerical results of buoyancy-driven bubble suspensions. The time
step is �tUslip/�x = 0.05.

3. Bubble swarms
3.1. Numerical parameters

The principal aim of the present work is to study the relation between the drag
coefficient CD , the gas volume fraction φ and the bubble Reynolds number Re in
buoyancy-driven suspensions of spherical gas bubbles. For this purpose, we have
conducted 10 simulations using three values of the gas volume fraction φ ≈ 0.028,
0.11 and 0.44 and four values of the Reynolds number Re ≈ 5, 50, 500 and 2000.
All parameters are listed in table 2. For each simulation gravity is tuned iteratively
such that Re reaches the desired value. In all simulations, �tUslip/�x ≈ 0.05 and
the domain is cubical with linear dimensions Lx/R =211

3
, except for the Re = 2000

case, where the domain size is Lx/R = 102
3
. For Re ≈ 5, 50, 500 and 2000, we have

used R/�x = 4.5, 6, 12 and 24, respectively. The corresponding grid spacings �x per
viscous boundary layer thickness δV are �x/δV ≈ 0.4, 0.9, 1.2 and 1.2, respectively.
As discussed in § 2.4, a grid resolution of �x/δV ≈ 1 is somewhat too coarse to fully
resolve the velocity profiles within the viscous boundary layer. However for single
bubble rise the associated errors were shown to be modest, with a drag coefficient
within 15 % of the literature value. We have chosen to use this resolution, since it
allows simulations of bubble swarms at large Reynolds numbers using reasonable
amounts of computational resources. In this context, it is further noted that the
error of 15 % is of minor concern compared to more fundamental inconsistencies
between the simulations and real bubble swarms, such as the neglect of bubble
deformation, bubble coalescence, bubble polydispersity, walls and impurities at the
gas–liquid interface. These effects are expected to cause larger discrepancies between
the simulations and experiments as compared to the 15 % error due to the slightly
under-resolved viscous boundary layer.

After starting the simulation from a random distribution of bubbles, a transition
period of ∼100R/Uslip time units is required before the flow reaches a statistically
steady state, after which statistics are collected during another ∼100R/Uslip time units.

3.2. Microstructure

Figure 1 shows the y-component of the liquid velocity vector in the xz-plane at
φ ≈ 0.11 for the four different Reynolds numbers considered Re ≈ 5, 50, 500 and
2000. The circles in the figure indicate the cross-sections of the bubbles with the
plane. As can be seen from these plots, the structure of the flow is markedly different
for Re ≈ 5 and Re ≈ 50 as compared to Re ≈ 500 and Re ≈ 2000. The larger Re cases

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.125


Drag force in bubble swarms 113

2 4 6 8 10
0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

r/R

2 4 6 8 10

r/R

2 4 6 8 10

r/R

gr

gθ

φ = 0.028 φ = 0.110 φ = 0.440

0.5 1.0 1.5

θ θ θ

φ = 0.028

0.5 1.0 1.5

φ = 0.110

0.5 1.0 1.5

φ = 0.440

Figure 5. Radial pair distribution gr (r) and polar pair distribution gθ (θ ) for Re ≈ 5 (grey
lines), Re ≈ 50 (dashed black lines) and Re ≈ 500 (solid black lines).

exhibit fluid velocity fluctuations on scales smaller than the bubble radius, which are
absent for the smaller Re cases. We will, therefore, refer to flow as ‘high agitation’ for
Re � 100, and we use ‘low agitation’ to refer to the flow for Re � 100.

By inspecting the bubble positions from plots such as those in figure 1, we verified
that the bubbles were dispersed homogeneously for all cases. Although bubbles tend
to form pairs, there was no sign of large-scale structuring into horizontal planes,
such as observed in the potential flow simulations of Sangani & Didwania (1993),
nor into vertical drafts, such as observed in the DNS of flexible bubbles of Bunner
& Tryggvason (2003). To study the relative positioning of the bubbles, we have
computed the bubble pair probability density function g(r). This function is defined
such that g(r)dr is proportional to the probability of finding a bubble pair whose
separation vector lies within a volume dr around r . The function g(r) is normalized
such that g = 1 corresponds to a random distribution of bubbles. The separation
vector r is parameterized using spherical coordinates (r , θ), where r is the length of
r and θ is the angle from the x-axis to r . We have computed g(r, θ) for 2 <r/R < 10
by using bin sizes of �r = �x and �θ = π/20.

Figure 5 shows the radial pair distribution which is defined as

gr (r) =

∫ r+�r/2

r−�r/2

∫ π

0

[
dθ̃ sin θ̃ dr̃ r̃2g(r̃ , θ̃)

]
2r2�r

. (3.1)

For the small volume fraction φ = 0.028, there is a clear Re-dependence of the
microstructre. For Re ≈ 5 bubbles do not come close together, reflected by small
gr (r/R < 4). The opposite holds for Re ≈ 50 and 500 where a large peak is seen
at r/R = 2 corresponding to direct bubble contacts. For the intermediate volume
fraction φ = 0.11, the trends are similar as for φ =0.028, but the density variations
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Figure 6. (a) Kinetic energy of the fluid velocity fluctuations, k = 1
2

u′ · u′, versus gas volume
fraction φ for Reynolds number Re ≈ 5 (circles), Re ≈ 50 (squares) and Re ≈ 500 (triangles).
The dashed line shows the least-square, power-law fit. (b) Drag coefficient CD as a function
of the Reynolds number Re for gas volume fractions of φ = 0.0 (single bubble, downward
triangles), φ ≈ 0.028 (circles), φ ≈ 0.11 (squares) and φ ≈ 0.44 (upward triangles). The solid
line is a correlation from the literature for the rise of a single spherical bubble (1.4). The
dashed lines are predictions by our model (3.7). The white symbols correspond to the present
simulations, the black symbols correspond to the simulations of Yin & Koch (2008).

are confined to smaller radial distances. For the large volume fraction φ = 0.44, there
is no apparent Reynolds number dependence in g(r). The curves for all three Re

cases collapse showing a large peak at r/R =2 and a secondary peak at r/R =4.
Figure 5 also shows the polar pair distribution which is defined as

gθ (θ) =

∫ 5R

2R

∫ θ+�θ/2

θ−�θ/2

[
dθ̃ sin θ̃dr̃ r̃2g(r̃ , θ̃ )

]
39R3 sin θ�θ

, (3.2)

where we only consider bubbles which are close together 2<r/R < 5. Preferred
horizontal alignment corresponds to large gθ around θ = π/2, while vertical alignment
corresponds to large gθ around θ = 0. For φ = 0.028 we find a strong Re-dependence in
gθ . For Re ≈ 5 and 50 there is a modest and a strong preferred horizontal alignment,
while for Re ≈ 500 there is a preferred vertical alignment. For φ ≈ 0.11 all three
Re cases show preferred horizontal alignment, which is strongest for Re ≈ 50. For
φ = 0.44 the curves for all three Re cases collapse showing no significant preferred
alignment angle.

Another interesting property of the microstructure is presented in figure 6(a),
where we plot the scaled kinetic energy contained in the liquid velocity fluctuations:
k/U 2

slip = 1
2
u′ · u′/U 2

slip. In agreement with previous experimental observations (Garnier,
Lance & Marié 2002; Riboux, Risso & Legendre 2010), we find that this quantity
scales linearly with φ while being roughly independent of Re. This similarity for
different Re is striking, given the marked flow changes, as shown in figure 1. In the
next section, we will exploit this similarity when formulating a model for the drag
force in terms of an effective viscosity based on the stress carried by the velocity
fluctuations in the liquid.

3.3. Drag coefficient

In figure 6(b), we plot the computed CD as a function of Re. For clarity, we have
included lines of constant φ = 0, 0.028, 0.11 and 0.44 as predicted by our model
(3.7) using We = 0. The model is derived below. To verify our numerical results, we
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Figure 7. (a) Relative effective viscosity νeff/ν versus the gas volume fraction φ for Reynolds
numbers of Re ≈ 5 (circles), Re ≈ 50 (squares), Re ≈ 500 (upward triangles) and Re ≈ 2000
(downward triangle). The solid line is a curve fit for the Re ≈ 5 case (3.3). (b) Drag coefficient
CD as a function of the effective Reynolds number Reeff (3.6) for gas volume fractions of
φ = 0.0 (single bubble, downward triangles), φ ≈ 0.028 (circles), φ ≈ 0.11 (squares) and φ ≈ 0.44
(upward triangles). The solid line is a correlation from the literature for the rise of a single
spherical bubble (1.4).

also plot the results of Yin & Koch (2008), who used a lattice Boltzmann method
to simulate buoyancy-driven rise of spherical bubble swarms, for 5 � Re � 20 and
0 < φ < 0.25. To facilitate a proper comparison, we have interpolated the data of Yin
& Koch (2008) to the same φ values as those used in the present simulations, i.e.
φ = 0.028 and 0.11. As can be seen in figure 6(b), there is a good match between the
data of Yin & Koch (2008) and our model (3.7).

Figure 6(b) shows a transition. In the ‘low agitation’ regime (Re � 100), the lines
of constant φ are shifted parallel with respect to the line for an individual bubble
(1.4), while in the ‘high agitation’ regime (Re � 100) the lines reach plateau values
which are independent of Re. The observations made in § 3.2 that for φ =0.44 the
g(r, θ) is Re-independent suggest that the differences in CD between the ‘low agitation’
and the ‘high agitation’ regimes are not linked to differences in the microstructure.
Conversely we will argue that the different regimes are due to the occurrence of
small scale velocity fluctuations in the liquid phase, while changes in bubble cluster
configurations are of minor importance.

In the following, we will develop a relation for CD by assuming a similarity
between the CD(Reeff) relation in the suspension and the CD(Re) relation of an
individual bubble (1.4). Here the effective Reynolds number Reeff is based on the
effective viscosity νeff which is allowed to depend on the properties of the suspension.
The concept of an effective viscosity has previously been used to capture the effect
of hydrodynamic interactions on the drag force in suspensions (see for instance:
Barnea & Mizrahi 1973; Ishii & Zuber 1979). To our knowledge, previous models
always assumed that νeff/ν depends on φ only and is independent of Re. Here we will
argue that for bubble swarms this assumption holds only for Re � 100. For Re � 100,
on the other hand, the occurrence of small scale velocity fluctuations introduces a
Re dependence in νeff/ν. To demonstrate this, we have computed νeff/ν = Re/Reeff by
inserting the simulated CD values into (1.4), substituting Reeff for Re and subsequently
solving for Reeff. The results are plotted in figure 7(a).

As expected the data for Re ≈ 5 and 50, which correspond to the ‘low agitation’
regime, are relatively close to each other. We parametrize the ‘low agitation’ regime
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by a curve-fit to the Re ≈ 5 data,

νeff

ν
=

1

1 − 0.6φ1/3
. (3.3)

The form of this relation is similar to the analytical solution νeff/ν =(1−1.1964φ1/3 +
0.3508φ2)−1 for a fixed array of spherical gas bubbles in the creeping flow limit
(Sangani & Acrivos 1983). For small φ (3.3) predicts: νeff/ν = 1 + Kφ1/3, with K as
a numerical constant. The term φ1/3 ∼ R/D can be understood by considering its
proportionality to the magnitude of a velocity disturbance carried over the distance
D between two neighbouring bubbles (Barnea & Mizrahi 1973).

As opposed to the ‘low agitation’ regime figure 7(a) shows a clear Re-dependence
of νeff/ν in the ‘high agitation’ regime. To construct a model that captures the physics
in both regimes, we assume that the effective viscosity νeff = νL + νT is composed of
a ‘laminar’ contribution νL as given by (3.3) and a ‘turbulent’ contribution νT . We
define νT as the ratio of the stress carried by the velocity fluctuations: k = (1/2)u′ · u′,
and the typical shear rate Uslip/R,

νeff = νL + νT =
ν

1 − 0.6φ1/3
+

CkR

Uslip

, (3.4)

where C is a constant of order unity. As shown in figure 6(a) and discussed in § 3.2,
we use that: k ≈ U 2

slipφ. Inserting this into (3.4) gives the following relation for the
effective viscosity ratio,

νeff

ν
=

1

1 − 0.6φ1/3
+ CφRe. (3.5)

A value of 0.13 for C provides the best correlation between (3.5) and the simulation
data. The difference between our relation (3.5) and earlier proposed relations is the Re

dependence of νeff/ν. We argue that this dependence is essential to capture the effects
of the small scale velocity fluctuations in the interstitial liquid, due to the randomly
moving bubbles at large Re.

Figure 7(b) shows the simulation data on the (Reeff, CD) plane where the effective
Reynolds number Reeff =2RUslip/νeff is obtained from (3.5),

Reeff =
1

1

Re(1 − 0.6φ1/3)
+ 0.13φ

. (3.6)

The proposed model, which is plotted as the solid line, assumes that CD is described
by (1.4) where Re is replaced by Reeff, which is given by (3.6). The validity of this
approach is demonstrated by the collapse of the simulation data within 20 % of the
solid line.

3.4. Comparison to experimental data

To summarize, we have derived a CD(Re, φ) relation for spherical bubble swarms by
assuming a similarity between the CD(Reeff) relation for the swarm and the CD(Re)
relation for a single bubble (1.4). In the model, the effective Reynolds number Reeff

(3.6) is based on an effective viscosity which accounts for hindrance effects and
turbulence effects. In order to extend our model to account for bubble deformation
we hypothesize a similarity between the CD(Reeff, We) relation in the suspension and
the CD(Re, We)-relation for a single bubble (1.6). We, therefore, propose the following
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Figure 8. Drag coefficient CD divided by distortion factor G (1.5) as a function
of the effective Reynolds number Reeff (3.6) for various experimental data on
buoyancy-driven bubble suspensions. �, 600 <Re < 750, 0.15 <φ < 0.5, 1.3 <We < 1.6,
(Harteveld et al. 2003); �, 600 < Re < 900, 0.07 < φ < 0.4, 0.8 <We < 2.4, (Garnier et al.
2002); �, 300 < Re < 400, 0.002 < φ < 0.2, 0.6 < We < 1.3, (Zenit, Koch & Sangani 2001);
�, 15 < Re < 25, 0.004 < φ < 0.06, 0.1 <We < 0.2, (Martı́nez-Mercado, Palacios-Morales &
Zenit 2007); �, 80 < Re < 120, 0.004 <φ < 0.04, 0.3 <We < 0.5, (Martı́nez-Mercado et al.
2007); �, 400 <Re < 550, 0.004 <φ < 0.1, 1.7 <We < 2.0, (Martı́nez-Mercado et al. 2007);
∗, 400 <Re < 550, 0.002 < φ < 0.1, 1.2 < We < 2.5, (Riboux et al. 2010); +, 500<Re < 700,
0.002 < φ < 0.1, 2.7 < We < 3.2, (Riboux et al. 2010); ×, 600 <Re < 800, 0.003 <φ < 0.07,
2.1 < We < 3.5, (Riboux et al. 2010). Our model is plotted as the line (3.7).

model for rising swarms of deformable bubbles:

CD

G
=

16

Reeff

{
1 +

[
8

Reeff

+
1

2

(
1 + 3.315Re

−1/2
eff

)]−1
}

, (3.7)

where the distortion factor G and the effective Reynolds number Reeff are defined in
(1.5) and (3.6).

In order to determine the accuracy of this model, we compare it to experimental data
from the literature. For this comparison, we use experimental (φ, Uslip, R) data, that
have been obtained under homogeneous conditions, which means that no large scale
circulation is present and that bubble coalescence and breakup do not play important
roles. These conditions can be satisfied when bubbles are released in the column using
carefully designed gas injection systems, that ensure a homogeneous distribution
over the column cross-section and the bubbles are nearly monodisperse. We found
nine experimental data sets from five different research groups, that were obtained
under sufficiently well-controlled conditions to be suitable for the comparison. In
figure 8, we plot these data on the (Reeff, CD/G) plane. The experimental conditions
are summarized in the caption. The solid line in that figure represents our model (3.7).
Given the uncertainties in the experiments and the simplifications in the simulations,
the agreement is surprisingly good. The experimental data follow (3.7) within a factor
of 3.

4. Conclusions
The complexity of bubbly flow at large Re lies in the combination of pseudo-

turbulence and bubble deformation. To gain insight, we have reduced this complexity
by ignoring bubble deformation and focusing on numerical simulations of spherical
gas bubbles. These simulations were performed using a novel scheme based on lattice
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Boltzmann and immersed boundary methods. This strategy has provided a clear
picture of the effect of pseudo-turbulence on the drag force in bubble swarms. We
found that these effects can be captured using an effective viscosity νeff ≈ kR/Uslip,
where the liquid velocity fluctuations are observed to behave as k ≈ φU 2

slip. To account
for bubble deformation, we propose a modification of the model by using the distortion
theory for a single gas bubble due to Moore (1965).

The principal assumption of our approach is a decoupling of the effects of the
pseudo-turbulence from the effects of bubble deformation. Although the validity
of this assumption is questionable, our approach resulted in a model that agrees
reasonably well with experimental data from the literature. Furthermore, it has
provided insights that are difficult to obtain from experiments where effects of
turbulence and bubble deformation are interrelated in a complicated and yet unknown
way. Therefore, we conclude that spherical bubble swarms provide a useful, limiting
case in the analysis of deformable bubble swarms.

Appendix. Derivation of the hydrostatic pressure gradient, the bubble equation
of motion and the drag coefficient

A.1. Hydrostatic pressure gradient

The flow in the liquid phase is described by the incompressible Navier–Stokes
equation,

ρ

(
∂u
∂t

+ u · ∇u
)

= −
(

dP

dx
+ ρg

)
ex + ∇· (−pδ + 2µS) , ∀x ∈ VL. (A 1)

Pressure is partitioned into two terms. The hydrostatic pressure P varies linearly in the
x-direction and the fluctuating pressure p varies periodically. The hydrostatic pressure
gradient dP/dx counteracts gravity such that conservation of overall momentum is
guaranteed. An expression for dP/dx can be obtained by averaging the x-component
of (A 1) over the liquid phase. The averaging operator · · · acts on a variable u in the
following way:

u =
1

V (1 − φ)

∫
V

Ψ (x)u(x) dV. (A 2)

Here Ψ is a marker function being 0 inside the gas phase and 1 inside the liquid
phase.

The flow is assumed statistically steady and V is assumed large enough that volume
averages of hydrodynamic quantities are time independent. If we also use that all
flow variables are periodic, we arrive at the following expression for the x-component
of the volume-averaged Navier–Stokes equation:

0 = − (1 − φ)

(
dP

dx
+ ρg

)
+ Ix. (A 3)

Here Ix is the x-component of the momentum transfer per unit volume from the gas
phase to the liquid phase due to viscous and fluctuating pressure forces,

Ix =
1

V

NB∑
j=1

∫
Sj

(pδ − 2µS) : nnn · ex dS. (A 4)

Here n is the outward-pointing normal on the bubble surface. Only normal stress
components contribute to Ix , since tangential components are identically zero
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according to the free-slip boundary condition. The integral in (A 4) is taken over
all bubble surfaces Sj . Assuming zero bubble mass, the total force acting on the
bubbles equals zero,

0 = − 1

V

NB∑
j=1

∫
Sj

(P δ + pδ − 2µS) : nnn dS. (A 5)

Applying Gauss’ theorem to the P -term and using (A 4) gives the following force
balance for the gas phase:

0 = −φ
dP

dx
− Ix. (A 6)

Using (A 6) to eliminate the interaction force Ix in (A 3) gives the following expression
for the mean pressure gradient:

dP

dx
= − (1 − φ) ρg. (A 7)

Combining (A 6) and (A 7) gives the following expression for the interaction force:

Ix = φ (1 − φ) ρg. (A 8)

Inserting (A 7) into (A 1) gives the following equation for the liquid momentum:

ρ

(
∂u
∂t

+ u · ∇u
)

= −φρgex + ∇· (−pδ + 2µS) , ∀x ∈ VL. (A 9)

A.2. Bubble motion

Assuming zero bubble mass, the bubbles move such that the hydrodynamic forces
integrate to zero over the bubble surface:

0 = −
∫

S

(P δ + pδ − 2µS) : nnn dS. (A 10)

Applying Gauss’ theorem to the P -term and using (A 7) give the following equation
of bubble motion:

0 = (1 − φ) ρgVB ex −
∫

S

(pδ − 2µS) : nnn dS, (A 11)

where VB is the bubble volume.

A.3. Drag coefficient

The drag coefficient is defined as the interaction force per bubble,

CD =
IxV

NBπR2 1
2
ρU 2

slip

. (A 12)

Inserting the expression (A 8) for Ix into (A 12) yields the following expression for
CD:

CD =
4
3
R (1 − φ) g

U 2
slip

. (A 13)
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Garnier, C., Lance, M. & Marié, J. L. 2002 Measurement of local flow characteristics in buoyancy-
driven bubbly flow at high void fraction. Exp. Therm. Fluid Sci. 26, 811–815.

Harteveld, W. K., Mudde, R. F. & Van Den Akker, H. E. A. 2003 Dynamics of a bubble column:
Influence of gas distribution on coherent structures. Can. J. Chem. Engng 81, 389–394.

He, X. & Luo, L.-S. 1997 A priori derivation of the lattice Boltzmann equation. Phys. Rev. E 55
(6/A), 6333–6336.

Ishii, M. & Zuber, N. 1979 Drag coefficient and relative velocity in bubbly, droplet or particulate
flows. AIChE J. 25, 843–855.

Kim, J., Kim, D. & Choi, H. 2001 An immersed-boundary finite-volume method for simulations of
flow in complex geometries. J. Comput Phys. 171, 132–150.

Lucci, F., Ferrante, A. & Elghobashi, S. 2010 Modulation of isotropic turbulence by particles of
Taylor length-scale size. J. Fluid Mech. 650, 5–55.

Martı́nez-Mercado, J., Palacios-Morales, C. A. & Zenit, R. 2007 Measurement of
pseudoturbulence intensity in monodispersed bubbly liquids for 10 < Re < 500. Phys.
Fluids 19, 103302.

Maxworthy, T., Gnann, C., Kurten, M. & Durst, F. 1996 Experiments on the rise of air bubbles
in clean viscous liquids. J. Fluid Mech. 321, 421–441.

Mei, R. & Klausner, J. F. 1992 Unsteady force on a spherical bubble at finite Reynolds number
with small fluctuations in the free-stream velocity. Phys. Fluids 4, 63–70.

Moore, W. D. 1965 The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J.
Fluid Mech. 23, 749–766.

Philippi, P. C., Hegele, L. A. Jr., dos Santos, L. O. E. & Surmas, R. 2006 From the continuous to
the lattice Boltzmann equation: The discretization problem and thermal models. Phys. Rev.
E 73, 056702.

Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated
by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509–539.

Roma, A. M., Peskin, C. S. & Berger, M. J. 1999 An adaptive version of the immersed boundary
method. J. Comput Phys. 153, 509–534.

Sangani, A. S. & Acrivos, A. 1983 Creeping flow through cubic arrays of spherical bubbles. Intl J.
Multiphase Flow 9, 181–185.

Sangani, A. S. & Didwania, A. K. 1993 Dynamic simulations of flows of bubbly liquids at large
Reynolds numbers. J. Fluid Mech. 250, 307–337.

Shan, X., Yuan, X.-F. & Chen, H. 2006 Kinetic theory representation of hydrodynamics: a way
beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413–441.

Somers, J. A. 1993 Direct simulation of fluid flow with cellular automata and the lattice-Boltzmann
equation. Appl. Sci. Res. 51 (1/2), 127.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.125


Drag force in bubble swarms 121

Ten Cate, A., Deksen, J. J., Portela, L. M. & Van Den Akker, H. E. A. 2004 Fully resolved
simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech.
519, 233.

Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of
particulate flows. J. Comput. Phys. 209, 448–476.

Uhlmann, M. 2008 Interface-resolved direct numerical simulation of vertical particulate channel
flow in the turbulent regime. Phys. Fluids 20, 053305.

Van Sint Annaland, M., Dijkhuizen, W., Deen, N. G. & Kuipers, J. A. M. 2006 Numerical
simulation of behavior of gas bubbles using a 3-D front-tracking method. AIChE J. 52,
99–110.

Yin, X. & Koch, D. L. 2008 Lattice-Boltzmann simulation of finite Reynolds number buoyancy-
driven bubbly flows in periodic and wall-bounded domains. Phys. Fluids 20, 103304.

Zenit, R., Koch, D. L. & Sangani, A. S. 2001 Measurements of the average properties of a
suspension of bubbles rising in a vertical channel. J. Fluid Mech. 429, 307–342.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.125

